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Abstract

Legal citations require correctly recalling the
law references of complex law article names
and article numbering, which large language
models typically treat as multi-token sequences.
Motivated by the form-meaning pair of con-
structionist approaches, we explore treating
these multi-token law references as a single
holistic law token and examining the implica-
tions for legal citation accuracy and differences
in model interpretability. We train and com-
pare two types of models: LawToken models,
which encode the legal citations as a single law
token, and LawBase models, which treat them
as multi-token compounds. The results show
that LawToken models outperform LawBase
models on legal citation tasks, primarily due
to fewer errors in the article numbering com-
ponents. Further model representation analysis
reveals that, while both models achieve compa-
rable semantic representation quality, the multi-
token-based LawBase suffers from degraded
representations in multistep decoding, leading
to more errors. Taken together, these findings
suggest that form-meaning pairing can operate
in a larger context, and this larger unit may
offer advantages in future modeling of legal
reasoning. In practice, this approach can signif-
icantly reduce the likelihood of hallucinations
by anchoring legal citations as discrete, holistic
tokens, thereby minimizing the risk of generat-
ing nonexistent or incorrect legal references.

1 Introduction

Recalling the correct legal citations, e.g., the law
articles, regulations, or precedents, poses a great
challenge to the large language models and raises
an interesting question to computational linguis-
tics (Guha et al., 2024; Dahl et al., 2024). While
the autoregressive models are so adept at work-
ing with legal texts in certain, but not all, scenar-
ios and tasks (Katz et al., 2024; Rodgers et al.,
2023), generating the correct without producing
non-existent articles or hallucinating remains a

challenge to the modern models (Weiser, 2023;
Henderson et al., 2023). While finding efficient
ways to train LLMs adept at legal citations may
potentially be addressed in future models, the lin-
guistic intrigues nevertheless persist regarding how
models encode the explicit textual forms and their
impacts on the model’s representations.

In current large language models (Dubey et al.,
2024; Yang et al., 2024; Achiam et al., 2023a),
these legal citations are treated as normal texts:
processed by the tokenizer, they are chunked into
a sequence of tokens. For example, the legal cita-
tion form in Taiwan generally is the article name
followed by the article and paragraph numbers,
such as “Road traffic safety regulations, Article
94, Paragraph 3.” The model needs to learn how
the multi-token sequence is related to the intended
meanings in context.

The intended meaning of a cited law reference
may entail the following three layers, in the or-
der of their context-dependence: (1) the compo-
sitional meaning from the tokenized components,
which, for instance, are the composite meanings of
road traffic, safety, and others (Bell and Schifer,
2016; Cordeiro et al., 2019; Alipoor and Schulte im
Walde, 2020); (2) the semantic extensions of the
legal text content, specifying the legal obligation
of the driver (Tseng et al., 2023; Noraset et al.,
2017; Mickus et al., 2019); and (3) the pragmat-
ical usage of the law in the court verdict when
determining the liability (Ruis et al., 2023; Louis
et al., 2020; Parrish et al., 2021). In practice, the
large language models might be good at deriving
pragmatics and resolving the intended sense of the
ambiguous words (tokens) from the constituting
lexical semantics; but, in contrast, the hallucination
(Guha et al., 2024; Bommasani et al., 2023; Dahl
et al., 2024) suggests the model may struggle with
decoding back from the context-specific pragmatic
to the underlying constituent tokens.

An alternative approach is to map between the



layers as direct as possible; that is, treating law
references as a single holistic form-meaning pair,
where the entire law citation — including the law
names and article or paragraph numbering — is
recognized as one law token. These additional
law tokens are motivated by the constructionist
approach (Goldberg, 2024; Lakoff, 1987; Bybee,
2010). As linguistic units, from single words to
multi-word idioms, function as form-meaning pairs,
there is no theoretical limit on their scope except for
cognitive constraints. However, computationally,
large language models may already have enough ca-
pacity to capture the complex form-meaning map-
ping, provided they have clear cue-meaning map-
pings from tokenization.

This paper aims to empirically study the effect
of tokenization on legal citations, focusing on both
task performances and how tokenization affects
the model’s prediction probabilities and representa-
tion. Using the court verdicts of Taiwan, we com-
pile a LawToken dataset containing 675M tokens.
The dataset is used to fine-tune two types of mod-
els: LawBase models, which use the unmodified
tokenizer, and LawToken models, which use an
augmented tokenizer that includes frequently-used
law references as new law tokens. When referring
generically to using law tokens or references in
the texts, we use the term legal citation. We first
establish that LawToken models outperform Law-
Base models in legal citation tasks, and we next
further analyze model representations, revealing
that the performance difference may stem from the
degraded contextualized representation during the
multistep decoding in LawBase models.

This paper is organized as follows. After briefly
summarizing the related works in Section 2, Sec-
tion 3 describes the preprocessing steps, dataset,
training, and evaluation of LawToken and LawBase
models. Section 4 examines the model represen-
tations and explores how they differ in the two
models. Section 5 concludes the paper.

2 Related Works

A legal reference, consisting of law or act names
and article numbers, is composed of multiple to-
kens, which the language model has to learn to
determine the intended meaning of the multi-token
compound. However, past literature suggests that
the compound meaning is not always transparent
in terms of its constituent. Some are semanti-
cally transparent, such as “swimming pool,” where

the compound meaning is directly composite of
the constituents; some are opaque, such as “hot
dog.” However, even a seemingly transparent com-
pound may be challenging to pinpoint the rela-
tionships between its constituents; for instance,
“airport” and “airplane” (compounds written with-
out spaces), the role of “air” may be unexpectedly
complicated (Bell and Schifer, 2016; Reddy et al.,
2011; Zwitserlood, 2014). Modeling the seman-
tic transparency of compounds remains difficult,
even when using static or contextualized semantic
vectors (Shwartz and Dagan, 2019; Mileti¢ and
im Walde, 2023).

Some multi-token(word) expressions are not usu-
ally considered compounds but nevertheless con-
vey meanings more than their parts. For example,
“hazard a guess,” or more idiom-like expression, “I
hope this mail finds you well.” These expressions,
gaining their meaning through repeated uses by the
language community and, therefore, form a static
form-meaning pair, are constructions (Goldberg,
2013).

Along this line of reasoning, the law references
can act as a construction. However, if the law ref-
erence is an opaque multi-token expression, the
LLMs should already handle them to some ex-
tent (Goldberg, 2024). Yet, a previous study ar-
gued that the LLM’s task performances are form-
dependent (Ohmer et al., 2024), indicating that
the models rely more on the surface form rather
than the underlying meaning to complete the task.
Consequently, even though the law reference is a
construction, the way they are tokenized can signif-
icantly influence the model’s task behavior.

Tokenizing law reference as a single law token
has implications beyond linguistic theory. Using
law tokens implies the model operates with a fixed
set of “law vocabulary,” which prevents the model
from producing nonexistent law articles (Guha
et al., 2024; Dahl et al., 2024). Although spe-
cialized legal-domain LL.Ms have become more
prevalent, they are fine-tuned or continuously pre-
trained on legal texts or using retrieval-augmented
generation without changing tokenization specif-
ically for legal references (Colombo et al., 2024;
Wiratunga et al., 2024; Lee, 2023; Cui et al., 2023).
Furthermore, from an information-theoretic per-
spective, tokenization is the pre-compression in the
LLM (Deletang et al., 2024). It is therefore interest-
ing to observe how using a law token will change
the compression behavior.
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Figure 1: Evaluation results using full metric (left) and partial metric (right).

3 LawToken & LawBase models
3.1 Dataset

The LawToken Datasets' consist of legal docu-
ments publicly available in Taiwan, encompassing
both law articles and court verdicts. The dataset
has three parts. The first and second parts, com-
posed of court verdicts and law articles, respec-
tively, standardize law references in natural lan-
guage by representing them in the following for-
mat: <LAW_NAME|ARTICLE_NUMBER>. For in-
stance, a reference to 18 [} 28 il &4 Fi HI 55 9445
%378 road traffic safety regulations, Article 94,
Paragraph 3.” is transformed into the format <i& %
il 41 H119413>. Conversely, the third group,
derived solely from the court verdicts, employs a
different transformation: legal references are re-
moved from their original positions in the main
text and then appended at the end of each court
verdict, enclosed between a start-of-citation marker
“<cite>" and an end-of-citation marker “</cite>.”
Examples of each group are provided in the Ap-
pendix. The three groups are combined and ran-
domly shuffled. Subsequently, a train and test split
is generated at a ratio of 9:1, resulting in a train-
ing set with 545.4k instances and a testing set with
60.6k instances.

3.2 Model Training

The three base models employed in this paper are
Qwen?2 of sizes 0.5B, 1.5B, and 7B 2. We select
the frequently occurred law references, namely, the
total frequencies of the law references in the court
verdicts need to be higher than 100 times, resulting
in 13,083 law tokens. Subsequently, we train Law-
Token models with the high-frequency law tokens
added into the tokenizer. The integration of the
law tokens into the tokenizer enables the models
"https://huggingface.co/datasets/****#+*/LawToken.

(masked during anonymous review)
“Models obtained from https://huggingface.co/Qwen

to recognize the law references as single tokens
and learn the contexts in which they are referenced.
On the other hand, the LawBase uses the unmodi-
fied tokenizer. In other words, the mentions of law
references in natural languages are represented as
single tokens in LawToken models, whereas in the
baseline LawBase models, they are interpreted as
multi-token sequences.

Overall, six models are trained 3. The fine-tuning
uses 4 nVIDIA H100s and takes around 30 hours
for all models. The evaluation cross-entropy losses
of the LawToken models are .86, .79, and .69 for
0.5B, 1.5B, and 7.0B model sizes, respectively,
and they are .82, .76, and .65 for the LawBase
models. The evaluation loss decreases as the model
size increases, whereas LawBase model losses are
consistently lower than those of LawToken models.

3.3 Evaluation

The evaluation tasks include a long-context law ci-
tation task, a short-context law citation task, and
a law naming task. These tasks, derived from the
testing set, involve the same objective: predicting
relevant LawTokens based on the provided con-
text, with “<cite>" serving as the special token for
prediction.

In the long-context law citation task, the model
is provided with the full context of court verdicts,
with law references removed, and is asked to pre-
dict the relevant legal citations. Conversely, the
short-context law citation focuses on a more lo-
calized context, where sentences containing legal
citations are identified, and the model is provided
with only the preceding sentence as context to pre-
dict the relevant citations. The law naming task, on
the other hand, is derived from law articles. Here,
the model is presented solely with the content from
a certain law article and is required to predict the

3All six models are available on HuggingFace, for
instance the 7B finetuned model could be found at
https://huggingface.co/********/[ awToken-7B-a2.



correct law name and article number in the stan-
dardized format. Examples of each evaluation task
are included in Appendix.

Overall, LawToken models demonstrate a signif-
icant advantage over LawBase models. The accu-
racies are estimated through recall and precision,
in which recall calculates the numbers of correctly
predicted law tokens divided by the numbers of
correct law tokens, and precision is the numbers of
correctly predicted law tokens divided by the num-
bers of predicted law tokens. In addition, out of all
the unique law reference predictions produced by
the LawBase models, 6.6% of them do not exist in
those generated by the 0.5B model, 8.2% by the
1.5B model, and 7.6% by the 7B models. That is,
the LawBase models still experience hallucinations
after being specifically fine-tuned in the current
dataset.

Figure 1 also visualizes the recall and precision
of the six models on three different tasks. Notice
that the sub-figures demonstrate the results using
full metric (left) and partial metric (right). Given
that the short-context law citation task and the law
naming task provide relatively fewer contextual
clues for the models, we observe that while models
often accurately predict the law names, they tend
to struggle more with the corresponding article or
paragraph numbers. To address this, in addition
to evaluating the models with the full metric, we
also assess their performance using a partial metric,
where predictions are considered accurate if the
correct law name alone is identified. The recall and
precision under this partial metric are presented in
the right panel of Figure 1.

Finally, we randomly sampled 1,000 instances
from each evaluation task to assess the performance
of the state-of-the-art model, OpenAl’s GPT-40
models (Achiam et al., 2023b). The generation
method employs the batch API, with greedy de-
coding (temperature set to 0) and model specified
to “GPT-40-mini-2024-07-18”. We use one-shot
prompt design for GPT-40-mini to understand the
task better and produce the answer in the same
format of LawTokens. The prompt example is pro-
vided in the Appendix.

The results are presented in Table 1. Overall,
GPT-40-mini does not perform at a level compa-
rable to LawToken models. While we find that
GPT-40-mini is quite competitive when provided
with ample contextual information, for example,
in long-context law citation task, nearly matching
the performance of the fine-tuned LawBase models,

Model Long Short Naming

R P R P R P
LawTok-0.5B 0.54 0.65 046 025 0.08 0.02
LawTok-1.5B  0.55 0.67 044 0.22 0.08 0.02
LawTok-7.0B 053 0.65 046 022 0.09 0.02
LawBas-0.5B 023 033 0.06 0.03 0.02 0.01

LawBas-1.5B 031 042 020 0.11 0.05 0.01
LawBas-7.0B 021 030 0.18 0.09 0.05 0.01
GPT-40-mini 028 041 0.03 0.02 001 0.01

Table 1: Comparison of recalls and precisions in differ-
ent models in the 1000-dataset.

its effectiveness diminishes significantly in tasks
with limited context, such as the short-context law
citation task and the law naming task.

4 Examing model representations

While both model types show competitive results
across the three legal tasks, LawToken consistently
outperforms the LawBase models, with the only dif-
ference between the two being tokenization. This
raises the question of what underlies this difference.
On the one hand, the better performance of LawTo-
ken seems counterintuitive, as it uses fewer tokens
to represent the legal mentions, thus fewer “buffer-
ing tokens” when decoding (Goyal et al., 2024;
Herel and Mikolov, 2024). On the other hand, re-
trieving a legal mention is arguably distinct from
reasoning; thus, LawToken may benefit from using
an explicit, holistic token, allowing it to escape the
complex structure within the legal mention com-
prising long compounds of act names and highly
ambiguous article numbers.

In what follows, we investigate why the Law-
Token and LawBase models behave differently in
the task. First, we demonstrate that the input em-
beddings learned by LawToken models reflect a
general structure. Next, we examine the type-level
representation similarities by comparing the model
(hidden) states at different layer depths to the em-
beddings of the law’s textual content. Finally, we
analyze the token-level prediction probability as
an index to how difficult the model finds certain
tokens. These analyses provide further insight into
the underpinning of the models’ performance dif-
ferences.

4.1 Input embeddings

Figure 2 shows the visualization of the law token’s
input embeddings of the top 3 common laws ex-
tracted from the LawToken model. Each point in
the panel represents a law token; for example, arti-
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Figure 2: The input embeddings of the LawToken models, color-coded with the law article names: Code of Criminal
Procedure (JF|Z53FFA1£), Criminal Law (H #E [ B 1|7%), and Company Act (/A &]{£). Only three laws are included
for better visualization. The random Gaussian embeddings (Random) are shown as a baseline.

cles number 330 and 107 in the Code of Criminal
Procedure are coded as two green dots. We use
linear discriminant analysis to show how law to-
kens of different laws can be separable by a linear
hyperplane. The underlying rationale is that law
tokens coming from different laws should already
reflect different usage patterns. Indeed, all classi-
fication accuracies are above the random chance
level, while the 7B model is the worst of the three.

However, while classifying for law names is a
simple and intuitive method to explore the embed-
ding structure, it is not ideal. Law tokens of the
same law may not necessarily be more similar than
those of the different ones. To better gauge the se-
mantic representation of the law tokens and the law
references, we next examine the text embeddings
of the legal text content.

4.2 Type-level representation similarity

To better independently assess the quality of seman-
tic representation encoded by the LawToken and
LawBase models, we obtain the text embeddings
of legal text content # with the commercial embed-
ding models °. These embeddings are compared to
the model’s hidden states in various layer depths
when encoding the selected sentences in the test
split. A total of 13,215 sentences were selected,
which included 2,211 unique legal citations. These
sentences were selected to better evaluate the ef-
fect on the surrounding contexts, where there is
only one law token or reference occurring before
or after the 100-character window. We compute the

*For example, the text embedding for law token <Labor
Standards Act|43> is the vector representation of the legal
text content: “Workers may request leave for reasons such as
marriage, [...]” (texts were in Taiwanese Mandarin.)

Open AI’s text-embedding-3-large

centered kernel alignment scores (CKA; Kornblith
et al., 2019) to measure the similarity between the
model-encoded representation and the embedding
of legal text content, where a higher score indicates
a better correspondence between two representa-
tions.

However, caveats remain when using such text
embeddings. The legal text content is the semantic
extension of a legal citation — what it normatively
refers to — whereas the model encodes how a le-
gal token or reference is functionally used in the
legal texts. They are inevitably different. In ad-
dition, LawToken and LawBase both encode the
usage in the context, meaning that each law token
occurrence induces a different model state, while
the legal text embedding stays the same. Therefore,
although we use legal text embeddings as a refer-
ence for semantic representation, they are only an
operationalization of the law token’s meaning.

Figure 3a shows in each panel the results of
representational similarities from the input layer
(Layer 0) to the last layer of 0.5B model (Layer 24)
or of 1.5B and 7B model (Layer 28). Each panel
also shows three sites of interest. The Rand site
denotes a random location before the target law
token or reference, the Pre site is one token just
before the target law token or the law reference,
and the Post site is the token at the end of the
target, which is the law token itself in the LawTo-
ken model and the last token of the law reference.
Put in a more functional perspective, the Rand site
provides a baseline estimate of the similarity possi-
ble to achieve only with the preceding context; the
Pre site sheds light on the model states at which the
model is about to predict the target law token or the
first token in the law reference; and the Post site is
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(b) The representation similarities of the two constituents. Act refers to the name of the law article, and Num refers to the article
number. As a visual reference, the dashed lines indicate the values of the Pre site of 1.5B LawBase model.

Figure 3: Representation similarities in different layers and different sites across model type and sizes.

when the models take into account of the law token
or the law reference itself.

As shown in Figure 3a, the representation simi-
larities increase throughout the layers and deeper
into the sentence context. At the early layers of
0, 8, and 16, the Rand site scores are close to zero,
reflecting there is only very local information at
this stage, and they do not correlate well with the
law semantics. In contrast, the Pre sites are more
indicative of the law content, potentially because
the immediate pre-context of the target law token
and reference are already informative enough to the
legal mentions. Interestingly, the Post sites start to
show diverging patterns between the representation
of LawToken and LawBase, where the scores from
LawToken are consistently higher than those from
LawBase. The pattern effectively demonstrates the
effects of tokenizing legal mentions as a whole in
the LawToken model, showing that the embeddings
of the law tokens carry rich lexical information.

However, this advantage is not irreplaceable. As
we move into the deeper layers of 24 and 28, the
contextual effect is more pronounced. The diverg-
ing trends observed in the earlier layers are clos-
ing in on Layer 24, especially for the 0.5B model,
which is the last layer, and on Layer 28, where all
models’ scores are similar. Nevertheless, in the

last layers, the Pre sites have higher scores than
the Post sites, which hints at three potential expla-
nations: (1) the model’s hidden states at Pre site
should be the most indicative for the legal refer-
ences, as they are ones used to generate final token
logits. (2) The scores may inevitably decrease af-
ter the Pre site, as the models shift from focusing
on the legal reference to predicting the subsequent
context. (3) Alternatively, the drop may potentially
be a consequence of the internal structure of the
legal references.

To instantiate the impact of the internal structure
of the legal reference, we compute their represen-
tation similarity scores on Act and Numsites. The
Act and Numsites, applying only to the LawBase
models, are two constituents in the law references:
the former being the last token of the act name and
the latter the last token of article numbering. Each
panel clearly shows that while act name representa-
tions contribute more as we move from Pre site to
Act site, especially in the early layers, the Num sites
consistently reduce the scores. This suggests the
numbering constituents of the law references are
less informative than the article numbering or even
the preceding context. In fact, incorporating the
article numbering seems to negatively impact the
representation of the law references.
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Representation similarities show the (mis-
)alignments with law content semantics across dif-
ferent model layers and different sites, but they
nevertheless only offer a coarse-grained view of
the individual context each law token or reference
is embedded. Being a context-independent mea-
sure of semantic extension, law content semantics
is only based on the law content and has no access
to the context information encoded by the Law-
Base or LawToken model. It is very well possible
the misalignment we observed, for example, the
reduced similarity scores of the Article number-
ing site, is because that the model has captured
the context information that is not encoded in the
static law content semantics. Therefore, we move
to token-level probabilities to investigate the model
behaviors further.

4.3 Token-level probability

The token-level probability provides complemen-
tary information for evaluating model behaviors.
Distinct from the representation similarities where
the token-based model states are compared to a
type-based law content semantics, the prediction
probabilities (of the true targets) are computed and
evaluated in their context. There are two advan-
tages of such a measure. (1) The prediction proba-
bilities come directly from the model states of the
hidden layer after accounting for all the other pos-
sible candidates. It effectively measures how good
or close the last hidden states are to the true em-
beddings in that context. (2) The prediction prob-
abilities also have explicit interpretations, which

are surprisals as used in psycholinguistics stud-
ies (Goodkind and Bicknell, 2018; Wilcox et al.,
2020), and information content or the compressed
message length in bits if the law token or reference
were to be compressed with an optimal compressor
(Deletang et al., 2024; Tseng et al., 2024). That
is to say, the prediction probabilities, particularly
when transformed with a 2-based logarithm, signify
the degree of difficulty the model has in predicting
the law tokens or the law references based on the
context it has encountered so far.

Figure 4 presents the results of prediction prob-
abilities. Interestingly, despite the drastically dif-
ferent tokenization — where the law reference in
LawBase has 11.90 tokens and only one in Law-
Token — their information contents (the loga (prob),
summed over all tokens in law references) are
largely the same across model sizes. However,
this does not suggest intrinsic differences in de-
coding capacities between model types. As shown
in Figure 4(b), LawBase models are not generally
more efficient than the LawToken ones as the infor-
mation contents remain comparable in the random
sites where the predicted tokens occur before the
law token. The findings are consistent with the
previous representation similarities results, where
the model states of the last hidden layers are al-
most the same in the Pre sites (except for the 1.5B
model size, Figure 3a). Furthermore, this makes
sense when considering the law token or reference
conceptually: they are only two realizations of the
same concept in input tokens, so both model types
are expected to encode the law token or reference
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Figure 5: The negative loga (prob) of the sites after the
target law token (LawToken) or reference (LawBase).
The horizontal axis shows how many tokens are after the
target. The inset highlights the first token after the target,
where the LawToken models show higher predictability
than the LawBase ones, except for the 7B model.

with similar information contents.

However, the similar information contents of the
law tokens and references do not fully account for
the observed differences in law citation tasks. As
suggested by the previous model states findings,
both LawBase and LawToken models achieve sim-
ilar qualities of model states, as indicated by the
CKA scores. It is only when LawBase models
begin decoding token by token that the representa-
tion similarities decrease, especially at the article
numbering sites. This pattern is consistently re-
flected in Figure 4(c). When comparing the Act
name (Act ) and article numbering sites (Num), the
Act sites show very low information contents, sig-
nificantly lower than the Random sites. In con-
trast, the Num site has higher values comparable to
the Random ones. These token-level prediction
probability results align with the type-level repre-
sentation similarity findings: although LawToken
models exhibit better lexical representation in the
early layers, both models ultimately encode a sim-
ilar amount of information through context. The
key difference is that the LawBase models decode
the law reference in multiple steps, and the best
decoding representations are already achieved be-
fore the first token of law reference. Afterward,
the LawBase models struggle with the highly am-
biguous tokens from article numbers (Num sites), as
evidenced by the reduced type-level representation
similarities and the lower token-level information
content.

Finally, Figure 5 presents the prediction prob-
abilities following the law tokens and references.
Neither the LawToken nor LawBase models show

significant effects after the legal mentions, except
the 0.5B and 1.5B models do show small but signif-
icant differences in the immediate token following
position. This result is not surprising; as shown ear-
lier, both model types encode comparable informa-
tion content of legal mentions and can eventually
compensate for the lexical information carried by
the law token using context. Therefore, the holistic
tokenization of law tokens only has a very limited
effect on the following tokens.

5 Conclusion

Motivating by the form-meaning pairs of cogni-
tive linguistics, we propose that the legal cita-
tions involving multi-word constituents can be pro-
cessed not only as multi-token compounds but
as holistic tokens. This paper empirically tests
and investigates how different tokenizations affect
model behaviors and representations. We train two
model types: LawToken models, which consider
the whole legal citation as one law token, and Law-
Base models, where the same citation is treated
as multiple tokens. Our results show that LawTo-
ken models outperform LawBase models in legal
citation tasks, particularly due to the article num-
bering component. We further analyze the model
representations and find that both LawToken and
LawBase models achieve comparable semantic rep-
resentation quality. However, the LawBase model
suffers from degraded representation in the multi-
step decoding process, potentially increasing errors
and hallucinations.

The implications of the present findings extend
beyond linguistic theory. Indeed, the ability of
LawToken models to encode what requires mul-
tiple tokens in LawBase ones already highlights
that the form-meaning mappings can operate in a
larger scope. Furthermore, in addition to better task
performance, treating legal citations as law tokens
has significant implications for future legal reason-
ing studies, particularly when examining potential
circuits (Tigges et al., 2024; Prakash et al., 2024).
Ultimately, while the model is likely to continue
improving, understanding how it works — and ide-
ally linking this back to our existing knowledge of
language — is always an ongoing theme for compu-
tational linguistics.
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