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ABSTRACT

Multiocular human reconstruction aims to create a high-quality 3D human repre-
sentation from sparse video data. Recently, 3D Gaussian Splatting (3DGS) has
demonstrated impressive results in multiocular human reconstruction tasks, ex-
hibiting remarkable speed and accuracy. However, it encounters challenges in sce-
narios involving intricate clothing and dynamic postures. This problem may stem
from pixel-level supervision during the 3DGS optimization process, which proba-
bly lead to spurious associations between unrelated visual features (e.g., misinter-
preting clothing wrinkles as dependent on body occlusions rather than recognizing
that both are influenced by complex postures). To address this issue, we propose
the LAST framework for realistic 3D human reconstruction, which integrates a
pre-trained Image-to-Point (I2P) model to enhance the 3D Gaussian Splatting op-
timization pipeline. The core of the LAST is to disentangle meaningful latent
factors and realistic dependencies from the input video frames, which allows for
dynamic adjustments to the density and attributes of Gaussian points during the
optimization process. Experimental results demonstrate that our method signifi-
cantly improves accuracy and realism in 3D human reconstruction compared to
existing techniques, particularly in challenging scenarios involving complex pos-
ture and intricate clothing details.

1 INTRODUCTION

3D human reconstruction is a critical task in computer vision with broad applications in virtual re-
ality and game development. Traditional 3D human reconstruction methods (Bradley et al., 2008;
Collet et al., 2015; Starck & Hilton, 2007; Guo et al., 2019) often rely on images from dense view-
points captured by numerous cameras. However, such methods face substantial limitations in terms
of hardware costs and the complexity of data collection. Recently, advanced methods (Weng et al.,
2022; Jiang et al., 2022b; Yu et al., 2023; Peng et al., 2021a) have demonstrated that high-quality hu-
man reconstruction can be achieved from sparse-view images using Neural Radiance Fields (NeRF)
representations. However, these methods typically require expensive time and computational costs
in the training and rendering, making them difficult to apply in the real world.

Recent advances in 3D Gaussian Splatting (3DGS,Kerbl et al. (2023)), it is possible to achieve high
expressivity with significantly faster training and rendering speeds compared to NeRF-based meth-
ods. While recent works of 3DGS human reconstruction (Moreau et al., 2024b; Qian et al., 2024; Hu
et al., 2024b; Li et al., 2024a) perform well in most scenarios, they struggle with challenging poses
and delicate clothing, suffering from detail loss and distortion. This is because 3DGS encodes latent
factors that influence 3D human reconstruction, such as lighting, clothing, and pose, into Gaussian
points, which have dependency relationships between each other. For instance, variations in posture
can affect clothing details including folds or stretches, it’s essential to account for these dependen-
cies during the optimization process. However current methods directly use the difference between
rendered and real images to guide model optimization. Images contain highly coupled visual infor-
mation (Liu et al., 2022b), with their dependencies being messy and intertwined. When learning
dependencies based on statistical relationships, probably leads to misleading conclusions, which are
analogous to the spurious correlations in the causal theory (Eberhardt & Scheines, 2007). For exam-
ple, wrinkled clothing frequently occurs at the same time as body occlusion in the athletic position,
the optimization process might incorrectly assume that body occlusion depends on wrinkled cloth-
ing, but such dependencies are not routinely valid in reality, as both scenarios depend on complex
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posture. If spurious correlations are incorporated into the optimization process, latent factors will
interfere with each other during the optimization process. This interference results in a detrimental
effect where adjustments in one latent factor can inadvertently cause degradation in others, manifest-
ing as artifacts or loss of fine details in the final reconstruction. This issue is particularly pronounced
in challenging poses and delicate clothing, which exhibit more complex dependency relationships.

To solve the above problems, we argue that two main goals should be achieved: (1) discover latent
factors and their corresponding dependencies within the 3D model; and (2) control the 3DGS opti-
mization process to mitigate the mutual interference among different latent factors. For the first goal,
we propose a pre-training Image-to-Point (I2P) framework, which utilizes a Variational Autoencoder
(VAE, Kingma (2013)) to learn how to disentangle 2D images into semantic vectors representing la-
tent factors, and we design a latent structure that focuses on 3D reconstruction and incorporates
it into the I2P framework. This latent structure aims to learn a dependency matrix that represents
dependencies between latent factors. During the VAE training process, features of latent factors are
extracted from the encoder and propagated from the parent latent factor to the child latent factor, the
decoder then uses these propagated features to generate the point cloud, enabling a backpropagation
process that simultaneously updates the parameters of the VAE and the dependency matrix. This
training process generates latent representations with explicit semantics and dependency associa-
tions, which serve as additional supervisory signals and guidance of the 3DGS optimization process
to mitigate latent factor mutual interference.

For the second goal, traditional 3DGS optimization (Li et al., 2024a; Shao et al., 2024; Abdal et al.,
2024b) relies on image difference loss gradients to guide the densification and updating of Gaussian
point attributes. However, this can inadvertently propagate potentially incorrect dependencies due to
the image coupling mentioned above. To address this, we propose to incorporate the learned latent
factors and dependency matrix from the I2P framework. To be specific, there are three core strate-
gies: (1) decouple latent factors from images as new supervisory signals in the optimization process.
Compared to the pixel supervision, this allows for a clearer understanding of how each latent factor
influences the reconstruction; (2) utilize the decoder to directly transform the latent factors space
into the point cloud space, establishing a connection between the 3DGS and the latent factors. By
analyzing differences in latent factors, we can identify 3DGS critical regions that require updates.
(3) construct an updated sequential chain based on the topological order indicated by the depen-
dency matrix to minimize the risk of interference among latent factors. Combining these strategies
not only leverages the latent factors but also reduces the propagation of erroneous dependencies. We
evaluate our approach on standard benchmarks for 3D human reconstruction, comparing it against
state-of-the-art methods. Our experiments show that our model achieves superior reconstruction
quality, particularly in challenging scenarios involving complex poses and intricate clothing details.

Overall, this work makes the following contributions:

1. We introduce an approach to disentangle and learn the dependencies among latent factors
from 2D visual information, which allows us to manage the complex interplay between
factors such as posture, clothing, and lighting.

2. We introduce the dependencies between latent factors into the 3DGS optimization process
to mitigate mutual interference among latent factors. Empirically, this integration allows
for a more nuanced optimization strategy that maintains the fidelity of local detail while
ensuring overall coherence in the reconstructed model.

3. We evaluate the proposed method on the ZJU-MoCap, MoCap, and DNA-Rendering
datasets. Across all datasets, our approach achieves state-of-the-art performance in render-
ing quality. Furthermore, detailed ablations are conducted to demonstrate the effectiveness
of the proposed components.

2 RELATED WORK

2.1 3D DIGITAL HUMAN RECONSTRUCTION

Previous studies (Alldieck et al., 2022; Choi et al., 2022; Halimi et al., 2022; Habermann et al.,
2021) often use point clouds or meshes as the output 3D representations. While they incorporate
latent factors such as light fields and dynamic textures, fitting these priors to fine deformations and
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texture details remains challenging. Neural Radiance Fields (NeRF) (Zheng et al., 2023; Hong et al.,
2022; Xu et al., 2021; Jiang et al., 2022a; Hu et al., 2023)models the radiance (color and density) of
each point in the scene as a neural network, turning the learning of latent factor priors into a dense
regression task, which addresses some of these issues. However, NeRF models typically require
pre-training on clear human data and fine-tuning for new human performers, which is inefficient and
may take several hours of pre-training to obtain a 3D human representation.

3D Gaussian Splatting (Hu et al., 2024a; Moreau et al., 2024a; Li et al., 2024b; Zheng et al., 2024;
Abdal et al., 2024a) offers a more efficient method to generate high-quality 3D human representa-
tions by mapping pixels from 2D images to Gaussian points in 3D space. It decouples latent factors
of 3D space into attributes of Gaussian points in the form of Gaussian distributions, enabling effi-
cient and accurate human reconstruction. In this work, we focus on dependency relationships among
latent factors that previous research has not considered.

2.2 CAUSALITY IN VISION

Current research has made strides in integrating visual features with causal inference to learn vi-
sual representations (Wang et al., 2020; Lopez-Paz et al., 2017; Chalupka et al., 2014; Liu et al.,
2022c;a; Wang et al., 2021; Zareian et al., 2020), enhancing models’ understanding of objects and
their relationships within images, and improving performance on downstream tasks such as object
detection, image classification, and visual question answering. Another aspect of research involves
introducing causal relationships to address challenges in traditional visual tasks. For instance, Zhang
et al. (2020) improved semantic segmentation quality by severing the causal link between contextual
priors and images.Qi et al. (2020) enhanced the accuracy of dialogue systems by using questions as
intermediaries and cutting direct causal effects between dialogue history and answers. Yang et al.
(2021) improved image annotation accuracy by clarifying the causal relationships among image fea-
tures, potential confounding factors, and image labels. However, the existing methods lack research
in 3D visual information. Inspired by causal structure learning, we proposed latent structure learn-
ing to discover dependencies of latent factors and integrate them into the 3D Gaussian Splatting
optimization process for 3D human reconstruction.

3 METHOD

LAST aims to achieve realistic 3D human representation from sparse video data. As shown in Fig-
ure. 1, the overall pipeline is composed of a pre-trained image-to-plane (I2P) model and a enhanced
3D Gaussian Splatting optimization pipeline, which is informed by the prior knowledge acquired
from the I2P model.

3.1 IMAGE-TO-POINT MODEL FOR IMAGE DISENTANGLEMENT

In the first stage, we need to reconstruct a coarse 3D human representation R of the from a 2D image
X . Specifically, we learn a feed-forward network that directly transforms the input image into the
point cloud representation, namely the Image-to-Point (I2P) model. When designing the network
structure of the I2P model, there are two important tasks for the network: (1) It should disentangle
latent factors representing 3D semantic information from observed 2D images. (2) It should learn
the correct dependencies from the chaotic dependencies of visual features. To this end, as shown
in Figure 1, we design a VAE-based hybrid network consisting of Latent Factor Disentanglement
module and Latent Structure Learning module.

3.1.1 LATENT FACTOR DISENTANGLEMENT

Latent factor disentanglement aims to decompose the observational image into semantically distinct
dense vectors, where each vector represents a key aspect influencing the outcome of 3D human
reconstruction. We follow the Variational Autoencoder (VAE) paradigm to disentangle the latent
factors contained in 2D images. In our framework, we generate a point cloud R from latent factors
Z disentangled from the observed data X . Formally, considering the generative model pθ(R|Z) and
the prior distribution pθ(Z), our goal is to infer the posterior distribution pθ(Z|R) to utilize latent
space for reconstruction of 3D human point cloud. However, both the integral of marginal likelihood
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pθ(R|Z) and the posterior density pθ(Z|R) are intractable. Therefore, We approximate a variational
posterior qϕ(Z|X) from images with similar distributions to the unknown true posterior pθ(Z|R).
The Evidence Lower Bound (ELBO) is derived to optimize the model:

L(θ, ϕ;X) = Eqϕ [log pθ(R|Z)]−DKL(qϕ(Z|X)∥pθ(Z)), (1)
where θ is the parameter of the generation model which maps latent spaces from 2D images, ϕ is the
parameter of the inference model which reconstructs 3D human representation from latent spaces,
DKL(qϕ(Z|X)∥p(Z)) is the Kullback-Leibler divergence between the approximate posterior and
the conditional prior.
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Figure 1: The network structure of I2P model and improved 3DGS optimization pipeline.

In the implementation of our framework, we design the architecture consisting of an encoder and
a decoder. The encoder maps the input image X into the latent space Z, producing parameters for
a Gaussian distribution—namely, the mean and variance—thereby allowing the formulation of the
variational posterior qϕ(Z|X). We employ the reparameterization trick to sample from this Gaus-
sian distribution, enabling the backpropagation of gradients. The decoder subsequently reconstructs
the 3D representation R from Z, outputting a probability distribution over the reconstructed result.
During training, we train the encoder and decoder by minimizing the ELBO loss function and per-
forming backpropagation to update the parameters θ and ϕ.

3.1.2 LATENT STRUCTURE LEARNING

Once the latent factors are disentangled from 2D images, the second question is how to learn real
dependencies from chaotic dependencies of visual features that contain spurious correlations. For-
mally, spurious correlations can be denoted as a latent factor zk that affects both the other latent
factor zi and zj . There will be a conditional probability relationship between zi and zj , but there
is no relevance between them in real semantics, resulting in a distorted relationship between zi and
zj . Inspired by Structural Causal Model(SCM,Shimizu et al. (2006)), we incorporate intervention
into the VAE training process to solve the above problem. The intervention operation aims to fix the
value of the latent factor zk to cut off its influence on other factors, allowing us to handle relationship
the between the zi and zj in isolation.

In the implementation, we incorporate Latent Structure Learning between the existing encoder and
decoder of the VAE to simulate the intervention of latent factors. Latent Structure Learning is a
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learnable matrix to represent dependencies among latent factors. In the training process, we set a
arbitrary latent factor to a fixed value and propagate this change to all subordinate latent factors
according to the dependency matrix. This allows us to generate expected counterfactual outputs and
compare them with the ground truth to update the parameters of the learnable matrix for capturing
the correct dependencies. Since the latent factors disentangled from images using the encoder often
do not account for the realistic dependency relationships, therefore we take exogenous latent factors
sampled from visual features as input of Latent Structure Learning, and output endogenous latent
factors containing realistic dependencies. Formally, this process can be represented as follows:

Z = AT Z + ϵ =
(
I −AT

)−1
ϵ, ϵ ∼ qϕ(Z|X), (2)

where A denotes the trainable matrix where each element represents the dependency between a
particular pair of latent factors. ϵ denotes exogenous latent factors sample from qϕ(Z|X) and Z
denotes endogenous latent factors as output which contains the semantics and dependencies of 3D
representation. In practice, we introduce a neural network gη(·) to propagate the dependency of
different latent factors by mask mechanism (Ng et al., 2022).

ẑi = gη(Ai ◦ Z) + ϵi, (3)

where ◦ is the element-wise multiplication, Ai ◦ Z equals to a vector that only contains its parental
information as it masks all non-parent latent factors from zi. The final 3D human representation is
reconstructed based on {ẑ1, ẑ2, ..., ẑn}, which encodes latent factors and their dependencies with
non-linear transformations. Parameters A and η will be updated in backpropagation. To improve
dependency identification, we resort to causal discovery and propose three regularization objectives
for training A as follows:

Reconstruction Regularization: The goal of reconstruction regularization is to ensure that the
learned latent factors and their dependencies can accurately reconstruct the 3D human. Through
this regularization, we provide not only a stable objective function for the VAE parameter opti-
mization but also a proxy task for the dependency matrix optimization, indirectly assessing whether
correct dependencies are learned, thereby achieving the overall goals of bi-level optimization:

Lrec = ∥Rgt −D(Z,A)∥2, (4)

where Rgt represents the ground truth of 3D human representation, Z is the endogenous factors
obtained from the input image, D(·) represents the decoder that reconstructs the 3D representation
based on the endogenous latent factors and dependency matrix A.

Disentanglement regularization: The goal of disentanglement regularization is to ensure that each
latent factor represents independent semantic information. In the VAE parameter optimization pro-
cess, disentanglement regularization helps reduce redundancy and overlap among the latent factors
of 2D images (exogenous factors) extracted by the encoder. In the dependency matrix optimization
process, disentanglement regularization ensures that the transformation from exogenous factors to
endogenous factors maintains the conditional independence:

LMI =
∑
i<j

∫
ẑi

∫
ẑj

p(ẑi, ẑj) log
p(ẑi, ẑj)

p(ẑi)p(ẑj)
dẑi dẑj . (5)

Dependency Regularization: Dependency regularization is to ensure that the dependencies among
latent factors align with the expected dependency structure. Specifically, dependency regularization
enforces that any changes in parent latent factors influence only their child latent factors and do not
affect other unrelated latent factors. This requirement implies that the relationships among latent
factors should be represented as a Directed Acyclic Graph (DAG) to avoid cyclic dependencies:

Ldag = tr ((I + αA ∗A)n)− n, (6)

where tr denotes the matrix trace and α is a hyper-parameter that depends on a prior estimation of
the largest eigenvalue of A ∗A.

3.1.3 TRAINING

We propose to use a pre-trained and fine-tuning paradigm to train the I2P model. In the pre-training
phase, we train the I2P model on a large human reconstruction dataset to capture dependencies that
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are generally present across most human samples. There are three goals in this phase: (1) train the
encoder to disentangle latent factors from 2d image. (2) construct correct dependency matrix A to
mitigate spurious correlations of latent factors. (3) train the decoder to generate point clouds from
representations of latent factors. In the fine-tuning phase, we adapt the pre-trained I2P model to
specific downstream tasks. In this stage, we freeze the parameters of the encoder and decoder, fine-
tuning weights in the dependency matrix A based on the input samples. This means that the structure
of A will dynamically adjust according to the task, enhancing the model’s ability to capture unique
features in specific human samples. We adopt regularization objectives mentioned in sec 3.1.2 to
train the I2P model in both the pre-trained phase and fine-tuning phase. Which is defined as follows:

L = w1Lrec + w2LMI + w3Ldag. (7)

where Lrec denotes the reconstruction regularization loss, LMI denotes the disentanglement reg-
ularization, Ldag denotes the dependency regularization loss. The weights w1, w2, and w3 are
hyperparameters that balance the influence of these loss components.

3.2 LATENT STRUCTURE GUIDED GAUSSIAN OPTIMIZATION

With the pre-training process of the I2P model, we achieve to reconstruct an accurate 3D represen-
tation and dependency graph from the source image. In the following sections, we will discuss how
to use the prior knowledge of the I2P model to enhance the performance of 3DGS optimization.

3.2.1 GAUSSIAN DENSITY ADAPTER

3DGS utilizes sparse point clouds generated by Structure from Motion (SfM) as initial input and
subsequently employs an adaptive density control mechanism to refine the point cloud density, which
is determined by the average magnitude of the gradient of the NDC coordinates for the viewpoints:∑

m∈M

√(
∂L2D,m

∂µx,m

)2

+
(

∂L2D,m

∂µy,m

)2

|M|
> τpos, (8)

where M is the set of all viewpoints. Under the viewpoint m ∈ M, the NDC coordinate is
(µx,m, µy,m, µz,m), and the loss between rendered image and ground truth under is L2D,m, and
τpos is the threshold to determine whether a point is split or cloned.

However, this method relies on pixel-level supervision signals, which suffer from issues of spurious
correlations. To address these challenges, we utilize the latent factors and their dependencies to
guide the adaptive splitting or cloning of Gaussian points:∑

m∈M

√(
∂Lrec,m
∂µx,m

)2

+
(

∂Lrec,m
∂µy,m

)2

+
(

∂Lrec,m
∂µz,m

)2

|M|
> τrec, (9)

where Lrec,m represents the difference between latent factors and their dependencies extracted from
the rendered image and ground truth separately. The τrec is the new threshold to determine whether
a point is split or cloned. This method transforms the supervisory signals for density control from
the pixels of 2D images to the latent factors of the 3D model. Meanwhile, this integration allows us
to adjust the point cloud density based on their dependencies rather than in isolation.

3.2.2 PROGRESSIVE UPDATE STRATEGY

The optimization in the 3DGS is based on successive iterations of comparing the rendered image
to the training views in the captured dataset. This iterative process involves updating the attributes
of 3D Gaussian points to minimize the discrepancy between the rendered image and the ground
truth images from the dataset. The optimization process faces similar challenges as density con-
trol, primarily due to the coupling of pixel-level information and the risk of spurious correlations.
Therefore, we propose a progressive update strategy to address the above problems. This methods
explicitly introduce the dependence between latent factors into the optimization order of Gaussian
points. Specifically, the strategy is as follows: (1) We use the I2P model to generate a point cloud
R from the input image X , which preserves a mapping relationship with 3DGS. We compare the
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point clouds generated by the rendered images and the corresponding ground truth to identify key
regions that require updates. We can translate these identified regions into key Gaussian points of
each latent factor. (2) We establish an optimization sequence for the various latent factors based on
the topology order in the dependency matrix A. This sequence determines the order in which key
Gaussian points are optimized. In each optimization iteration, start by updating the key Gaussian
points of parent latent factors zp, the objective is to minimize the difference between the rendered
image Xrend and the ground truth Xgt as global optimization:

z(t+1)
p = argmin

zp

L(Xrend,Xgt),Xrend ∈ D({zp, zs},A), (10)

where zp denotes the parent latent factors, zs represents the latent child factors, t denotes number
of iterations. After updating the key Gaussian points of parent latent factors zp, adjust all the key
Gaussian points of child latent factors zs that are dependent on zp. The objective is to minimize the
rendering error while balancing the relationships between factors as local optimization:

z(t+1)
s = argmin

zs

L(Xrend,Xgt),Xrend ∈ D({zt+1
p , zs},A). (11)

Considering that local optimization does not excessively disturb global optimization, we set a thresh-
old λ for local optimization. This threshold serves as a safeguard to ensure that maintain the integrity
of the overall model while allowing for necessary refinements in specific areas:

z(t)
s − z(t+1)

s = ∇zsL(Xrend,Xgt) < λ,Xrend ∈ D({zt+1
p , zs},A). (12)

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on three datasets: MonoCap (Peng et al., 2022),ZJU-
MoCap (Jiang et al., 2023b), and DNA-Rendering (Cheng et al., 2023). MonoCap and ZJU-MoCap
are conventional data sets for 3D reconstruction, which are used to compare our method with ad-
vanced methods. DNA-Rendering provides challenging scenes with complex poses and costumes.

Comparison Methods. We compare with six baselines. NeuralBody (Peng et al., 2021b) makes
the first attempt to transform 3D human representation into latent code space. InstantAvatar (Jiang
et al., 2023a), AnimatableNeRF (Peng et al., 2021a) are state-of-the-art methods for nerf-based
human reconstruction. HuGS (Moreau et al., 2024b), Gauhuman (Hu et al., 2024b) and 3DGS-
Avatar (Qian et al., 2024) are state-of-the-art methods for 3DGS-based humuan reconstruction.

4.2 QUALITATIVE EVALUATIONS

Figure 2: Comparison with 3DGS-based methods on the DNA-Rendering dataset. Despite complex
motion and textured garments, our method preserves more details than other methods and can fit
unusual joint deformation and clothes wrinkle.

Evaluation on DNA-Rendering dataset: As shown in Figure. 2, LAST is capable of generating
high-quality renderings in complex clothes(e.g., woman with national dress in the first case) and
motion(e.g., basketball player in the second case). Due to the inherent dependency association in
our model design, LAST can allow for the preservation of fine textures and natural movements,
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which are often challenging for traditional methods. Moreover, as shown in the third case, due to
the consideration of the dependencies of different latent factors, our reconstruction results appear
more natural at the fold of clothing. This design allows the posture to interact with the dynamic
changes in the clothing, resulting in more delicate and realistic details.

GT

Our

GauHuman

NeuralBody

AnimateNeRF

(1) (2) (3) (4)

Figure 3: Qualitative comparison on the ZJU-MoCap and MonoCap datasets, showcasing the supe-
rior appearance and geometric details achieved by our method compared to baseline approaches.

Evaluation on MonoCap and ZJU-MoCap dataset: As shown in Figure. 3, our LAST exhibits
superior appearance and geometric details than GauHuman, NeuralBody, and AnimateNeRF. Al-
though GauHuman demonstrates a commendable ability to capture the human shape and posture,
it often compromises on intricate details, leading to visible artifacts in certain regions (e.g., obvi-
ous artifacts in the fist of case 2 and face of case 4). This discrepancy in detail fidelity might be
attributed to the presence of spurious correlations that affect the optimization process. In GauHu-
man, the optimization is influenced by pixel-based supervision, which may struggle to balance the
preservation of fine details with the overall results. Our method leverages the learned latent struc-
ture and dependency matrix to ensure that adjustments made during optimization are informed by
the dependencies. This approach allows our model to preserve intricate details while managing
complex interactions, resulting in smoother transitions and fewer artifacts. AnimateNeRF shows
impressive results in case 3 and case 4 which contain intricate clothing textures and folds, but it
exhibits limitations in reconstructing human posture (e.g., significant arm distortion in case 1). This
limitation might be attributed to the inefficient representation of humans in AnimateNeRF, which
probably leads to high computational resource demands and incompletely captures the complexi-
ties of human poses. In contrast, our model disentangles latent factors of human reconstruction in
challenging poses to employ a latent structure for human representation. NeuralBody optimizes the
model directly in the latent space, but this updating method exhibits instability (e.g., variations in
arm reconstruction quality across different viewpoints in case 1). Our method employs progressive
updates in 3DGS and ensures that modifications to the Gaussian points are based on learned latent
structure, which helps maintain coherence across the generated outputs.
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4.3 QUANTITATIVE EVALUATIONS

As shown in Table. 1, our method leads all metrics on the MonoCap and ZJU-MoCap datasets.
LAST outperforms 3DGS-based models (3DGS-Avatar and Gauhuman) in all settings thanks to our
latent structure learning, which enables our model to utilize dependency associations that are often
overlooked by traditional methods, enhancing its ability to capture intricate details and variations.
This results in superior PSNR and SSIM scores. AnimateNeRF and InstantAvatar are state-of-the-
art methods in NeRF-based 3D human reconstruction and can achieve reasonable scores in some
settings (e.g., InstantAvatar achieves 13.35 LPIPS* on MonoCap) for their meticulous implicit neu-
ral network. But they also fail on some datasets (e.g., InstantAvatar fails on ZJU-Mocap with 68.41
LPIPS*) for complexity in human poses. In contrast, LAST achieves the best scores under all set-
tings. Our model relies on latent factors to represent 3D humans, allowing for more targeted adjust-
ments during optimization and enhancing the model’s adaptability to complex poses and delicate
clothing details, the reduction in LPIPS demonstrates our model’s capability to minimize percep-
tual discrepancies, ensuring a more visually coherent output. Moreover, unlike NeuralBody, LAST
maps latent space into explicit space (key Gaussian points), This mapping reduces the ambiguity of-
ten associated with implicit representations, enabling more accurate reconstructions. Additionally,
compared to NeuralBody adjusts the implicit representation directly, the structured update process
informed by the learned dependency matrix ensures that adjustments to one latent factor consider
the influence on others, minimizing potential distortions and artifacts.

Table 1: Quantitative comparison of our method and other baseline methods on the ZJU-MoCap and
MonoCap datasets. We use bold font to highlight the best result and underline the second-best result
of each metric. Our method achieves the best PSNR, SSIM, and LPIPS on both datasets. LPIPS* =
1000 × LPIPS.

ZJU-Mocap (%) MonoCap (%)
PSNR↑ SSIM↑ LPIPS*↓ PSNR↑ SSIM↑ LPIPS*↓

NeuralBody 29.03 0.964 42.47 32.36 0.986 16.7
AnimateNeRF 29.77 0.965 46.89 31.07 0.985 16.68
InstantAvatar 29.73 0.938 68.41 30.79 0.964 13.35

HuGS 30.21 0.962 36.26 31.12 0.982 23.42
3DGS-Avatar 31.61 0.969 31.54 32.89 0.984 15.62
GauHuman 31.72 0.968 30.73 33.45 0.985 12.43

Ours 32.21 0.972 28.52 33.72 0.986 11.32

4.4 ABLATION STUDIES

We conducted ablation studies from 377 sequences of the ZJU-Mocap dataset to evaluate the impact
of components in our model. The results are summarized in Table 2 and illustrated in Figure 4.

Table 2: Ablation Study
Methods PSNR SSIM LPIPS

Our 32.45 0.9763 28.43
W/O DenAd 31.68 0.9715 35.06
W/O ProOpt 31.44 0.9716 33.92
W/O LanStru 29.78 0.9623 44.54

Latent Structure Learning: As shown in
Figure 4, removing the latent structure learn-
ing module leads to significant degradation in
model performance. Without the correct prior
knowledge from the pre-training stage, the sub-
sequent progressive update strategy and Gaus-
sian density adapter optimization fail to uti-
lize the correct latent factors and dependencies.
This results in noticeable distortion and blur-
ring in the rendered output. As shown in Table 2, The PSNR decreases from 32.45 to 29.78, the
SSIM drops from 0.9763 to 0.9623, and the LPIPS increases from 28.43 to 44.54. This indicates
that the model without latent structure learning fails to capture the correct latent factors and depen-
dencies, leading to noticeable distortion and blurring in the rendered output.

Progressive Update Strategy: Figure 4 illustrates the effect of omitting the progressive update strat-
egy. Without this component, the model focuses solely on global optimization and cannot fine-tune
local details. Consequently, areas requiring detailed refinements, such as the fingers and clothing

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

belts, exhibit substantial blurring and distortion. As shown in Table 2, The absence of the progres-
sive update strategy (W/O ProOpt) leads to a decrease in PSNR from 32.45 to 31.44 and a minor
drop in SSIM from 0.9763 to 0.9716, while LPIPS increases from 28.43 to 33.92. This demon-
strates that without progressive updates, the model struggles with fine-tuning local details, resulting
in blurring and distortion, especially in areas requiring detailed refinement.

Gaussian Density Adapter: Figure 4 also demonstrates the consequences of removing Gaussian
Density Adapter. Due to the unreasonable Gaussian points distribution, the resulting output shows
discrepancies in body contours, with notable distortions, such as on the left shoulder. As shown in
Table 2, Omitting the Gaussian Density Adapter (W/O DenAd) results in a PSNR of 31.68, an SSIM
of 0.9715, and an LPIPS of 35.06. While there is a slight decrease in PSNR and SSIM compared to
the full model, the LPIPS value increases, indicating noticeable discrepancies in body contours and
distortions in specific regions.

Figure 4: Ablation Study Results

5 CONCLUSION

We introduced an effective method for Gaussian human reconstruction, which disentangles latent
factors with semantic information from visual features and addresses spurious correlations problem
of dependencies between latent factors. Our method also proposes an innovative progressive update
strategy. This strategy incorporates dependency ordering for hierarchical updates during optimiza-
tion. This approach achieves a balance between local details and the overall result. Through exten-
sive experiments, we validated the effectiveness of our proposed method. It is particularly effective
in challenging scenarios involving complex poses and intricate clothing details. This innovative
method provides insights into solving long-standing reconstruction challenges. For instance, in sce-
narios involving multiple people interacting or object occlusions, dependency inference can help the
model better understand and handle dependency between objects. This improves the model’s per-
formance in reconstruction and reduces noise and inaccuracies during the process. In 4D dynamic
scenes, where objects and human poses change over time, counterfactual inference can simulate and
predict the effects of these dynamic changes. By considering ”what-if” scenarios, the model can
better understand and reconstruct object poses and interactions at different time points.
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A APPENDIX

A.1 PRELIMINARY

Human Reconstruction from Sparse Video: Given a set of sparse video frames V =
{v1, v2, . . . , vn}, where each frame vi contains a 2D image of the human body at different view-
points, the objective is to generate an accurate Y = {y1, y2, . . . , yn} that accurately represents the
shape and pose of the human body, where yi rendered result at viewpoint i. Our goal is to minimize
the difference between the rendered result of yi and the ground truth vi.

Latent structure learning: In this work, latent structure learning is defined as the process of un-
covering the N latent factors that influence the effectiveness of 3D human reconstruction, denoted
as Z = {z1, z2, . . . ,zn}, along with the dependencies ϵ between them, represented by A, from the
observational data X . Each latent factor z represents a specific characteristic of the human model
(e.g., lighting, clothing, posture). We use the bold letter z to denote the vectorial representation of
z. Each element Ai,j ∈ {0, 1} in A represents whether the i-th latent factor zi has a direct effect
on the j-th latent factor zj .

3D Gaussian Splatting: 3D Gaussian Splatting (3DGS) is a 3D representation that approximates a
continuous volume distribution by discretizing it into Gaussian points, which encapsulate attributes
related to geometry (Gaussian scales) and appearance (opacities and colors). 3DGS begins with an
initial sparse set of points derived from Structure from Motion (SfM) and refines this representation
by controlling the density and attributes of the Gaussian points. Specifically, 3DGS constructs a
loss function based on the difference between the rendered image Xrender and the ground truth
image Xgt, optimizing the geometric features and color properties of the Gaussian points through
backpropagation. Additionally, 3DGS determines whether to clone or split a point by evaluating the
average loss gradient magnitude of the points in Normalized Device Coordinates (NDC), facilitating
the transition from an initial sparse set of Gaussians to a denser configuration that more accurately
represents the scene.

A.2 HYPERPARAMETER ANALYSIS

A.2.1 NUMBER OF LATENT FACTORS

The number of latent factors determines the model’s ability to capture all relevant latent factors
associated with 3D reconstruction and their dependencies. In this experiment, we tested the impact
of different numbers of latent factors on the model performance using the ZJU-Mocap dataset. As
shown in figure 5, the model performs best with 4 latent factors. When the number of latent factors
is too low, the model may fail to capture all relevant latent factors in the 3D reconstruction process,
and the dependency between these factors might be overlooked, leading to ineffective modeling of
complex latent structures. Conversely, when the number of latent factors is too high, the model
may learn many redundant or meaningless latent factors and dependencies, causing the dependency
between factors to become vague and unclear.

A.2.2 DENSITY CONTROL THRESHOLD

The density control threshold determines the minimum value for splitting or cloning Gaussian points
during the 3DGS process, affecting the final density of Gaussian points and the reconstruction ac-
curacy. In this experiment, we tested the impact of different density control thresholds on the model
using 377 sequences from the ZJU-Mocap dataset.
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Figure 5: Effect of the Number of Latent Factors on Model Performance

We found that if the density control threshold, τrec, is set too high, the splitting or cloning of Gaus-
sian points may be suppressed, leading to insufficient Gaussian points in regions that require high
detail. Conversely, if τrec is set too low, Gaussian points may split or clone excessively, causing the
model to overfit local details.

Figure 6: Effect of Density Control Threshold on Gaussian Point Density and Model Performance

As shown in the figure 6, when τrec ≥ 0.01, the splitting and cloning of Gaussian points are sig-
nificantly suppressed, resulting in insufficient Gaussian point density in areas requiring rich detail
(such as clothing and shoes). When 0.005 ≥ τrec ≥ 0.001, the model achieves a better balance,
with splitting and cloning of Gaussian points controlled within a reasonable range. This allows the
Gaussian point density to meet the requirements for detailed representation while avoiding exces-
sive local overfitting. When τrec < 0.0001, the splitting and cloning of Gaussian points occur too
frequently, leading to potential redundancy in some regions (e.g., noticeable blurring in facial areas).

A.2.3 PROGRESSIVE UPDATE THRESHOLD

The progressive update threshold λ determines the magnitude of adjustments made to the child
latent factors during each update. The threshold essentially balances global optimization (parent
latent factors) and local optimization (child latent factors). In this experiment, we tested the impact
of different threshold λ on the model’s performance using the ZJU-Mocap dataset.

For samples with significant distortion in a single viewpoint, we selected different progressive update
thresholds λ for correction to verify the impact of different progressive update thresholds λ on the
overall performance of the 3D model. When the threshold is too large (λ ≥ 0.5) led to higher
reconstruction errors, suggesting that the updates were too aggressive, As the number of iterations
increased, the impact of local adjustments on the overall model grew, disrupting the balance between
global and local optimization. When the threshold is too small (λ < 0.05), the adjustments of
child latent factors are insufficient to address the dependencies between parent latent factors and
child latent factors, leading to poor convergence. When the threshold is moderate(λ = 0.05), the
adjustments to the child latent factors are neither too aggressive nor too minimal. This allows for

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

a balanced optimization where the local adjustments address the dependencies without disrupting
the overall global optimization. When the threshold is optimal(λ = 0.1), it ensures an optimal
balance between the updates to the parent latent factors and the child latent factors. This optimal
threshold allows the model to fine-tune the latent factors, leading to minimal reconstruction errors.
The iterative process converges efficiently, resulting in high-quality 3D reconstructions.

Figure 7: Effect of Progressive update threshold on Gaussian Point Density and Model Performance
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