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Abstract

We propose a self-supervised method for pre-
training universal time series representations in
which we learn contrastive representations using
similarity distillation along the temporal and in-
stance dimensions. We analyze the effectiveness
of both dimensions, and evaluate our pre-trained
representations on three downstream tasks: time
series classification, anomaly detection, and fore-
casting.

1. Introduction
Large-scale pre-trained models provide the initial founda-
tion in many real-world machine learning systems, in partic-
ular in the domains of computer vision and natural language
processing. Despite the wide range of applications in health-
care, finance, transportation, energy, etc., the development
of large-scale pre-trained models for (non-language) time
series remains under-explored in the machine learning com-
munity. An important first step towards building such a
model is the self-supervised learning of a universal repre-
sentation for time series. We present a novel self-supervised
representation learning method for time series in which we
leverage similarity distillation (Tejankar et al., 2021; Zheng
et al., 2021) as an alternative source of self-supervision to
traditional negative-positive contrastive pairs. In particu-
lar, we propose to learn contrastive representations using
similarity distillation along the temporal and instance di-
mensions. We systematically analyze the effectiveness of
distillation in both dimensions, as well as the benefit of
hierarchical pooling. We evaluate the performance of our
pre-trained time series representations on three downstream
tasks: time series classification, anomaly detection, and
forecasting. Our code is available at https://github.
com/BorealisAI/ssl-for-timeseries.
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2. Related Work
Self-supervised techniques can be used for learning repre-
sentations without requiring explicit labels. The pre-trained
representations can afterwards be fine-tuned with fewer la-
belled data for different downstream tasks. For time se-
ries representation learning, pre-training approaches have
shifted from simpler approaches such as using a sequence-
to-sequence encoder-decoder architecture (Malhotra et al.,
2017) to more advanced techniques, such as using either pre-
text tasks (e.g., learning the masked values in TST (Zerveas
et al., 2021)) or contrastive learning on different augmen-
tations of the input series, e.g., in TS-TCC (Eldele et al.,
2021), T-Loss (Franceschi et al., 2019), TNC (Tonekaboni
et al., 2021), and TS2Vec (Yue et al., 2022). Contrastive
methods have been empirically shown to have a better per-
formance (Yue et al., 2022; Tonekaboni et al., 2021; Eldele
et al., 2021) and they are trained by augmenting every batch
and taking the augmentations of the same input as a positive
pair and augmentations of different inputs as negative pairs.
The contrastive loss brings the representations of the ele-
ments in positive pairs closer to each other than the elements
that form a negative pair.

However, contrastive methods for self-supervised represen-
tation learning rely on the assumption that the augmentation
of a given sample will generate a negative pair with other
samples in the batch. This assumption is not always valid:
there could be samples of the same class in the current batch
which would mean that not all the assumed negative samples
are truly negative. To address this issue, instead of using
positive and negative pairs with contrastive learning, we can
use knowledge distillation based approaches, in which a stu-
dent network is trained to produce the same similarity PDF
as a teacher network (with momentum-updated weights) be-
tween the current elements in the batch and a set of anchors.
This is the approach taken in ISD (Tejankar et al., 2021)
and ReSSL (Zheng et al., 2021). While this approach has
been used in the computer vision domain, to the best of
our knowledge, it has never been used for pre-training time
series representations.

https://github.com/BorealisAI/ssl-for-timeseries
https://github.com/BorealisAI/ssl-for-timeseries
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Figure 1. Overview of our proposed model architecture. Red dotted arrows show how similarities between different instances are computed,
while the green arrows show how they are computed across the temporal dimension. The arrows are only shown for a few instances to
avoid clutter. The overall training loss is a combination of instance and temporal losses.

3. Method
3.1. Problem Definition

We propose to learn a non-linear embedding function for a
set of time series X = {x1, x2, ..., xN} of size N that maps
each time series xi with Ti timestamps, to its best describing
representation ri = {ri1, ri2, ..., riTi

}. Each rij ∈ Rd is the
representation of time series i at timestamp j.

3.2. Model Architecture

Our overall architecture can be viewed in Figure 1. In-
spired by the recent approaches in self-supervised learn-
ing (Tejankar et al., 2021; Zheng et al., 2021), we propose a
student-teacher framework that uses similarity distillation
to learn time series representations in a self-supervised man-
ner. We incorporate the same augmentation technique as
the state-of-the-art TS2Vec method (Yue et al., 2022), i.e.,
we sample two overlapping subsequences from the same
sequence. The two subsequences are applied to a teacher
encoder and a student encoder. Student and teacher en-
coders follow TS2Vec, consisting of three components: an
input projection layer, a timestamp masking module, and
a dilated CNN module. Gradients of the network are only
propagated through the student encoder while the teacher
encoder is the moving average of the student encoder to
avoid collapse (Tejankar et al., 2021; Zheng et al., 2021;
Chen & He, 2021).

While similarity distillation has been used in computer vi-
sion, to the best of our knowledge, we are the first to lever-
age this framework for time series data. As shown in Fig-
ure 1, applying the student and teacher encoders to the
subsequences results in sl × d matrices for the student and
teacher representations in the overlapping region, where sl
is the length of the overlap (the representations of the non-
overlapping regions are ignored in further processing). Sim-
ilar to (Tejankar et al., 2021) and (Zheng et al., 2021), we
use a memory buffer, implemented as a queue, to store a set
of anchor sequences. For each input sequence, the teacher
representations in the overlapping region are appended to
the memory buffer, forming a l×maxsl×d matrix of anchor
representations, where l is length of the buffer and maxsl
is the maximum overlap length. Zero padding is applied
where necessary. To learn an effective representation for
time series, we want to capture the relationship between the
events at various timestamps within the same sequence (tem-
poral objective) as well as the relationship across different
sequences (instance objective).

Let sj denote the student representation of an augmented
sequence at temporal position j (illustrated as a single d-
dimensional slice at the bottom of Figure 1). The temporal
loss is computed as follows. First, we contrast sj with the
other student representations of the same augmented se-
quence at all other temporal positions (green dotted arrows):
given a similarity function sim, such as cosine similarity,
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we obtain the sl-dimensional probability distribution

ptemp
s,j (k) =

exp(sim(sj , sk)/τ)∑sl
m=1 exp(sim(sj , sm)/τ)

, (1)

where τ is a temperature hyperparameter. Analogously, with
tj denoting the teacher representation of the augmented
sequence at temporal position j (illustrated as a single d-
dimensional slice at the top of Figure 1), we compute

ptemp
t,j (k) =

exp(sim(tj , tk)/τ)∑sl
m=1 exp(sim(tj , tm)/τ)

. (2)

The temporal loss is obtained by summing the KL diver-
gences KL(ptemp

t,j ,ptemp
s,j ) over all temporal positions:

Ltemp =

sl∑
j=1

KL(ptemp
t,j ||ptemp

s,j ). (3)

The instance loss contrasts sj with the representations of
buffered sequences at temporal position j (red dotted ar-
rows). We obtain the l-dimensional student probability dis-
tribution

pinst
s,j(k) =

exp(sim(sj ,q
k
j )/τ)∑l

m=1 exp(sim(sj ,qm
j )/τ)

, (4)

and the teacher probability distribution

pinst
t,j (k) =

exp(sim(tj ,q
k
j )/τ)∑l

m=1 exp(sim(tj ,qm
j )/τ)

, (5)

where qk denotes the kth anchor sequence in the memory
buffer. The instance loss is then obtained by summing the
KL divergences KL(pinst

t ||pinst
s ) over all temporal positions:

Linst =

sl∑
j=1

KL(pinst
t,j ||pinst

s,j) . (6)

The overall self-supervised loss is given by

L = α · Linst + (1− α) · Ltemp , (7)

where α is a balancing hyperparameter.

4. Experiments
In this section, we present our experimental results using the
pre-trained representations learned by our proposed model.

4.1. Tasks, datasets, and evaluation metrics

We evaluate our model on three different downstream tasks:

Classification: For this task, we use the 125 UCR1 and 30
UEA2 benchmarks, which consist of many small datasets of
univariate time series. To evaluate the performance of our
model, we use accuracy.

Anomaly detection: For this task, we use the KPI dataset
(Ren et al., 2019), a competition dataset released by the
AIOPS Challenge. It consists of multiple KPI (key perfor-
mance indicator) curves from 58 companies with very long
sequences varying from 4,000 to 75,000 for the anomaly
detection task. We use precision, recall, and F1 score to
evaluate the performance.

Forecasting: For this task, we use the 3ETT3 (Zhou et al.,
2021) and Electricity4 (Dua & Graff, 2017) datasets. We
perform both univariate and multivariate forecasting and
evaluate the performance by calculating the mean-squared-
error (MSE) and mean-absolute-error (MAE).

4.2. Hyperparameter settings

The size of the queue is 128 in all experiments, the tem-
perature τ is 0.07, and the temporal and instance losses
have the same weight in optimization, i.e., α = 0.5. For all
hyperparameters in common with TS2Vec, we follow the
hyperparameter settings reported in Yue et al. (2022). The
same hyperparameters are used for all downstream tasks.

4.3. Results

Table 1 shows the overall performance of our full
model on the UCR and UEA datasets for classification.
Our model achieves competitive performance: it outper-
forms several recent self-supervised techniques, including
TST (Zerveas et al., 2021)), TS-TCC (Eldele et al., 2021),
and TNC (Tonekaboni et al., 2021) on both UCR and UEA;
however, TS2Vec outperforms our model on this task. In-
terestingly, our results show that adding the hierarchical
contrast (as recommended in Yue et al. (2022)) does not
improve our model for classification (details in Section 4.4).

Table 2 shows experimental results on the KPI dataset for
anomaly detection. On this task, our model achieves higher
recall and F1 scores, while TS2Vec performs better on pre-
cision.

Table 3 shows experimental results on the 3ETT and Elec-

1https://www.cs.ucr.edu/˜eamonn/time_
series_data_2018

2http://www.timeseriesclassification.com/
3https://github.com/zhouhaoyi/ETTDataset
4https://archive.ics.uci.edu/ml/datasets/

ElectricityLoadDiagrams20112014

https://www.cs.ucr.edu/~eamonn/time_series_data_2018
https://www.cs.ucr.edu/~eamonn/time_series_data_2018
http://www.timeseriesclassification.com/
https://github.com/zhouhaoyi/ETTDataset
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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Table 1. Classification results on UCR and UEA datasets. Baseline
accuracies are directly quoted from Yue et al. (2022). We report
the mean and standard deviation for our model over five random
trials.

Model Dataset Acc. ↑

TST (Zerveas et al., 2021)) UCR 64.1
TS-TCC (Eldele et al., 2021) UCR 75.7

TNC (Tonekaboni et al., 2021) UCR 76.1
T-Loss (Franceschi et al., 2019) UCR 80.6

TS2Vec (Yue et al., 2022) UCR 82.0
Ours UCR 79.1 ± 0.2

TST (Zerveas et al., 2021)) UEA 63.5
T-Loss (Franceschi et al., 2019) UEA 67.5
TNC (Tonekaboni et al., 2021) UEA 67.7
TS-TCC (Eldele et al., 2021) UEA 68.2

TS2Vec (Yue et al., 2022) UEA 71.2
Ours UEA 68.6 ± 0.6

Table 2. Anomaly detection results on KPI, in percentage. TS2Vec
results are quoted from (Yue et al., 2022). We report the mean and
standard deviation for our model over five random trials.

Model Precision ↑ Recall ↑ F1 ↑

TS2Vec 92.9 53.3 67.7
Ours 91.6 ± 0.4 54.8 ± 1.2 68.6 ± 0.8

tricity datasets for univariate and multivariate time series
forecasting. We provide results from Informer (Zhou et al.,
2021) as well as TS2Vec (Yue et al., 2022) for comparison.
It is worth noting that Informer is a supervised method. Our
model consistently outperforms Informer in both univari-
ate and multivariate forecasting. In univariate forecasting,
our model achieves comparable performance to TS2Vec
on ETTh1, ETTh2, and Electricity (within a standard de-
viation), and slightly better performance on ETTm1. In
multivariate forecasting, our model achieves comparable
performance to TS2Vec on ETTh1 and ETTm1, performs
worse on ETTh2, and performs better on Electricity.

4.4. Ablations

We next analyze the impact of similarity distillation in tem-
poral and instance dimensions. Table 4 presents an ablation
study of our approach on all downstream tasks, showing
the performance of the temporal loss, instance loss, and
the full model with both losses. We also provide ablations
on the hierarchical loss as proposed in TS2Vec. On the
classification and anomaly detection tasks, we find that the
temporal and instance losses are both important, with the
full model obtaining the best results. On the forecasting task,
the combined loss does not improve results. Hierarchical
contrast boosts the performance on the anomaly detection

Table 3. Time series forecasting on 3ETT and Electricity datasets.
The metrics are averaged over 5 different horizons per dataset.
Baseline accuracies are quoted from the respective papers. We
report the mean and standard deviation for our model over five
random trials. Detailed results are included in Table 7 and Table 8
in the supplementary.

Univariate time series forecasting
Model Dataset avg. MSE ↓ avg. MAE ↓

Informer ETTh1 0.186 0.347
TS2Vec ETTh1 0.110 0.252

Ours ETTh1 0.115 ± 0.011 0.258 ± 0.014

Informer ETTh2 0.204 0.358
TS2Vec ETTh2 0.170 0.321

Ours ETTh2 0.173 ± 0.004 0.325 ± 0.003

Informer ETTm1 0.241 0.382
TS2Vec ETTm1 0.069 0.186

Ours ETTm1 0.063 ± 0.003 0.179 ± 0.005

TS2Vec Electricity 0.486 0.425
Ours Electricity 0.484 ± 0.004 0.419 ± 0.003

Multivariate time series forecasting
Model Dataset avg. MSE ↓ avg. MAE ↓

Informer ETTh1 0.907 0.739
TS2Vec ETTh1 0.788 0.646

Ours ETTh1 0.789 ± 0.017 0.655 ± 0.009

Informer ETTh2 2.371 1.199
TS2Vec ETTh2 1.567 0.937

Ours ETTh2 1.854 ± 0.140 1.034 ± 0.032

Informer ETTm1 0.749 0.640
TS2Vec ETTm1 0.628 0.552

Ours ETTm1 0.618 ± 0.021 0.556 ± 0.013

TS2Vec Electricity 0.330 0.405
Ours Electricity 0.311 ± 0.007 0.393 ± 0.006

and forecasting tasks by a small margin.

We include additional sensitivity experiments on the queue
size and temperature hyperparameters in the supplementary.

5. Conclusion
We introduced a similarity distillation based self-supervised
method for pre-training universal time series representations.
In future work, we plan to broaden our exploration into
different self-supervised augmentation options.
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Supplementary Material

A. Sensitivity Analyses
We performed sensitivity analyses on temperature and queue
size to evaluate their impact on different tasks. Table 5
shows a set of different temperatures for both student (sτ )
and teacher (tτ ) networks on the anomaly detection task. Us-
ing different temperatures for student and teacher networks
can improve the final performance for anomaly detection.
However, using the best temperature on anomaly detection
does not improve the results on other tasks. Finding a uni-
versal set of best hyperparameters for all tasks remains a
challenge.

Table 5. Impact of temperature. Bottom rows for each task show
the original setting used in the model. The best temperatures from
the anomaly detection task are used on other downstream tasks to
evaluate performance.

Task: Anomaly Detection
sτ tτ Precision ↑ Recall ↑ F1 ↑
0.1 0.01 92.1 53.6 67.7
0.4 0.04 89.7 57.2 69.9
0.7 0.07 90.7 59.1 71.6

0.01 0.01 92.2 55.1 68.9
0.05 0.05 91.9 54.7 68.6
0.1 0.1 91.7 56.5 69.9
0.2 0.2 92.3 55.7 69.5

0.07 0.07 91.8 55.2 68.9

Task: Classification
sτ tτ Dataset Acc. ↑ AUPRC ↑
0.7 0.07 UCR 77.5 78.2
0.7 0.07 UEA 68.3 69.8

0.07 0.07 UCR 78.8 79.7
0.07 0.07 UEA 69.6 70.4

Task: Forecasting
sτ tτ Type avg. MSE ↓ avg. MAE ↓
0.7 0.07 uni 0.216 0.299
0.7 0.07 multi 0.952 0.683

0.07 0.07 uni 0.206 0.292
0.07 0.07 multi 0.914 0.667

We analyzed the impact of queue size on a subset of datasets.
Table 6 shows that increasing queue size can help with
classification and anomaly detection while there seems to
be a sweet spot. On the other hand, it seems that queue size
does not have a significant impact on forecasting. We obtain
modestly better results if we use a smaller queue size for
forecasting.

Table 6. Impact of queue size on different tasks.
Task: Classification on UCR.

Queue Acc. ↑ AUPRC ↑
64 78.6 79.9

128 78.8 79.7
256 79.1 80.1
512 78.9 79.6

Task: Anomaly Detection.
Queue Precision ↑ Recall ↑ F1 ↑

64 91.9 54.8 68.6
128 91.8 55.2 68.9
256 91.9 56.0 69.6
512 91.7 55.3 69.0

Task: Univariate Forecasting on ETTh1.
Queue H MSE ↓ MAE ↓

64 24 0.045 0.164
128 24 0.045 0.163
256 24 0.046 0.165

64 48 0.068 0.201
128 48 0.068 0.202
256 48 0.069 0.203

64 168 0.115 0.260
128 168 0.116 0.262
256 168 0.117 0.263

64 336 0.131 0.280
128 336 0.132 0.282
256 336 0.132 0.282

64 720 0.161 0.323
128 720 0.163 0.325
256 720 0.163 0.325

B. Detailed forecasting results on each horizon
Table 7 and Table 8 show detailed forecasting results on

different horizons.
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Table 7. Univariate forecasting per horizon and dataset.
dataset H Ours TS2Vec (Yue et al., 2022) Informer (Zhou et al., 2021)

MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓
ETTm1 24 0.015 ± 0.001 0.093 ± 0.004 0.015 0.092 0.030 0.137
ETTm1 48 0.028 ± 0.002 0.125 ± 0.005 0.027 0.126 0.069 0.203
ETTm1 96 0.042 ± 0.002 0.156 ± 0.004 0.044 0.161 0.194 0.372
ETTm1 288 0.093 ± 0.005 0.232 ± 0.006 0.103 0.246 0.401 0.554
ETTm1 672 0.138 ± 0.008 0.286 ± 0.009 0.156 0.307 0.512 0.644

ETTh1 24 0.042 ± 0.002 0.158 ± 0.005 0.039 0.152 0.098 0.247
ETTh1 48 0.065 ± 0.003 0.197 ± 0.006 0.062 0.191 0.158 0.319
ETTh1 168 0.138 ± 0.018 0.287 ± 0.022 0.134 0.282 0.183 0.346
ETTh1 336 0.156 ± 0.020 0.310 ± 0.024 0.154 0.310 0.222 0.387
ETTh1 720 0.174 ± 0.014 0.338 ± 0.020 0.163 0.327 0.269 0.435

ETTh2 24 0.092 ± 0.002 0.232 ± 0.002 0.090 0.229 0.093 0.240
ETTh2 48 0.128 ± 0.001 0.277 ± 0.001 0.124 0.273 0.155 0.314
ETTh2 168 0.205 ± 0.010 0.359 ± 0.008 0.208 0.360 0.232 0.389
ETTh2 336 0.216 ± 0.007 0.373 ± 0.004 0.213 0.369 0.263 0.417
ETTh2 720 0.224 ± 0.005 0.384 ± 0.005 0.214 0.374 0.277 0.431

Electricity 24 0.259 ± 0.003 0.280 ± 0.002 0.260 0.288 - -
Electricity 48 0.309 ± 0.002 0.315 ± 0.005 0.319 0.324 0.239 0.359
Electricity 168 0.426 ± 0.008 0.388 ± 0.004 0.427 0.394 0.447 0.503
Electricity 336 0.560 ± 0.015 0.472 ± 0.004 0.565 0.474 0.489 0.528
Electricity 720 0.865 ± 0.006 0.643 ± 0.004 0.861 0.643 0.540 0.571

Table 8. Multivariate forecasting per horizon and dataset.
dataset H Ours TS2Vec (Yue et al., 2022) Informer (Zhou et al., 2021)

MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓
ETTm1 24 0.440 ± 0.019 0.444 ± 0.012 0.443 0.436 0.323 0.369
ETTm1 48 0.573 ± 0.024 0.523 ± 0.014 0.582 0.515 0.494 0.503
ETTm1 96 0.602 ± 0.020 0.547 ± 0.013 0.622 0.549 0.678 0.614
ETTm1 288 0.684 ± 0.022 0.600 ± 0.013 0.709 0.609 1.056 0.786
ETTm1 672 0.790 ± 0.024 0.664 ± 0.012 0.786 0.655 1.192 0.926

ETTh1 24 0.569 ± 0.017 0.529 ± 0.013 0.599 0.534 0.577 0.549
ETTh1 48 0.607 ± 0.016 0.556 ± 0.012 0.629 0.555 0.685 0.625
ETTh1 168 0.759 ± 0.014 0.646 ± 0.009 0.755 0.636 0.931 0.752
ETTh1 336 0.920 ± 0.025 0.729 ± 0.011 0.907 0.717 1.128 0.873
ETTh1 720 1.092 ± 0.024 0.815 ± 0.009 1.048 0.790 1.215 0.896

ETTh2 24 0.523 ± 0.068 0.554 ± 0.042 0.398 0.461 0.720 0.665
ETTh2 48 1.058 ± 0.630 0.681 ± 0.051 0.580 0.573 1.457 1.001
ETTh2 168 2.293 ± 0.120 1.187 ± 0.042 1.901 1.065 3.489 1.515
ETTh2 336 2.573 ± 0.105 1.305 ± 0.045 2.304 1.215 2.723 1.340
ETTh2 720 2.823 ± 0.215 1.439 ± 0.064 2.650 1.373 3.467 1.473

Electricity 24 0.266 ± 0.008 0.359 ± 0.007 0.287 0.374 - -
Electricity 48 0.286 ± 0.008 0.375 ± 0.007 0.307 0.388 0.344 0.393
Electricity 168 0.315 ± 0.007 0.396 ± 0.006 0.332 0.407 0.368 0.424
Electricity 336 0.332 ± 0.007 0.409 ± 0.005 0.349 0.420 0.381 0.431
Electricity 720 0.359 ± 0.006 0.428 ± 0.005 0.375 0.438 0.406 0.443


