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Abstract001

Legal citations require correctly recalling the002
law references of complex law article names003
and article numbering, which large language004
models typically treat as multi-token sequences.005
Motivated by the form-meaning pair of con-006
structionist approaches, we explore treating007
these multi-token law references as a single008
holistic law token and examining the implica-009
tions for legal citation accuracy and differences010
in model interpretability. We train and com-011
pare two types of models: LawToken models,012
which encode the legal citations as a single law013
token, and LawBase models, which treat them014
as multi-token compounds. The results show015
that LawToken models outperform LawBase016
models on legal citation tasks, primarily due017
to fewer errors in the article numbering com-018
ponents. Further model representation analysis019
reveals that, while both models achieve compa-020
rable semantic representation quality, the multi-021
token-based LawBase suffers from degraded022
representations in multistep decoding, leading023
to more errors. Taken together, these findings024
suggest that form-meaning pairing can operate025
in a larger context, and this larger unit may026
offer advantages in future modeling of legal027
reasoning. In practice, this approach can signif-028
icantly reduce the likelihood of hallucinations029
by anchoring legal citations as discrete, holistic030
tokens, thereby minimizing the risk of generat-031
ing nonexistent or incorrect legal references.032

1 Introduction033

Recalling the correct legal citations, e.g., the law034

articles, regulations, or precedents, poses a great035

challenge to the large language models and raises036

an interesting question to computational linguis-037

tics (Guha et al., 2024; Dahl et al., 2024). While038

the autoregressive models are so adept at work-039

ing with legal texts in certain, but not all, scenar-040

ios and tasks (Katz et al., 2024; Rodgers et al.,041

2023), generating the correct without producing042

non-existent articles or hallucinating remains a043

challenge to the modern models (Weiser, 2023; 044

Henderson et al., 2023). While finding efficient 045

ways to train LLMs adept at legal citations may 046

potentially be addressed in future models, the lin- 047

guistic intrigues nevertheless persist regarding how 048

models encode the explicit textual forms and their 049

impacts on the model’s representations. 050

In current large language models (Dubey et al., 051

2024; Yang et al., 2024; Achiam et al., 2023a), 052

these legal citations are treated as normal texts: 053

processed by the tokenizer, they are chunked into 054

a sequence of tokens. For example, the legal cita- 055

tion form in Taiwan generally is the article name 056

followed by the article and paragraph numbers, 057

such as “Road traffic safety regulations, Article 058

94, Paragraph 3.” The model needs to learn how 059

the multi-token sequence is related to the intended 060

meanings in context. 061

The intended meaning of a cited law reference 062

may entail the following three layers, in the or- 063

der of their context-dependence: (1) the compo- 064

sitional meaning from the tokenized components, 065

which, for instance, are the composite meanings of 066

road traffic, safety, and others (Bell and Schäfer, 067

2016; Cordeiro et al., 2019; Alipoor and Schulte im 068

Walde, 2020); (2) the semantic extensions of the 069

legal text content, specifying the legal obligation 070

of the driver (Tseng et al., 2023; Noraset et al., 071

2017; Mickus et al., 2019); and (3) the pragmat- 072

ical usage of the law in the court verdict when 073

determining the liability (Ruis et al., 2023; Louis 074

et al., 2020; Parrish et al., 2021). In practice, the 075

large language models might be good at deriving 076

pragmatics and resolving the intended sense of the 077

ambiguous words (tokens) from the constituting 078

lexical semantics; but, in contrast, the hallucination 079

(Guha et al., 2024; Bommasani et al., 2023; Dahl 080

et al., 2024) suggests the model may struggle with 081

decoding back from the context-specific pragmatic 082

to the underlying constituent tokens. 083

An alternative approach is to map between the 084
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layers as direct as possible; that is, treating law085

references as a single holistic form-meaning pair,086

where the entire law citation – including the law087

names and article or paragraph numbering – is088

recognized as one law token. These additional089

law tokens are motivated by the constructionist090

approach (Goldberg, 2024; Lakoff, 1987; Bybee,091

2010). As linguistic units, from single words to092

multi-word idioms, function as form-meaning pairs,093

there is no theoretical limit on their scope except for094

cognitive constraints. However, computationally,095

large language models may already have enough ca-096

pacity to capture the complex form-meaning map-097

ping, provided they have clear cue-meaning map-098

pings from tokenization.099

This paper aims to empirically study the effect100

of tokenization on legal citations, focusing on both101

task performances and how tokenization affects102

the model’s prediction probabilities and representa-103

tion. Using the court verdicts of Taiwan, we com-104

pile a LawToken dataset containing 675M tokens.105

The dataset is used to fine-tune two types of mod-106

els: LawBase models, which use the unmodified107

tokenizer, and LawToken models, which use an108

augmented tokenizer that includes frequently-used109

law references as new law tokens. When referring110

generically to using law tokens or references in111

the texts, we use the term legal citation. We first112

establish that LawToken models outperform Law-113

Base models in legal citation tasks, and we next114

further analyze model representations, revealing115

that the performance difference may stem from the116

degraded contextualized representation during the117

multistep decoding in LawBase models.118

This paper is organized as follows. After briefly119

summarizing the related works in Section 2, Sec-120

tion 3 describes the preprocessing steps, dataset,121

training, and evaluation of LawToken and LawBase122

models. Section 4 examines the model represen-123

tations and explores how they differ in the two124

models. Section 5 concludes the paper.125

2 Related Works126

A legal reference, consisting of law or act names127

and article numbers, is composed of multiple to-128

kens, which the language model has to learn to129

determine the intended meaning of the multi-token130

compound. However, past literature suggests that131

the compound meaning is not always transparent132

in terms of its constituent. Some are semanti-133

cally transparent, such as “swimming pool,” where134

the compound meaning is directly composite of 135

the constituents; some are opaque, such as “hot 136

dog.” However, even a seemingly transparent com- 137

pound may be challenging to pinpoint the rela- 138

tionships between its constituents; for instance, 139

“airport” and “airplane” (compounds written with- 140

out spaces), the role of “air” may be unexpectedly 141

complicated (Bell and Schäfer, 2016; Reddy et al., 142

2011; Zwitserlood, 2014). Modeling the seman- 143

tic transparency of compounds remains difficult, 144

even when using static or contextualized semantic 145

vectors (Shwartz and Dagan, 2019; Miletić and 146

im Walde, 2023). 147

Some multi-token(word) expressions are not usu- 148

ally considered compounds but nevertheless con- 149

vey meanings more than their parts. For example, 150

“hazard a guess,” or more idiom-like expression, “I 151

hope this mail finds you well.” These expressions, 152

gaining their meaning through repeated uses by the 153

language community and, therefore, form a static 154

form-meaning pair, are constructions (Goldberg, 155

2013). 156

Along this line of reasoning, the law references 157

can act as a construction. However, if the law ref- 158

erence is an opaque multi-token expression, the 159

LLMs should already handle them to some ex- 160

tent (Goldberg, 2024). Yet, a previous study ar- 161

gued that the LLM’s task performances are form- 162

dependent (Ohmer et al., 2024), indicating that 163

the models rely more on the surface form rather 164

than the underlying meaning to complete the task. 165

Consequently, even though the law reference is a 166

construction, the way they are tokenized can signif- 167

icantly influence the model’s task behavior. 168

Tokenizing law reference as a single law token 169

has implications beyond linguistic theory. Using 170

law tokens implies the model operates with a fixed 171

set of “law vocabulary,” which prevents the model 172

from producing nonexistent law articles (Guha 173

et al., 2024; Dahl et al., 2024). Although spe- 174

cialized legal-domain LLMs have become more 175

prevalent, they are fine-tuned or continuously pre- 176

trained on legal texts or using retrieval-augmented 177

generation without changing tokenization specif- 178

ically for legal references (Colombo et al., 2024; 179

Wiratunga et al., 2024; Lee, 2023; Cui et al., 2023). 180

Furthermore, from an information-theoretic per- 181

spective, tokenization is the pre-compression in the 182

LLM (Deletang et al., 2024). It is therefore interest- 183

ing to observe how using a law token will change 184

the compression behavior. 185
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Figure 1: Evaluation results using full metric (left) and partial metric (right).

3 LawToken & LawBase models186

3.1 Dataset187

The LawToken Datasets1 consist of legal docu-188

ments publicly available in Taiwan, encompassing189

both law articles and court verdicts. The dataset190

has three parts. The first and second parts, com-191

posed of court verdicts and law articles, respec-192

tively, standardize law references in natural lan-193

guage by representing them in the following for-194

mat: <LAW_NAME|ARTICLE_NUMBER>. For in-195

stance, a reference to道路交通安全規則第94條196

第3項“road traffic safety regulations, Article 94,197

Paragraph 3.” is transformed into the format <道路198

交通安全規則|94|3>. Conversely, the third group,199

derived solely from the court verdicts, employs a200

different transformation: legal references are re-201

moved from their original positions in the main202

text and then appended at the end of each court203

verdict, enclosed between a start-of-citation marker204

“<cite>” and an end-of-citation marker “</cite>.”205

Examples of each group are provided in the Ap-206

pendix. The three groups are combined and ran-207

domly shuffled. Subsequently, a train and test split208

is generated at a ratio of 9:1, resulting in a train-209

ing set with 545.4k instances and a testing set with210

60.6k instances.211

3.2 Model Training212

The three base models employed in this paper are213

Qwen2 of sizes 0.5B, 1.5B, and 7B 2. We select214

the frequently occurred law references, namely, the215

total frequencies of the law references in the court216

verdicts need to be higher than 100 times, resulting217

in 13,083 law tokens. Subsequently, we train Law-218

Token models with the high-frequency law tokens219

added into the tokenizer. The integration of the220

law tokens into the tokenizer enables the models221

1https://huggingface.co/datasets/*******/LawToken.
(masked during anonymous review)

2Models obtained from https://huggingface.co/Qwen

to recognize the law references as single tokens 222

and learn the contexts in which they are referenced. 223

On the other hand, the LawBase uses the unmodi- 224

fied tokenizer. In other words, the mentions of law 225

references in natural languages are represented as 226

single tokens in LawToken models, whereas in the 227

baseline LawBase models, they are interpreted as 228

multi-token sequences. 229

Overall, six models are trained 3. The fine-tuning 230

uses 4 nVIDIA H100s and takes around 30 hours 231

for all models. The evaluation cross-entropy losses 232

of the LawToken models are .86, .79, and .69 for 233

0.5B, 1.5B, and 7.0B model sizes, respectively, 234

and they are .82, .76, and .65 for the LawBase 235

models. The evaluation loss decreases as the model 236

size increases, whereas LawBase model losses are 237

consistently lower than those of LawToken models. 238

3.3 Evaluation 239

The evaluation tasks include a long-context law ci- 240

tation task, a short-context law citation task, and 241

a law naming task. These tasks, derived from the 242

testing set, involve the same objective: predicting 243

relevant LawTokens based on the provided con- 244

text, with “<cite>” serving as the special token for 245

prediction. 246

In the long-context law citation task, the model 247

is provided with the full context of court verdicts, 248

with law references removed, and is asked to pre- 249

dict the relevant legal citations. Conversely, the 250

short-context law citation focuses on a more lo- 251

calized context, where sentences containing legal 252

citations are identified, and the model is provided 253

with only the preceding sentence as context to pre- 254

dict the relevant citations. The law naming task, on 255

the other hand, is derived from law articles. Here, 256

the model is presented solely with the content from 257

a certain law article and is required to predict the 258

3All six models are available on HuggingFace, for
instance the 7B finetuned model could be found at
https://huggingface.co/********/LawToken-7B-a2.
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correct law name and article number in the stan-259

dardized format. Examples of each evaluation task260

are included in Appendix.261

Overall, LawToken models demonstrate a signif-262

icant advantage over LawBase models. The accu-263

racies are estimated through recall and precision,264

in which recall calculates the numbers of correctly265

predicted law tokens divided by the numbers of266

correct law tokens, and precision is the numbers of267

correctly predicted law tokens divided by the num-268

bers of predicted law tokens. In addition, out of all269

the unique law reference predictions produced by270

the LawBase models, 6.6% of them do not exist in271

those generated by the 0.5B model, 8.2% by the272

1.5B model, and 7.6% by the 7B models. That is,273

the LawBase models still experience hallucinations274

after being specifically fine-tuned in the current275

dataset.276

Figure 1 also visualizes the recall and precision277

of the six models on three different tasks. Notice278

that the sub-figures demonstrate the results using279

full metric (left) and partial metric (right). Given280

that the short-context law citation task and the law281

naming task provide relatively fewer contextual282

clues for the models, we observe that while models283

often accurately predict the law names, they tend284

to struggle more with the corresponding article or285

paragraph numbers. To address this, in addition286

to evaluating the models with the full metric, we287

also assess their performance using a partial metric,288

where predictions are considered accurate if the289

correct law name alone is identified. The recall and290

precision under this partial metric are presented in291

the right panel of Figure 1.292

Finally, we randomly sampled 1,000 instances293

from each evaluation task to assess the performance294

of the state-of-the-art model, OpenAI’s GPT-4o295

models (Achiam et al., 2023b). The generation296

method employs the batch API, with greedy de-297

coding (temperature set to 0) and model specified298

to “GPT-4o-mini-2024-07-18”. We use one-shot299

prompt design for GPT-4o-mini to understand the300

task better and produce the answer in the same301

format of LawTokens. The prompt example is pro-302

vided in the Appendix.303

The results are presented in Table 1. Overall,304

GPT-4o-mini does not perform at a level compa-305

rable to LawToken models. While we find that306

GPT-4o-mini is quite competitive when provided307

with ample contextual information, for example,308

in long-context law citation task, nearly matching309

the performance of the fine-tuned LawBase models,310

Model Long Short Naming
R P R P R P

LawTok-0.5B 0.54 0.65 0.46 0.25 0.08 0.02
LawTok-1.5B 0.55 0.67 0.44 0.22 0.08 0.02
LawTok-7.0B 0.53 0.65 0.46 0.22 0.09 0.02
LawBas-0.5B 0.23 0.33 0.06 0.03 0.02 0.01
LawBas-1.5B 0.31 0.42 0.20 0.11 0.05 0.01
LawBas-7.0B 0.21 0.30 0.18 0.09 0.05 0.01
GPT-4o-mini 0.28 0.41 0.03 0.02 0.01 0.01

Table 1: Comparison of recalls and precisions in differ-
ent models in the 1000-dataset.

its effectiveness diminishes significantly in tasks 311

with limited context, such as the short-context law 312

citation task and the law naming task. 313

4 Examing model representations 314

While both model types show competitive results 315

across the three legal tasks, LawToken consistently 316

outperforms the LawBase models, with the only dif- 317

ference between the two being tokenization. This 318

raises the question of what underlies this difference. 319

On the one hand, the better performance of LawTo- 320

ken seems counterintuitive, as it uses fewer tokens 321

to represent the legal mentions, thus fewer “buffer- 322

ing tokens” when decoding (Goyal et al., 2024; 323

Herel and Mikolov, 2024). On the other hand, re- 324

trieving a legal mention is arguably distinct from 325

reasoning; thus, LawToken may benefit from using 326

an explicit, holistic token, allowing it to escape the 327

complex structure within the legal mention com- 328

prising long compounds of act names and highly 329

ambiguous article numbers. 330

In what follows, we investigate why the Law- 331

Token and LawBase models behave differently in 332

the task. First, we demonstrate that the input em- 333

beddings learned by LawToken models reflect a 334

general structure. Next, we examine the type-level 335

representation similarities by comparing the model 336

(hidden) states at different layer depths to the em- 337

beddings of the law’s textual content. Finally, we 338

analyze the token-level prediction probability as 339

an index to how difficult the model finds certain 340

tokens. These analyses provide further insight into 341

the underpinning of the models’ performance dif- 342

ferences. 343

4.1 Input embeddings 344

Figure 2 shows the visualization of the law token’s 345

input embeddings of the top 3 common laws ex- 346

tracted from the LawToken model. Each point in 347

the panel represents a law token; for example, arti- 348
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Figure 2: The input embeddings of the LawToken models, color-coded with the law article names: Code of Criminal
Procedure (刑事訴訟法), Criminal Law (中華民國刑法), and Company Act (公司法). Only three laws are included
for better visualization. The random Gaussian embeddings (Random) are shown as a baseline.

cles number 330 and 107 in the Code of Criminal349

Procedure are coded as two green dots. We use350

linear discriminant analysis to show how law to-351

kens of different laws can be separable by a linear352

hyperplane. The underlying rationale is that law353

tokens coming from different laws should already354

reflect different usage patterns. Indeed, all classi-355

fication accuracies are above the random chance356

level, while the 7B model is the worst of the three.357

However, while classifying for law names is a358

simple and intuitive method to explore the embed-359

ding structure, it is not ideal. Law tokens of the360

same law may not necessarily be more similar than361

those of the different ones. To better gauge the se-362

mantic representation of the law tokens and the law363

references, we next examine the text embeddings364

of the legal text content.365

4.2 Type-level representation similarity366

To better independently assess the quality of seman-367

tic representation encoded by the LawToken and368

LawBase models, we obtain the text embeddings369

of legal text content 4 with the commercial embed-370

ding models 5. These embeddings are compared to371

the model’s hidden states in various layer depths372

when encoding the selected sentences in the test373

split. A total of 13,215 sentences were selected,374

which included 2,211 unique legal citations. These375

sentences were selected to better evaluate the ef-376

fect on the surrounding contexts, where there is377

only one law token or reference occurring before378

or after the 100-character window. We compute the379

4For example, the text embedding for law token <Labor
Standards Act|43> is the vector representation of the legal
text content: “Workers may request leave for reasons such as
marriage, [...]” (texts were in Taiwanese Mandarin.)

5Open AI’s text-embedding-3-large

centered kernel alignment scores (CKA; Kornblith 380

et al., 2019) to measure the similarity between the 381

model-encoded representation and the embedding 382

of legal text content, where a higher score indicates 383

a better correspondence between two representa- 384

tions. 385

However, caveats remain when using such text 386

embeddings. The legal text content is the semantic 387

extension of a legal citation – what it normatively 388

refers to – whereas the model encodes how a le- 389

gal token or reference is functionally used in the 390

legal texts. They are inevitably different. In ad- 391

dition, LawToken and LawBase both encode the 392

usage in the context, meaning that each law token 393

occurrence induces a different model state, while 394

the legal text embedding stays the same. Therefore, 395

although we use legal text embeddings as a refer- 396

ence for semantic representation, they are only an 397

operationalization of the law token’s meaning. 398

Figure 3a shows in each panel the results of 399

representational similarities from the input layer 400

(Layer 0) to the last layer of 0.5B model (Layer 24) 401

or of 1.5B and 7B model (Layer 28). Each panel 402

also shows three sites of interest. The Rand site 403

denotes a random location before the target law 404

token or reference, the Pre site is one token just 405

before the target law token or the law reference, 406

and the Post site is the token at the end of the 407

target, which is the law token itself in the LawTo- 408

ken model and the last token of the law reference. 409

Put in a more functional perspective, the Rand site 410

provides a baseline estimate of the similarity possi- 411

ble to achieve only with the preceding context; the 412

Pre site sheds light on the model states at which the 413

model is about to predict the target law token or the 414

first token in the law reference; and the Post site is 415
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(a) Representation similarity scores across different sites. Rand: random location before the target law token or law reference;
Pre: the token before the target; Post: the last token of the target, which is the law token itself and the last token of the law
reference. Higher CKA scores indicate better alignment of the vectors with the law’s semantics extensions.

(b) The representation similarities of the two constituents. Act refers to the name of the law article, and Num refers to the article
number. As a visual reference, the dashed lines indicate the values of the Pre site of 1.5B LawBase model.

Figure 3: Representation similarities in different layers and different sites across model type and sizes.

when the models take into account of the law token416

or the law reference itself.417

As shown in Figure 3a, the representation simi-418

larities increase throughout the layers and deeper419

into the sentence context. At the early layers of420

0, 8, and 16, the Rand site scores are close to zero,421

reflecting there is only very local information at422

this stage, and they do not correlate well with the423

law semantics. In contrast, the Pre sites are more424

indicative of the law content, potentially because425

the immediate pre-context of the target law token426

and reference are already informative enough to the427

legal mentions. Interestingly, the Post sites start to428

show diverging patterns between the representation429

of LawToken and LawBase, where the scores from430

LawToken are consistently higher than those from431

LawBase. The pattern effectively demonstrates the432

effects of tokenizing legal mentions as a whole in433

the LawToken model, showing that the embeddings434

of the law tokens carry rich lexical information.435

However, this advantage is not irreplaceable. As436

we move into the deeper layers of 24 and 28, the437

contextual effect is more pronounced. The diverg-438

ing trends observed in the earlier layers are clos-439

ing in on Layer 24, especially for the 0.5B model,440

which is the last layer, and on Layer 28, where all441

models’ scores are similar. Nevertheless, in the442

last layers, the Pre sites have higher scores than 443

the Post sites, which hints at three potential expla- 444

nations: (1) the model’s hidden states at Pre site 445

should be the most indicative for the legal refer- 446

ences, as they are ones used to generate final token 447

logits. (2) The scores may inevitably decrease af- 448

ter the Pre site, as the models shift from focusing 449

on the legal reference to predicting the subsequent 450

context. (3) Alternatively, the drop may potentially 451

be a consequence of the internal structure of the 452

legal references. 453

To instantiate the impact of the internal structure 454

of the legal reference, we compute their represen- 455

tation similarity scores on Act and Num sites. The 456

Act and Num sites, applying only to the LawBase 457

models, are two constituents in the law references: 458

the former being the last token of the act name and 459

the latter the last token of article numbering. Each 460

panel clearly shows that while act name representa- 461

tions contribute more as we move from Pre site to 462

Act site, especially in the early layers, the Num sites 463

consistently reduce the scores. This suggests the 464

numbering constituents of the law references are 465

less informative than the article numbering or even 466

the preceding context. In fact, incorporating the 467

article numbering seems to negatively impact the 468

representation of the law references. 469
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Figure 4: Negative log2(prob) of next-token predictions of different sites across models. (a) Full LawToken refers
to the true law token and the multi-token sequences of the law reference. (b) The Random sites are the random
locations before the target. (c) Constituent sites are the Act and Num sites. The dashed line is added as a visual
reference, which are the values of 1.5B LawBase in the Random sites.

Representation similarities show the (mis-470

)alignments with law content semantics across dif-471

ferent model layers and different sites, but they472

nevertheless only offer a coarse-grained view of473

the individual context each law token or reference474

is embedded. Being a context-independent mea-475

sure of semantic extension, law content semantics476

is only based on the law content and has no access477

to the context information encoded by the Law-478

Base or LawToken model. It is very well possible479

the misalignment we observed, for example, the480

reduced similarity scores of the Article number-481

ing site, is because that the model has captured482

the context information that is not encoded in the483

static law content semantics. Therefore, we move484

to token-level probabilities to investigate the model485

behaviors further.486

4.3 Token-level probability487

The token-level probability provides complemen-488

tary information for evaluating model behaviors.489

Distinct from the representation similarities where490

the token-based model states are compared to a491

type-based law content semantics, the prediction492

probabilities (of the true targets) are computed and493

evaluated in their context. There are two advan-494

tages of such a measure. (1) The prediction proba-495

bilities come directly from the model states of the496

hidden layer after accounting for all the other pos-497

sible candidates. It effectively measures how good498

or close the last hidden states are to the true em-499

beddings in that context. (2) The prediction prob-500

abilities also have explicit interpretations, which501

are surprisals as used in psycholinguistics stud- 502

ies (Goodkind and Bicknell, 2018; Wilcox et al., 503

2020), and information content or the compressed 504

message length in bits if the law token or reference 505

were to be compressed with an optimal compressor 506

(Deletang et al., 2024; Tseng et al., 2024). That 507

is to say, the prediction probabilities, particularly 508

when transformed with a 2-based logarithm, signify 509

the degree of difficulty the model has in predicting 510

the law tokens or the law references based on the 511

context it has encountered so far. 512

Figure 4 presents the results of prediction prob- 513

abilities. Interestingly, despite the drastically dif- 514

ferent tokenization – where the law reference in 515

LawBase has 11.90 tokens and only one in Law- 516

Token – their information contents (the log2(prob), 517

summed over all tokens in law references) are 518

largely the same across model sizes. However, 519

this does not suggest intrinsic differences in de- 520

coding capacities between model types. As shown 521

in Figure 4(b), LawBase models are not generally 522

more efficient than the LawToken ones as the infor- 523

mation contents remain comparable in the random 524

sites where the predicted tokens occur before the 525

law token. The findings are consistent with the 526

previous representation similarities results, where 527

the model states of the last hidden layers are al- 528

most the same in the Pre sites (except for the 1.5B 529

model size, Figure 3a). Furthermore, this makes 530

sense when considering the law token or reference 531

conceptually: they are only two realizations of the 532

same concept in input tokens, so both model types 533

are expected to encode the law token or reference 534
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Figure 5: The negative log2(prob) of the sites after the
target law token (LawToken) or reference (LawBase).
The horizontal axis shows how many tokens are after the
target. The inset highlights the first token after the target,
where the LawToken models show higher predictability
than the LawBase ones, except for the 7B model.

with similar information contents.535

However, the similar information contents of the536

law tokens and references do not fully account for537

the observed differences in law citation tasks. As538

suggested by the previous model states findings,539

both LawBase and LawToken models achieve sim-540

ilar qualities of model states, as indicated by the541

CKA scores. It is only when LawBase models542

begin decoding token by token that the representa-543

tion similarities decrease, especially at the article544

numbering sites. This pattern is consistently re-545

flected in Figure 4(c). When comparing the Act546

name (Act ) and article numbering sites (Num ), the547

Act sites show very low information contents, sig-548

nificantly lower than the Random sites. In con-549

trast, the Num site has higher values comparable to550

the Random ones. These token-level prediction551

probability results align with the type-level repre-552

sentation similarity findings: although LawToken553

models exhibit better lexical representation in the554

early layers, both models ultimately encode a sim-555

ilar amount of information through context. The556

key difference is that the LawBase models decode557

the law reference in multiple steps, and the best558

decoding representations are already achieved be-559

fore the first token of law reference. Afterward,560

the LawBase models struggle with the highly am-561

biguous tokens from article numbers (Num sites), as562

evidenced by the reduced type-level representation563

similarities and the lower token-level information564

content.565

Finally, Figure 5 presents the prediction prob-566

abilities following the law tokens and references.567

Neither the LawToken nor LawBase models show568

significant effects after the legal mentions, except 569

the 0.5B and 1.5B models do show small but signif- 570

icant differences in the immediate token following 571

position. This result is not surprising; as shown ear- 572

lier, both model types encode comparable informa- 573

tion content of legal mentions and can eventually 574

compensate for the lexical information carried by 575

the law token using context. Therefore, the holistic 576

tokenization of law tokens only has a very limited 577

effect on the following tokens. 578

5 Conclusion 579

Motivating by the form-meaning pairs of cogni- 580

tive linguistics, we propose that the legal cita- 581

tions involving multi-word constituents can be pro- 582

cessed not only as multi-token compounds but 583

as holistic tokens. This paper empirically tests 584

and investigates how different tokenizations affect 585

model behaviors and representations. We train two 586

model types: LawToken models, which consider 587

the whole legal citation as one law token, and Law- 588

Base models, where the same citation is treated 589

as multiple tokens. Our results show that LawTo- 590

ken models outperform LawBase models in legal 591

citation tasks, particularly due to the article num- 592

bering component. We further analyze the model 593

representations and find that both LawToken and 594

LawBase models achieve comparable semantic rep- 595

resentation quality. However, the LawBase model 596

suffers from degraded representation in the multi- 597

step decoding process, potentially increasing errors 598

and hallucinations. 599

The implications of the present findings extend 600

beyond linguistic theory. Indeed, the ability of 601

LawToken models to encode what requires mul- 602

tiple tokens in LawBase ones already highlights 603

that the form-meaning mappings can operate in a 604

larger scope. Furthermore, in addition to better task 605

performance, treating legal citations as law tokens 606

has significant implications for future legal reason- 607

ing studies, particularly when examining potential 608

circuits (Tigges et al., 2024; Prakash et al., 2024). 609

Ultimately, while the model is likely to continue 610

improving, understanding how it works – and ide- 611

ally linking this back to our existing knowledge of 612

language – is always an ongoing theme for compu- 613

tational linguistics. 614
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