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Abstract

Non-stationary multi-armed bandit (MAB) problems have recently attracted extensive
attention. We focus on the abruptly changing scenario where reward distributions remain
constant for a certain period and change at unknown time steps. Although Thompson
Sampling (TS) has shown empirical success in non-stationary settings, there is currently no
regret bound analysis for TS with Gaussian priors. To address this, we propose two algorithms,
discounted TS and sliding-window TS, designed for sub-Gaussian reward distributions. For
these algorithms, we establish an upper bound for the expected regret by bounding the
expected number of times a suboptimal arm is played. We show that the regret order of both
algorithms is Õ(

√
TBT ), where T is the time horizon, BT is the number of breakpoints. This

upper bound matches the lower bound for abruptly changing problems up to a logarithmic
factor. Empirical comparisons with other non-stationary bandit algorithms highlight the
competitive performance of our proposed methods.

1 Introduction

MAB is a classic sequential decision problem. At each time step, the learner selects an arm from a finite
set of arms (also known as actions) based on its past observations, and she only observes the reward of the
chosen action. The learner’s goal is to maximize its expected cumulative reward or minimize the regret
incurred during the learning process. The regret is defined as the difference between the expected reward of
the optimal arm and the expected reward achieved by the MAB algorithm.

MAB has found practical use in various scenarios, with one of the earliest applications being the diagnosis
and treatment experiments proposed by Robbins (1952). In this experiment, each patient’s treatment plan
corresponds to an arm in the MAB problem, and the goal is to minimize the patient’s health loss by making
optimal treatment decisions. Recently, MAB has gained wide-ranging applicability. For example, MAB
algorithms have been used in online recommendation systems to improve user experiences and increase
engagement (Li et al., 2011; Bouneffouf et al., 2012; Li et al., 2016). Similarly, MAB has been employed
in online advertising campaigns to optimize the allocation of resources and maximize the effectiveness of
ad placements (Schwartz et al., 2017). While the standard MAB model assumes fixed reward distributions,
real-world scenarios often involve changing distributions over time. For instance, in online recommendation
systems, the collected data gradually becomes outdated, and user preferences are likely to evolve (Wu et al.,
2018). This dynamic nature necessitates the development of algorithms that can adapt to these changes,
leading to the exploration of non-stationary MAB problems.

In recent years, there has been much research on non-stationary multi-armed bandit problems. These methods
can be roughly divided into two categories: they either detect changes in the reward distribution using
change-point detection algorithms (Liu et al., 2018; Cao et al., 2019; Auer et al., 2019; Chen et al., 2019;
Besson et al., 2022), or they passively reduce the effect of past observations (Garivier & Moulines, 2011;
Raj & Kalyani, 2017; Trovo et al., 2020; Baudry et al., 2021). The former method needs to make some
assumptions about the change of arms distribution to ensure the effectiveness of the change-point detection
algorithm. For instance, (Liu et al., 2018; Cao et al., 2019) require a lower bound on the amplitude of change
of each arm’s expected rewards. The latter requires fewer assumptions about the characteristics of the change.
They often use a sliding window or discount factor to forget past information to adapt to the change of arms
distribution.
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These methods all provide the theoretical guarantees for regret upper bounds. However, the known Thompson
sampling, have received little theoretical analysis of regret in non-stationary MAB problems, despite the fact
TS algorithms often have superior or comparable performance to frequentist algorithms in most non-stationary
scenarios. Raj & Kalyani (2017) have studied the discounted Thompson sampling with Beta priors. However,
they only derive the probability of picking a suboptimal arm for the simple case of a two-armed bandit. To
the best of our knowledge, only sliding-window Thompson sampling with Beta priors (Trovo et al., 2020)
provides the regret upper bounds. However, their proof is incorrect with a wrong application of a well-known
result (Lemma A.3). We analyze their mistakes in detail and provide a counterexample in Appendix C.

There are two main challenges in analyzing Thompson sampling algorithm in non-stationary setting. The
first challenge is that the DS-TS algorithm cannot fully forget previous information and the second is
the under-estimation of the optimal arm. In non-stationary setting, solving these problems is highly
challenging due to the changing reward distribution. We define a UCB-like function serving as the upper
confidence bound to tackle the first challenge, as detailed in Lemma 5.1 and Lemma 5.2. Along with the
defined function, we employ a new regret decomposition to bound the regret comes from the under-estimation
of the optimal arm, as presented in the proof of Lemma 5.3. We provide details about these challenges and
their solutions in the theoretical analysis section (Section 5).

Our contributions are as follows: we propose discounted TS (DS-TS) and sliding-window TS (SW-TS) with
Gaussian priors for abruptly changing settings. We adopt a unified method to analyze the regret upper
bound for both algorithms. The theoretical analysis results show that their regret upper bounds are of
order Õ(

√
TBT ), where T is the number of time steps, BT is the number of breakpoints. This regret bound

matches the Ω(
√

T ) lower bound proven by Garivier & Moulines (2011) in an order sense. We also verify
the algorithms in various environmental settings with Gaussian and Bernoulli rewards, and both DS-TS and
SW-TS achieve competitive performance.

2 Related Works

Many works are based on the idea of forgetting past observations. Discounted UCB (DS-UCB) (Kocsis &
Szepesvári, 2006; Garivier & Moulines, 2011) uses a discounted factor to average the past rewards. In order to
achieve the purpose of forgetting information, the weight of the early reward is smaller. Garivier & Moulines
(2011) also propose the sliding-window UCB (SW-UCB) by only using a few recent rewards to compute the
UCB index. They calculate the regret upper bound for DS-UCB and SW-UCB as Õ(

√
TBT ). EXP3.S, as

proposed in (Auer et al., 2002), has been shown to achieve the regret upper bound by Õ(
√

TBT ). Under the
assumption that the total variation of the expected rewards over the time horizon is bounded by a budget
VT , Besbes et al. (2014) introduce REXP3 with regret Õ(T 2/3). Combes & Proutiere (2014) propose the
SW-OSUB algorithm, specifically for the case of smoothly changing with an upper bound of Õ(σ1/4T ), where
σ is the Lipschitz constant of the evolve process. Raj & Kalyani (2017) propose the discounted Thompson
sampling for Bernoulli priors without providing the regret upper bound. They only calculate the probability
of picking a sub-optimal arm for the simple case of a two-armed bandit. Trovo et al. (2020) propose the
sliding-window Thompson sampling algorithm with regret Õ(T 1+α

2 ) for abruptly changing settings and Õ(T β)
for smoothly changing settngs. Baudry et al. (2021) propose a novel algorithm named Sliding Window Last
Block Subsampling Duelling Algorithm (SW-LB-SDA) with regret Õ(

√
TBT ). They only assume that the

reward distributions belong to the same one-parameter exponential family for all arms during each stationary
phase.

There are also many works that exploit techniques from the field of change detection to deal with reward
distributions varying over time. Mellor & Shapiro (2013) combine a Bayesian change point mechanism
and Thompson sampling strategy to tackle the non-stationary problem. Their algorithm can detect global
switching and per-arm switching. Liu et al. (2018) propose a change-detection framework that combines UCB
and a change-detection algorithm named CUSUM. They obtain an upper bound for the average detection
delay and a lower bound for the average time between false alarms. Cao et al. (2019) propose M-UCB, which
is similar to CUSUM but uses another simpler change-detection algorithm. M-UCB and CUSUM are nearly
optimal, their regret bounds are Õ(

√
TBT ).
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Recently, there are also some works deriving regret bounds without knowing the number of changes. For
example, Auer et al. (2019) propose an algorithm called ADSWITCH with optimal regret bound Õ(

√
BT T ).

Suk & Kpotufe (2022) improve the work (Auer et al., 2019) so that the obtained regret bound is smaller than
Õ(

√
ST ), where S only counts the best arms switches.

3 Problem Formulation

Assume that the non-stationary MAB problem has K arms A := {1, 2, ..., K} with finite time horizon T . At
each round t, the learner must select an arm it ∈ A and obtain the corresponding reward Xt(it). The rewards
are generated from σ-subGaussian distributions. The expectation of Xt(i) is denoted as µt(i) = E[Xt(i)].
A policy π is a function that selects arm it to play at round t. Let µt(∗) := maxi∈{1,...,K} µt(i) denote the
expected reward of the optimal arm i∗

t at round t. Unlike the stationary MAB settings, where an arm is
optimal all of the time (i.e. ∀t ∈ {1, ..., T}, i∗

t = i∗), while in the non-stationary settings, the optimal arms
might change over time. The performance of a policy π is measured in terms of cumulative expected regret:

Rπ
T = E

[
T∑

t=1
(µt(∗) − µt(it))

]
, (1)

where E[·] is the expectation with respect to randomness of π. Let ∆t(i) = µt(∗) − µt(i) and let

kT (i) =
T∑

t=1
1{it = i, i ̸= i∗

t }

denote the number of plays of arm i when it is not the best arm until time T . When we analyze the upper
bound of Rπ

T , we can directly analyze E[kT (i)] to get the upper bound of each arm.

Abruptly Changing Setting The abruptly changing setting is introduced by Garivier & Moulines (2011)
for the first time. The number of breakpoints is denoted as BT =

∑T −1
t=1 1{∃i ∈ A : µt(i) ̸= µt+1(i)}. Suppose

the set of breakpoints is B = {b1, ..., bBT
} (we define b1 = 1). At each breakpoint, the reward distribution

changes for at least one arm. The rounds between two adjacent breakpoints are called stationary phase.
Abruptly changing bandits pose a more challenging problem as the learner needs to balance exploration
and exploitation within each stationary phase and during the changes between different phases. Trovo et al.
(2020) makes assumption about the number of breakpoints to facilitate more generalized analysis, while we
explicitly use BT to represent the number of breakpoints for analysis.

4 Algorithms

In this section, we propose the DS-TS and SW-TS with Gaussian priors for the non-stationary stochastic
MAB problems. Different from Agrawal & Goyal (2013), we assume that the reward distribution follows a
σ-subGaussian distribution rather than a bounded distribution. Assume that X1, ..., Xn are independently
and identically distributed, following a σ-subGaussian distribution with mean µ. Assume further that the
prior distribution is a Gaussian distribution µ ∼ N (0, σ2

0). The posterior distribution is also Gaussian
distribution N (µ1, σ2

1) where

µ1 = σ2
1( 0

σ2
0

+
∑n

i=1 Xi

σ2 ), σ2
1 = 1

1
σ2

0
+ n

σ2

.

Let σ0 = +∞, we get the posterior distribution as N ( 1
n

∑n
i=1 Xi,

σ2

n ).

4.1 DS-TS

DS-TS uses a discount factor γ (0 < γ < 1) to dynamically adjust the estimate of each arm’s distribution. The
key to our algorithm is to decrease the sampling variance of the selected arm while increasing the sampling
variance of the unselected arms.
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Algorithm 1: DS-TS
Input: discounted factor γ, µ̂1(i) = 0, µ̃1(i) = 0, Nt(γ, i) = 0

1 for t = 1, ..., T do
2 for i = 1, .., K do
3 sample θt(i) ∼ N (µ̂t(γ, i), 4σ2

Nt(γ,i) )
4 end
5 Pull arm it = arg maxi θt(i), observe reward Xt(it);
6 for i = 1, ..., K do
7 µ̃t+1(γ, i) = γµ̃t(γ, i) + 1{it = i}Xt(i)
8 Nt+1(γ, i) = γNt(γ, i) + 1{it = i}
9 µ̂t+1(γ, i) = µ̃t+1(γ,i)

Nt+1(γ,i)
10 end
11 end

Specifically, let

Nt(γ, i) =
t∑

j=1
γt−j

1{ij = i}

denote the discounted number of plays of arm i until time t. We use

µ̂t(γ, i) = 1
Nt(γ, i)

t∑
j=1

γt−jXj(i)1{ij = i}

called discounted empirical average to estimate the expected rewards of arm i. In non-stationary settings, we
use the discounted average and discounted number of plays instead of the true average and number of plays
respectively. Therefore, the posterior distribution is N (µ̂t(γ, i), σ2

Nt(γ,i) ).

Algorithm 2: SW-TS
Input: sliding window τ , µ̂1(i) = 0, µ̃1(i) = 0, Nt(τ, i) = 0

1 for t = 1, ..., T do
2 for i = 1, .., K do
3 sample θt(i) ∼ N (µ̂t(τ, i), 4σ2

Nt(τ,i) )
4 end
5 Pull arm it = arg maxi θt(i), observe reward Xt(it)
6 for i = 1, ..., K do
7 Nt+1(τ, i) = Nt(τ, i) + 1{it = i} − 1{it−τ = i}
8 µ̃t+1(τ, i) = µ̃t(τ, i) + 1{it = i}Xt(i) − 1{it−τ = i}Xt−τ (i)
9 µ̂t+1(τ, i) = µ̃t+1(τ,i)

Nt+1(τ,i)
10 end
11 end

Algorithm 1 shows the pseudocode of DS-TS. Step 3 is the Thompson sampling. For each arm, we draw a
random sample θt(i) from N (µ̂t(γ, i), 4σ2

Nt(γ,i) ). We use 4σ2

Nt(γ,i) as the posterior variance instead of σ2

Nt(γ,i) , which
helps the subsequent analysis. Then we select arm it with the maximum sample value and obtain the reward
Xt(it) (Step 5). To avoid the time complexity going to O(T 2), we introduce µ̃t(γ, i) =

∑t
j=1 γt−jXj(i)1{ij =

i} to calculate µ̂t(γ, i) using an iterative method(Step 7-9).

If arm i is selected at round t, the posterior distribution is updated as follows:

µ̂t+1(γ, i) = γµ̂t(γ, i)Nt(γ, i) + Xt(i)
γNt(γ, i) + 1 = µ̃t+1(γ, i)

Nt+1(γ, i)
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If arm i isn’t selected at round t, the posterior distribution is updated as

µ̂t+1(γ, i) = µ̃t+1(γ, i)
Nt+1(γ, i) = γµ̃t(γ, i)

γNt(γ, i) = µ̂t(γ, i)

i.e. the expectation of posterior distribution remains unchanged.

4.2 SW-TS

SW-TS uses a sliding window τ to adapt to changes in the reward distribution. Let

Nt(τ, i) =
t∑

j=t−τ+1
1{ij = i}, µ̂t(τ, i) = 1

Nt(τ, i)

t∑
j=t−τ+1

Xj(i)1{ij = i}.

If t < τ , the range of summation is from 1 to t. Similar to DS-TS, the posterior distribution is
N (µ̂t(τ, i), 4σ2

Nt(τ,i) ). Algorithm 2 shows the pseudocode of SW-TS. To avoid the time complexity going
to O(T 2), we introduce µ̃t(τ, i) =

∑t
j=t−τ+1 Xj(i)1{ij = i} to update µ̂t(τ, i).

4.3 Results

In this section, we give the regret upper bounds of DS-TS and SW-TS. Then we discuss how to take the
values of the parameters so that these algorithms reach the optimal upper bound.

Recall that ∆t(i) = µt(∗) − µt(i). Let ∆T (i) = min{∆t(i) : t ≤ T, i ̸= i∗
t }, be the minimum difference between

the expected reward of the best arm i∗
t and the expected reward of arm i in all time T when the arm i is not

the best arm. Let ∆T
max = max{µt1(i) − µt2(i) : t1 ̸= t2, i ∈ [K]} denote the maximum expected variation of

arms.
Theorem 4.1 (DS-TS). Let γ ∈ (0, 1) satisfying σ2

∆T
max

(1 − γ)2 log 1
1−γ < 1. For any suboptimal arm i,

E[kT (i)] ≤ BT D(γ) + C1(γ)L1(γ)γ− 1
1−γ T (1 − γ),

where

D(γ) =
log(( σ

∆T
max

)2(1 − γ)2 log 1
1−γ )

log γ
, C1(γ) = e17 + 12 + 3 log 1

1 − γ
, L1(γ) =

1152 log( 1
1−γ + e17)σ2

γ1/(1−γ)(∆T (i))2 .

Corollary 4.2. When γ is close to 1, γ− 1
1−γ is around e. If the time horizon T and number of breakpoints

BT are known in advance, the discounted factor can be chosen as γ = 1 − 1
σ

√
BT

T log T . If BT ≪ T ,

σ2

∆T
max

(1 − γ)2 log 1
1 − γ

<
σ/e

∆T
max

√
BT

T log T
< 1.

We have
E[kT (i)] = O(

√
TBT (log T ) 3

2 ).
Theorem 4.3 (SW-TS). Let τ > 0, for any suboptimal arm i,

E[kT (i)] ≤ BT τ + C2(τ)L2(τ)T

τ
,

where
C2(τ) = e11 + 12 + 3 log τ, L2(τ) = 1152 log(τ + e11)σ2

(∆T (i))2 .

Corollary 4.4. If the time horizon T and number of breakpoints BT are known in advance, the sliding
window can be chosen as τ = σ

√
T/BT log T , then

E[kT (i)] = O(
√

TBT log T ).
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5 Proofs of Upper Bounds

Before giving the detailed proof, we discuss the main challenges in regret analysis of Thompson sampling in
non-stationary setting. These challenges are addressed by Lemmas 5.1 to 5.3.

5.1 Challenges in Regret Analysis

Existing analyses of regret bounds for Thompson sampling (Agrawal & Goyal, 2013; Jin et al., 2021; 2022)
decompose the regret into two parts. The first part of regret comes from the over-estimation of suboptimal
arm, which can be dealt with by the concentration properties of the sampling distribution and rewards
distribution. The second part is the under-estimation of the optimal arm, which mainly relies on bounding
the following equation.

T∑
t=1

E[ 1 − pi,t

pi,t
1{it = i∗

t , θt(∗) ≤ µt(∗) − ϵi}], (2)

where pi,t = P(θt(∗) > µt(∗) − ϵi) is the probability that the best arm will not be under-estimated from the
mean reward by a margin ϵi.

The first challenge is specific to the DS-TS algorithm. Unlike SW-TS, which completely forgets previous
information after τ rounds following a breakpoint, DS-TS cannot fully forget past information. This
makes it challenging to utilize the concentration properties of the reward distribution to bound regret comes
from the over-estimate of the suboptimal arm. And this will further affect the analysis of Equation (2).

The second challenge is the under-estimation of the optimal arm. In stationary settings, pi,t changes
only when the optimal arm is selected, Equation (2) can be bounded by the method proposed by Agrawal
& Goyal (2013). However, the distribution of θt(∗) may vary over time in non-stationary settings. It is
challenging and nontrivial to obtain a tight bound of Equation (2).

To overcome the first challenges, we adjust the posterior variance to be 4σ2

Nt(γ,i) . This slightly larger variance
is specifically designed for the σ2-subGaussian distribution, which helps to bound E[ 1

pi,t
]. Then, we define

Ut(γ, i), which serves a role similar to the upper confidence bound in the UCB algorithm. We solve this
problem through Lemma 5.1 and Lemma 5.2.

For the second challenge, we use the new defined Ut(γ, i) and employ a new regret decomposition for
Equation (2) based on whether the event {Nt(γ, ∗) > L1(γ)} occurs. Intuitively, if Nt(γ, ∗) > L1(γ), pi,t

is close to 1, which will lead to a sharp bound. If Nt(γ, ∗) ≤ L1(γ), using Lemma A.3 we can also get the
upper bound of Equation (2). We derive the upper bound of E[ 1

pi,t
] for non-stationary settings, with an

extra logarithmic term compared with the stationary settings. The proof of Lemma 5.3 in Appendix B.3
demonstrates these details.

5.2 Proofs of Theorem 4.1

For arm i ̸= i∗
t , we choose two threshold xt(i), yt(i) such that xt(i) = µt(i) + ∆t(i)

3 , yt(i) = µt(∗) − ∆t(i)
3 . Then

µt(i) < xt(i) < yt(i) < µt(∗) and yt(i) − xt(i) = ∆t(i)
3 . The history Ft is defined as the plays and rewards of

the previous t plays. µ̂t(γ, i), it and the distribution of θt(i) are determined by the history Ft−1.

The abruptly changing setting is in fact piecewise-stationary. The rounds between two adjacent breakpoints
is stable stationary. Based on this observation, we define the pseudo-stationary phase as

T (γ) = {t ≤ T : ∀s ∈ (t − D(γ), t], µs(·) = µt(·)}.

Let S(γ) = {t ≤ T : t /∈ T (γ)}. Note that, on the right side of any breakpoint, there will be at most D(γ)
rounds belonging to S(γ). Therefore, the number of elements in the set S(γ) has an upper bound BT D(γ),
i.e.

|S(γ)| ≤ BT D(γ) (3)

Figure 1 shows T (γ) and S(γ) in two different situations.
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𝑏𝑖 𝑏𝑖 + 𝐷(𝛾) 𝑏𝑖+1

𝒮(𝛾) 𝒯(𝛾)

𝑏𝑖 𝑏𝑖 + 𝐷(𝛾) 𝑏𝑖+2

𝒮(𝛾) 𝒯(𝛾)

𝑏𝑖+1 𝑏𝑖+1 + 𝐷(𝛾)

𝐷 𝛾 < 𝑏𝑖+1 − 𝑏𝑖

𝐷 𝛾 > 𝑏𝑖+1 − 𝑏𝑖

Figure 1: Illustration of T (γ) and S(γ) in two different situations. bi, bi+1, bi+2 are the breakpoints. The
situation that bi+1 − bi > D(γ) is shown in the top figure, and bi+1 − bi ≤ D(γ) is in the bottom.

To facilitate the analysis, we define the following quantities

n = 6
√

2 + 3
√

1 − γ, A(γ) =
n2 log( 1

1−γ )σ2

(∆T (i))2 , Ut(γ, i) = σ

√
(1 − γ) log 1

1−γ

Nt(γ, i) . (4)

Now we list some useful lemmas. The detailed proofs are provided in the appendix. The following lemma
depicts that after finite rounds at the breakpoint, i.e., in the pseudo-stationary phase, the distance between
µt(i) and discounted average of expectation for arm i can be bounded by Ut(γ, i). Ut(γ, i) is analogous to
the upper confidence bound in the UCB algorithm.
Lemma 5.1. Let µ̈t(γ, i) = 1

Nt(γ,i)
∑t

j=1 γt−j
1{ij = i}µj(i) denote the discounted average of expectation for

arm i at time step t. ∀t ∈ T (γ), the distance between µt(i) and µ̈t(γ, i) is less than Ut(γ, i).

|µt(i) − µ̈t(γ, i)| ≤ Ut(γ, i), (5)

Using Lemma 5.1 and the self-normalized Hoeffding-type inequality for subGaussian distributions (Lemma A.1),
we have the following lemma, which helps to bound regret comes from the over-estimation of suboptimal arm.
Lemma 5.2. ∀t ∈ T (γ), i ̸= i∗

t ,

P(µ̂t(γ, i) > xt(i), Nt(γ, i) > A(γ)) ≤ (1 − γ)2

The following key lemma helps bound the regret comes from the under-estimation of the optimal arm. This
is the most tricky part of analyzing TS. Note that, the proof in Trovo et al. (2020) does not prove the result
of the following lemma.
Lemma 5.3. Let pi,t = P(θt(∗) > yt(i)|Ft−1). For any t ∈ T (γ) and i ̸= i∗

t ,∑
t∈T (γ)

E[ 1 − pi,t

pi,t
1{it = i∗

t , θt(i) < yt(i)}] ≤ (e17 + 9 + 3 log 1
1 − γ

)T (1 − γ)L1(γ)γ−1/(1−γ).

Now we can give the detailed proof. The proof is in 5 steps:

Step 1 We can divide the rounds t ∈ {1, ..., T} into two parts: {t ∈ T (γ)} and {t /∈ T (γ)}. Equation (3)
shows that the number of elements in the second part is smaller than BT D(γ), we have

E[kT (i)] ≤ BT D(γ) +
∑

t∈T (γ)

P(it = i). (6)
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Step 2 Then we consider the event {Nt(γ, i) > A(γ)}.∑
t∈T (γ)

P(it = i) =
∑

t∈T (γ)

P(it = i, Nt(γ, i) < A(γ)) +
∑

t∈T (γ)

P(it = i, Nt(γ, i) > A(γ)).

We first bound
∑

t∈T (γ) P(it = i, Nt(γ, i) < A(γ)).∑
t∈T (γ)

P(it = i, Nt(γ, i) < A(γ)) =
∑

t∈T (γ)

E
[
P(it = i, Nt(γ, i) < A(γ) | Ft−1)

]
=

∑
t∈T (γ)

E
[
E

[
1(it = i, Nt(γ, i) < A(γ) | Ft−1)

]]
=

∑
t∈T (γ)

E
[
1(it = i, Nt(γ, i) < A(γ))

]
,

(7)

where the last equation uses the tower rule of expectation.

Using Lemma A.3, we have∑
t∈T (γ)

P(it = i, Nt(γ, i) < A(γ)) ≤ T (1 − γ)A(γ)γ−1/(1−γ) (8)

Therefore,

E[kT (i)] ≤ T (1 − γ)A(γ)γ−1/(1−γ) + BT D(γ) +
∑

t∈T (γ)

P(it = i, Nt(γ, i) > A(γ)) (9)

Step 3 Define Et(γ, i) as the event {it = i, Nt(γ, i) > A(γ)}. Define Eθ
t (i) as the event θt(i) < yt(i).

Equation (9) may be decomposed as follows:∑
t∈T (γ)

P(Et(γ, i)) =
∑

t∈T (γ)

P(Et(γ, i), µ̂t(γ, i) > xt(i)) +
∑

t∈T (γ)

P(Et(γ, i), µ̂t(γ, i) < xt(i), Eθ
t (i))

+
∑

t∈T (γ)

P(Et(γ, i), µ̂t(γ, i) < xt(i), Eθ
t (i))

(10)

Using Lemma 5.2, the first part in Equation (10) can be bounded by T (1 − γ)2.

Step 4 Then we bound the second part in Equation (10). Use the fact that Nt(γ, i) and µ̂t(i) are determined
by the history Ft−1, we have

∑
t∈T (γ)

P(Et(γ, i), µ̂t(γ, i) < xt(i), Eθ
t (i))

= E
[ ∑

t∈T (γ)

E
[
1{it = i, Nt(γ, i) > A(γ), µ̂t(γ, i) < xt(i), Eθ

t (i)} | Ft−1
]]

= E
[ ∑

t∈T (γ)

1{Nt(γ, i) > A(γ), µ̂t(γ, i) < xt(i)}P(it = i, Eθ
t (i) | Ft−1)

]

≤ E
[ ∑

t∈T (γ)

1{Nt(γ, i) > A(γ), µ̂t(γ, i) < xt(i)}P(θt(i) > yt(i) | Ft−1)
]
.

(11)

Given the history Ft−1 such that Nt(γ, i) > A(γ) and µ̂t(γ, i) < xt(i), we have

yt(i) − µ̂t(γ, i) > yt(i) − xt(i) = ∆t(i)
3 ≥ ∆T (i)

3 .

8
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Therefore,

P(θt(i) > yt(i) | Ft−1)) ≤ P(θt(i) − µ̂t(γ, i) >
∆T (i)

3 |Ft−1) ≤ 1
2 exp(− (∆T (i))2A(γ)

72σ2 ) ≤ 1
2(1 − γ), (12)

where the second inequality follows θt(i) ∼ N
(
µ̂t(γ, i), 4σ2

Nt(γ,i)
)

and Fact 1.

For other Ft−1, the indicator term 1{Nt(γ, i) > A(γ), µ̂t(γ, i) < xt(i)} will be 0. Hence, we can bound the
second part by T

2 (1 − γ)

Step 5 Finally, we focus the third term in Equation (10). Using Lemma A.2 and the fact that pi,t is fixed
given Ft−1, ∑

t∈T (γ)

P(Et(γ, i), µ̂t(γ, i) < xt(i), Eθ
t (i)) ≤

∑
t∈T (γ)

E
[

1 − pi,t

pi,t
P(it = i∗

t , Eθ
t (i)|Ft−1)

]

=
∑

t∈T (γ)

E
[
E[ 1 − pi,t

pi,t
1{it = i∗

t , Eθ
t (i)|Ft−1}]

]
=

∑
t∈T (γ)

E[ 1 − pi,t

pi,t
1{it = i∗

t , Eθ
t (i)}]

Then by Lemma 5.3, we have∑
t∈T (γ)

P(Et(γ, i), µ̂t(γ, i) < xt(i), Eθ
t (i)) ≤ (e17 + 9 + 3 log 1

1 − γ
)T (1 − γ)L1(γ)γ−1/(1−γ). (13)

Substituting the results in Step 3-5 to Equation (10) and Equation (9),

E[kT (i)] ≤ T (1 − γ)A(γ)γ− 1
1−γ + BT D(γ) + 2T (1 − γ) + (e17 + 9 + 3 log 1

1 − γ
)T (1 − γ)L1(γ)γ− 1

1−γ

≤ BT D(γ) + (e17 + 12 + 3 log 1
1 − γ

)L1(γ)γ− 1
1−γ T (1 − γ).

5.3 Proofs of Theorem 4.3

The proof of Theorem 4.3 is similar to Theorem 4.1. The main difference is that the pseudo-stationary phase
is now defined as T (τ) = {t ≤ T : ∀s ∈ (t − τ, t], µs(·) = µt(·)}. Let

µ̈t(τ, i) = 1
Nt(τ, i)

t∑
j=t−τ+1

1{ij = i}µj(i).

If t ∈ T (τ),

µ̈t(τ, i) = 1
Nt(τ, i)

t∑
j=t−τ+1

1{ij = i}µt(i) = µt(i).

This means the bias (Ut(γ, i)) vanishes. We no longer need an n related to τ to deal with the bias issue. We
only need to define A(τ) as

A(τ) = 72 log(τ)σ2

(∆T (i))2 .

We directly list the following two lemmas, corresponding to Lemma 5.2 and Lemma 5.3, respectively. The
detailed proofs can be found in Appendix B.4 and Appendix B.5.

9
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Lemma 5.4. ∀t ∈ T (τ), t ̸= i∗
t ,

P(µ̂t(τ, i) > xt(i), Nt(τ, i) > A(τ)) ≤ 1
τ2 .

Lemma 5.5. Let pi,t = P(θt(∗) > yt(i)|Ft−1). For any t ∈ T (τ) and i ̸= i∗
t ,∑

t∈T (γ)

E[ 1 − pi,t

pi,t
1{it = i∗

t , θt(i) < yt(i)}] ≤ (e11 + 9 + 3 log τ)T

τ
L2(τ).

Let S(τ) = {t ≤ T : t /∈ T (τ)}. Similar to Equation (3), we have |S(τ)| ≤ BT τ . Then the proof of step 1 is

E[kT (i)] ≤ BT τ +
∑

t∈T (τ)

P(it = i).

The rest of the proof is nearly identical to the proof of Theorem 4.1.

6 Experiments

In this section, we empirically compare the performance of our method with state-of-the-art algorithms on
Bernoulli and a Gaussian reward distributions. Specifically, we compare DS-TS and SW-TS with Thompson
Sampling to evaluate the improvement obtained thanks to the employment of the discounted factor γ and
sliding window τ . We also compare our method with the UCB method, DS-UCB and SW-UCB (Garivier
& Moulines, 2011) to evaluate the effect of Thompson Sampling and UCB. Furthermore, we compare our
method with some novel and efficient algorithms such as CUSUM (Liu et al., 2018), M-UCB (Cao et al., 2019)
and SW-LB-SDA (Baudry et al., 2021). We measure the performance of each algorithm with the cumulative
expected regret defined in Equation Equation (1). The expected regret is averaged over 100 independently
runs. The 95% confidence interval is obtained by performing 100 independent runs and is depicted as a
semi-transparent region in the figure.
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Figure 2: K = 5, BT = 5. Gauss arms (a), Bernoulli arms (b).

6.1 Gaussian Arms

Experimental setting for Gaussian arms We fix the time horizon as T = 100000. The mean and variance
are drawn from distributions N (0, 52) and U(1, 5). For Gaussian rewards, we conduct two experiments. In
the first experiment, we split the time horizon into 5 phases and use a number of arms K = 5. While in the
second experiment, we split the time horizon into 10 phases and use a number of arms K = 10.

10
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The analysis of SW-UCB and DS-UCB is conducted under the bounded reward assumption, but the algorithms
can adapt to Gaussian scenarios. To achieve reasonable performance, it is necessary to adjust the discounted
factor and the sliding-window appropriately. We use the settings recommended in (Baudry et al., 2021),
where τ = 2(1 + 2σ)

√
T log(T )/BT for SW-UCB and γ = 1 − 1/(4(1 + 2σ))

√
BT /T for DS-UCB.

Results Figure 3 illustrates the performance of these algorithms for Gaussian rewards under two different
settings. Notably, CUSUM and M-UCB are not applicable to Gaussian rewards: CUSUM is designed for
Bernoulli distributions, while M-UCB assumes bounded distributions. The discounted methods tend to
perform better than sliding-windows methods in Gaussian rewards. Among these algorithms, only our
algorithms and SW-LB-SDA provide regret analysis for unbounded rewards. Our algorithm (DS-TS) and
SW-LB-SDA have demonstrated highly competitive experimental performance.
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Figure 3: Gaussian arms. (a) K = 5, BT = 5. (b) K = 10, BT = 10

6.2 Bernoulli Arms

Experimental setting for Bernoulli arms The time horizon is set as T = 100000. We split the time
horizon into 5, 10 phases of equal length and use a number of arms K = {5, 10},respectively.

For Bernoulli rewards, the expected value µt(i) of each arm i is drawn from a uniform distribution over [0, 1].
In the stationary phase, the rewards distributions remain unchanged. The Bernoulli arms for each phase are
generated as µt(i) ∼ U(0, 1). Figure 2 depicts the expected rewards for Gaussian arms and Bernoulli arms
with K = 5 and BT = 5.

For Bernoulli distribution, we modify the Thompson sampling (step 3) in our algorithm as θt(i) ∼
N (µ̂t(γ, i), 1

Nt(γ,i) ) and θt(i) ∼ N (µ̂t(τ, i), 1
Nt(τ,i) ). Based on Corollary 4.2 and Corollary 4.4, we set

γ = 1 −
√

BT

T log T and τ =
√

T/BT log T . To allow for fair comparison, DS-UCB uses the discount fac-
tor γ = 1 −

√
BT /T/4, SW-UCB uses the sliding window τ = 2

√
T log T/BT suggested by (Garivier &

Moulines, 2011). Based on (Baudry et al., 2021), we set τ = 2
√

T log(T )/BT for LB-SDA. For changepoint
detection algorithm M-UCB, we set w = 800, b =

√
w/2 log(2KT 2) suggested by (Cao et al., 2019). But

set the amount of exploration γ =
√

KBT log(T )/T . In practice, it has been found that using this value
instead of the one guaranteed in (Cao et al., 2019) will improve empirical performance (Baudry et al., 2021).
For CUSUM, following from (Liu et al., 2018), we set α =

√
BT /T log(T/BT ) and h = log(T/BT ). For our

experiment settings, we choose M = 50, ϵ = 0.05.

Results Figure 4 presents the results for Bernoulli arms in abruptly changing settings. It can be observed
that our method (SW-TS) and SW-LB-SDA exhibit almost identical performance. Thompson Sampling,
designed for stationary MAB problems, shows significant oscillations at the breakpoints. The changepoint

11
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Figure 4: Bernoulli arms. Settings with K = 5, BT = 5 (a), K = 10, BT = 10 (b)

detection algorithm CUSUM (Liu et al., 2018) also shows competitive performance. Note that, our experiment
does not satisfy the detectability assumption of CUSUM. As the number of arms and breakpoints increase,
the performance of UCB-class algorithms (DS-UCB, SW-UCB) declines, while two TS-based algorithms
(DS-TS, SW-TS) still work well.

Storage and Compute Cost These algorithms can be divided into three class: UCB, TS and SW-LB-SDA.
At each round, UCB-class and TS-class algorithms require O(K) storage and spend O(K) time complexity for
computational cost. However, for round T , SW-LB-SDA require O(K(log T )2) storage and spend O(K log T )
time cost. Although the experimental performance of SW-LB-SDA is similar to our algorithms, our algorithm
has less storage space and lower computational complexity.

7 Conclusion

In this paper, we analyze the regret upper bound of the TS algorithm with Gaussian prior in non-stationary
settings, filling a research gap in this field. Our approach builds upon previous works while tackling two key
challenges specific to non-stationary environments: under-estimation of the optimal arm and the inability of
DS-TS algorithm to fully forget previous information. Finally, we conduct some experiments to verify theory
results. Below we discuss the results and propose directions for future research.

(1) The standard posterior update rule for Thompson Sampling has a sampling variance as σ2

N . We use 4σ2

N
only for ease of analysis. While this discrepancy is significant only for relatively small values of N . It would
be valuable to develop proof techniques that leverage the variance of standard Bayesian updates.

(2) Our regret upper bound includes an additional logarithmic term compared to DS-UCB and SW-UCB,
along with coefficients of e17 and e11. It would be interesting to explore whether the additional logarithm
and large coefficients are intrinsic to DS-TS and SW-TS algorithms or is a limitation of our analysis.
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A Facts and Lemmas

In this section, we list some well-known lemmas.

Garivier & Moulines (2011) has derived a Hoeffding-type inequality for self-normalized means with a random
number of summands. Their bound is for bounded distribution. Leveraging the properties of σ-subGaussian
distributions, we have the following bound for σ-subGaussian. Recall that

Nt(γ, i) =
t∑

j=1
γt−j

1{ij = i}, µ̂t(γ, i) = 1
Nt(γ, i)

t∑
j=1

γt−jXj(i)1{ij = i}

µ̈t(γ, i) = 1
Nt(γ, i)

t∑
j=1

γt−j
1{ij = i}µj(i)

Lemma A.1. Let t ∈ T (γ), δ > 0,

P(Nt(γ, i)(µ̂(γ, i) − µ̈(γ, i))√
Nt(γ2, i)

> δ) ≤ log( 1
1 − γ

) exp (− 3δ2

8σ2 ).

Let t ∈ T (τ), δ > 0,

P(
√

Nt(τ, i)(µ̂(τ, i) − µt(i)) > δ) ≤ log τ exp (− 3δ2

8σ2 ),

The following inequality is the anti-concentration and concentration bound for Gaussian distributed random
variables.
Fact 1 (Abramowitz & Stegun (1964)). For a Gaussian distributed random variable X with mean µ and
variance σ2, for any a > 0

1√
2π

a

1 + a2 e−a2/2 ≤ P(X − µ > aσ) ≤ 1
a +

√
a2 + 4

e−a2/2

Since 1
a+

√
a2+4 ≤ 1

2 , we also have the following well-known result:

P(X − µ > aσ) ≤ 1
2e−a2/2

The following lemma is adapted from Agrawal & Goyal (2013) and is often used in the analysis of Thompson
Sampling, which can transform the probability of selecting the ith arm into the probability of selecting the
optimal arm i∗

t .
Lemma A.2. Let pi,t = P(θt(∗) > yt(i)|Ft−1). For any A > 0, i ̸= i∗

t ,

P(it = i, θt(i) < yt(i)|Ft−1) ≤ (1 − pi,t)
pi,t

P(it = i∗
t , θt(i) < yt(i)|Ft−1)
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Lemma A.3 (Garivier & Moulines (2011)). For any i ∈ {1, ..., K}, γ ∈ (0, 1) and A > 0,

T∑
t=1

1{it = i, Nt(γ, i) < A} ≤ ⌈T (1 − γ)⌉Aγ−1/(1−γ),

T∑
t=1

1{it = i, Nt(τ, i) < A} ≤
⌈

T

τ

⌉
A.

B Detailed Proofs of Lemmas and Theorems

In this section, we provide the detailed proofs of Lemma 5.1,Lemma 5.2,Lemma 5.3, Lemma 5.4 and Lemma 5.5.
The proof of Theorem 4.3 is almost identical to that of Theorem 4.1, so we have omitted the details of the
proof.

B.1 Proof of Lemma 5.1

Recall that µ̈t(γ, i) = 1
Nt(γ,i)

∑t
j=1 γt−j

1{ij = i}µj(i). Since µ̈t(γ, i) is a convex combination of elements
µj(i), j = 1, ..., t, we have

|µt(i) − µ̈t(γ, i)| ≤ ∆T
max (14)

We can write µt(i) as µt(i) = 1
Nt(γ,i)

∑t
j=1 γt−j

1{ij = i}µt(i). Thus, we have

|µt(i) − µ̈t(γ, i)| = 1
Nt(γ, i) |

t∑
j=1

γt−j(µj(i) − µt(i))1{ij = i}|.

Recall that T (γ) = {t ≤ T : ∀s ∈ (t − D(γ), t], µs(·) = µt(·)}. If t ∈ T (γ), we have µj(i) = µt(i), ∀j ∈
(t − D(γ), t).

Therefore, ∀t ∈ T (γ), we have

|µt(i) − µ̈t(γ, i)| = 1
Nt(γ, i) |

t−D(γ)∑
j=1

γt−j(µj(i) − µt(i))1{ij = i}|

≤ ∆T
max

Nt(γ, i)

t−D(γ)∑
j=1

γt−j
1{ij = i}

= ∆T
max

Nt(γ, i)γD(γ)Nt−D(γ)(γ, i)

≤ ∆T
maxγD(γ)

Nt(γ, i)(1 − γ)

where the last inequality follows from Nt−D(γ)(γ, i) ≤ 1
1−γ .

If γD(γ)

Nt(γ,i)(1−γ) < 1, γD(γ)

Nt(γ,i)(1−γ) <
√

γD(γ)

Nt(γ,i)(1−γ) , we have

|µt(i) − µ̈t(γ, i)| ≤ ∆T
max

√
γD(γ)

Nt(γ, i)(1 − γ) .

If γD(γ)

Nt(γ,i)(1−γ) ≥ 1, from Equation (14), we also have

|µt(i) − µ̈t(γ, i)| ≤ ∆T
max ≤ ∆T

max

√
γD(γ)

Nt(γ, i)(1 − γ) .
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By the definition of D(γ) =
log(( σ

∆T
max

)2(1−γ)2 log 1
1−γ )

log γ ,

|µt(i) − µ̈t(γ, i)| ≤ σ

√
(1 − γ) log 1

1−γ

Nt(γ, i)

B.2 Proof of Lemma 5.2

From the definition of n, A(γ), Ut(γ, i) in Equation (4), we can get

Ut(γ, i) =
√

1 − γ∆T (i)
n

√
A(γ)

Nt(γ, i) . (15)

If Nt(γ, i) > A(γ), Ut(γ, i) <
√

1−γ
n ∆T (i). Thus, we have

∆t(i)
3 − Ut(γ, i) >

∆T (i)
3 −

√
1 − γ

n
∆T (i) = 2

√
2

n
∆T (i). (16)

Therefore,

P(µ̂t(γ, i) > µt(i) + ∆t(i)
3 , Nt(γ, i) > A(γ))

(a)
≤ P(µ̂t(γ, i) − µ̈t(γ, i) >

∆t(i)
3 − Ut(γ, i), Nt(γ, i) > A(γ))

(b)
≤ P(µ̂t(γ, i) − µ̈t(γ, i) >

2
√

2
n

∆T (i), Nt(γ, i) > A(γ))

(c)
≤ P(Nt(γ, i)(µ̂t(γ, i) − µ̈t(γ, i))√

Nt(γ2, i)
>

2
√

2
n

∆T (i)
√

A(γ))

(d)
≤ log 1

1 − γ
exp(−3(∆T (i))2

n2σ2 A(γ))

≤ (1 − γ)3 log 1
1 − γ

(17)

where (a) uses Lemma 5.1, (b) uses Equation (16), (c) follows from Nt(γ, i) > Nt(γ2, i), (d) uses Lemma A.1.

Since (1 − γ) log 1
1−γ ≤ 1

e < 1, this ends the proof.

B.3 Proof of Lemma 5.3

This proof is adapted from Agrawal & Goyal (2013) for the stationary settings. However, there are some
technical problems that are difficult to overcome in non-stationary settings. The tricky problem is to lower
bound the probability of the mean’s estimation of optimal arm Equation (21). By designing the function
Ut(γ, i) and decomposing the regret to use Lemma A.3 again, we solve this challenge. We use blue font to
emphasize the techniques used in the proof.

The proof is in 3 steps.

Step 1 We first prove that E[ 1
pi,t

] has an upper bound independent of t.

Define a Bernoulli experiment as sampling from N (µ̂t(∗), 4σ2

Nt(γ,∗) ), where success implies that θt(∗) > yt(i).
Let Gt denote the number of experiments performed when the event {θt(∗) > yt(i)} first occurs. Then

E[ 1
pi,t

] = E[E[Gt|Ft−1]] = E[Gt]
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Let z =
√

log r + 1
2 (r ≥ 1 is an integer ) and let MAXr denote the maximum of r independent Bernoulli

experiment. Then

P(Gt ≤ r) ≥ P(MAXr > µ̂t(∗) + z · 2σ√
Nt(γ, ∗)

≥ yt(i))

= E[E[1{MAXr > µ̂t(∗) + z · 2σ√
Nt(γ, ∗)

≥ yt(i)}|Ft−1]]

= E[1{µ̂t(∗) + z · 2σ√
Nt(γ, ∗)

≥ yt(i)}P(MAXr > µ̂t(∗) + z · 2σ√
Nt(γ, ∗)

|Ft−1)]

(18)

Using Fact 1,

P(MAXr > µ̂t(∗) + z · 2σ√
Nt(γ, ∗)

|Ft−1) ≥ 1 − (1 − 1√
2π

z

z2 + 1e−z2/2)r

= 1 − (1 − 1√
2π

√
log r + 1

2
(
√

log r + 1
2 )2 + 1

e−1/4−
√

log r/2
√

r
)r

≥ 1 − e
−

√
re−

√
log r/2

e0.25√
2π(

√
log r+1)

(19)

For any r ≥ e17, e
−

√
re−

√
log r/2

e0.25√
2π(

√
log r+1) ≤ 1

r2 . Hence, for any r ≥ e17,

P(MAXr > µ̂t(∗) + z · 2σ√
Nt(γ, ∗)

|Ft−1) ≥ 1 − 1
r2 .

Therefore, for any r ≥ e17,

P(Gt ≤ r) ≥ (1 − 1
r2 )P(µ̂t(∗) + z√

Nt(γ, ∗)
≥ yt(i))

Next, we apply Lemma A.1 to lower bound P(µ̂t(∗) + z·2σ√
Nt(γ,∗)

≥ yt(i)).

P(µ̂t(∗) + z · 2σ√
Nt(γ, ∗)

≥ yt(i)) ≥ 1 − P(µ̂t(∗) + z · 2σ√
Nt(γ, ∗)

≤ µt(∗))

≥ 1 − P(µ̂t(∗) − µ̈t(∗) ≤ Ut(γ, ∗) − z · 2σ√
Nt(γ, ∗)

)
(20)

Since Ut(γ, ∗) =
σ
√

(1−γ) log 1
1−γ√

Nt(γ,∗)
, z = log r + 1

2 ,

Ut(γ, ∗) − z · 2σ√
Nt(γ, ∗)

=
σ

√
(1 − γ) log 1

1−γ − σ − 2σ
√

log r√
Nt(γ, ∗)

< − 2σ
√

log r√
Nt(γ, ∗)

.

Then we have
P(µ̂t(∗) + z · 2σ√

Nt(γ, ∗)
≥ yt(i))≥ 1 − P(µ̂t(∗) − µ̈t(∗) < − 2σ

√
log r√

Nt(γ, ∗)
)

≥ 1 − log( 1
1 − γ

)e− 3
2 log r

≥ 1 − log 1
1 − γ

1
r1.5 .

(21)

Substituting, for any r > e17,
P(Gt ≤ r) ≥ 1 − log 1

1 − γ

1
r1.5 − 1

r2 (22)

17
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Therefore,

E[Gt] =
∞∑

r=0
P(Gt ≥ r)

≤ 1 + e17 +
∑

r>e17

(log 1
1 − γ

1
r1.5 + 1

r2 )

≤ e17 + 3 + 3 log 1
1 − γ

This proves a bound of E[ 1
pi,t

] ≤ e17 + 3 + 3 log 1
1−γ independent of t.

Step 2. Define L(γ) = 1152 log( 1
1−γ +e17)σ2

(∆T (i))2 . We consider the upper bound of E[ 1
pi,t

] when Nt(γ, ∗) > L(γ).

P(Gt ≤ r) ≥ P(MAXr > µ̂t(∗) + z · 2σ√
Nt(γ, ∗)

− ∆t(i)
6 ≥ yt(i))

= E[1{µ̂t(∗) + z · 2σ√
Nt(γ, ∗)

− ∆t(i)
6 ≥ yt(i)}P(MAXr > µ̂t(∗) + z · 2σ√

Nt(γ, ∗)
− ∆t(i)

6 |Ft−1)]
(23)

Now, since Nt(γ, ∗) > L(γ), 1√
Nt(γ,∗)

< ∆t(i)
48

√
log( 1

1−γ +e17)σ
. Therefore, for any r ≤ ( 1

1−γ + e17)2,

z · 2σ√
Nt(γ, ∗)

− ∆t(i)
6 = 2σ

√
log r + σ√

Nt(γ, ∗)
− ∆t(i)

6 ≤ −∆t(i)
12 .

Using Fact 1,

P(θt(i) > µ̂t(i) − ∆t(i)
12 |Ft−1) ≤ 1 − 1

2e− Nt(γ,∗)
4σ2

∆t(i)2
288 ≥ 1 − 1

2(1/(1 − γ) + e17) .

This implies

P(MAXr > µ̂t(∗) + z√
Nt(γ, ∗)

− ∆t(i)
6 |Ft−1) ≥ 1 − 1

2r(1/(1 − γ) + e17)r
.

Also, apply the self-normalized Hoeffding-type inequality,

P(µ̂t(∗) + z · 2σ√
Nt(γ, ∗)

− ∆t(i)
6 ≥ yt(i))≥ 1 − P(µ̂t(∗) ≤ µt(∗) − ∆t(i)

6 )

≥ 1 − P(µ̂t(∗) − µ̈t(∗) ≥ −Ut(γ, ∗) + ∆t(i)
6 )

> 1 − P(µ̂t(∗) − µ̈t(∗) ≥ ∆T (i)
8

√
L(γ)

Nt(γ, ∗) )

≥ 1 − log( 1
1 − γ

+ e17) 1
(1/(1 − γ) + e17)3 .

Let γ′ = ( 1
1−γ + e17)2. Therefore,for any 1 ≤ r ≤ γ′,

P(Gt ≤ r) ≥ 1 − 1
2rγ′r/2 − log( 1

1 − γ
+ e17) 1

γ′1.5 .

When r ≥ γ′ > e17, we can use Equation (22) to obtain,

P(Gt ≤ r) ≥ 1 − log 1
1 − γ

1
r1.5 − 1

r2

18
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Combining these results,

E[Gt] ≤
∞∑

r=0
P(Gt ≥ r)

≤ 1 +
γ′∑

r=1
P(Gt ≥ r) +

∞∑
r=γ′

P(Gt ≥ r)

≤ 1 +
γ′∑

r=1
( 1
2rγ′r/2 + log( 1

1 − γ
+ e17) 1

γ′1.5 ) +
∞∑

r=γ′

(log 1
1 − γ

1
r1.5 + 1

r2 )

≤ 1 + 1
2
√

γ′ + log( 1
1 − γ

+ e17) 1√
γ′ + 2

γ′ + log( 1
1 − γ

) 3√
γ′

≤ 1 + 6(1 − γ) log( 1
1 − γ

+ e17).

Therefore, when Nt(γ, ∗) > L(γ), it holds that

E[ 1
pi,t

] − 1 = E[Gt] − 1 ≤ 6(1 − γ) log( 1
1 − γ

+ e17).

Step 3 Let A(γ, ∗) = {t ∈ {1, ..., T} : Nt(γ, ∗) ≤ L(γ)}.

∑
t∈T (γ)

E[ 1 − pi,t

pi,t
1{it = i∗

t , θt(i) < yt(i)}]

≤
( ∑

t∈T (γ)∩A(γ,∗)

+
∑

t∈T (γ)\A(γ,∗)

)
E

[
1 − pi,t

pi,t
1{it = i∗

t , θt(i) < yt(i)}
]

≤
∣∣{t : it = i∗

t , Nt(γ, ∗) ≤ L(γ)}
∣∣(e17 + 3 + 3 log 1

1 − γ
) +

∑
t∈T (γ)\A(γ,∗)

E
[

1 − pi,t

pi,t

]
≤ T (1 − γ)L(γ)γ−1/(1−γ)(e17 + 3 + 3 log 1

1 − γ
) + 6T (1 − γ) log( 1

1 − γ
+ e17)

≤ (e17 + 9 + 3 log 1
1 − γ

)T (1 − γ)L(γ)γ−1/(1−γ).

(24)

Lemma A.1 has a stricter upper bound as log 1
1−γ

log(1+η) exp(− 1
2σ2 (1 − η2

16 )). Suppose the variance of Thompson
sampling is ξσ2

Nt(γ,i) . The lower bound of Equation (21) becomes

log 1
1−γ

log(1 + η) exp(−ξ log r

2 (1 − η2

16)).

To ensure that E[Gt] has a finite upper bound, our analysis method requires ξ > 2, i.e. the sampling variance
needs to be strictly greater than 2σ2

Nt(γ,i) .
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B.4 Proof of Lemma 5.4

Recall that A(τ) = 72 log(τ)σ2

(∆T (i))2 . Using Lemma A.1, we have

P(µ̂t(τ, i) > xt(i), Nt(τ, i) > A(τ)) = P(µ̂t(τ, i) − µt(i) >
∆t(i)

3 , Nt(τ, i) > A(γ))

≤ P(
√

Nt(τ, i)(µ̂t(τ, i) − µt(i)) >
∆T (i)

3
√

A(γ))

≤ log τ exp(−3(∆T (i))2

72σ2 A(γ))

≤ 1
τ2

(25)

B.5 Proof of Lemma 5.5

The proof is similar to the proof of Lemma 5.3.

Step 1 We first prove that E[ 1
pi,t

] has an upper bound independent of t.

Let z =
√

log r (r ≥ 1 is an integer ). Then

P(Gt ≤ r) ≥ P(MAXr > µ̂t(∗) + z · 2σ√
Nt(τ, ∗)

≥ yt(i))

= E[1{µ̂t(∗) + z · 2σ√
Nt(τ, ∗)

≥ yt(i)}P(MAXr > µ̂t(∗) + z · 2σ√
Nt(τ, ∗)

|Ft−1)]
(26)

Using Fact 1,

P(MAXr > µ̂t(∗) + z · 2σ√
Nt(τ, ∗)

|Ft−1) ≥ 1 − (1 − 1√
2π

z

z2 + 1e−z2/2)r

= 1 − (1 − 1√
2π

√
log r

(
√

log r)2 + 1
1√
r

)r

≥ 1 − e
−

√
r

√
2π(

√
log r+1)

(27)

For any r ≥ e11, e
−

√
r

√
2π(

√
log r+1) ≤ 1

r2 . Hence, for any r ≥ e11,

P(MAXr > µ̂t(∗) + z · 2σ√
Nt(τ, ∗)

|Ft−1) ≥ 1 − 1
r2 .

Therefore, for any r ≥ e11,

P(Gt ≤ r) ≥ (1 − 1
r2 )P(µ̂t(∗) + z√

Nt(τ, ∗)
≥ yt(i))

Next, we apply Lemma A.1 to lower bound P(µ̂t(∗) + z·2σ√
Nt(τ,∗)

≥ yt(i)).

P(µ̂t(∗) + z · 2σ√
Nt(τ, ∗)

≥ yt(i)) ≥ 1 − P(µ̂t(∗) + z · 2σ√
Nt(τ, ∗)

≤ µt(∗))

≥ 1 − P(µ̂t(∗) − µt(∗) < − 2σ
√

log r√
Nt(τ, ∗)

)

≥ 1 − log τe− 3
2 log r

= 1 − log τ
1

r1.5 .
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Substituting, for any r > e11,
P(Gt ≤ r) ≥ 1 − log τ

1
r1.5 − 1

r2 (28)

Therefore,

E[Gt] =
∞∑

r=0
P(Gt ≥ r)

≤ 1 + e11 +
∑

r>e11

(log τ
1

r1.5 + 1
r2 )

≤ e11 + 3 + 3 log τ

This proves a bound of E[ 1
pi,t

] ≤ e11 + 3 + 3 log τ independent of t.

Step 2. Define L(τ) = 1152 log(τ+e11)σ2

(∆T (i))2 . We consider the upper bound of E[ 1
pi,t

] when Nt(τ, ∗) > L(τ).

P(Gt ≤ r) ≥ P(MAXr > µ̂t(∗) + z · 2σ√
Nt(τ, ∗)

− ∆t(i)
6 ≥ yt(i))

= E[1{µ̂t(∗) + z · 2σ√
Nt(τ, ∗)

− ∆t(i)
6 ≥ yt(i)}P(MAXr > µ̂t(∗) + z · 2σ√

Nt(τ, ∗)
− ∆t(i)

6 |Ft−1)]
(29)

Now, since Nt(τ, ∗) > L(τ), 1√
Nt(τ,∗)

< ∆t(i)
48

√
log(τ+e11)σ

. Therefore, for any r ≤ (τ + e11)2,

z · 2σ√
Nt(τ, ∗)

− ∆t(i)
6 = 2σ

√
log r + σ√
Nt(τ, ∗)

− ∆t(i)
6 ≤ −∆t(i)

12 .

Using Fact 1,
P(θt(i) > µ̂t(i) − ∆t(i)

12 |Ft−1) ≤ 1 − 1
2e− Nt(τ,∗)

4σ2
∆t(i)2

288 ≥ 1 − 1
2(τ + e11) .

This implies
P(MAXr > µ̂t(∗) + z√

Nt(τ, ∗)
− ∆t(i)

6 |Ft−1) ≥ 1 − 1
2r(τ + e11)r

.

Also, apply Lemma A.1,

P(µ̂t(∗) + z√
Nt(τ, ∗)

− ∆t(i)
6 ≥ yt(i)) ≥ 1 − P(µ̂t(∗) − µt(∗) ≥ ∆t(i)

6 )

≥ 1 − log(τ + e11) 1
(τ + e11)3 .

Let τ ′ = (τ + e11)2. Therefore, for any 1 ≤ r ≤ τ ′,

P(Gt ≤ r) ≥ 1 − 1
2rτ ′r/2 − log(τ + e11) 1

τ ′1.5 .

When r ≥ τ ′ > e11, we can use Equation (22) to obtain,

P(Gt ≤ r) ≥ 1 − log τ
1

r1.5 − 1
r2

Combining these results,

E[Gt] ≤
∞∑

r=0
P(Gt ≥ r)

≤ 1 +
τ ′∑

r=1
P(Gt ≥ r) +

∞∑
r=τ ′

P(Gt ≥ r)

≤ 1 + 6
τ

log(τ + e11).
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Therefore, when Nt(τ, ∗) > L(τ), it holds that

E[ 1
pi,t

] − 1 = E[Gt] − 1 ≤ 6
τ

log(τ + e11).

Step 3 Let A(τ, ∗) = {t ∈ {1, ..., T} : Nt(τ, ∗) ≤ L(τ)} and C = e11 + 9.∑
t∈T (τ)

E[ 1 − pi,t

pi,t
1{it = i∗

t , θt(i) < yt(i)}]

≤
∑

t∈T (τ)∩A(τ,∗)

E[ 1 − pi,t

pi,t
1{it = i∗

t , θt(i) < yt(i)}] +
∑

t∈T (τ)\A(τ,∗)

E[ 1 − pi,t

pi,t
1{it = i∗

t , θt(i) < yt(i)}]

≤ |{t ∈ {1, ..., T} : it = i∗
t , Nt(τ, ∗) ≤ L(τ)}|(e11 + 3 + 3 log τ) +

∑
t∈T (τ)\A(τ,∗)

E[ 1 − pi,t

pi,t
]

≤ T

τ
L(τ)(e11 + 3 + 3 log τ) + 6T

τ
log(τ + e11)

≤ (e11 + 9 + 3 log τ)T

τ
L(τ).

(30)

C Incorrect Proof of SW-TS with Beta Priors

Here, we discuss the mistakes in proof of Trovo et al. (2020). It is precisely because of these errors that they
bypassed the analysis of under-estimation of the optimal arm ( i.e. Lemma 5.3).

We first define the same notions in Trovo et al. (2020).

Let F ′
ϕ := {t : bϕ−1 + τ ≤ t < bϕ}, bϕ is the ϕ-th breakpoints. Ti(F ′

ϕ) :=
∑

t∈F ′
ϕ
1{it = i, i ̸= i∗

ϕ} denote the
number of times a suboptimal arm is played during phase F ′

ϕ.

Ti,t,r :=
∑t

s=max{t−τ+1,1} 1{is = i}. ϑi,t is the result of Thompson sampling from the Beta distribution.

Then we cite the same equations in Trovo et al. (2020). Use Lemma A.3, they also have the following result:∑
t∈F ′

ϕ

E
[
1{it = i, Ti,t,τ ≤ n̄A}

]
≤ n̄A

Nϕ

τ
, (31)

where F ′
ϕ ≤ Nϕ. Thus by choosing n̄A =

⌈
19

log τ

⌉
, we have:

RA =
∑

t∈F ′
ϕ

P
(

ϑi∗
ϕ

,t ≤ µi∗
ϕ

,t −
√

5 log τ

Ti∗
ϕ

,t,τ

)
(32)

≤
∑

t∈F ′
ϕ

P
(

ϑi∗
ϕ

,t ≤ µi∗
ϕ

,t −
√

5 log τ

Ti∗
ϕ

,t,τ
, Ti∗

ϕ
,t,τ > n̄A

)
+

∑
t∈F ′

ϕ

P
(
Ti∗

ϕ
,t,τ ≤ n̄A

)
(33)

≤
∑

t∈F ′
ϕ

P
(

ϑi∗
ϕ

,t ≤ µi∗
ϕ

,t −
√

5 log τ

Ti∗
ϕ

,t,τ
, Ti∗

ϕ
,t,τ > n̄A

)
+

∑
t∈F ′

ϕ

E
[
1{Ti∗

ϕ
,t,τ ≤ n̄A}

]
(34)

≤
∑

t∈F ′
ϕ

P
(

ϑi∗
ϕ

,t ≤ µi∗
ϕ

,t −
√

5 log τ

Ti∗
ϕ

,t,τ
, Ti∗

ϕ
,t,τ > n̄A

)
+ n̄A

Nϕ

τ
(35)

The first mistake appears in the blue part. They claim that∑
t∈F ′

ϕ

E
[
1{Ti∗

ϕ
,t,τ ≤ n̄A}

]
≤ n̄A

Nϕ

τ
. (36)
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This inequality is not true, as it lacks one condition it = i∗
ϕ. And from the context in their proof, we know

that only it = i holds, not it = i∗
ϕ.

To see why Equation (36) is wrong, consider the simple example: the algorithm always select the suboptimal
arm in phase F ′

ϕ. Thus, 1{Ti∗
ϕ

,t,τ ≤ n̄A} = 1, ∀t ∈ F ′
ϕ. We have∑

t∈F ′
ϕ

E
[
1{Ti∗

ϕ
,t,τ ≤ n̄A}

]
= |F ′

ϕ|.

This implies Equation (36) is not true.

In their proof, there exists other three mistakes related to Equation (36)(the numbering of the equations
below is the same as in their proof):

Eq 43 → Eq 44 :
∑

t∈F ′
ϕ

P
(
Ti∗

ϕ
,t,τ ≤ n̄B∗

)
≤ n̄B∗

Nϕ

τ
(37)

Eq 71 → Eq 72 :
∑

t∈F∆C ,N

P
(
Ti∗

ϕ
,t,τ ≤ n̄A

)
≤ n̄B

⌈
N

τ

⌉
(38)

Eq 95 → Eq 96 :
∑

t∈F∆C ,N

P
(
Ti∗

ϕ
,t,τ ≤ n̄B∗

)
≤ n̄B∗

⌈
Nϕ

τ

⌉
(39)

The last two inequalities are for smoothly changes. We speculate that fixing these errors would also require
proving conclusions similar to Lemma 5.3 and Lemma 5.5. However, since the Beta distribution does not
have concentration properties like the Gaussian distribution (Fact 1), fixing these errors is challenging.
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