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ABSTRACT

Vectorized high-definition (HD) maps contain detailed information about sur-
rounding road elements, which are crucial for various downstream tasks in mod-
ern autonomous vehicles, such as motion planning and vehicle control. Recent
works have attempted to directly detect the vectorized HD map as a point set
prediction task, resulting in significant improvements in detection performance.
However, these methods fail to analyze and exploit the inner-instance correlations
between predicted points, impeding further advancements. To address this issue,
we investigate the utilization of inner-INStance information for vectorized hIGH-
definition mapping through Transformers and introduce InsightMapper. This pa-
per presents three novel designs within InsightMapper that leverage inner-instance
information in distinct ways, including hybrid query generation, inner-instance
query fusion, and inner-instance feature aggregation. Comparative experiments
are conducted on the NuScenes dataset, showcasing the superiority of our pro-
posed method. InsightMapper surpasses previous state-of-the-art (SOTA) meth-
ods by 5.78 mAP and 7.03 TOPO, which assess topology correctness. Simultane-
ously, InsightMapper maintains high efficiency during both training and inference
phases, resulting in remarkable comprehensive performance.

1 INTRODUCTION

High-definition maps (HD maps) play a critical role in today’s autonomous vehicles (Gao et al.,
2020; Liang et al., 2020; Da & Zhang, 2022), as they contain detailed information about the road,
including the position of road elements (e.g., road boundaries, lane splits, pedestrian crossings, and
lane centerlines), connectivity, and topology of the road. Without the assistance of HD maps for
perceiving and understanding road elements, unexpected vehicle behaviors may be encountered,
such as incorrect path planning results or even vehicle collisions.

Typically, HD maps are created by offline human annotation, which is labor-intensive, inefficient,
and expensive. Although there are works proposing to make such an offline process automatic (Xu
et al., 2022b; Xie et al., 2023; Xu et al., 2023), it is not possible to recreate and update the HD map
frequently when the road network has been modified, such as when a new road is built or an existing
road is removed. Unlike these previous works, this paper studies HD map detection in an online
manner based on vehicle-mounted sensors (e.g., cameras, LiDARs).

Early work considers road element mapping as a semantic segmentation task in birds’-eye view
(BEV) (Philion & Fidler, 2020; Ng et al., 2020; Li et al., 2022b), in which road elements are pre-
dicted in raster format (i.e., pixel-level semantic segmentation mask). However, rasterized road
maps cannot be effectively utilized by downstream tasks of autonomous vehicles, such as motion
planning and vehicle control (Gao et al., 2020; Liang et al., 2020; Liu et al., 2021). Moreover,
it is challenging to distinguish instances from the rasterized map, especially when some road ele-
ments overlap with each other or when complicated topology is encountered (e.g., road split, road
merge, or road intersections). To alleviate these problems, HDMapNet (Li et al., 2021) proposes
hand-crafted post-processing algorithms to better obtain road element instances for vectorized HD
maps. However, HDMapNet still heavily relies on rasterized prediction results, which restricts
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Figure 1: Comparison of vectorized HD map
detection methods. All methods are evalu-
ated on the NuScenes val set. The y-axis
displays topology level correctness as per
(He et al., 2018), and the x-axis presents the
mAP results. InsightMapper outperforms
other baseline models in both metrics.

it from handling topologies and complicated urban
scenes. Recently, some work has resorted to predict-
ing vectorized HD maps directly (Can et al., 2021a; Liu
et al., 2022; Liao et al., 2022; Shin et al., 2023). A two-
stage hierarchical set prediction method is proposed in
VectorMapNet (Liu et al., 2022). After predicting key
points of road elements in the HD map, VectorMapNet se-
quentially generates intermediate points. Although Vec-
torMapNet is considered the first online vector map detec-
tion work, the sequential operation degrades its efficiency
and model performance. MapTR (Liao et al., 2022) fur-
ther proposes to use DETR (Carion et al., 2020; Zhu et al.,
2020) for vectorized HD map detection as a point set pre-
diction problem. The output of MapTR is a set of points,
which are then grouped into road element instances. Even
though MapTR achieves state-of-the-art (SOTA) perfor-
mance on vectorized HD map detection so far, it fails to
understand and utilize the correlation between points to
further enhance model performance.

In conventional DETR object detection tasks, objects can be assumed to be independent and identi-
cally distributed (i.i.d.). However, in the vectorized map detection task, there exists a strong correla-
tion between predicted points, particularly points within the same instance, known as inner-instance
points. Due to the failure to utilize such correlation information between points, MapTR does not
achieve further improvements in its final performance. Therefore, the method to better make use of
inner-instance point information is carefully studied in this paper.

In this work, we study the inner-INStance information for vectorized hIGH-definition mapping by
Transformer, and propose a novel model named InsightMapper, which can utilize inner-instance
point information for improved online HD map detection. First, the hierarchical object query gen-
eration method in MapTR is refined. The incorrect inter-instance correlation is removed and only
inner-instance correlation is maintained. Then, a query fusion module is added before the trans-
former decoder, which fuses object queries to make the prediction more consistent. Finally, a novel
masked inner-instance self-attention module is incorporated into transformer decoder layers, in or-
der to better aggregate features of inner-instance points. All methods are evaluated on the NuScenes
validation set. Compared with the previous SOTA method MapTR, InsightMapper achieves 5.78%
higher mAP as well as 7.03% topological correctness. Meanwhile, the efficiency of both the train-
ing and inference phases is well maintained. Comparison results are visualized in Figure 1. The
contributions of this work can be summarized below:

• We investigate the correlation between inner-instance points, demonstrating that utilizing
inner-instance point information can effectively enhance the final performance.

• To better leverage inner-instance information, we introduce a new model called In-
sightMapper for online HD map detection. InsightMapper incorporates three novel mod-
ules with distinct functions, including query generation, query fusion, and inner-instance
self-attention.

• We evaluate all module designs and baselines on the NuScenes validation set. InsightMap-
per outperforms all baseline models and maintains competitive efficiency.

2 RELATED WORKS

Road Element Detection. The online HD map detection task aims to predict the graph of road
elements with vehicle-mounted sensors, drawing inspiration from similar tasks such as road-network
detection (Bastani et al., 2018; He et al., 2020; Xu et al., 2022a; 2023), road-curb detection in aerial
images (Xu et al., 2021), and road lane line detection (Homayounfar et al., 2018; 2019). DagMapper
(Homayounfar et al., 2019) seeks to detect vectorized lane lines from pre-built point cloud maps
using iterations. However, DagMapper only considers simple topology changes of lane lines and
struggles to handle complex road intersections. RNGDet++ (Xu et al., 2023) applies DETR along
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with an imitation learning algorithm (Ross et al., 2011) for road-network detection, achieving state-
of-the-art performance on multiple datasets. Although these methods demonstrate satisfactory graph
detection accuracy, they suffer from poor efficiency due to their iterative algorithms. Given the strict
online requirements of autonomous vehicles, they are not suitable for online HD map detection.

HD Map Detection. The road element detection task was initially a subtask of BEV detection
(Philion & Fidler, 2020; Ng et al., 2020; Li et al., 2022b; Liu et al., 2023; Li et al., 2023b). Recently,
given the importance of HD maps, several works have focused on directly optimizing HD map
detection (Can et al., 2021b; Li et al., 2021; Mi et al., 2021; Liu et al., 2022; Liao et al., 2022; Xu
et al., 2022b; Xie et al., 2023; Shin et al., 2023; Qiao et al., 2023). However, most of these works
either involve offline HD map creation (Xu et al., 2022b; He & Balakrishnan, 2022; Xie et al., 2023)
or only detect one specific road element (Can et al., 2021b;a; Qiao et al., 2023). HDMapNet (Li et al.,
2021) is considered the first work specifically designed for multiple road element detection (i.e.,
road boundary, lane split and pedestrian crossing). However, HDMapNet outputs rasterized results,
requiring complicated hand-crafted post-processing to obtain vectorized HD maps. To address this
issue, VectorMapNet (Liu et al., 2022) is believed to be the first work detecting vectorized HD
maps on-the-fly. However, it consists of two stages, and its efficiency is significantly impacted by
sequential operations. In contrast, MapTR (Liao et al., 2022) employs deformable DETR (Zhu et al.,
2020) to design an end-to-end vector map detection model, which greatly simplifies the pipeline and
delivers better detection performance. However, it does not investigate the correlation between
points, limiting further improvements.

Detection by Transformer. DETR (Carion et al., 2020) is the first end-to-end transformer-based
object detection framework. Compared with previous CNN-based methods (Girshick, 2015; He
et al., 2017), DETR eliminates the need for anchor proposals and non-maximum suppression (NMS),
making it simpler and more effective. To address the issue of slow convergence, subsequent works
propose accelerating DETR training through deformable attention (Zhu et al., 2020), denoising (Li
et al., 2022a), and dynamic query generation (Wang et al., 2022; Zhang et al., 2022; Li et al., 2023a).
Intuitively, most of these DETR refinements could be adapted to the HD map detection task since
our proposed InsightMapper relies on DETR. However, unlike conventional object detection tasks
where objects are approximately independent and identically distributed (i.i.d.), the detected points
in HD maps exhibit strong correlations, particularly among inner-instance points. This inherent
difference renders some refined DETR methods inapplicable to our task.

3 POINT CORRELATION

3.1 PRE-PROCESSING: VECTOR MAP DECOMPOSITION AND SAMPLING

Let G denote the original vector map label of the scene, which consists of vertices V and edges
E. The vector map contains multiple classes of road elements, including pedestrian crossings, road
dividers, road boundaries, and lane centerlines. Among them, the first three classes of road elements
are simple polylines or polygons without intersection points. While lane centerlines have more
complicated topology, such as lane split, lane merge, and lane intersection. To unify all vector
elements, the vector map is decomposed into simpler shapes (i.e., polylines and polygons) without
intersections. Any vertices in the vector map with degrees larger than two (i.e., intersection vertices)
are removed from G, and incident edges are disconnected. In this way, a set of simple polylines and
polygons without intersections is obtained as G∗ = {li}N

∗

i=1, where G∗ is an undirected graph. Each
shape li is defined as an instance, and N∗ denotes the overall number of instances in a vector map.

Following MapTR, to enhance the parallelization capacity of the model, each instance is evenly re-
sampled with fixed-length points as li = (v1, ..., vj , ...vnp

). li is ordered from v1 to vnp
, where np

is the number of sampled points for each instance. For polygon instances, v1 is equal to vnp
. The

pre-processing module is visualized in Figure 2.

3.2 INNER-INSTANCE AND INTER-INSTANCE CORRELATION

Unlike conventional object detection tasks, where objects can be approximated as independent and
identically distributed (i.i.d.), strong correlations exist between predicted points in the vectorized
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G G∗ = {l1, l2, l3}

l1 l1 = (v1, v2, v3, v4)

l3 l2Graph
decomposition Re-sampling

Figure 2: Pre-processing of the vector map: Pink lines
represent edges, orange points indicate vertices, and the
blue point is the intersection vertex with a degree larger
than two. The intersection is removed to simplify the
graph, and each obtained instance is then evenly re-
sampled into np vertices (np = 4 in this example).

l1

l2

Inner-instance
correlation

Inter-instance
correlation

Figure 3: Visualization of inner- and inter-
correlations. Green lines represent the inner-
instance correlation between the blue point and
other points within the same instance, while red
lines depict the inter-instance correlation, which
should be blocked to prevent interference.

HD map detection task. These correlations can be classified into inner-instance correlation and
inter-instance correlation, as visualized in Figure 3.

Inner-instance correlation is crucial for point coordinates prediction. Points within the same instance
can collaborate by exchanging inner-instance information to produce smoother and more precise
predictions. Without this collaboration, points of the same instance may produce independent pre-
dictions, leading to zig-zag or incorrect instances. In another word, inner-instance correlation can
serve as additional constraints to refine the predicted vector map. Conversely, inter-instance corre-
lations occur between a point and points belonging to other instances. Usually, inter-instance cor-
relation distracts the inner-instance information exchange, degrading the final performance. Thus,
inter-instance information should be blocked.

In the previous state-of-the-art (SOTA) method, MapTR, the correlation of points is not correctly
analyzed and leveraged: inner-instance information is not fully utilized, and incorrect inter-instance
information is introduced, limiting further improvement. In subsequent sections, we propose In-
sightMapper to better handle and leverage point correlations, aiming to achieve enhanced vectorized
map detection performance.

4 METHODOLOGY

4.1 SYSTEM OVERVIEW

Building on MapTR (Liao et al., 2022), our proposed InsightMapper is an end-to-end trainable net-
work for online vectorized HD map detection. Unlike MapTR, which treats queries as independently
distributed, InsightMapper utilizes inner-instance information to fuse object queries and aggregate
intermediate features in deformable transformer decoder layers. Otherwise, adjacent vertices may
produce independent position regression results, leading to zigzag or even incorrect instances. With
the assistance of inner-instance information, the model can better optimize and refine the positions
of points within an instance, significantly enhancing the final performance.

To better leverage inner-instance information and further enhance the final detection performance,
we introduce three main designs in InsightMapper: (1) Hybrid query generation: We propose a hy-
brid query generation method to replace the hierarchical query in MapTR, preventing inter-instance
interference and preserving inner-instance information. (2) Inner-instance query fusion: After gener-
ating queries, we propose to fuse queries within the same instance based on inner-instance features.
(3) Inner-instance feature aggregation: A new masked-self-attention layer is added to deformable
decoder layers to further aggregate features of points within the same instance. More details of
these modules are discussed in subsequent sections.

Network structure. InsightMapper is an end-to-end trainable encoder-decoder transformer
model. Following BEVformer (Li et al., 2022b), InsightMapper first projects perspective view cam-
era images into the bird’s-eye-view (BEV). After obtaining the BEV features, InsightMapper em-
ploys deformable attention layers (Zhu et al., 2020) to process input decoder object queries. Each
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Figure 4: System overview. InsightMapper is an end-to-end trainable transformer model with an encoder-
decoder structure. The transformer encoder projects perspective-view camera images into a bird’s-eye view
(BEV). Subsequently, the transformer decoder detects vector instances by predicting point sets. To better
utilize inner-instance information, we: (a) propose a hybrid query generation scheme; (b) add a module to fuse
input queries based on the inner-instance information; (c) insert an inner-instance feature aggregation module
into transformer decoder layers for point feature exchange within an instance.

object query predicts one point, including the object class and the regression point position. The
overall structure of InsightMapper is visualized in Figure 4.

4.2 QUERY GENERATION

Unlike conventional object detection tasks, where queries are independent and identically distributed
(i.i.d.), the points to be detected in our task exhibit strong correlations. There are several methods to
generate object queries as input for the transformer decoder, including the naive scheme, hierarchical
scheme, and hybrid scheme. All query generation schemes are visualized in Figure 5.

Naive query generation. This method assumes points are i.i.d. and generates queries randomly,
without utilizing inner-instance information. Let NI denote the number of predicted instances,
which is clearly larger than N∗. Since each instance contains np points, the naive object queries
consist of NI · np randomly generated i.i.d. queries. This query generation method tends to exhibit
degraded performance due to the insufficient incorporation of inner-instance constraints.

Hierarchical query generation. To address the aforementioned issue of the naive scheme, a hi-
erarchical query generation scheme is proposed in MapTR (Liao et al., 2022). Let Qins = {qIi }NI

i=1

denote instance queries and Qpts = {qPj }
np

j=1 denote point queries. The object queries for vector
map detection are then the pairwise addition of Qins and Qpts, as shown below:

Q = {qi,j = qIi + qPj |qIi ∈ Qins, q
P
j ∈ Qpts} (1)

where |Q| = |Qins| · |Qpts| = NI · np. For points within the same instance {qi,j}np

j=1 = {qIi +

qPj }
np

j=1, they share the same learnable instance embedding qIi , which can be treated as a means
to exchange inner-instance information. By using qIi as a bridge, object queries within the same
instance can better collaborate with each other for point prediction.
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Figure 5: Query generation schemes. For concise visu-
alization, the number of instances NI is 2, and the num-
ber of points per instance np is 3. The hybrid scheme
can effectively facilitate inner-instance information ex-
change and prevent incorrect inter-instance interference
(purple lines) simultaneously.

Although this hierarchical query generation
scheme exhibits improved performance com-
pared to the naive one, it introduces unexpected
inter-instance interference. Intuitively, queries
between different instances should not be corre-
lated (i.e., inter-instance queries can be treated
as independent). However, the j-th query of
different instances (i.e., {qi,j}NI

i=1 = {qIi +

qPj }NI
i=1) share the same point query qPj , indi-

cating that this scheme creates information ex-
change between the j-th point of all instances.
This incorrect inter-instance information ex-
change hinders the model from achieving fur-
ther improvement.

Hybrid query generation. The naive scheme
does not take into account any information exchange between queries, whereas the hierarchical one
introduces detrimental inter-instance correlations. To address these issues, this paper presents a
hybrid query generation method that mitigates the drawbacks of the aforementioned schemes while
maintaining appropriate inner-instance information exchange.

Let the instance queries be Qins = {qIi }NI
i=1, and the point queries be Qpts = {qPj }NP

j=1 =

{qPj }
NI ·np

j=1 . The point queries are divided into NI instance groups, and a point query qPj is as-
signed to the ⌈ j

np
⌉-th instance. Consequently, the final object query is the sum of a point query pPj

and its assigned instance query pIk, where k = ⌈ j
np

⌉. The object query set can be expressed as:

Q = {qIk + qPj |qPj ∈ Qpts} (2)

where |Q| = |Qpts| = NP = NI · np. In contrast to the hierarchical scheme, each point query in
the hybrid scheme is utilized only once to generate the object query, thereby preventing unintended
inter-instance information exchange. Simultaneously, point queries belonging to the same instance
are summed with a shared instance query, establishing the inner-instance connection. The hybrid
query generation method can be considered a combination of the naive and hierarchical schemes,
effectively mitigating their respective drawbacks.

4.3 INNER-INSTANCE QUERY FUSION

The input object queries for the transformer decoder are generated from instance queries and point
queries. Although the generated queries can leverage some inner-instance information, this infor-
mation exchange is indirect and inflexible. The instance query is distributed equally among all
inner-instance points, while a more precise point-to-point information exchange cannot be realized.
As a result, a query fusion module is introduced to further utilize inner-instance information.

Let Qi = {qi,j}np

j=1 represent the set of object queries belonging to the i-th instance, and qi,j denote
the j-th point of the i-th instance. qi,j is correlated with all other queries in Qi. To better fuse
inner-instance object queries, each query is updated by a weighted sum of all queries in Qi as:

qi,j = f(qi,j , Qi) =

np∑
k=1

wi,j,kϕ(qi,k) (3)

where wi,j,k demonstrates weights for query fusion. f(·) is the fusion function and ϕ(·) is the
kernel in case nonlinear transformation is needed. f(·) could be realized by handcraft weights, fully
connected layers, or self attention.

In conventional object detection tasks, object queries are assumed to be independent and identically
distributed (i.i.d.), making query fusion unnecessary. However, in the task of vector map detection,
the query fusion module effectively aligns the update of queries and enables each point to pay more
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attention to neighboring points. Without the query fusion module, queries within the same instance
cannot be aware of each other, rendering them “blind”. The lack of information on neighboring
queries prevents them from forming precise shapes, leading to a degradation in final performance.

4.4 INNER-INSTANCE FEATURE AGGREGATION

Multi-Head 
Self-attention

Multi-Head 
Cross-attention

6×
D
ec
od
er
La
ye
r

Attention mask

Ins1 Ins2 Ins3 Ins4

Inner-Instance
Multi-Head Self-

attention

Feed Forward 
Network (FFN)

Figure 6: Decoder of InsightMapper. A
masked inner-instance self-attention mod-
ule is incorporated into decoder layers. In
this module, the attention between points
belonging to different instances is blocked
(grey grids). Only inner-instance attention
is allowed (colored grids). Colored grids are
randomly blocked with ϵ probability (set to
grey) for robustness.

In addition to object query manipulation, InsightMap-
per performs inner-instance feature aggregation in the
transformer decoder layers by incorporating an additional
masked inner-instance self-attention module. Inspired by
(He et al., 2022), inner-instance attentions are randomly
blocked with probability ϵ for robustness. The decoder
layer of InsightMapper is depicted in Figure 6.

The inner-instance self-attention module resembles the
original self-attention module but features a specially de-
signed attention mask. As illustrated in Figure 6, the
attention mask of inner-instance points is set to zero
(colored grids), indicating that attention between points
within the same instance is allowed. Conversely, for
points belonging to different instances (i.e., inter-instance
points), the corresponding attention mask values are set
to one, blocking attention between them. This method
encourages the model to focus more on inner-instance in-
formation, resulting in more consistent predictions. To
further enhance the robustness of this module, the inner-
instance attention (colored grids) has an ϵ probability of
being blocked.

An alternative method involves placing the proposed attention module before the cross-attention
module. However, self-attention before cross-attention should treat all queries equally to prevent
duplicated predictions. Consequently, implementing inner-instance self-attention before the cross-
attention module leads to a degradation in the final performance. Thus inner-instance feature aggre-
gation should be placed after the cross-attention layer. More discussion about the decoder network
structure is provided in Appendix C.2.

5 EXPERIMENTS

Datasets. In this paper, we conduct all experiments on the NuScenes dataset (Caesar et al., 2020)
and the Argoverse-2 dataset (Wilson et al., 2023). These two datasets comprise hundreds of data
sequences captured in various autonomous driving scenarios, encompassing diverse weather condi-
tions and time periods. In accordance with previous studies (Li et al., 2021; Can et al., 2021a; Liao
et al., 2022; Liu et al., 2022), the detected vectorized HD map should encompass four types of road
elements: road boundary, lane split, pedestrian crossing, and lane centerline. The perception range
for the X-axis and Y-axis in the BEV is set to [−15m, 15m] and [−30m, 30m], respectively.

Implementation details. In this paper, we perform experiments on a machine equipped with 8
RTX-3090 GPUs. During the training phase, all GPUs are utilized, whereas only a single GPU
is employed for inference. To ensure a fair comparison, different methods are trained using their
respective optimal settings as reported in previous literature. Specifically, for our proposed In-
sightMapper, we adopt multiple settings akin to the previous SOTA method, MapTR. In the com-
parative experiments, InsightMapper is accessed with ResNet (He et al., 2016) and VoVNetV2-99
(Lee & Park, 2020) as the backbone. All ablation studies are conducted for 24 epochs, employing
ResNet50 as the backbone network.

Evaluation metrics. All models are assessed using two types of metrics. The first metric, average
precision (AP), gauges the instance-level detection performance, employing Chamfer distance for
matching predictions with ground truth labels. To ensure a fair comparison, we follow previous
works to calculate multiple APτ values with τ ∈ {0.5, 1.0, 1.5}, and report the average AP. To
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Table 1: Quantitative results of comparison experiments on the NuScenes validation set. Colored numbers show
differences between InsightMapper and the SOTA baseline under the same experiment setting. “-” represents
that the result is not available. “V2-99” and “Sec” correspond to VoVNetV2-99 (Lee & Park, 2020) and
SECOND (Yan et al., 2018).

Methods Epochs Backbone Modality APped APdiv APbound APcenter mAP TOPO

HDMapNet 30 Effi-B0 C 4.41 23.73 58.17 37.29 30.90 29.79
STSU 110 R50 C - - - 31.21 31.21 32.11
VectorMapNet 130 R50 C 28.66 39.74 33.06 34.93 34.10 39.90
MapTR 24 R18 C 24.14 37.60 41.11 29.98 33.21 38.47
MapTR 24 R50 C 37.92 46.25 50.07 37.47 42.93 46.77
MapTR 24 V2-99 C 44.57 56.25 60.58 46.30 51.92 55.16
MapTR 24 R50&Sec C&L 49.47 58.98 66.72 44.89 55.01 56.77
MapTR 110 R50 C 49.16 59.12 58.93 47.26 53.62 59.16

InsightMapper 24 R18 C 31.14(↑7.00) 43.25(↑5.65) 42.36(↑1.25) 34.23(↑4.25) 37.74(↑4.53) 42.53(↑4.06)

InsightMapper 24 R50 C 44.36(↑6.44) 53.36(↑7.11) 52.77(↑2.70) 42.35(↑4.88) 48.31(↑5.38) 51.58(↑4.81)

InsightMapper 24 V2-99 C 51.16(↑6.59) 63.71(↑7.46) 64.47(↑3.89) 51.40(↑5.10) 57.68(↑5.76) 60.00(↑4.84)

InsightMapper 24 R50&Sec C&L 56.00(↑6.53) 63.42(↑4.44) 71.61(↑4.89) 52.85(↑7.96) 60.97(↑5.96) 62.51(↑5.74)

InsightMapper 110 R50 C 55.42(↑6.26) 63.87(↑4.75) 65.80(↑6.87) 54.20(↑6.94) 59.40(↑5.78) 66.19(↑7.03)

Table 2: Quantitative results of comparison experiments on the Argoverse 2 validation set. Colored numbers
show differences between InsightMapper and the SOTA baseline under the same experiment setting.

Methods Epochs Backbone Modality APped APdiv APbound APcenter mAP TOPO

MapTR 6 R50 C 52.88 63.68 61.18 59.73 59.37 75.79
InsightMapper 6 R50 C 55.61(↑2.73) 66.60(↑2.92) 62.58(↑1.40) 62.67(↑2.94) 61.87(↑2.50) 77.58(↑1.79)

Table 3: Quantitative results of comparison experiments on the NuScenes validation set without centerline.

Methods Epochs Backbone Modality APped APdiv APbound mAP

MapTR 24 R50 C 46.04 51.58 53.08 50.23
InsightMapper 24 R50 C 48.44(↑2.40) 54.68(↑3.10) 56.92(↑3.84) 53.35(↑3.12)

measure the topology correctness of the results, the topological metric TOPO that is widely used in
past works (He et al., 2018; 2020; He & Balakrishnan, 2022; Xu et al., 2023) is reported. For all
metrics, a larger value indicates better performance.

5.1 COMPARISON EXPERIMENTS

In this section, we compare InsightMapper with previous SOTA methods using the aforementioned
evaluation metrics. Quantitative comparison results are reported in Table 1. Additionally, efficiency
comparisons are presented in Table 4. Qualitative visualizations are visualized in Figure 7. From
Table 1, it is evident that our proposed InsightMapper attains the best evaluation performance across
all metrics while maintaining competitive efficiency. Compared to the previous SOTA method,
MapTR, InsightMapper improves the AP of all road elements by approximately 5%, and the mAP
increases by 5.38% for 24 epoch experiments and 5.78% for 110 epoch experiments. The topo-
logical metric also sees an improvement of more than 5%. Table 3 presents the outcomes without
centerlines. Excluding centerlines simplifies the detection task and scenes, resulting in a slight de-
crease in InsightMapper’s performance enhancement. Nonetheless, it still attains an improvement
of around 3 mAP. The evaluation outcomes on the Argoverse-2 dataset (Wilson et al., 2023) can
be found in Table 2. Argoverse-2 comprises simpler scenarios compared to Nuscenes, resulting in
enhanced baseline performance and marginally smaller improvements. Despite delivering superior
detection results, Table 4 demonstrates that InsightMapper maintains high efficiency, with negli-
gible impact on training and inference costs. Consequently, InsightMapper outperforms previous
methods, showcasing remarkable comprehensive performance.

5.2 ABLATION STUDIES

Hybrid query generation. Compared to naive or hierarchical query generation schemes, the pro-
posed hybrid query generation scheme effectively blocks undesired inter-instance correlation while
simultaneously maintaining inner-instance correlation. The evaluation results of the different query
generation schemes are presented in Table 5. These results reveal that the hybrid query generation
scheme outperforms its counterparts, thereby demonstrating the soundness of this design method.
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Figure 7: Qualitative visualization. The predicted map contains four classes, i.e., road boundaries (green), lane
splits (red), pedestrian crossing (blue), and lane centerlines (pink).

Table 4: Efficiency of experiments. “Train” repre-
sents training time per epoch (hour). “FPS” is the
inference frame rate.

Methods Backbone Train FPS Param

MapTR R18 0.52h 8.5 35.9M
MapTR R50 0.56h 7.5 35.9M
InsightMapper R18 0.53h 8.5 45.9M
InsightMapper R50 0.55h 7.5 45.9M

Table 5: Quantitative results of ablation studies about
query generation. InsightMapper stays the same except
the query generation scheme.

Query Generation Scheme mAP TOPO

MapTR 42.93(↓5.38) 46.77(↓4.81)

InsightMapper-naive 46.62(↓1.69) 49.39(↓2.19)

InsightMapper-hierarchical 46.93(↓1.38) 50.16(↓1.42)

InsightMapper-hybrid 48.31 51.58
Table 6: Quantitative results of ablation studies
about query fusion.

Query Fusion mAP TOPO

No fusion 45.45(↓2.86) 48.54(↓3.04)

Mean 43.34(↓4.97) 46.00(↓5.58)

Feed-Forward 47.80(↓0.51) 50.93(↓0.65)

Self-attention 48.31 51.58

Table 7: Quantitative results of ablation studies about the
masked inner-instance self-attention module.

Method mAP TOPO

No attention 45.42(↓2.89) 49.19(↓2.39)

Vanilla attention 46.23(↓2.08) 49.51(↓2.07)

ϵ = 0 47.67(↓0.64) 51.49(↓0.09)

Change position 45.24(↓3.07) 48.16(↓3.42)

InsightMapper 48.31 51.58

Inner-instance query fusion. Query fusion is designed to leverage the correlation between inner-
instance queries to enhance prediction performance. Various methods can be employed for fusing
queries, including mean fusing (i.e., each query is summed with the mean of all queries of the same
instance), fusion by the feed-forward network (FFN), and fusion by self-attention. The evaluation
results are presented in Table 6.The outcomes of the query fusion methods vary significantly, with
self-attention-based query fusion achieving the best results. Consequently, self-attention query fu-
sion is incorporated into the final design of InsightMapper.

Inner-instance self-attention module. In InsightMapper, the masked inner-instance self-attention
module is incorporated into the decoder layers following the cross-attention module. We evalu-
ate InsightMapper under four different conditions: without the inner-instance self-attention module
(no attention), replace the inner-instance self-attention module with a vanilla self-attention mod-
ule (vanilla attention), without the random blocking (no random blocking, i.e., ϵ=0), and with the
module placed before the cross-attention (change position). The results are displayed in Table 7.
The outcomes reveal that removing the inner-instance self-attention module, removing the attention
mask or altering the position of the proposed module can significantly impair model performance.
This observation confirms the effectiveness of the inner-instance self-attention module design.

6 CONCLUSION

In this paper, we introduced InsightMapper, an end-to-end transformer-based model for on-the-fly
vectorized HD map detection. InsightMapper surpasses previous works by effectively leveraging
inner-instance information to improve detection outcomes. Several novel modules have been pro-
posed to utilize inner-instance information, including hybrid query generation, inner-instance query
fusion, and inner-instance feature aggregation. The superiority of InsightMapper is well demon-
strated through comparative experiments on multiple datasets. InsightMapper not only enhances
detection results but also maintains high efficiency, making it a promising solution for the vector-
ized HD map detection task.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Favyen Bastani, Songtao He, Sofiane Abbar, Mohammad Alizadeh, Hari Balakrishnan, Sanjay
Chawla, Sam Madden, and David DeWitt. Roadtracer: Automatic extraction of road networks
from aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4720–4728, 2018.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11621–11631, 2020.

Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and Luc Van Gool. Structured bird’s-
eye-view traffic scene understanding from onboard images. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 15661–15670, 2021a.

Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and Luc Van Gool. Topology preserving lo-
cal road network estimation from single onboard camera image. arXiv preprint arXiv:2112.10155,
2021b.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference
on Computer Vision, pp. 213–229. Springer, 2020.

Fang Da and Yu Zhang. Path-aware graph attention for hd maps in motion prediction. arXiv preprint
arXiv:2202.13772, 2022.

Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li, and Cordelia
Schmid. Vectornet: Encoding hd maps and agent dynamics from vectorized representation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11525–11533, 2020.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pp. 1440–1448, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Songtao He and Hari Balakrishnan. Lane-level street map extraction from aerial imagery. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2080–
2089, 2022.

Songtao He, Favyen Bastani, Sofiane Abbar, Mohammad Alizadeh, Hari Balakrishnan, Sanjay
Chawla, and Sam Madden. Roadrunner: improving the precision of road network inference
from gps trajectories. In Proceedings of the 26th ACM SIGSPATIAL international conference on
advances in geographic information systems, pp. 3–12, 2018.

Songtao He, Favyen Bastani, Satvat Jagwani, Mohammad Alizadeh, Hari Balakrishnan, Sanjay
Chawla, Mohamed M Elshrif, Samuel Madden, and Mohammad Amin Sadeghi. Sat2graph: road
graph extraction through graph-tensor encoding. In Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV 16, pp. 51–67.
Springer, 2020.

Namdar Homayounfar, Wei-Chiu Ma, Shrinidhi Kowshika Lakshmikanth, and Raquel Urtasun. Hi-
erarchical recurrent attention networks for structured online maps. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3417–3426, 2018.

10



Under review as a conference paper at ICLR 2024

Namdar Homayounfar, Wei-Chiu Ma, Justin Liang, Xinyu Wu, Jack Fan, and Raquel Urtasun.
Dagmapper: Learning to map by discovering lane topology. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pp. 2911–2920, 2019.

Ding Jia, Yuhui Yuan, Haodi He, Xiaopei Wu, Haojun Yu, Weihong Lin, Lei Sun, Chao Zhang, and
Han Hu. Detrs with hybrid matching. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 19702–19712, 2023.

Youngwan Lee and Jongyoul Park. Centermask: Real-time anchor-free instance segmentation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13906–
13915, 2020.

Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni, and Lei Zhang. Dn-detr: Accelerate
detr training by introducing query denoising. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13619–13627, 2022a.

Feng Li, Hao Zhang, Huaizhe Xu, Shilong Liu, Lei Zhang, Lionel M Ni, and Heung-Yeung Shum.
Mask dino: Towards a unified transformer-based framework for object detection and segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3041–3050, 2023a.

Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet: A local semantic map learning and
evaluation framework, 2021.

Siyu Li, Kailun Yang, Hao Shi, Jiaming Zhang, Jiacheng Lin, Zhifeng Teng, and Zhiyong
Li. Bi-mapper: Holistic bev semantic mapping for autonomous driving. arXiv preprint
arXiv:2305.04205, 2023b.

Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and Jifeng Dai.
Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotempo-
ral transformers. In European conference on computer vision, pp. 1–18. Springer, 2022b.

Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel Urtasun. Learning
lane graph representations for motion forecasting. In European Conference on Computer Vision,
pp. 541–556. Springer, 2020.

Bencheng Liao, Shaoyu Chen, Xinggang Wang, Tianheng Cheng, Qian Zhang, Wenyu Liu, and
Chang Huang. Maptr: Structured modeling and learning for online vectorized hd map construc-
tion. arXiv preprint arXiv:2208.14437, 2022.

Bencheng Liao, Shaoyu Chen, Yunchi Zhang, Bo Jiang, Qian Zhang, Wenyu Liu, Chang Huang, and
Xinggang Wang. Maptrv2: An end-to-end framework for online vectorized hd map construction.
arXiv preprint arXiv:2308.05736, 2023.

Tianyu Liu, Qing hai Liao, Lu Gan, Fulong Ma, Jie Cheng, Xupeng Xie, Zhe Wang, Yingbing
Chen, Yilong Zhu, Shuyang Zhang, et al. The role of the hercules autonomous vehicle during the
covid-19 pandemic: An autonomous logistic vehicle for contactless goods transportation. IEEE
Robotics & Automation Magazine, 28(1):48–58, 2021.

Yicheng Liu, Yue Wang, Yilun Wang, and Hang Zhao. Vectormapnet: End-to-end vectorized hd
map learning. arXiv preprint arXiv:2206.08920, 2022.

Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela L Rus, and Song
Han. Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye view representation. In
2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 2774–2781. IEEE,
2023.

Lu Mi, Hang Zhao, Charlie Nash, Xiaohan Jin, Jiyang Gao, Chen Sun, Cordelia Schmid, Nir Shavit,
Yuning Chai, and Dragomir Anguelov. Hdmapgen: A hierarchical graph generative model of high
definition maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4227–4236, 2021.

11



Under review as a conference paper at ICLR 2024

Mong H Ng, Kaahan Radia, Jianfei Chen, Dequan Wang, Ionel Gog, and Joseph E Gonzalez. Bev-
seg: Bird’s eye view semantic segmentation using geometry and semantic point cloud. arXiv
preprint arXiv:2006.11436, 2020.

Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs
by implicitly unprojecting to 3d. In European Conference on Computer Vision, pp. 194–210.
Springer, 2020.

Zhijian Qiao, Zehuan Yu, Huan Yin, and Shaojie Shen. Online monocular lane mapping using
catmull-rom spline. arXiv preprint arXiv:2307.11653, 2023.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Juyeb Shin, Francois Rameau, Hyeonjun Jeong, and Dongsuk Kum. Instagram: Instance-level graph
modeling for vectorized hd map learning. arXiv preprint arXiv:2301.04470, 2023.

Yingming Wang, Xiangyu Zhang, Tong Yang, and Jian Sun. Anchor detr: Query design for
transformer-based detector. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pp. 2567–2575, 2022.

Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khan-
delwal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, et al. Ar-
goverse 2: Next generation datasets for self-driving perception and forecasting. arXiv preprint
arXiv:2301.00493, 2023.

Ziyang Xie, Ziqi Pang, and Yuxiong Wang. Mv-map: Offboard hd-map generation with multi-view
consistency. arXiv preprint arXiv:2305.08851, 2023.

Zhenhua Xu, Yuxiang Sun, and Ming Liu. icurb: Imitation learning-based detection of road curbs
using aerial images for autonomous driving. IEEE Robotics and Automation Letters, 6(2):1097–
1104, 2021.

Zhenhua Xu, Yuxuan Liu, Lu Gan, Yuxiang Sun, Ming Liu, and Lujia Wang. Rngdet: Road network
graph detection by transformer in aerial images. arXiv preprint arXiv:2202.07824, 2022a.

Zhenhua Xu, Yuxuan Liu, Yuxiang Sun, Ming Liu, and Lujia Wang. Centerlinedet: Road lane
centerline graph detection with vehicle-mounted sensors by transformer for high-definition map
creation. arXiv preprint arXiv:2209.07734, 2022b.

Zhenhua Xu, Yuxuan Liu, Yuxiang Sun, Ming Liu, and Lujia Wang. Rngdet++: Road network graph
detection by transformer with instance segmentation and multi-scale features enhancement. IEEE
Robotics and Automation Letters, 2023.

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors,
18(10):3337, 2018.

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung
Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv
preprint arXiv:2203.03605, 2022.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

12



Under review as a conference paper at ICLR 2024

A EXPERIMENT

A.1 EXPERIMENT SETTINGS

In this paper, we employ a learning rate of 6 × 10−4 and a weight decay rate of 0.01. The experi-
ments involve 100 instance queries (NI = 100) and 20 point queries (np = 20), conducted using
eight NVIDIA GeForce RTX 3090 GPUs, each equipped with 24GB of memory. For the ResNet
backbones, we set the batch size to 4. Our primary focus is models that utilize camera images as in-
put, specifically six RGB camera images. But InsightMapper can be easily adapted for multi-modal
perception by modifying the input of BEV transformation network.

A.2 ROAD ELEMENTS

InsightMapper detects four types of road elements essential for vectorized HD maps: road bound-
aries (polyline), lane splits (polyline), pedestrian crossings (polygon), and lane centerlines (polyline
with topology). Currently, the detected HD map is an undirected graph to unify all elements. If di-
rected vectorized HD maps are required for specific applications (e.g., centerlines need directions),
InsightMapper can be easily adapted by employing directed ground truth HD maps as labels to train
the network. An example is shown in Table 8, where the ground truth centerlines are directed graphs.

Table 8: Quantitative results of different data representations (centerlines are directed graph).

Method APped APdiv APbound APcenter mAP TOPO

MapTR 37.39 46.61 50.69 37.22 42.98 46.98
InsightMapper 43.24 53.77 53.89 43.22 48.53(↑5.55) 52.09(↑5.11)

A.3 TOPOLOGY EVALUATION METRIC

To provide a comprehensive evaluation, we report a topology-level evaluation score in this paper,
namely the TOPO metric score (He et al., 2018; 2020; He & Balakrishnan, 2022). The TOPO
metric has been used in several previous studies (He et al., 2018; 2020; He & Balakrishnan, 2022) to
evaluate the correctness of lane and road-network graph topology. The TOPO metric first randomly
samples vertices v∗i from the ground truth graph G∗. It then finds corresponding matched vertices
v̂i in the predicted graph Ĝ based on the closest distance. Using v∗i as a seed node, TOPO calculates
a sub-graph G∗

v∗
i
, where the distance between all vertices and v∗i is smaller than a predetermined

threshold. Similarly, we obtain the sub-graph Ĝv̂i
by taking v̂i as the seed node. Finally, we measure

the graph similarity of the two sub-graphs using precision, recall, and F1-score. The TOPO metric
is the mean similarity F1-score of all sampled vertex pairs (v∗i , v̂i).

B QUERY GENERATION

B.1 DENOSING DETR (ABANDONED DESIGN)

In conventional object detection tasks, the denoising operation has been proven to effectively ac-
celerate convergence and enhance overall performance (Li et al., 2022a; Zhang et al., 2022; Li
et al., 2023a). However, this operation requires queries to be independent and identically distributed
(i.i.d.). If this condition is not met, simply adding random noise to queries may not yield superior
results. In our task, due to the strong correlation among inner-instance points, the denoising opera-
tion does not improve the vectorized HD map detection results. We report the outcomes of applying
Dn-DETR in Table 9.

In our experiments, we initially add random instance-level noise equally to all points within the
same instance. Subsequently, we introduce random point-level noise to each point. Despite these
modifications, we observe neither a significant improvement nor faster convergence. We attribute
this unsatisfactory performance to the correlation between points.
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Table 9: Quantitative results of ablation studies about denoising DETR. For all metrics, a larger value indicates
better performance.

Method APped APdiv APbound APcenter mAP TOPO

InsightMapper-Dn-DETR 43.74 51.34 54.48 42.33 47.97(↓0.34) 50.37(↓1.21)

InsightMapper 44.36 53.36 52.77 42.35 48.31 51.58

B.2 DYNAMIC QUERY GENERATION (ABANDONED DESIGN)

Another method to improve DETR in the query generation phase is dynamic query generation (Wang
et al., 2022; Zhang et al., 2022; He et al., 2022). Unlike static query generation, where all queries
are randomly initialized, dynamic queries are predicted based on the features obtained by the trans-
former encoder. In other words, the output of the transformer encoder can be utilized to generate
queries with better initialization.

After obtaining the transformer encoder output F , we create grids to partition F . Each grid Fx,y

contains the local information of the input image around coordinate (x, y). Then, each grid is
used to predict a dynamic query, represented as a 4-D bounding box. In conventional detection
tasks, objects are typically not very large, so each grid can make satisfactory predictions of dynamic
queries. However, in our vectorized HD map detection task, target objects are often very thin and
very long, which cannot be effectively predicted by local grids. Consequently, dynamic queries do
not yield significant improvements. We present the results on dynamic query generation in Table 10.

Table 10: Quantitative results of ablation studies about dynamic queries.

Method APped APdiv APbound APcenter mAP TOPO

InsightMapper with dynamic query 43.14 48.86 52.17 38.65 45.71(↓2.60) 43.83(↓7.75)

InsightMapper 44.36 53.36 52.77 42.35 48.31 51.58

C INNER-INSTANCE FEATURE AGGREGATION

C.1 RATIO OF MASKED ATTENTION MASK

There is an ϵ possibility that the attention mask of the inner-instance self-attention is masked (set to
one, blocked). This mask operation is inspired by (He et al., 2022) to enhance the robustness of the
proposed module. ϵ controls the ratio of masked attention masks. This concept is similar to dropout
for better performance. However, dropout is applied after the softmax of attention, while the mask
operation is before the softmax. Experimental results with different ϵ values are shown in Table 11.

Table 11: Quantitative results of ablation studies about the mask ratio.

ϵ APped APdiv APbound APcenter mAP TOPO

0 (No masked attn) 42.48 50.66 53.22 41.54 46.98(↓1.33) 51.49(↓0.09)

25% (InsightMapper) 44.36 53.36 52.77 42.35 48.31 51.58
50% 43.67 52.57 53.98 42.95 48.17(↓0.14) 51.59(↑0.01)

80% 42.27 52.49 53.64 41.34 47.41(↓0.90) 49.20(↓2.38)

C.2 TRANSFORMER ARCHITECTURES

The transformer decoder of InsightMapper may have multiple variants, which are visualized in Fig-
ure 8. The evaluation results are reported in Table 12. Based on the results, the transformer decoder
has the optimal design among these variants.
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(c) Variant 1
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(d) Variant 2

Multi-Head 
Self-attention

Multi-Head 
Cross-attention

6×
D
ec
od
er
La
ye
r Multi-Head 

Cross-attention

6×
D
ec
od
er
La
ye
r

Inner-Instance
Multi-Head Self-

attention

Multi-Head 
Cross-attention

6×
D
ec
od
er
La
ye
r Inner-Instance

Multi-Head Self-
attention

Feed Forward 
Network (FFN) Feed Forward 

Network (FFN)
Feed Forward 

Network (FFN)

Multi-Head 
Self-attention

Multi-Head 
Cross-attention

6×
D
ec
od
er
La
ye
r

Feed Forward 
Network (FFN)

Multi-Head 
Self-attention

Multi-Head 
Self-attention

Multi-Head 
Cross-attention

6×
D
ec
od
er
La
ye
r

Inner-Instance
Multi-Head Self-

attention

Multi-Head 
Self-attention

Multi-Head 
Cross-attention

6×
D
ec
od
er
La
ye
r

Inner-Instance
Multi-Head Self-

attention

Multi-Head 
Self-attention

Multi-Head 
Cross-attention

6×
D
ec
od
er
La
ye
r

Inner-Instance
Multi-Head Self-

attention

Feed Forward 
Network (FFN)

Feed Forward 
Network (FFN)

Feed Forward 
Network (FFN)

(e) Variant 3
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(f) Variant 4
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(g) Variant 5

Figure 8: Different transformer decoder designs. (a) Raw decoder of the deformable DETR. (b) InsightMapper
decoder. The proposed inner-instance self-attention module (blue) is incorporated. (c) Decoder variant 1.
We replace the inner-instance self-attention module with a vanilla self-attention module. (d) Decoder variant
2. The self-attention module is removed from the InsightMapper decoder. (e) Decoder variant 3. Swap the
inner-instance self-attention module with the cross-attention module of the variant 2. (f) Variant 4. Place the
inner-instance self-attention module before the cross-attention module. (g) Variant 5. Place the inner-instance
self-attention module before the self-attention module. InsightMapper decoder is the best design. Changing the
structure of the proposed decoder will degrade the final performance.

Table 12: Quantitative results of ablation studies about transformer decoder architectures.

Position APped APdiv APbound APcenter mAP TOPO

Raw Decoder (No ins-self-attention) 39.41 50.04 52.13 40.10 45.42(↓2.89) 49.19(↓2.39)

Variant 1 (Normal attention) 40.50 50.78 52.17 41.46 46.23(↓2.08) 49.51(↓1.41)

Variant 2 40.96 47.85 51.11 40.45 45.09(↓3.22) 47.98(↓3.60)

Variant 3 40.92 46.40 51.94 38.91 44.54(↓3.77) 46.90(↓4.68)

Variant 4 39.09 50.09 51.56 40.21 45.24(↓3.07) 48.16(↓3.42)

Variant 5 44.04 49.59 52.18 41.78 46.90(↓1.41) 49.52(↓2.06)

InsightMapper 44.36 53.36 52.77 42.35 48.31 51.58

D INTER-INSTANCE SELF-ATTENTION (ABANDONED DESIGN)

We also attempted to exploit the inter-instance information to further enhance the vector-
ized HD map detection results. The inter-instance self-attention module is incorporated into
the decoder layers, similar to the inner-instance self-attention module, as shown in Figure 9.
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Table 13: Quantitative results of ablation studies about inter-instance self-attention.

Inter-instance Self-attn APped APdiv APbound APcenter mAP TOPO FPS

Yes 42.40 53.21 54.03 43.03 48.17(↓0.14) 52.63(↑1.05) 6.3
No (InsightMapper) 44.36 53.36 52.77 42.35 48.31 51.58 7.7
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Figure 9: Decoder of InsightMapper with inter-instance
self-attention module. In this module (the pink one),
the attention between points of non-adjacent instances
is blocked (grey grids). The attention is allowed for
points of adjacent instances (pink grids), and diagonal
grids (blue grids) to maintain the ego information of
each point.

First, we predict the adjacency matrix, repre-
senting the connectivity of the predicted HD
map. Some lane centerline instances may in-
tersect with each other. Adjacent instances
are illustrated by colored grids. Then, for ad-
jacent instances, the corresponding attention
mask grids are set to zero (attention is allowed).
Otherwise, the attention is blocked. In this way,
the information exchange between points in ad-
jacent instances is allowed to better leverage the
point correlations. However, this design signif-
icantly increases resource consumption while
not noticeably improving the final results. The
experiment results are shown in Table 13.

We believe the reason is the sparsity of the adja-
cency matrix. Under most circumstances, only
a few instances intersect with each other, so the
adjacency matrix is very sparse, providing lim-
ited additional inter-instance information. Fur-
thermore, it may affect the inner-instance self-
attention module, which is the main reason for
the performance gains of InsightMapper.

Therefore, at this stage, inter-instance self-
attention is not used in InsightMapper. But this
could be an interesting topic for future explo-
ration.

E INSTANCE-LEVEL CLASS PREDICTION
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mean Class head Predicted class of 
instance 1

Concat Class head Predicted class of 
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Figure 10: Class head designs. MapTR leverages the
mean of points for aggregation (upper). While In-
sightMapper uses concatenation (lower).

Although each instance contains np points, it
should only have one predicted class for con-
sistency. In MapTR, after obtaining point em-
beddings from the transformer decoder, it cal-
culates a new instance-level embedding by tak-
ing the mean of all points in an instance. Then,
the mean embedding is sent to the class head for
class prediction. Differently, in InsightMapper,
we propose to use concatenation for class pre-
diction, which preserves more information on
points. Two class prediction methods are vi-
sualized in Figure 10. Experiment results are
reported in Table 14. From the results, it is
noted that concatenation achieves a slight per-
formance gain. Thus, the concatenation method
is used for class prediction in InsightMapper.
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Table 14: Quantitative results of ablation studies on the class head design.

Aggregation Method APped APdiv APbound APcenter mAP TOPO

Mean 42.31 53.22 53.70 43.16 48.10(↓0.21) 51.19(↓0.39)

Concatenation (InsightMapper) 44.36 53.36 52.77 42.35 48.31 51.58

Table 15: Quantitative results of comparison experiments on the NuScenes validation set. “*” represents
InsightMapper is enhanced by techniques leveraged in MapTR-V2.

Methods Epochs Backbone APped APdiv APbound APcenter mAP TOPO

MapTR-V2 24 R50 48.20 54.75 56.66 45.86 51.37 51.15
InsightMapper* 24 R50 49.07(↑0.87) 57.98(↑3.23) 59.84(↑3.18) 47.99(↑2.13) 53.72(↑2.35) 53.00(↑1.85)

MapTR-V2 110 R50 58.68 65.72 67.12 56.16 61.92 63.26
InsightMapper* 110 R50 62.09(↑3.41) 67.60(↑1.88) 68.15(↑1.03) 58.41(↑2.25) 64.06(↑2.14) 64.72(↑1.46)

Table 16: Quantitative results of comparison experiments on the Argoverse 2 validation set. “*” represents
InsightMapper is enhanced by techniques leveraged in MapTR-V2.

Methods Epochs Backbone APped APdiv APbound APcenter mAP TOPO

MapTR-V2 6 R50 57.16 67.96 65.25 63.20 63.39 77.94
InsightMapper* 6 R50 58.91(↑1.75) 71.35(↑3.39) 66.90(↑1.65) 64.70(↑1.50) 65.46(↑2.07) 79.26(↑1.32)

F MAPTR-V2: LATEST SOTA BASELINE

Recently (i.e., Aug/31/2023), the authors of MapTR released the implementation code of MapTR-
V2 (Liao et al., 2023), an enhanced version of the original MapTR. Compared to MapTR, MapTR-
V2 employs several techniques to boost the final performance and hasten convergence: 1. MapTR-
V2 projects Bird’s Eye View (BEV) features back to the perspective view and adds perspective-view
segmentations as auxiliary supervision. 2. Drawing inspiration from (Jia et al., 2023), MapTR-V2
utilizes hybrid matching to speed up convergence and enhance the final performance.

As a result, MapTR-V2 achieves significantly improved outcomes. Nevertheless, these techniques
originate from previous works and are not specifically designed for vector map detection. There-
fore, we think that MapTR-V2 is optimized with regard to engineering implementation instead of
theoretic improvement. To evaluate the effectiveness of our InsightMapper, we incorporate its pro-
posed modules into MapTR-V2, further improving the detection results by more than 2%. We have
made modifications to some parts of the MapTR-V2 implementation code to ensure compatibility
with InsightMapper. The quantitative comparison results on the Nuscenes validation dataset can be
found in Table 15, and the results on the Argoverse-2 dataset are shown in Table 16.

In conclusion, the three modules proposed in InsightMapper are light and flexible, and they can be
easily plugged into new DETR-based frameworks to detect vector HD maps for better performance.

G ADDITIONAL QUALITATIVE VISUALIZATIONS

Qualitative visualizations on the Nuscenes validation set are shown in Figure 11 to Figure 14. The
predicted map contains four classes, i.e., road boundaries (green), lane splits (red), pedestrian cross-
ing (blue), and lane centerlines (pink). We visualize the vectorized HD map of the previous SOTA
method MapTR, our proposed InsightMapper, and the ground truth label. Models are trained with
ResNet50 by 24 epochs.
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Figure 11: Qualitative visualization. Left three columns are input 6 RGB camera images. For map columns,
the first column presents MapTR’s results, the second column features InsightMapper’s outcomes, and the final
column depicts the ground truth map. The predicted map contains four classes, i.e., road boundaries (green),
lane splits (red), pedestrian crossing (blue), and lane centerlines (pink).
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Figure 12: Qualitative visualization. Left three columns are input 6 RGB camera images. For map columns,
the first column presents MapTR’s results, the second column features InsightMapper’s outcomes, and the final
column depicts the ground truth map. The predicted map contains four classes, i.e., road boundaries (green),
lane splits (red), pedestrian crossing (blue), and lane centerlines (pink).
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Figure 13: Qualitative visualization. Left three columns are input 6 RGB camera images. For map columns,
the first column presents MapTR’s results, the second column features InsightMapper’s outcomes, and the final
column depicts the ground truth map. The predicted map contains four classes, i.e., road boundaries (green),
lane splits (red), pedestrian crossing (blue), and lane centerlines (pink).
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Figure 14: Qualitative visualization. Left three columns are input 6 RGB camera images. For map columns,
the first column presents MapTR’s results, the second column features InsightMapper’s outcomes, and the final
column depicts the ground truth map. The predicted map contains four classes, i.e., road boundaries (green),
lane splits (red), pedestrian crossing (blue), and lane centerlines (pink).
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