
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

KINFORMER: GENERALIZABLE DYNAMICAL SYM-
BOLIC REGRESSION FOR CATALYTIC ORGANIC REAC-
TION KINETICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modeling kinetic equations is essential for understanding the mechanisms of
organic chemical reactions, yet a complex and time-consuming task. Kinetic
equation prediction is formulated as a problem of dynamical symbolic regression
(DSR) subject to physical chemistry constraints. Deep learning (DL) holds the
potential to capture reaction patterns and predict kinetic equations from data of
chemical species, effectively avoiding empirical bias and improving efficiency
compared with traditional analytical methods. Despite numerous studies focusing
on DSR and the introduction of Transformers to predict ordinary differential
equations, the corresponding models lack generalization abilities across diverse
categories of reactions. In this study, we propose KinFormer, a generalizable
kinetic equation prediction model. KinFormer utilizes a conditional Transformer
to model DSR under physical constraints and employs Monte Carlo Tree Search
to apply the model to new types of reactions. Experimental results on 20 types
of organic reactions demonstrate that KinFormer not only outperforms classical
SR algorithm baselines, but also exceeds Transformer baselines in out-of-domain
evaluations, thereby proving its generalization ability.

1 INTRODUCTION

A mechanistic comprehension of chemical reactions is imperative for devising novel catalysts,
exploring various modes of reactivity, and developing environmentally friendly and sustainable
chemical processes (van Dijk et al., 2021; Salazar et al., 2020; Butcher et al., 2020; Hutchinson et al.,
2021). Reaction mechanism and its kinetics are two sides of a chemical reaction, both of which are
of fundamentally importance. Reaction mechanism helps us to gain insights into chemical reaction
at a molecule level and identify the reaction pathway, and the reaction kinetics on the other hand
is the quantitative understanding of the factors influencing the reaction rate. Conventional pipeline
for kinetics analysis involves three stages: (1) assuming the possible reaction mechanism based
on existing knowledge of chemistry; (2) deriving kinetic equations in differential form based on
the possible mechanism and integrating the kinetic equations; (3) fitting the kinetic equations with
experimental data (Bédard et al., 2018; Shi et al., 2021). However, traditional kinetics analysis is
limited by human knowledge of chemical reaction and more probably introduces empirical errors, and
requires case-by-case analysis, resulting in low efficiency and poor generalization (Burés & Larrosa,
2023). To avoid these challenges, recent studies of deep learning provide insights for reaction kinetics
analysis, such as automatic reaction mechanism exploration (Yang et al., 2019; Jorner et al., 2021;
Feng & Wang, 2023), kinetic property regression (Farrar & Grayson, 2022; García-Andrade et al.,
2023) and rate constant estimation (Gao et al., 2016; Maeda et al., 2022). These methods typically
target only one specific reaction or may require expert-guided training, and cannot be generalized.

Actually, the essence of reaction kinetics analysis lies in kinetic equation prediction (KEP), which
combines mechanism generation and constant estimation. Specifically, a catalytic organic reaction
of S

cat−−→ P is taken as the example: S (substrate) combines with cat (catalyst) to form catS
(intermediate), subsequently it decomposes to P (product), and cat is recovered, as shown in
Figure 1a. According to the mass-action law, the chemical mechanism is mathematically controlled
by corresponding ordinary differential equations (ODEs), shown in Figure 1b ([·] represents the
concentration and k is the reaction rate constant). The form of the ODEs is determined by the type of

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

cat

catS

P S

Core

𝒅[𝑺]
𝒅𝒕 = 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐[𝒄𝒂𝒕][𝑷]

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 )[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕 Time

C
on

ce
nt

ra
tio

n

(c) Temporal concentration profiles 

Product 

Substrate

Catalyst

Intermediate 

[𝑆]

[𝑃]

[𝑐𝑎𝑡𝑆]

[𝑐𝑎𝑡]

(b) Kinetics equation(a) Mechanism diagram 

Figure 1: Illustrations of catalytic organic reaction. (a) shows the core mechanism (M1) with
transformation relations among species. (b) provides the governing equations (ODEs) under the
constraints of mass-action law. (c) presents one of the corresponding temporal concentration profiles.

reaction mechanism. In this contribution, due to the dependence of kinetic data with the underlying
reaction mechanism, the objective of KEP is to predict the whole set of ODEs from a group of kinetic
data (temporal concentration profiles, shown in Figure 1c).

In this work, we innovatively formulate KEP as a dynamical symbolic regression (DSR) prob-
lem (Brunton et al., 2016; Weilbach et al., 2021) with physical constraints derived from the mass-
action law. Our goal is to instruct model to successfully regress ODEs from temporal concentration
profiles, and possess generalization capability. Classical SR methods (Brunton et al., 2016; Cranmer,
2023) are usually individual methods without any generalization ability, and performs poorly in
specific domain due to a lack of pre-training stage. With advent of Transformer (Vaswani et al.,
2017), researchers have developed pre-trained sequence-to-sequence Transformer models for SR
tasks. ODEFormer (d’Ascoli et al., 2023) first introduces Transformer into DSR, showing surprising
performance. However, directly applying ODEFormer to KEP faces challenges in generalization,
as the common training strategies cannot make the model effectively learn physical constraints
controlled by the mass-action law. On one hand, the universal training strategy (d’Ascoli et al., 2023)
ODEFormer adopts, generates the entire ODEs in an end-to-end manner, leading to overfitting on
training patterns, good in-domain performance, but poor generalization. On the other hand, inspired
by P-tuning (Liu et al., 2022), the independent strategy generates each equation with the pre-defined
prompt, completely ignoring the physical constraints and correlations among equations. To address
these issues, we first design a conditional strategy to train Transformer on simulated kinetic data,
which randomly selects several equations as conditions, and chooses an additional one to predict. The
strategy adopted in the equation level is more balanced to enables the model to capture such physical
correlations. However, conditional strategy requires the reasonable and explainable generation order
to further improve the generalization ability of the model. To tackle this, we introduces a generation
order search module with Monte Carlo Tree Search (MCTS), which combines with the conditional
strategy and forms a new generalizable KEP framework, KinFormer. We experiment on a simulated
dataset with 20 types of catalytic organic reactions (Burés & Larrosa, 2023). Results demonstrate the
powerful generalization of KinFormer compared with other baselines. In addition, Monte Carlo trees
provide an explanatory approach for how KinFormer predicts reaction kinetic equations.

In general, our contributions include: (1) We propose a generalizable training strategy, the conditional
strategy, to solve improve the generalization ability of KEP. (2) We design an MCTS post-processing
module to search the optimal generation order and providing explanations corresponding to the
conditional strategy, which forms the KinFormer framework. (3) Experiments on a catalytic organic
reaction simulated dataset demonstrate KinFormer’s generalization ability.

2 RELATED WORKS

2.1 SYMBOLIC REGRESSION

Symbolic regression (SR) aims to discover the most optimal mathematical function that can accurately
fit dataset. One of the dominant approaches for SR is Genetic Programming (GP) algorithm that
simulates the evolution of human history (Schmidt & Lipson, 2009; Błądek & Krawiec, 2022;
Trujillo et al., 2016; Tohme et al., 2022; Virgolin et al., 2021). Afterwards, SR has also garnered
increasing attention from the deep learning (DL) community, driven by the observation that neural
networks excel in discerning qualitative patterns (Petersen et al., 2019; Udrescu & Tegmark, 2020;

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Udrescu et al., 2020; Holt et al., 2023). The advent of transformer (Vaswani et al., 2017) have shown
remarkable performance in natural language processing, which has inspired researchers to develop
pre-trained sequence-to-sequence transformer models for SR (Vastl et al., 2024; Lample & Charton,
2019; Charton, 2021). After large-scale pre-training on synthetic data, inference often achieves
significant acceleration, since it necessitates no training for unseen dataset (Biggio et al., 2021). For
example, the E2E framework (Kamienny et al., 2022) is end-to-end and designed to forecast the
entire equation, including constants. Most of these works concentrate on functional SR, instead of
differential equations (ODEs).

2.2 DYNAMIC SYMBOLICAL REGRESSION

Dynamical SR, as a special case of SR, refers to the accurate inference of corresponding ODEs
based on temporal data (t, x(t)). A significant obstacle lies in the lack of regression targets ẋ(t)
since temporal derivatives are usually not observable directly. A typical remedy involves utilizing
numerical approximations of the absent derivatives as substitute objectives (Gaucel et al., 2014;
La Cava et al., 2016; Brunton et al., 2016). Neural networks have also been integrated with GP
for dynamical SR (Udrescu et al., 2020; Omejc et al., 2023; Weilbach et al., 2021), but there still
exists generalization problems due to the absence of prior knowledge. NSODE (Becker et al.,
2023) is a transformer-based method for dynamical SR but can only work on univariate ODEs.
ODEFormer (d’Ascoli et al., 2023) is proposed to infer multidimensional ODEs in symbolic form
from the observation of a single solution trajectory. However, the training strategy of ODEFormer
leads to poor generalization, especially in KEP.

3 PRELIMINARIES

3.1 KINETIC EQUATION PREDICTION

Kinetic equation prediction (KEP) is a kinetics analysis task to discover the ODEs (denoted by f )
of an catalytic organic reaction (S cat−−→ P ) according to temporal concentration profiles of species.
Therefore, the input of KEP is the representation of temporal concentration profiles, a time series of
X = {(t,x(t))|t ∈ {1, 2, ..., T}}, where T is the maximum timestep and x is a D-dimensional vector
corresponding to the concentrations of reaction species, including substrates, products, catalysts
and intermediates (xt = {xs(t)|s ∈ {S, P, cat, catS, · · · }}). Temporal concentration profiles are
governed by kinetic equations (ODEs), shown in Equation 1. The objective of KEP is to formulate f
from observed temporal concentration profiles.

d

dt
x(t) = f(x(t)), f : RD → RD (1)

Hence, KEP can be formulated as a dynamical symbolic regression (DSR) task (Brunton et al., 2016;
d’Ascoli et al., 2023), where f can be inferred in symbolic form constrained by the mass-action law
R. In practice, f can be converted into prefix notations y for deep learning (Lample & Charton, 2019).
It means that y = g(f) and f = g−1(y) hold, where g and g−1 are conversion functions. Therefore,
given the training dataset D = {(X,y)} = {(t,x(t),y)} (X = {(t,x(t))|t ∈ {1, 2, ..., T}},
y = [y1, y2, · · · , yn], yi is the symbolic token in the ODE, such as “add”, “mul” and discrete numeric
symbols), deep learning-based KEP is to train a DSR neural network Fθ with parameters θ, making
∀(X, y) ∈ D satisfy Equation 2. y = Fθ(t,x(t)), f = g−1(y)

d
dtx(t) = f(x(t)), R ⊨ f

(2)

R ⊨ f means the form of f should satisfy physical constraints R. Actually, it is challenging to
explicitly model R into Fθ to guarantee compliance and generalization. In this work, we instead
model R implicitly through a novel training strategy and MCTS, which is consistent with Equation 2.

3.2 CATALYTIC ORGANIC REACTION

Although Equation 2 provides a general objective of KEP, we focus on catalytic organic reactions,
following the previous Nature work (Burés & Larrosa, 2023). We have considered 20 commonly

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Universal strategy (b) Independent strategy (c) Conditional strategy

𝑥!
𝑥"
…
𝑡

=

1
0
⋮
1

0.49
0.18
⋮
2

…

𝑁

𝑥!
𝑥"
…
𝑡

=

1
0
⋮
1

0.49
0.18
⋮
2

…

𝑁

𝑥!
𝑥"
…
𝑡

=

1
0
⋮
1

0.49
0.18
⋮
2

…

𝑁

Embedder

Encoder

Embedder

Decoder

�̇�! = 0.29𝑥" − 0.49𝑥#𝑥!
�̇�$ = 0.22𝑥" − 20.43𝑥$𝑥#

……

Prefix-infix 
conversion

𝑎𝑑𝑑,𝑚𝑢𝑙, +, 𝑁2280, 𝐸-4, 𝑥#, 𝑚𝑢𝑙, −,	
𝑁1000, 𝐸−3,𝑚𝑢𝑙, +, 𝑁2043, 𝐸-2,𝑚𝑢𝑙,	
𝑥!, 𝑥$, |, 𝑎𝑑𝑑,𝑚𝑢𝑙, +, 𝑁2931, 𝐸−4, 𝑥#, …

Embedder

Encoder

<𝑒𝑜𝑠> Embedder

Decoder

𝒅𝒙𝟎

𝑎𝑑𝑑,𝑚𝑢𝑙, +, 𝑁2280, 𝐸-4, 𝑥#, 𝑚𝑢𝑙,
−, 𝑁1000𝐸−3,𝑚𝑢𝑙, +, 𝑁2043,

�̇�$ = 0.22𝑥" − 20.43𝑥$𝑥#

𝐸-2,𝑚𝑢𝑙, 𝑥!, 𝑥$,<𝑒𝑜𝑠>
Prefix-infix 
conversion

Embedder

Encoder

Embedder

Decoder

<𝑒𝑜𝑠>, 𝒅𝒙𝟎, 𝑎𝑑𝑑,	

𝑁1000, 𝐸−3,	

𝑚𝑢𝑙, +, 𝑁2280,
𝐸-4, 𝑥#, 𝑚𝑢𝑙, −,	

𝑚𝑢𝑙, +, 𝑁2043,
𝐸-2,𝑚𝑢𝑙, 𝑥!,
𝑥$,|, 𝒅𝒙𝟏

�̇�$ = 0.22𝑥" − 20.43𝑥$𝑥#

𝑎𝑑𝑑,𝑚𝑢𝑙, +, 𝑁2931, 𝐸-4, 𝑥#,

+, 𝑁4890, 𝐸-4,𝑚𝑢𝑙, 𝑥$, 𝑥"

�̇�! = 0.29𝑥" − 0.49𝑥#𝑥!

𝑚𝑢𝑙, −, 𝑁1000𝐸−3,𝑚𝑢𝑙,

Prefix-infix 
conversion

Prefix-infix 
conversion

Input

Model

Output

Equation

<𝑒𝑜𝑠>

Figure 2: Comparison of three types of training strategies. (a) the framework of universal Transformer
that generates the whole ODEs according a prior order. (b) the independent Transformer that
independently generate each ODE through an additional prompt, such as dx0. (c) our proposed
conditional strategy that provides contexts for decoder to capture correlations among different ODEs.

encountered types of catalytic organic reactions, whose species can be simplified into unified ex-
pressions: substrates (S), products (P ), catalysts (cat) and intermediates (catS, cat2S, · · · ). These
20 types can further be categorized into four groups of distinct chemical mechanisms: (1) core
mechanism (M1), as shown in Figure 1; (2) bicatalytic mechanisms (M2-M5); (3) catalyst activation
mechanisms (M6-M8); (4) catalyst deactivation mechanisms (M9-M20) (See Appendix for more
details). Like other chemical reactions, each type of reaction is mathematically described by a set
of rigorously expert-verified ODEs function of kinetic constants k and concentration variable of
chemical species. Therefore, solving ODEs allow the generation of an infinite number of temporal
concentration profiles of reactions, constituting a kinetic space. In this work, we choose to solve the
set of ODEs that describe the kinetic behavior of each mechanism as function of kinetic constants to
create catalytic organic kinetic datasets.

4 METHODOLOGY

4.1 CONDITIONAL STRATEGY

Inspired by ODEFormer, we adopt the same Transformer backbone that encodes numerical inputs by
the discrete three-token method (d’Ascoli et al., 2023). The model architecture, optimization and
other encoding/decoding techniques are all aligned with ODEFormer. On the backbone, we explore
three types of training strategies: universal, independent and conditional strategies.

Universal strategy provides an end-to-end encoder-decoder model that generates the whole ODEs
for a reaction, which is also the strategy of ODEFormer. Figure 2a shows the whole framework of the
universal one. The encoder is used to encode the discrete time series X , while the decoder generates
each token autoregressively starting from the “<eos>” token. Therefore, the objective of the universal
strategy is shown in Equation 3, where y0 is the “<eos>” token, y<i = [y0, · · · , yi−1], Pθ(·) is the
probability calculated by the neural network, and θ represents trainable parameters.

max
θ

log Pθ(y|X) = log

n∏
i=1

Pθ(yi|X,y<i) =

n∑
i=1

log Pθ(yi|X,y<i) (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Iterate

Selection Expansion Simulation Backpropagation

<start>

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	0 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	3…

<start>

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	0 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	3…

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2

Conditional
strategy𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	0

Condition

<start>

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	0 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	3…

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2

autoregressive
generation

Complete
ODEs

reward
computation

𝑅2!
Reward

𝑅2"M
et
ric
s

<start>

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	0 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	3…

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2

Figure 3: MCTS generation order search with based on conditional model.

Independent strategy re-splits the whole ODEs into each independent ODE. Specifically, given
kinetic equations y, it includes several separate ODEs e. Therefore, y = [e1, · · · , eD] holds, where
D is the dimension of species. ei is a continuous token segment of y and represents the prefix
notation of the ith ODE. To indicate which ODE to be predicted, the independent model introduce a
prompt token pi with the form of “dxi”. Figure 2b shows the framework. Following P-tuning (Liu
et al., 2022), the prompt is encoded in the encoder instead of the decoder. In general, the objective
of the independent strategy is shown in Equation 4. From the equation, this strategy assumes the
independence among ODEs, so each ODE is predicted separately through prompts.

max
θ

log Pθ(y|X) = log

D∏
i=1

Pθ(ei|X, pi) =

D∑
i=1

log Pθ(ei|X, pi) (4)

Conditional strategy is a balanced strategy that we have proposed. It also re-splits y into ODE
segment ei. Different from the independent one, conditional strategy models the correlations among
ei by introducing the condition c (Figure 2c demonstrate how to use the condition to prompt the
model). To calculate unordered c, we shuffle [e1, · · · , eD] and acquire a shuffled list [e′1, · · · , e′D],
where y = shuffle([e1, · · · , eD]) = [e′1, · · · , e′D]. Therefore, ci is comprised of the first i-1
ODEs from the shuffled list (ci = [e′1, · · · , e′i−1]) and the objective of the conditional strategy is
shown in Equation 5, where c1 is an empty set. From the equation, this strategy treats each ODE as
a whole, introducing correlations between among ODEs through conditional probability modeling.
During the training stage, the number and elements of the condition are randomly sampled to ensure
the model’s generalization. During the inference phase, conditions are added one by one.

max
θ

log Pθ(y|X) = log

D∏
i=1

Pθ(e
′
i|X, ci) =

D∑
i=1

log Pθ(e
′
i|X, ci) (5)

Comparing three strategies, the universal strategy, without incorporating any prior knowledge, allows
the model to autonomously learn and explore the physical constraints R within KEP, resulting in
pattern rigidity and lack of generalization ability. The other two focus on modeling each individual
ODE in KEP. Independent strategy ignores the mutual constraints among ODEs, with each equation
adopting an optimal solution. However, the predicted ODEs do not satisfy the constraint R (R ⊭ f ).
Conditional strategy effectively captures physical constraints R by directly modeling the correlations
among ODEs. Compared with the former two, it provides a generalizable framework for KEP.
However the challenge of the generation order still remains.

4.2 GENERATION ORDER SEARCH

To solve the order challenge, we introduce a novel Monte Carlo Tree Search (MCTS) search module
into KinFormer based on conditional strategy, as shown in Figure 3. Different from previous
works (Holt et al., 2023; Shojaee et al., 2023; Li et al., 2024), the proposed search module does not

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

focus on the generation order of each token, but aims to coordinate with a conditional strategy to
search for the generation order of individual ODEs. Therefore, nodes of Monte Carlo the represent
independent equations (e′), while edges reflect correlations between two equations. To complete an
iteration, the MCTS search module includes four major stages: Selection, Expansion, Simulation,
and Backpropagation (Silver et al., 2017).

Selection: When given the current activated node e′i, the next activated node should be selected from
e′i’s child nodes. In this work, the probabilistic upper confidence bound heuristic (P-UCB) (Silver
et al., 2018) is adopted to execute the selection operation. In details, the node with the maximum
P-UCB score (S) is activated. The calculation of S is in the Equation 6, where e′i+1 ∈ child(e′i)
is the next activated node, one of the child nodes of e′i, alpha is a constant, Pθ is the probability
calculated by the neural model, ci+1 = [e′1, · · · , e′i] is the condition. In MCTS, V (·) and N(·) are
two important indicators to record the cumulative score and the number of traversals, respectively.

S(e′i+1) =
V (e′i+1)

N(e′i+1)
+ α · Pθ(e

′
i+1|X, ci+1) ·

√
ln N(e′i)

1 +N(e′i+1)
, e′i+1 ∈ child(e′i) (6)

Expansion: When the activated node e′i is a leaf node, to facilitate tree growth, the expansion
operation generates all child nodes (the next possible equations) of the current one. In this work, all
untraversed ODEs n can be predicted by Equation 7, which is the expansion of e′i.

n = argmaxn Pθ(n|X, ci ∪ {e′i}), n ∈ child(e′i) = y/(ci ∪ {e′i}) (7)

Simulation: Given an activated node e′i, the proposed module employs an action to random select a
sequence of the rest ODEs and executes the action through the neural model step by step, resulting in
a simulation result y′

i.Then, the evaluation score score can be computed by Equation 8, where r2m
and r2M are two R2 metrics that will be defined in the next section, α+ β = 1, α ≥ 0, β ≥ 0.

score(e′i) = α · r2m(y′
i, X) + β · r2M (y′

i, X) (8)

Propagation: After simulation, the activated node’s score is recursively backpropagated to its parent
node until reaching the root node (N = N + 1 and V = V + score).

We set iterations n = 100 for our MCTS framework. After removing error nodes, the leaf node with
the maximum N (Q is used for equal N values) is selected as the final ODEs. The detailed MCTS
algorithms and the specific example are shown in the Appendix.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

For three training strategies, we construct different formats of training data, as shown in Figure 2.
Because twenty types of reactions belong to four chemical mechanism categories mentioned in 3.2
and reactions under the different categories possess the distinct patterns, we have defined two distinct
modes: Intra-class and inter-class generalization. Intra-class: randomly hold out one reaction
type from bicatalytic mechanism, catalyst activation and catalyst deactivation (e.g. M5,M6 and
M20). inter-class: hold out all three reaction types within catalyst activation (e.g. M6-M8). The
detail of data sample construction is presented in Appendix C. We mainly compare KinFormer with
three training strategies and two classical SR methods, namely SINDy (Brunton et al., 2016) and
PySR (Cranmer, 2023). Although SINDy and PySR are usually plug-and-play, and do not possess
pre-training and the concept of “generalization”, we still conduct comparison experiments to prove
the superiority of KinFormer. Following the previous work (d’Ascoli et al., 2023), we compute d

dtx(t)
by the central finite difference algorithm as regression targets. Each test sample corresponds to one
ODE system, so we apply SINDy or PySR to each sample and test each individual model. In SINDy,
only the polynomial dimension (d) of hyper-parameters significantly influences the results, so we
exhibit the performance of n ∈ {2, 3, 4, 5}. In PySR, we keep the default hyper-parameters setting.
To further illustrate effectiveness MCTS, we also perform the equation-level beam search to replace

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

MCTS. However, as beam search is time-consuming, we set the iteration n = 20, sample 100 cases
for each type of mechanism, and keep KinFormer under the same setting for a fair comparison. It is
worth noting that the comparison between the conditional strategy and KinFormer can be regarded as
the ablation study of the MCTS module.

5.2 EVALUATION METRICS

In this work, we adopt R2-based measurement and RMSE as our evaluation metrics. R2-score (Cava
et al., 2021) is a classical metric for regression tasks. R2-score is unbounded from below and a
single outlier prediction causes severely biased score. To circumvent this, we set 0 for any negative
R2-score (Kamienny et al., 2022; d’Ascoli et al., 2023). Based on the definition of R2-score, we
define four corresponding metrics to evaluate models. The first two are micro-R2 (r2m) and macro-R2
(r2M ). r2m is the average R2-score on the test set. Due to the smaller scales of certain species (e.g.
intermediate) compared with other species, r2m might overlook the significance of these species.
Instead, r2M calculates the R2-score for each generated species and then take the average. The
latter two are accuracy scores. We consider a sample with R2-score greater than 0.9 to be a correct
one. Values calculated by R2m and R2M are defined as micro-accuracy Accm and macro-accuracy
AccM , respectively. Furthermore, we also compare the accuracy of the equation form (Accform).
Specifically, Accform is calculated by exact match in form neglecting kinetic constants. RMSE is
calculated to measure the difference between the predicted and actual values. We report the median
of RMSE to avoid the influence of outliers. t is the average inference time.

5.3 MAIN RESULTS

Table 1 presents the main results of KinFormer and other baselines. SINDy and PySR does not
perform as well as KinFormer. We speculate that one possible reason is that classical SR methods lack
domain-specific knowledge (e.g. mass-action law) due to the absence of pre-training. Another reason
probably is the imprecision of the approximated temporal derivatives. Comparing three training
strategies, firstly, the universal strategy has performed optimally across all metrics in in-domain
settings, demonstrates the power of Transformer on DSR. In both out-of-domain scenarios, however,
it performs poorly, failing to predict the ODEs’ form correctly. This indicates that the universal
strategy lacks of generalization capability, merely memorizing formulas seen in training. Secondly,
the independent strategy underperforms in all three scenarios, which is within expectations. When
training a model to learn a specific equation of ODEs based on the entire concentration profiles,
several irrelevant information is introduced and physical constraints from other equations are absent,
which results in inaccurate predictions. Thirdly, the conditional strategy has made significant progress
compared with the other strategies in two out-of-domain scenarios, even Accform exceeding 70%.
The improvement demonstrates its generalization capability and proving our assumption that the
extra conditional information enables the model to successfully learn the physical constraints among
equations. Last but not least, the model trained under the universal strategy have the fastest inference
speed, but the difference among the three is not significant.

KinFormer incorporates the conditional strategy and the MCTS module, which has achieved the
superior results. Specifically, compared with the universal strategy, in the intra-class scenario,
Accm, AccM , R2m and R2M increase by 47.17%, 21.31%, 0.563 and 0.445, respectively; in the
inter-class scenario, Accm, AccM , R2m and R2M increase by 30.42%, 18.52%, 0.399 and 0.410,
respectively. Overall, the experimental results demonstrate that KinFormer (n = 100) significantly
enhances generalization capability by implicitly modeling physical constraints through the conditional
strategy and optimizing the sequential order of formulas generation via MCTS post-processing.
Consequently, KinFormer is capable of predicting successfully for reaction types it has not previously
encountered. To further illustrate the selection of MCTS instead of other search metheds, we exhibit
the performance of equation-level beam search. Under the same setting (n = 20), the inference time
for Beam Search1 is almost three times that of MCTS. Considering performance, MCTS algorithm
consistently outperforms Beam Search in terms of both accuracy and efficiency. These results indicate
that MCTS leverages the physical correlations learnt by conditional strategy to search the better
generation sequence. In addition, disregarding the differences in data volumn, MCTS with 100

1n = 20 for Beam Search means we retain at most the top 20 equations after each equation generating step
(e.g. generate [dx0, dx3] from [dx0] or generate [dx0, dx3, dx4] from [dx0, dx3] ) and end up with 20 ODEs.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Evaluation Results of KinFormer and other baselines. ID, OOD(Intra) and OOD(Intra)
represent in-domain, intra-class, and inter-class evaluations, respectively. The bolding methods
are proposed in this work. ∗ means a summary result of individual models for each test sample is
reported. Underline “n=20” means that test set contains 100 samples for each type of mechanism.

Methods Accm AccM Accform R2m R2M RMSE t(s)

ID

SINDy∗
d=2 1.59 0.72 0 0.020 0.042 174.9 1
d=3 0.09 0.04 0 0.002 0.032 5.252 1
d=4 0 0 0 0.001 0.028 1.175 1
d=5 0 0 0 0.003 0.042 1.278 1

PySR∗ 24.32 7.85 - 0.315 0.434 0.063 36

Univeral 71.49 38.02 67.80 0.754 0.689 0.008 6
Independent 4.14 1.86 0 0.059 0.133 0.248 10
Conditional 36.08 14.78 57.15 0.471 0.447 0.018 15

BeamSearch
n=20 35.48 17.70 63.60 0.463 0.455 0.010 669

KinFormer
n=20 63.45 28.23 64.99 0.726 0.638 0.007 222
n=100 59.76 27.56 64.00 0.698 0.629 0.010 371

OOD
(Intra)

Universal 10.40 1.87 0 0.158 0.183 0.095 6
Independent 0.47 0.07 0 0.009 0.077 0.304 10
Conditional 31.73 9.67 70.28 0.455 0.425 0.023 15

BeamSearch
n=20 31.67 12.67 73.19 0.498 0.469 0.017 669

KinFormer
n=20 50.83 18.75 79.42 0.662 0.583 0.014 222
n=100 57.57 23.18 80.47 0.721 0.628 0.013 371

OOD
(Inter)

Universal 10.73 0.60 0 0.182 0.205 0.067 6
Independent 0.47 0 0 0.012 0.075 0.322 10
Conditional 23.40 4.40 74.30 0.325 0.397 0.044 15

BeamSearch
n=20 23.00 6.67 76.05 0.325 0.404 0.021 669

KinFormer
n=20 40.47 13.71 80.61 0.515 0.534 0.015 222
n=100 41.15 19.12 81.41 0.581 0.615 0.012 371

iterations shows only a marginal improvement over MCTS with 20 iterations, which supports that
KinFormer can coverage within a small number of iterations, demonstrating high search efficiency.

5.4 GENERALIZATION ANALYSIS

We plot distribution diagrams of the R2-score under both intra-class and inter-class conditions,
shown in Figure 4. The distribution that is more skewed towards the right indicates a superior fitting
performance, implying a better generalization. Since r2m is to evaluate the overall performance and
r2M is to assess the individual equation fitting performance, The analysis of the diagram can be
categorized into four scenarios: (1) large r2m and r2M mean great fitting; (2) small r2m and r2M
mean poor fitting; (3) large r2m and small r2M mean overall good fitting but neglect of a few species
due to tiny scaling; (4) small r2m and large r2M means only a few species are predicted accurately.

For the intra-class scenario, it is evident from Figure 4a that the universal exhibits mediocre perfor-
mance on M5. Distributions for both M6 and M20 are skewed notably towards the left, suggesting a

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2.5

2.0

1.5

1.0

0.5

1.6

1.2

0.8

0.4

(a) Distribution of 𝑅2-score under intra-class condition

1.6

1.2

0.8

0.4

2

4

6

8

0.5

1.0

1.5

2.0

2.5

3.0

4

8

12

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(b) Distribution of 𝑅2-score under inter-class condition

0.5

1.0

1.5

2.0

2.5

3.0

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0.5

1.0

1.5

2.0

0.2

0.6

1.0

1.4

5

10

15

20

2

4

6

8

10
K

in
Fo

rm
er

U
ni

ve
rs

al

K
in

Fo
rm

er
U

ni
ve

rs
al

Bicatalytic 
Mechanism

(M5)

Catalyst 
Activation 

(M6)

Catalyst 
Deactivation

(M20)

Catalyst 
Activation 

(M6)

Catalyst 
Activation

(M7)

Catalyst 
Activation

(M8)

Figure 4: Distribution diagrams of R2-score under out-of-domain conditions. Red curve represents
r2m and Blue curve represents r2M . The vertical line represents mean value of R2-score.

0 0.2 0.4 0.6 0.8 1

1

2

3

Core Mechanism

0 0.2 0.4 0.6 0.8 1

0.5

1.0

1.5

2.0

Bicatalytic Mechanism

0 0.2 0.4 0.6 0.8 1

0.5

1.0

1.5

Catalyst Activation

0 0.2 0.4 0.6 0.8 1

1

2

3

Catalyst Deactivation

Figure 5: KinFormer distribution diagrams of R2-score under in domain conditions.

inability to generalize to these two mechanisms. However, KinFormer successfully shifts this distri-
bution towards the right, demonstrating its capability to effectively generalize under the intra-class
scenario. The inter-class scenario is harder setting because the whole Catalyst Activation haven’t
been seen during training. As evidenced in Figure 4b, KinFormer achieves superior performance
on both M6 and M7. Specifically, KinFormer improve the r2M distribution to the right obviously,
which means KinFormer not only enhances the overall ODEs fitting performance, but also promote
the species profiles fitting with small numerical scale. KinFormer and the universal strategy both fail
on M8. We speculate that The dimension of most mechanisms are either 4 or 5, while the dimension
for M8 is 6, thereby posing a significant challenge in prediction. Meanwhile, KinFormer on M20, the
universal strategy on M5 and M7 exhibit clear mismatches of the two R2-score, suggesting that the
model still tends to overlook species at smaller scales.

5.5 MECHANISM CATEGORY ANALYSIS

We specifically analyze the performance of KinFormer based on the four reaction mechanism
categories under in domain setting. From Figure 5, firstly, it is obvious that KinFormer achieves the
superior performance in Core Mechanism, because the first mechanism is relatively simple, whose
dimension is only four and form is basic. Secondly, for Bicatalytic Mechanism, dimensions increase
to five/six, raising the difficulty of the task. However, KinFormer still provides the moderate results,
where r2m exceeds 0.6, which proves the effectiveness of KinFormer. Thirdly, Catalyst Activation
Mechanism is the most difficult to predict with the lowest R2-score. Meanwhile, the two peaks of
r2m of the category are close to 0 and 1, but its r2M is in the middle, indicating that the scenarios
(3) and (4) mentioned in the previous section are both present. Fourthly, for Catalyst Deactivation
Mechanism, which is also a challenging task, the distribution of R2-score is obviously shifted to the
left and r2m is almost 0.8. In addition, Kinformer also neglects small-scale species in this category.

5.6 GENERATION ORDER ANALYSIS

The top three generated sequences of MCTS and frequency count for each reaction category under
in-domain scenario are shown in Appendix. It is worth noting that almost all reactions of catalyst

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Time

C
on
ce
nt
ra
tio
n
pr
of
ile
s

Substrate

Product

Catalyst

Intermediate1

Intermediate2

Intermediate31 2 3 4 5 6 7 8 9 10

1

0
0

1

0.4

0.6

0

0.8

0

0.00014

0

0.8

0

0.001

	𝑅!=0.993

	𝑅!=0.994

	𝑅!=0.999

	𝑅!=0

	𝑅!=0.999

	𝑅!=0

Figure 6: Case study on M20 to illustrate E2 errors. LHS part is complete concentration profiles
and predicted profiles of six involved species. The individual subfigures are presented in RHS part.
Different color represents different species. Black represents ground-truth profiles.

deactivation prefer a specific generation order: [O,P, catS, S, cat], where O represents another inter-
mediate distinct from catS. In fact, except for O and P , the ODE coefficients of other neighboring
species are correlated (e.g. in Figure 1, the k1[S][cat] term appears simultaneously in the equations
of d[S] and d[cat]). Therefore, the relative sequence are more important and we infer that KinFormer
tends to select a relative generation order that makes terms and independent coefficients between two
consecutive ODE equations similar.

5.7 ERROR ANALYSIS AND CASE STUDY

The prediction errors of KinFormer mainly stem from the predictions of M3, M8, M10, M15, and
M20. From a dimensional perspective, the errors on M8, M10, M15, and M20 originate from their
highest dimensionality (D = 6), indicating that KinFormer’s ability for cross-dimensional prediction
needs improvement. When classifying error types, errors on M3 and M8 belong to the category
of unpredictable errors (E1), while errors on M10 and M15 belong to the category of overlooking
small-scale species errors (E2). The errors on M20 exhibit characteristics of both categories. We
further perform a case study to illustrate E2. In Figure 6, the case from M20 has relatively high
r2m but low r2M . Since the reaction reaches a steady state within the first 10 timesteps, we only
took the first 10 timesteps. This is a typical E2 error. From Figure 6, Kinformer cannot effectively
predict Intermediate1 and Intermediate3. Digging into the reasons, the ground truth of these species’
concentration profiles is severely disrupted by Gaussian noise. KinFormer is unable to reconstruct the
expressions from noisy data, especially when the noise magnitude is similar to the data scale. This
indicates that E2 errors stem from species severely affected by noise.

6 LIMITATIONS

Limitations include: (1) The performance both in- and out-of-domain needs further improvement. (2)
The cross-dimensional transfer capability is weak. (3) MCTS faces the issue of high time complexity
when dealing with a large number of species.

7 CONCLUSIONS

Kinetic equation prediction is an essential task for understanding the chemical reaction mechanisms.
Traditional DSR models fail to provide generalizable performance under chemical domain. In
this paper, we propose KinFormer to solve the generalization problem in KEP, which promotes the
development of chemical kinetics analysis. Specifically, KinFormer takes advantage of the conditional
training strategy to model DSR under physical constraints. Meanwhile, MCTS is applied as a post-
processing step to select the optimal generation order. Experiments on a synthetic catalytic organic
reaction dataset demonstrate KinFormer’s generalization capability. In conclusion, KinFormer is a
generalizable DSR framework for KEP, which can inspire future research in other scientific domains.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sören Becker, Michal Klein, Alexander Neitz, Giambattista Parascandolo, and Niki Kilbertus.
Predicting ordinary differential equations with transformers. In International Conference on
Machine Learning, pp. 1978–2002. PMLR, 2023.

Anne-Catherine Bédard, Andrea Adamo, Kosi C Aroh, M Grace Russell, Aaron A Bedermann,
Jeremy Torosian, Brian Yue, Klavs F Jensen, and Timothy F Jamison. Reconfigurable system for
automated optimization of diverse chemical reactions. Science, 361(6408):1220–1225, 2018.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In International Conference on Machine Learning, pp.
936–945. Pmlr, 2021.

Iwo Błądek and Krzysztof Krawiec. Counterexample-driven genetic programming for symbolic
regression with formal constraints. IEEE Transactions on Evolutionary Computation, 2022.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

Jordi Burés and Igor Larrosa. Organic reaction mechanism classification using machine learning.
Nature, 613(7945):689–695, 2023.

Trevor W Butcher, Jonathan L Yang, Willi M Amberg, Nicholas B Watkins, Natalie D Wilkinson, and
John F Hartwig. Desymmetrization of difluoromethylene groups by c–f bond activation. Nature,
583(7817):548–553, 2020.

W. L. Cava, Patryk Orzechowski, Bogdan Burlacu, Fabr’icio Olivetti de Francca, M. Virgolin, Ying
Jin, Michael Kommenda, and Jason H. Moore. Contemporary symbolic regression methods and
their relative performance. Advances in neural information processing systems, 2021 DB1:1–16,
2021.

François Charton. Linear algebra with transformers. arXiv preprint arXiv:2112.01898, 2021.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Stéphane d’Ascoli, Sören Becker, Alexander Mathis, Philippe Schwaller, and Niki Kilbertus.
Odeformer: Symbolic regression of dynamical systems with transformers. arXiv preprint
arXiv:2310.05573, 2023.

Elliot HE Farrar and Matthew N Grayson. Machine learning and semi-empirical calculations: a
synergistic approach to rapid, accurate, and mechanism-based reaction barrier prediction. Chemical
Science, 13(25):7594–7603, 2022.

Yajuan Feng and Chao Wang. Surface confinement of finite-size water droplets for so3 hydrolysis
reaction revealed by molecular dynamics simulations based on a machine learning force field.
Journal of the American Chemical Society, 145(19):10631–10640, 2023.

Connie W Gao, Joshua W Allen, William H Green, and Richard H West. Reaction mechanism gener-
ator: Automatic construction of chemical kinetic mechanisms. Computer Physics Communications,
203:212–225, 2016.

Xabier García-Andrade, Pablo García Tahoces, Jesús Pérez-Ríos, and Emilio Martínez Núñez. Barrier
height prediction by machine learning correction of semiempirical calculations. The Journal of
Physical Chemistry A, 127(10):2274–2283, 2023.

Sébastien Gaucel, Maarten Keijzer, Evelyne Lutton, and Alberto Tonda. Learning dynamical systems
using standard symbolic regression. In Genetic Programming: 17th European Conference, EuroGP
2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers 17, pp. 25–36. Springer, 2014.

Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Deep generative symbolic regression. arXiv
preprint arXiv:2401.00282, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

George Hutchinson, Carla Alamillo-Ferrer, and Jordi Burés. Mechanistically guided design of an
efficient and enantioselective aminocatalytic α-chlorination of aldehydes. Journal of the American
Chemical Society, 143(18):6805–6809, 2021.

Kjell Jorner, Anna Tomberg, Christoph Bauer, Christian Sköld, and Per-Ola Norrby. Organic reactivity
from mechanism to machine learning. Nature Reviews Chemistry, 5(4):240–255, 2021.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
end symbolic regression with transformers. Advances in Neural Information Processing Systems,
35:10269–10281, 2022.

William La Cava, Kourosh Danai, and Lee Spector. Inference of compact nonlinear dynamic models
by epigenetic local search. Engineering Applications of Artificial Intelligence, 55:292–306, 2016.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412, 2019.

Yanjie Li, Weijun Li, Lina Yu, Min Wu, Jingyi Liu, Wenqiang Li, Meilan Hao, Shu Wei, and Yusong
Deng. Discovering mathematical formulas from data via gpt-guided monte carlo tree search. arXiv
preprint arXiv:2401.14424, 2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks. In Annual
Meeting of the Association for Computational Linguistics, 2022.

Kazuhiro Maeda, Aoi Hatae, Yukie Sakai, Fred C Boogerd, and Hiroyuki Kurata. Mlago: machine
learning-aided global optimization for michaelis constant estimation of kinetic modeling. BMC
bioinformatics, 23(1):455, 2022.

Nina Omejc, Boštjan Gec, Jure Brence, Ljupčo Todorovski, and Sašo Džeroski. Probabilistic
grammars for modeling dynamical systems from coarse, noisy, and partial data. 2023.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

Chase A Salazar, Kaylin N Flesch, Brandon E Haines, Philip S Zhou, Djamaladdin G Musaev, and
Shannon S Stahl. Tailored quinones support high-turnover pd catalysts for oxidative c–h arylation
with o2. Science, 370(6523):1454–1460, 2020.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Yao Shi, Paloma L Prieto, Tara Zepel, Shad Grunert, and Jason E Hein. Automated experimentation
powers data science in chemistry. Accounts of Chemical Research, 54(3):546–555, 2021.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan Reddy. Transformer-based
planning for symbolic regression. Advances in Neural Information Processing Systems, 36, 2023.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

Tony Tohme, Dehong Liu, and Kamal Youcef-Toumi. Gsr: A generalized symbolic regression
approach. arXiv preprint arXiv:2205.15569, 2022.

Leonardo Trujillo, Luis Muñoz, Edgar Galván-López, and Sara Silva. neat genetic programming:
Controlling bloat naturally. Information Sciences, 333:21–43, 2016.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark. Ai
feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in Neural
Information Processing Systems, 33:4860–4871, 2020.

Lucy van Dijk, Ruchuta Ardkhean, Mireia Sidera, Sedef Karabiyikoglu, Özlem Sari, Timothy DW
Claridge, Guy C Lloyd-Jones, Robert S Paton, and Stephen P Fletcher. Mechanistic investigation of
rh (i)-catalysed asymmetric suzuki–miyaura coupling with racemic allyl halides. Nature Catalysis,
4(4):284–292, 2021.

Martin Vastl, Jonáš Kulhánek, Jiří Kubalík, Erik Derner, and Robert Babuška. Symformer: End-to-end
symbolic regression using transformer-based architecture. IEEE Access, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Marco Virgolin, Tanja Alderliesten, Cees Witteveen, and Peter AN Bosman. Improving model-based
genetic programming for symbolic regression of small expressions. Evolutionary computation, 29
(2):211–237, 2021.

Juliane Weilbach, Sebastian Gerwinn, Christian Weilbach, and Melih Kandemir. Inferring the
structure of ordinary differential equations. arXiv preprint arXiv:2107.07345, 2021.

Xin Yang, Jun Zou, Yifei Wang, Ying Xue, and Shengyong Yang. Role of water in the reaction
mechanism and endo/exo selectivity of 1, 3-dipolar cycloadditions elucidated by quantum chemistry
and machine learning. Chemistry–A European Journal, 25(35):8289–8303, 2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A KINETIC MECHANISM OF TWENTY CATALYTIC ORGANIC REACTIONS

Mechanism diagram describes the species transformation relations under a specific chemical reaction.
Taking Figure 1 as an example, the reaction is S cat−−→ P and includes several elementary reactions
represented by arrows with different color , such as S + cat ↔ catS. The elementary reaction
is reversible, with both the outer ring and inner ring representing this elementary reaction. The
outer ring represents the forward process, which is the primary and represents the cat combining
with the S. The inner ring represents the reverse process, which is secondary and represents
the decomposition of catS. The mass-action law is a fundamental concept in chemical kinetics,
describing the rate of an elementary reaction is proportional to the product of the concentrations of
involved species. For example, equation dS

dt is decided by two parts: 1) combination of S and cat;
2) decompositon of catS; which are shown by red arrow and purple arrow, respectively. Therefore,
dS
dt = k−1[catS]− k1[S][cat]. Each type of reaction mechanism is defined by the reaction diagram.

The ordinary differential equations (ODEs) correspond to each diagram, where the kinetic constants
control the rate of change of each species in the reaction.

Figure 7 illustrates the core mechanism, bicatalytic mechanisms, and catalyst activation mechanisms.
The core mechanism is the basis of catalytic organic reaction. It demonstrates the process that the
substrate combines with the catalyst to form an intermediate, which subsequently decomposes into the
product. Bicatalytic reactions include additional steps of the combination of two catalyst molecules to
facilitate the reaction. In catalyst activation reactions, it is necessary to activate the catalyst. Figure 8
and Figure 9 demonstrate catalyst deactivation mechanisms. In contrast to catalyst activation, catalyst
deactivation reactions inevitably lead to the generation of deactivated catalysts.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

cat

catS

P S

Core

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐[𝒄𝒂𝒕][𝑷]

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 )[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

cat

catS

P S

Bicatalytic

cat

cat2

𝒅[𝑺]
𝒅𝒕 = 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐[𝒄𝒂𝒕][𝑷]

= 𝒌!𝟏 + 𝒌𝟐 𝒄𝒂𝒕𝑺 + 𝟐𝒌𝟑[𝒄𝒂𝒕𝟐] − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 + 𝟐𝒌!𝟑[𝒄𝒂𝒕])[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

= 𝒌!𝟑 𝒄𝒂𝒕 𝟐 − 𝒌𝟑 𝒄𝒂𝒕𝟐
𝒅[𝒄𝒂𝒕𝟐]
𝒅𝒕

cat

cat2S

P S

Bicatalytic

cat

cat2

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕𝟐𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕𝟐]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝟐𝑺 − 𝒌!𝟐[𝒄𝒂𝒕𝟐][𝑷]

= 𝒌!𝟏 + 𝒌𝟐 𝒄𝒂𝒕𝟐𝑺 + 𝒌𝟑 𝒄𝒂𝒕 𝟐 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 + 𝒌!𝟑)[𝒄𝒂𝒕𝟐]
𝒅[𝒄𝒂𝒕𝟐]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕𝟐 − (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝟐𝑺
𝒅[𝒄𝒂𝒕𝟐𝑺]

𝒅𝒕

= 𝟐𝒌𝟑 𝒄𝒂𝒕𝟐 −𝟐𝒌!𝟑 𝒄𝒂𝒕 𝟐𝒅[𝒄𝒂𝒕]
𝒅𝒕

cat

catS

P S

Bicatalytic

X X

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏[𝑿] 𝒄𝒂𝒕𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐[𝑿] 𝒄𝒂𝒕𝑺 − 𝒌!𝟐[𝒄𝒂𝒕][𝑷]

= 𝒌!𝟏 + 𝒌𝟐 [𝑿] 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 )[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐)[𝑿] 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

𝒅[𝑿]
𝒅𝒕 = (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐)[𝑿] 𝒄𝒂𝒕𝑺

cat

catS

P S

Bicatalytic

catP

cat cat
𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟑 𝒄𝒂𝒕P − 𝒌!𝟑[𝒄𝒂𝒕][𝑷]

= 𝒌!𝟏 𝒄𝒂𝒕𝑺 + 𝒌𝟑 𝒄𝒂𝒕𝑷 − (𝒌𝟏 𝑺 + 𝒌!𝟑 𝑷 )[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝒄𝒂𝒕𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐[𝒄𝒂𝒕]) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

𝒅[𝒄𝒂𝒕𝑷]
𝒅𝒕 = 𝒌𝟐 𝒄𝒂𝒕𝑺 𝒄𝒂𝒕 + 𝒌!𝟑 𝑷 𝒄𝒂𝒕 − (𝒌𝟑 + 𝒌!𝟐[𝒄𝒂𝒕]) 𝒄𝒂𝒕𝑷

cat*

cat*S

P S

Activation 

cat

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕 ∗ 𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕 ∗]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕 ∗ 𝑺 − 𝒌!𝟐[𝒄𝒂𝒕 ∗][𝑷]

= −𝒌𝟑[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= 𝒌𝟑 𝒄𝒂𝒕 + (𝒌!𝟏 +  𝒌𝟐) 𝒄𝒂𝒕 ∗ 𝑺 − (𝒌𝟏[𝑺] + 𝒌!𝟐[𝑷]) 𝒄𝒂𝒕 ∗
𝒅[𝒄𝒂𝒕 ∗]
𝒅𝒕

= 𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 𝒄𝒂𝒕 ∗ − (𝒌!𝟏 +  𝒌𝟐) 𝒄𝒂𝒕 ∗ 𝑺
𝒅[𝒄𝒂𝒕 ∗ 𝑺]

𝒅𝒕

cat

catS2

P S

Activation 

S

catS

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕𝑺𝟐 − 𝒌𝟏 𝑺 𝒄𝒂𝒕𝑺 + 𝒌!𝟑 𝒄𝒂𝒕𝑺 − 𝒌𝟑[𝑺][𝒄𝒂𝒕]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺𝟐 − 𝒌!𝟐[𝒄𝒂𝒕𝑺][𝑷]

= 𝒌!𝟑 𝒄𝒂𝒕𝑺 − 𝒌𝟑[𝑺} 𝒄𝒂𝒕
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= 𝒌𝟑 𝑺 𝒄𝒂𝒕 − 𝒌!𝟑 𝒄𝒂𝒕𝑺 + (𝒌!𝟏 +  𝒌𝟐) 𝒄𝒂𝒕𝑺𝟐 − (𝒌𝟏 + 𝒌!𝟐[𝑷]) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

𝒅[𝒄𝒂𝒕𝑺𝟐]
𝒅𝒕

= (𝒌𝟏 + 𝒌!𝟐[𝑷]) 𝒄𝒂𝒕𝑺 − (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺𝟐

cat

cat*S

P S

Activation 

L
cat*

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕 ∗ 𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕 ∗]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕 ∗ 𝑺 − 𝒌!𝟐[𝒄𝒂𝒕 ∗][𝑷]

= 𝒌𝟑 𝑳 𝒄𝒂𝒕 ∗ − 𝒌𝟑[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= 𝒌𝟑 𝒄𝒂𝒕 − 𝒌!𝟑[𝑳][𝒄𝒂𝒕 ∗] + (𝒌!𝟏 +  𝒌𝟐) 𝒄𝒂𝒕 ∗ 𝑺 − (𝒌𝟏[𝑺] + 𝒌!𝟐[𝑷]) 𝒄𝒂𝒕 ∗
𝒅[𝒄𝒂𝒕 ∗]
𝒅𝒕

= 𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 𝒄𝒂𝒕 ∗ − (𝒌!𝟏 +  𝒌𝟐) 𝒄𝒂𝒕 ∗ 𝑺
𝒅[𝒄𝒂𝒕 ∗ 𝑺]

𝒅𝒕
𝒅[𝑳]
𝒅𝒕

= 𝒌𝟑 𝒄𝒂𝒕 − 𝒌!𝟑[𝑳][𝒄𝒂𝒕 ∗]

Figure 7: Core mechanism, bicatalytic mechanism and catalyst activation diagrams and corresponding
ODEs (M1-M8)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

inactive cat

catS

P S

Deactivation 

cat

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐[𝒄𝒂𝒕][𝑷]

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 + 𝒌!𝟑)[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

𝒅[𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆	𝒄𝒂𝒕]
𝒅𝒕

= 𝒌!𝟑[𝒄𝒂𝒕]

inactive catI

catS

P S
Deactivation 

cat
inhibitor

𝒅[𝑺]
𝒅𝒕 = 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐[𝒄𝒂𝒕][𝑷]

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 + 𝒌!𝟑[𝒊𝒏𝒉𝒊𝒃𝒊𝒕𝒐𝒓])[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

𝒅[𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆	𝒄𝒂𝒕𝑰]
𝒅𝒕

= 𝒌!𝟑[𝒊𝒏𝒉𝒊𝒃𝒊𝒕𝒐𝒓][𝒄𝒂𝒕]

𝒅[𝒊𝒏𝒉𝒊𝒃𝒊𝒕𝒐𝒓]
𝒅𝒕

= −𝒌!𝟑[𝒊𝒏𝒉𝒊𝒃𝒊𝒕𝒐𝒓][𝒄𝒂𝒕]

inactive catS

catS

P S
Deactivation 

cat
S

𝒅[𝑺]
𝒅𝒕 = 𝒌!𝟏 𝒄𝒂𝒕𝑺 − (𝒌𝟏 + 𝒌!𝟑)[𝑺][𝒄𝒂𝒕]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐[𝒄𝒂𝒕][𝑷]

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 + 𝒌!𝟑[𝑺])[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

𝒅[𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆	𝒄𝒂𝒕𝑺]
𝒅𝒕

= 𝒌!𝟑[𝑺][𝒄𝒂𝒕]

inactive catP

catS

P S
Deactivation 

cat
P

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − (𝒌!𝟐 + 𝒌!𝟑)[𝒄𝒂𝒕][𝑷]

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 + 𝒌!𝟑[𝑷])[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

𝒅[𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆	𝒄𝒂𝒕𝑷]
𝒅𝒕

= 𝒌!𝟑[𝑷][𝒄𝒂𝒕]

inactive cat2

catS

P S

Deactivation 

cat
cat

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐	[𝒄𝒂𝒕][𝑷]

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 + 𝟐𝒌!𝟑[𝒄𝒂𝒕])[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

𝒅[𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆	𝒄𝒂𝒕𝟐]
𝒅𝒕

= 𝒌!𝟑 𝒄𝒂𝒕 𝟐

inactive catS

catS

P S

Deactivation 

cat

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐	[𝒄𝒂𝒕][𝑷]

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 )[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐 + 𝒌!𝟑) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

𝒅[𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆	𝒄𝒂𝒕𝑺]
𝒅𝒕

= 𝒌!𝟑[𝒄𝒂𝒕𝑺]

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏[𝑺][𝒄𝒂𝒕]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐	[𝒄𝒂𝒕][𝑷]

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 )[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐 + 𝒌!𝟑[𝒊𝒏𝒉𝒊𝒃𝒊𝒕𝒐𝒓]) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

inactive catSI

catS

P S

Deactivation 

cat

inhibitor

𝒅[𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆	𝒄𝒂𝒕𝑺𝑰]
𝒅𝒕

= 𝒌!𝟑[𝒊𝒏𝒉𝒊𝒃𝒊𝒕𝒐𝒓][𝒄𝒂𝒕𝑺]

𝒅[𝒊𝒏𝒉𝒊𝒃𝒊𝒕𝒐𝒓]
𝒅𝒕

= −𝒌!𝟑[𝒊𝒏𝒉𝒊𝒃𝒊𝒕𝒐𝒓][𝒄𝒂𝒕𝑺]

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏 𝑺 𝒄𝒂𝒕 − 𝒌!𝟑[𝑺][𝒄𝒂𝒕𝑺]

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐	[𝒄𝒂𝒕][𝑷]

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 )[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐 + 𝒌!𝟑[𝑺]) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

inactive catS2

catS

P S

Deactivation 

cat

S

𝒅[𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆	𝒄𝒂𝒕𝑺𝟐]
𝒅𝒕

= 𝒌!𝟑[𝑺][𝒄𝒂𝒕𝑺]

Figure 8: Catalyst deactivation diagrams and corresponding ODEs (M9-M16)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏 𝑺 𝒄𝒂𝒕

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐	 𝒄𝒂𝒕 𝑷 − 𝒌!𝟑[𝑷}[𝒄𝒂𝒕𝑺]

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 )[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐 + 𝒌!𝟑[𝑷]) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

inactive catSP

catS

P S
Deactivation 

cat

P

𝒅[𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆	𝒄𝒂𝒕𝑺𝑷]
𝒅𝒕

= 𝒌!𝟑[𝑷][𝒄𝒂𝒕𝑺]

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏 𝑺 𝒄𝒂𝒕

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐	 𝒄𝒂𝒕 𝑷

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 )[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐 + 𝒌!𝟑[𝒄𝒂𝒕𝑺]) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

inactive cat2S2

catS

P S
Deactivation 

cat

catS

𝒅[𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆	𝒄𝒂𝒕𝟐𝑺𝟐]
𝒅𝒕

= 𝒌!𝟑 𝒄𝒂𝒕𝑺 𝟐

inactive cat2S

catS

P S
Deactivation 

cat

cat

inactive cat2S

catS

𝒅[𝑺]
𝒅𝒕 = 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏 𝑺 𝒄𝒂𝒕

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐	 𝒄𝒂𝒕 𝑷

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 + 𝒌!𝟑[𝒄𝒂𝒕𝑺])[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐 + 𝒌!𝟑[𝒄𝒂𝒕]) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

𝒅[𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆	𝒄𝒂𝒕𝟐𝑺]
𝒅𝒕

= 𝒌!𝟑 𝒄𝒂𝒕 [𝒄𝒂𝒕𝑺]

inactive catS

catS

P S
Deactivation 

cat

inactive cat

𝒅[𝑺]
𝒅𝒕

= 𝒌!𝟏 𝒄𝒂𝒕𝑺 − 𝒌𝟏 𝑺 𝒄𝒂𝒕

𝒅[𝑷]
𝒅𝒕

= 𝒌𝟐 𝒄𝒂𝒕𝑺 − 𝒌!𝟐	 𝒄𝒂𝒕 𝑷

= (𝒌!𝟏 + 𝒌𝟐) 𝒄𝒂𝒕𝑺 − (𝒌𝟏 𝑺 + 𝒌!𝟐 𝑷 + 𝒌!𝟑)[𝒄𝒂𝒕]
𝒅[𝒄𝒂𝒕]
𝒅𝒕

= (𝒌𝟏 𝑺 +  𝒌!𝟐 𝑷 ) 𝒄𝒂𝒕 − (𝒌!𝟏 + 𝒌𝟐 + 𝒌!𝟒) 𝒄𝒂𝒕𝑺
𝒅[𝒄𝒂𝒕𝑺]
𝒅𝒕

𝒅[𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆	𝒄𝒂𝒕]
𝒅𝒕

= 𝒌!𝟑 𝒄𝒂𝒕

𝒅[𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆	𝒄𝒂𝒕𝑺]
𝒅𝒕

= 𝒌!𝟒 𝒄𝒂𝒕𝑺

Figure 9: Catalytic deactivation diagrams and corresponding ODEs (M17-M20)

B GENERATION ORDER SEARCH WITH MCTS

Algorithm 1: Generation Order Search
Input: Kinetic data X , conditonal model Pθ, hyper-parameters α, β, number of iterations n,

constant c
Output: ODEs y

1 # Initialize the tree and execute the first expansion operation.
2 initialize the tree tr with the root r ;
3 initialize N(r) = 0, V (r) = 0 ;
4 nodes = r.expand(Pθ, X) ;
5 tr.update(nodes, r) ;
6 # Execute MCTS. for i← 1 to n do
7 tr = MCTS(tr, r,X, Pθ, α, β, c)
8 end
9 # Generate ODEs from the Monte Carlo tree.

10 y = (argmaxn∈tr.leafNodes()N(n)).getEqs();
11 return y

The execution of generation order search is shown in Algorithm 1. Given the kinetic data X and
conditional model Pθ, the first step is to initialize the tree and execute the first expand operation.
Afterwards, MCTS is executed. Algorithm 2 shows how to adopt MCTS to search the best generation

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 2: MCTS
Input: Monte Carlo tree tr, activated node nact, Kinetic data X , conditonal model Pθ;

hyper-parameters α, β, constant c
Output: Updated tree tr

1 if nact == tr.getRoot() then
2 nact = tr.select(nact, c) ;
3 tr = MCTS(tr, nact, X, Pθ, α, β, c)
4 else
5 if tr.getChidren(nact) == [] then
6 if N(nact) == 0 then
7 score = tr.simulate(nact, X, Pθ, α, β) ;
8 tr.backpropagate(nact, score) ;
9 tr.update(N,V )

10 else
11 nodes = nact.expand(Pθ, X) ;
12 tr.update(nodes, nact) ;
13 nact = tr.select(nact, c);
14 score = tr.simulate(nact, X, Pθ, α, β) ;
15 tr.backpropagate(nact, score) ;
16 tr.update(N,V )
17 end
18 else
19 nact = tr.select(nact, c);
20 tr = MCTS(tr, nact, X, Pθ, α, β, c)
21 end
22 end
23 return tr

order, which is a recursive algorithm. When the activated node is not the root, it is necessary to
determine whether it is a leaf node. If the activated node is not a leaf node, continue to select the
next node and perform recursion; otherwise, continue to judge whether the current node has been
traversed. If the answer is “no”, execute simulate operation and then backpropagate to the root node;
otherwise, execute expand operation and then select the next node. After n iterations, select the
sequence with the largest N as the final prediction.

Specifically, our MCTS algorithm is at the equation level rather than the token level. Taking ODEs
in Figure 1 as an example, there are four eqaution components, denoted as dx0, dx1, dx3 and dx4,
respecitvely. During initialization, we first allow the model to independently generate these four
equation components as initial nodes. During selection, we use P-UCB (equation 6) to select the
specific eqaution component (e.g. dx1 node). Because this node has not been traversed yet, we will
proceed directly with the simulation. During simulation, we use the dx1 equation as the condition
to generate the next equation (e.g. dx0). Then we combine dx1 and dx0 as condition to generate
the next, and so on. Simulation will end until we get the full ODEs. After that, by solving ODEs,
we can obtain numerical solutions for each reaction species. These numerical solutions can then be
compared with the input data (e.g. temporal concentration profiles) to calculate the R2 score. During
backpropagation, we compute the reward according to R2 score and then record it as the node value.
When the dx1 node has been traversed, we will do expansion. During expansion, we use the dx1
equation as condition to generate all possible next equations (e.g. dx0, dx2 or dx3 ), respectively.
The above processes are executed iterately. This is an easy example of our MCTS framework.

C DATASET CONSTRUCTION

Considering the requirement for data authenticity and large data volume, we construct a simulated
dataset based on the methods described in Nature work (Burés & Larrosa, 2023). First, based on
the categorized mechanism types (20 in total), we identify the corresponding ODEs. To construct
valid ODEs, We randomly pick all kinetic constants in the range of 105-10−5 A.U. and rounded

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

to three significant figures. The chosen kinetic constants must fulfill the conditions defined for
their corresponding mechanism and allow for reversible and irreversible reactions with maximum
yields between 20% and 90% to match actual experimental records. The initial concentration of
reactant is kept as 1 and the product is 0. The catalyst’s initial state is sampled between 0.01 and
0.99. Then, we use solve_ivp from the scipy Python package based on a LSODA solver to obtain
reaction concentration profiles as input data. It is worth noting that in order to construct a computable
ODEs, we utilize Networkx to construct a tree structure diagram of the formula, which is used for
computation with scipy. The complete symbolic mathematical expressions of ODEs is transformed
into prefix notation sequence and are kept as training label. We have eliminated all generated
equations that are unsolvable and equations where the rate of change in intermediate products is
less than 0.2. Eventually, for each type of catalytic reaction, we generate 5,000 reaction samples
for training and 500 reaction samples for testing, which results in 100,000 training data and 10,000
test data. Based on our data scale, we introduce the Gaussian noise to each training sample with a
standard deviation of 1e-4 to improve model’s robustness.

For different traning strategies, we choose different data format. Specifically, for universal transformer,
we keep time series {(ti,Xi)}i∈[1,2,...,T ] as input to encoder and the model is taught to predict the
complete ODEs of a reaction sample. For independent transformer, we split ODEs into several
independent equations and append an index prompt (e.g. dx0 for the first ODE of Substrate) after
time series as encoder input. The independent ODE corresponding to the index prompt is utilized
to train the model. For conditional transformer, we keep one of ODEs from each reaction sample
as training label and randomly choose several left ODEs as condition. Combining corresponding
index prompts, the model is trained to predict one ODE according other ODEs condition and learn
the implicit constraints between ODEs.

Why Shuffling order: Firstly, KinFormer aims to capture physically-motivated correlations estab-
lished by mass-action law, instead of searching for the optimal, deterministic, physically-meaningful
generation order. Secondly, Shuffling the order is helpful for the model to grasp physically-motivated
correlations instead of spurious correlations. Actually, the attention mechanism of Transformer
Decoder can capture these inner correlations implicitly, but tends to be negatively affected by spurious
correlations. For example, in Figure 1, the k1[S][cat] term appears simultaneously in the equations
of d[S] and d[cat], indicating the physically-meaningful correlation from the mass-action law; The
fixed generation order of (d[S], d[P ], d[cat], d[catS]) shows the spurious correlation, which is not
necessary. If the order is not shuffled, the Transformer Decoder is likely to capture such a fixed
generation sequence rather than physically-motivated correlations, thereby making it difficult to
generalize to unseen reaction types.

D TRAINING DETAILS

Hyper-parameters and training settings of three strategies are shown in Table D. It can be seen
that almost all settings are shared by three strategies, except Equations/Epoch and Batch size.
Equations/Epoch means the number of the equation sampled in each epoch. For the independent
strategy and KinFormer (and the conditional strategy), Equations/Epoch = Batch size × Steps Per
Epoch holds because these models generate only one ODE for each step (sampling 4 equations for
each set of ODEs). However, the universal strategy generates the whole set of ODEs so the total
number of equation is different. Considering Batch size, due to GPU memory constraints, KinFormer
adopts a smaller batch size. In principle, the total numbers of equations for each epoch are similar,
although the universal strategy introduces more equations.

E DEFINITION OF EVALUATION METRICS

We define r2m to evaluate the overall performance of one test sample, that is, to compare the
generated curves of all species changes as a whole with the original profiles:

r2m = 1−
∑D

k=1

∑T
i=1(x

k
i − x̂i)

2∑D
k=1

∑T
i=1(x

k
i − x̄i)2

(9)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 2: Training settings.
Settings Universal Independent KinFormer

Embedding dim 64 64 64
Encoder dim 256 256 256
Decoder dim 256 256 256

Activation silu silu silu
Loss function CE CE CE

Dropout 0 0 0
Optimizer Adam Adam Adam
Schedule Cosine Cosine Cosine

Learning rate 2e−4 2e−4 2e−4

Warmup 10000 10000 10000
Clip 1.0 1.0 1.0

Weight decay 0 0 0
Dropout 0 0 0
Epochs 100 100 100

Equations/Epoch 128750 100000 100000
Batch size 50 200 100

c − − 1.0
α − − 0.5
β − − 0.5

Device NVIDIA 3090 24G NVIDIA 3090 24G NVIDIA 3090 24G

Due to the minimal changes of certain species during the reaction (such as intermediate), the r2m
calculation might overlook the significance of these species. Therefore, we define r2M to assess the
individual fitting performance, that is, to calculate the R2-score for each generated species profile
independently, and then take the average:

r2M =
1

D

D∑
k=1

[
1−

∑T
i=1(x

k
i − x̂k

i )
2∑T

i=1(x
k
i − x̄k

i )
2

]
(10)

The reported R2-score is calculated by averaging all test samples:

R2m =
1

Ntest

Ntest∑
j=1

r2jm; R2M =
1

Ntest

Ntest∑
j=1

r2jM (11)

We consider a test sample with R2-score greater than the threshold of 0.9 to be correct due to great
fitting performance:

Accm =
1

Ntest

Ntest∑
j=1

1
[
r2jm > 0.9

]
; AccM =

1

Ntest

Ntest∑
j=1

1
[
r2jM > 0.9

]
(12)

F EXTRA RESULTS

Table 3 shows the results of KinFormer on all twenty types of mechanisms and Figure 9 shows their
distributions of R2-scores. KinFormer perform well on M1, M4, and M12.

It can be observed that in most mechanisms, the KinFormer performs quite well. The r2m consistently
exceeds 0.6, and even surpasses 0.8 in some mechanisms. However, it is noteworthy that the
performance of the mechanisms in M3 and M8 is not satisfactory. We have analyzed the following

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Bicatalytic Mechanism (M5)Bicatalytic Mechanism (M2)Core Mechanism (M1) Bicatalytic Mechanism (M3) Bicatalytic Mechanism (M4)

Catalyst Activation (M6) Catalyst Activation (M7) Catalyst Activation (M8) Catalyst Deactivation (M9) Catalyst Deactivation (M10)

Catalyst Deactivation (M11) Catalyst Deactivation (M12) Catalyst Deactivation (M13) Catalyst Deactivation (M14) Catalyst Deactivation (M15)

Catalyst Deactivation (M16) Catalyst Deactivation (M17) Catalyst Deactivation (M18) Catalyst Deactivation (M19) Catalyst Deactivation (M20)

Figure 10: KinFormer distribution diagrams of R2-score for all twenty mechanism types under in
domain conditions. Red curve represents r2m and Blue curve represents r2M . The vertical line
represents mean value of R2-score.

Table 3: Results of KinFormer on twenty types of mechanisms.
Mechanism Accm AccM Accform R2m R2M

M1 82.8 76.8 88.8 0.855 0.841
M2 68.0 17.0 52.2 0.805 0.679
M3 0.6 0 49.2 0.012 0.088
M4 82.0 76.4 91.0 0.870 0.856
M5 61.8 22.8 77.6 0.779 0.672
M6 67.6 39.6 88.2 0.799 0.734
M7 53.0 17.2 68.4 0.648 0.553
M8 0.2 0 81.0 0.028 0.337
M9 66.6 36.0 74.0 0.812 0.745

M10 71.4 0 31.0 0.786 0.512
M11 63.6 17.6 30.6 0.785 0.663
M12 85.2 39.6 58.0 0.887 0.791
M13 61.6 24.2 63.8 0.739 0.678
M14 59.0 30.6 44.8 0.733 0.665
M15 70.0 0 56.4 0.783 0.507
M16 65.2 18.8 60.0 0.768 0.643
M17 64.8 42.4 65.0 0.771 0.702
M18 69.6 45.6 53.0 0.801 0.742
M19 62.6 39.4 70.4 0.726 0.688
M20 39.6 7.2 76.6 0.573 0.481

reasons. In the M3 mechanism, the formula includes a squared term, which is very uncommon in
other types. This contributes to the difficulty in learning. In the M8 mechanism, the dimension
of ODEs increased to 6, which is uncommon in other types. This led to unsuccessful learning. In
addition, c, α and β are hyper-parameters only for MCTS.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 4: : R2 and RMSE quantile distribution. We keep the original R2 value, instead of replacing
the negative value of R2 with zero in the paper. KinFormer outperforms than other baselines under
two out-of-domain scenarios. Lower means lower quartile and Upper means upper quartile.

Methods R2 RMSE

Lower Median Upper Lower Median Upper

ID

Universal 0.879 0.983 0.996 0.004 0.008 0.018
Independent -72.633 -22.456 -4.596 0.137 0.247 0.412
Conditional 0.402 0.915 0.986 0.007 0.018 0.041
KinFormer 0.276 0.951 0.991 0.005 0.011 0.022

OOD
(Intra)

Universal -16.977 -1.271 0.803 0.028 0.095 0.239
Independent -3942.36 -38.409 -8.605 0.193 0.304 2.431
Conditional 0.343 0.881 0.973 0.011 0.023 0.045
KinFormer 0.611 0.934 0.984 0.007 0.013 0.025

OOD
(Inter)

Univeral -5.036 -0.112 0.806 0.026 0.067 0.157
Independent -7584.96 -33.462 -10.596 0.222 0.322 3.255
Conditional -11.744 0.452 0.942 0.016 0.044 0.188
KinFormer -0.907 0.689 0.977 0.007 0.012 0.024

We also provide the extra results of R2 and RMSE shown in Table 4. We report the lower quartile,
median and upper quartile of metrics. We keep the original R2 value, instead of replacing the negative
value of R2 with zero. The results are consistent with our conclusion in the paper.

The main packages of Python we used include: (1) Scipy 1.10.1 for ODE solving; (2) Networkx 2.8.2
for Monte Carlo tree construction; (3) Pytorch 2.0.1 for Transformer construction and training; (4)
Scikit-learn 1.0.2 for model wrapping.

G TOP 3 ORDERS FROM MCTS

Table 5 shows the top 3 orders from MCTS. It can be seen that bicatalytic reactions and catalyst
activation do not exhibit a specific order. However, almost all reactions with catalyst deactivation
share the same order: [O,P, catS, S, cat], where O represents intermediates distinct from catS.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 5: Top 3 generation orders statistics from MCTS. The number after generation order is
corresponding frequency count.

Mechanism Top 1 Top 2 Top 3

M1 [P, catS, S, cat]:57 [S, cat, P, catS]:54 [P, S, cat, catS]:51
M2 [O,P, catS, S, cat]:21 [cat, O, P, S, catS]:21 [catS, P, S,O, cat]:19
M3 [P, S,O, catS, cat]:19 [cat, S,O, S, catS]:18 [P,O, S, cat, catS]:18
M4 [P,O, S, cat, catS]:30 [P, cat, S, catS,O]:26 [S,O, P, cat, catS]:23
M5 [catS, S,O, P, cat]:37 [O,P, catS, S, cat]:29 [catS, S, cat, P,O]:27
M6 [cat, O, S, P, catS]:21 [cat, O, P, S, catS]:19 [cat, S, catS, P,O]:19
M7 [O,P, cat, S, catS]:25 [catS, cat, S, P,O]:20 [S, cat, catS, P,O]:17
M8 [cat, P,O, S, catS,O]:29 [P, cat,O, S, catS,O]:25 [P, cat,O, S,O, catS]:25
M9 [O,P, catS, S, cat]:29 [O,S, catS, P, cat]:27 [cat, O, S, P, catS]:21

M10 [O,O, P, catS, S, cat]:14 [O,O, P, S, cat, catS]:10 [O,O, P, catS, S, cat]:9
M11 [O,P, catS, S, cat]:31 [O,P, cat, S, catS]:24 [S,O, catS, P, cat]:16
M12 [O,P, catS, S, cat]:49 [O,S, catS, P, cat]:38 [O,P, cat, S, catS]:26
M13 [O,P, catS, S, cat]:30 [O,S, catS, P, cat]:24 [O,P, cat, S, catS]:21
M14 [O,S, catS, P, cat]:23 [O,P, cat, S, catS]:22 [O,P, catS, S, cat]:22
M15 [O,O, P, catS, S, cat]:16 [O,O, P, catS, S, cat]:15 [O,O, S, catS, P, cat]:11
M16 [O,P, catS, S, cat]:31 [O,S, catS, P, cat]:25 [P,O, cat, S, catS]:22
M17 [O,P, catS, S, cat]:42 [O,P, cat, S, catS]:28 [P,O, cat, S, catS]:24
M18 [O,P, catS, S, cat]:35 [O, catS, S, P, cat]:20 [O,P, cat, S, catS]:18
M19 [O,P, catS, S, cat]:32 [O,P, S, cat, cats]:30 [O,P, cat, S, catS]:28
M20 [O,O, S, catS, P, cat]:9 [O,O, P, catS, S, cat]:9 [O,O, S, P, cat, catS]:8

23


	Introduction
	Related Works
	Symbolic Regression
	Dynamic Symbolical Regression

	Preliminaries
	Kinetic Equation Prediction
	Catalytic Organic Reaction

	Methodology
	Conditional Strategy
	Generation Order Search

	Experiments
	experimental settings
	Evaluation metrics
	Main Results
	Generalization Analysis
	Mechanism Category Analysis
	Generation Order Analysis
	Error Analysis and Case Study

	Limitations
	Conclusions
	Kinetic Mechanism of Twenty Catalytic Organic Reactions
	Generation Order Search with MCTS
	Dataset Construction
	Training Details
	Definition of Evaluation Metrics
	Extra Results 
	Top 3 Orders from MCTS

