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Abstract

Extracting event relations that deviate from
known schemas has proven challenging for pre-
vious methods based on multi-class classifica-
tion, MASK prediction, or prototype match-
ing. While the LLM-based method can devise
diverse instructions to alleviate these issues,
it is also accompanied by certain limitations:
the need to create a large number of training
and inference samples, heightened sensitivity
to the sequence of event relation generation,
and difficulties in extracting scattered event re-
lations. To tackle these challenges, we present
an improved unified event relation extraction
framework based on LLM named MAQERE.
Firstly, we transform the pair-based extraction
issue in LLM-based methods into a multiple an-
swer question problem, which reduces the num-
ber of samples required for training and infer-
ence. Additionally, by incorporating a bipartite
matching loss, we have reduced the dependency
of the LLM-based method on the generation
sequence. Then, we employ Parse-CoT to ex-
tract structured information for enhancing the
connections between event mentions. Our ex-
perimental results demonstrate that MAQERE
can significantly improve the performance of
the LLM-based method in the task of event
relation extraction.

1 Introduction

Event Relation Extraction (ERE) is the task of pre-
dicting relations between event mentions in un-
structured text. Take the text "Last year, more than
3,000 civilians were killed and another 4,500 were
injured in Afghanistan, with roughly a 5% increase
from 2010" as an example. The goal of ERE is to
identify all relevant event mention pairs (<killed,
sub-event, increase>) from the given event men-
tions ("killed", "injured", and "increase"). ERE
tasks are highly diversified due to their varying
sub-tasks (coreference, temporal, causal, sub-event,
etc.) and complex relations (symmetrical, asym-
metrical, cross, etc.) (Han et al., 2019, 2020; Min

et al., 2020; Wen and Ji, 2021; Tang et al., 2021;
Hu et al., 2023b).

Most previous studies (Nguyen et al., 2022a;
Wang et al., 2023a; Yuan et al., 2023; Caselli and
Vossen, 2017; Xu et al., 2022; Nguyen et al., 2022b)
have primarily focused on optimizing a specific
sub-task, making it difficult to migrate model struc-
tures, optimization strategies, specialized knowl-
edge sources, and domain data between different
sub-tasks. While some studies (Wang et al., 2022;
Hu et al., 2023b) employ multi-head classification
or prototype matching to tackle multiple subtasks
simultaneously, these methods rely on pre-defined
relation schemas and are unable to effectively han-
dle newly introduced, modified, or upgraded rela-
tion schemas. While large language models such
as ChatGPT and LLAMA demonstrate exceptional
semantic understanding and zero-shot learning ca-
pabilities, the LLM-based method, which can de-
vise diverse instructions to address these issues,
also faces certain limitations such as the need for a
large number of training samples, high sensitivity
to the generated sequence, and difficulty in extract-
ing scattered event relations.

Classification Based

[CLS)] battle [SEP] attacking [SEP]The Battle of Sultanabad occurred ...[SEP]
[CLS] Battle of Sultanabad [SEP] attacking [SEP]The Battle of Sultan...[SEP]
LLM Based

instruction: What kind of event relation is battle and attacking? The candidate
event relations are: effect, cause, coreference, parent, child, contains, ...

input: The Battle of Sultanabad occurred on Feb. 13, 1812. ... The Persians

won the battle by moving faster than the Russians and attacking ...
output: contains, child

Multiple Answers Question Based

instruction: List the c/hild event of attacking?

input: The <0x64>Battle of Sultanabad occurred on <0x65>Feb. 13, 1812. ...
The Persians won the <0x66>battle by moving faster than the Russians and
<0x67>attacking ...

output: <(x64>Battle of Sultanabad, <0x66>battle

Figure 1: Different ERE methods. The special, individ-
ual, unused character <0x64>-<0xFF> in LLAMA is
used to indicate candidate event mentions.

For a more intuitive comparison, we present the
different methods in Figure 1. The classification-



based method utilizes one-hot embedding to rep-
resent the event relation labels, which overlooks
the semantic information of the labels. The LLM-
based method employs candidate event mention
pairs and all event relations as the instruction, utiliz-
ing the large language model to generate all event
relations. Obviously, the LLM-based method has
some significant drawbacks. Firstly, it involves
a substantial amount of training and inference
samples, reaching n x n, where n represents the
number of event mentions. Secondly, the model
is heavily influenced by the sequence of genera-
tion when multiple relations are produced. Using
the LLM-based method shown in Figure 1 as an
example, the model generates p(contains|child)
and p(child|contains) with varying probabilities.
However, in the event relation extraction task, the
sequence of generation should not affect the event
relation between event mentions.

To reduce the training and inference samples
of the LLM-based model, we draw inspiration
from multi-span extraction and multi-choice read-
ing comprehension (Hu et al., 2019; Yang et al.,
2021; Segal et al., 2020).

# Multi-Choice Reading Comprehension

Context: I wanted to plant a tree. I went to the home and
garden store and picked a nice oak. Afterwards, I planted
it in my garden.

Question: When did he plant the tree?
A. after watering it B. after taking it home

Answers: B

# Multi-Span Extraction Reading Comprehension
Context: Salary. The average salary range for a zoologist in
the initial stages of his or her career is $30,000 to $45,000

per year. After five years of work experience, the range is
$40,000 to $55,000 per year.

Question: zoology salary
Answers: $30,000 to $45,000, $40,000 to $55,000

By integrating multi-span extraction and multi-
choice techniques, we incorporate special charac-
ters into the text to indicate candidate event men-
tions. This approach enables the large language
model to select from them during generation. For
specific examples, please refer to the multiple an-
swer question based method in Figure 1. In the
event relation extraction task, the number of event
relation types k < n. Therefore, for the multi-
ple answer question based model, the training and
inference samples are reduced fromn x nto k X n.

To reduce the effect of generated sequences
on LLM-based methods, we introduce a bipartite
matching loss. As shown in Figure 2, the LLM-

based method employs cross-entropy loss to guar-
antee an accurate sequence of generation. Nonethe-
less, for the task of event relation extraction, the
sequence of generation does not affect the final re-
sult. This makes the bipartite matching loss a better
fit for such tasks. The example in Figure 2 demon-
strates that using the cross-entropy loss results in 2
mistakes, while the bipartite matching loss yields 1
correct answer and 1 mistake.

Cross Entropy Loss Bipartite Matching Loss
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Figure 2: Comparison of cross-entropy loss and bipartite
matching loss.

Additionally, event mentions are short phrases
or single words, providing limited details. Fur-
thermore, the relations between event mentions are
extremely scattered, with pairs that have relations
making up less than 5%. Despite this, the LLM-
based method typically utilizes uni-directional
transformers, which are especially prone to the
issue of long-distance forgetting. To address this
challenge, we have implemented Parse-CoT as a
strategy to decelerate this problem, which is de-
picted in Figure 3. For example, in the text "Last
year, more than 3,000 civilians were <0x83> killed
and another 4,500 <0x84> injured in Afghanistan,
with a roughly 5% <0x85> increase compared to
2010", where "increase" is the direct object related
to "killed", and "injured" is linked as a conjunction
with "killed"!. By integrating information from
Parse-CoT, the model is able to improve its ability
to extract scattered event relations.

Last year more than 3,000 civilians were <0x83> killed and
i another 4,500 <0x84> injured in Afghanistan, roughly a 5%
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Figure 3: Dependency parsing tree of the input context.

In summary, the main contributions of this paper
are:

1) We propose a unified event relation extraction
framework (MAQERE) based on multiple answer

'The composition and meaning of dependent edges refer
to https://stanfordnlp.github.io/CoreNLP/



questions. Compared with the LLM-based method,
our method reduces the training and inference sam-
ples fromn X nto k X n.

2) In the MAQERE framework, we incorporate a
bipartite matching loss to reduce the dependency of
the LLM-based method on the generation sequence,
making it more suitable for event relation extraction
tasks.

3) We propose a Parse-CoT that enhances the ca-
pability of LLM-based methods in extracting scat-
tered event relations.

2 Related Work

Previous existing methods (Man et al., 2022;
Hwang et al., 2022; Huang et al., 2023; Barhom
etal., 2019; Hu et al., 2023a; Wang et al., 2022; Tan
et al., 2023) for event relation extraction primarily
utilize multi-class classification, MASK prediction,
or prototype matching, which focus on addressing
specific sub-tasks such as coreference, temporal,
causal, or sub-event relations. In the classification-
based approach (Huang et al., 2023; Lu and Ng,
2021; Tran et al., 2021; Zeng et al., 2020; Wang
et al., 2020; Barhom et al., 2019), event mentions
are paired together, and then additional features
are incorporated, such as prototypes, logical rules,
graph convolutional networks, or prompts. MASK
prediction based methods (Xiang et al., 2023; Shen
et al., 2022; Cui et al., 2022) train a masked lan-
guage model to predict the relation. The prototype
matching based method (Hu et al., 2023b) man-
ually selects instances to serve as prototypes for
each relation. Then, new instances are matched
against these prototypes. Segal et al. (2020) and Hu
et al. (2019) each proposed a reading comprehen-
sion model based on multi-choice and multi-span,
respectively, which allows the model to select the
correct answer from the candidate options or to
generate multiple answers simultaneously. Simul-
taneously, there are many entity relation extrac-
tion methods based on LLMs (Wang et al., 2023b;
Xu et al., 2024; Xiao et al., 2024), which directly
prompt large language models to generate relations
between pairs of entities. In this task, these meth-
ods have many drawbacks. Therefore, we have
designed a series of improvement measures to ad-
dress these identified deficiencies.

3 Methodology

The architecture of our framework is illustrated
in Figure 4. Our model mainly consists of three

parts. Firstly, the event relation extraction samples
are constructed based on multiple answer ques-
tions. Secondly, we constructed Parse-CoT using
the Core NLP Dependency Parser in the Stanford
NLP toolkit. Finally, we introduce a loss function
for multiple answer questions to reduce reliance on
the generated sequences.

3.1 Sample Construction

The training and inference samples of our frame-
work are constructed as follows:

Instruction: To unify the various inputs for dif-
ferent event relation extraction sub-tasks, we have
developed various instructions, as demonstrated in
Table 1. Each instruction contains an event rela-
tion and a candidate event mention, where <0x64>-
<0xFF> is a special, individual, unused character
in LLAMA, which we use to indicate the candidate
event mention.

Instruction

Coref. | List the coreference event of <0x85> ruled ?
List the... earlier than <0x72> said ?
List the... later than <0x72> said ?

List the... the same time as <0x72> said ?

Temp.

List the... inconsistent with...<0x72> said ?

List the cause event of <0x64> keep ?
List the effect event of <0x64> keep ?
List the parent event of <0x83> killed ?
List the child event of <0x83> killed ?

Causal

Sub.

Table 1: Various instructions for different event relation
extraction sub-tasks.

Context: In the event relation extraction task, all
candidate event mentions are provided. We insert a
marker (<0x64>-<0xFF>) sequentially in the text
where the candidate events appear, with the first
candidate event mention receiving <0x64>, the sec-
ond <0x65>, and so on. These markers signal the
large language model to confine its generation re-
sults to only the specified contents.

Label: The output is divided into two parts: Parse-
CoT and Multiple Answers, separated by a colon.
The construction of Parse-CoT is according to sec-
tion 3.2. Similar to before, markers will also be
inserted in the Parse-CoT and Multiple Answers
part to uniquely identify the event mentions. If
there are multiple answers, they are listed in the
order they appear in the text, separated by commas.
For those without associated event mentions, the
Multiple Answers part is set to none.
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List the parent event ‘ [Last year more than 3,000 civilians were <0x83> killed and another 4,500 <0x84>

of <0x83> killed ?

injured in Afghanistan, roughly a 5% <0x85> increase compared to 2010

Instruction

Context

Figure 4: The overview of the MAQERE framework. The input includes instructions and context, and the special
characters <0x64>-<0xFF> in LLAMA are used to indicate candidate event mentions. The output includes Parse-

CoT and Multiple Answers.

However, in event relation extraction tasks, there
are a large number of event mentions, but the rela-
tions between event mentions are extremely scat-
tered, with pairs that have relations making up less
than 5%. As aresult, whether using the LLM-based
or MAQ-based approach, a large number of nega-
tive samples are created (the Multiple Answers part
is none), making training the model challenging.
To tackle this challenge, we utilized positive sam-
ple expansion and negative sample downsampling
techniques. For specific implementation details,
refer to Appendix A.

3.2 Parse-CoT Construction

We employ the Core NLP Dependency Parser from
the Stanford NLP toolkit to derive the dependency
parse tree of the context. As shown in Figure 3, af-
ter parsing the context for dependencies, numerous
dependency edges are generated. The meaning of
each type of edge can be found in the official docu-
mentation of the Stanford NLP toolkit. In event re-

r3 7‘4
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Figure 5: A, B, D represent event mentions, while C
denotes other words. 71, ra, 73, 74 represent different
dependency relations.

lation extraction tasks, we only focus on the edges
between event mentions. Therefore, we retain only

the minimum number of nodes and edges necessary
to connect all the event mentions. In cases where
the number of nodes and edges is the same, we
retain them based on the order in which the nodes
appear. As shown in Figure 5, both <ry, ro, 74>
and <rs, r2, 74> are valid paths, but we only retain
the first one that appears, <ry, 72, r4>. It is crucial
to mention that since the dependency parser func-
tions at the sentence level, we substitute "." with ";"
to ensure the generation of the required Parse-CoT.

3.3 Multiple Answer Questions Loss

The generated sequence significantly affects the
effectiveness of text generation, as supported by
relevant research (Ye et al., 2021; Cao and Zhang,
2022). However, in the task of event relation extrac-
tion, the sequence of generating the answer does
not affect the final result. To mitigate the impact of
generation sequence, we calculate distinct losses
for Parse-CoT and Multiple Answers. The loss
of Parse-CoT and Multiple Answers is defined as
follows:

N

%ZCE(yi,p(yilw)) (D

Lok =

where N = N; + Na, N; represents the length of
Parse-CoT and N, represents the length of Mul-
tiple Answers. CE is the cross-entropy loss. As
illustrated in Figure 2, the sequence of generation



does not impact the multiple answers. The loss of
Multiple Answers is calculated as follows:

(a) First, use the Hungarian Algorithm to find
the optimal match.

No
0 = arg min Z

1 —log pg(i)(ci) (2)
GE\I’N2 i=0

(b) After optimal allocation, the loss function for
Multiple Answers is:

No

Lppy = Z 1 —log py(;(ci) 3)
i=0

(c) Finally, the total loss is as follows:
L=Lcg+ACppm 4)

where V¥, denotes a permutation of Ns. 6 is one
of the permutations. 6(i) is the i-th element in
permutation 6. ¢; represents the target vocabulary
id of the i-th element. The probability of the i-th
element in the permutation # belonging to the target
vocabulary id is denoted by pg(;) (¢;)- 0 stands for
the optimal permutation. The weight parameter is
represented by .

4 Experimental Settings

Dataset. Our experiments are conducted on four
widely-used datasets (cf. Table 2), including
MAVEN-ERE (Wang et al., 2022) for coreference
relation extraction and unified event relation ex-
traction, HiEve (Glavas et al., 2014) for sub-event
relation extraction, MATRES (Ning et al., 2018)
for temporal relation extraction, and MECI (Lai
et al., 2022) for causal relation extraction. For a

Datasets #Docs  #Mentions  #Links
MAVEN-ERE 4,480 112,276 103,193
HiEve 100 3,185 3,648
MATRES 275 11,861 13,573
MECI 438 8,732 2,050

Table 2: Dataset Statistics. "#" denotes the amount.
"Mentions" represents the potential events. "Links"
means the event relations.

fair comparison, we divided the data into the same
training, validation, and test sets as in previous
studies (Wang et al., 2022; Man et al., 2022; Zhou
et al., 2022; Lai et al., 2022). In particular, since
the training and test sets are not divided, consistent
with previous works, HiEve selects 80 documents

for training (0.4 probability for down-sampling of
negative examples) and 20 documents for testing.
Since MAVEN-ERE does not have an open test set,
we have chosen to use the validation set for testing.
Evaluation Metric. Based on previous research
on event relation extraction (Choubey and Huang,
2017; Nguyen et al., 2022a; Wang et al., 2023a;
Yuan et al., 2023; Caselli and Vossen, 2017; Xu
et al., 2022; Nguyen et al., 2022b), we adopt
MUC (Vilain et al., 1995), B (Bagga and Bald-
win, 1998), CEAF, (Luo, 2005) and BLANC (RE-
CASENS and HOVY, 2011) metrics for event
coreference relation. For the other three subtasks,
we adopt the standard micro-averaged precision,
recall, and F-1 metrics. In particular, in the sub-
event relation extraction task, PC and CP represent
the F1 scores for parent-child and child-parent re-
lations, respectively. For more details, please refer
to Appendix B.

Implementation Details. For MAQERE, we have
chosen the llama-2-chat? as the backbone network.
Our training is conducted on 4x A100-80G. The
input sequence length is 1536, and the output se-
quence length is 512. The weight for the bipartite
matching loss, denoted as ), is set to 0.2. We use a
learning rate of 5e-4, a batch size of 16, and a gradi-
ent accumulation of 2. The learning rate scheduler
follows a cosine function, and the model is trained
for 20 epochs. The results reported in the experi-
ment are the averages of 5 different random seeds
(0,1,2,3,4). For other hyper-parameters and details,
please refer to Appendix C.

5 Experimental Results

5.1 Comparison Methods

The baseline model of MAVEN-ERE (Wang et al.,
2022) utilizes joint learning to incorporate relation
interactions. In the case of HiEve, the baseline
model (Man et al., 2022) involves selecting the
optimal context sentence for event-event relation
extraction. Meanwhile, the baseline model (Zhou
et al., 2022) in MATRES involves constructing a
graph based on syntax and semantics to extract rela-
tional structures. Lastly, the baseline approach (Lai
et al., 2022) in MECI uses a graph-based model to
construct interaction graphs that depict crucial con-
nections among important entities. This enables
the identification of event causality at the docu-
ment level. BertERE employs a RoOBERTa-based
multi-class classification method to extract event

Zhttps://huggingface.co/hfl/chinese-alpaca-2-7b



Method MAVEN-ERE HiEve MATRES MECI

B3 CEAF. MUC BLANC| PC CP Avg P R F1 P R F1
Baselines 979 97.6 79.7 88.4 68.7 632 659 | 822 858 84.0 | 48.1 695 56.8
BertERE 94.5 95.1 77.4 87.2 65.7 615 634 | 802 824 813|507 542 524
BertERE oint 95.5 94.8 77.1 853 649 60.8 628 | 794 79.6 795 | 48.1 514 497
LLM-based 93.5 93.4 74.1 85.4 655 635 645|803 795 799 | 578 547 562
LLM-based;oin: | 91.2 91.5 72.6 83.2 642 60.8 625|799 785 792 | 563 555 558
MAQERE 98.1 97.8 79.9 88.7 67.8 685 68.1 | 8.5 839 847 | 629 616 623
MAQERE;in¢ 97.4 96.5 78.8 87.2 672 670 67.1 | 823 835 829|597 605 60.1

Table 3: The comprehensive performance of MAQERE across various datasets.

Models COREFERENCE TEMPORAL CAUSAL SUBEVENT

B3 CEAF. MUC BLANC| P R F1 P R Fl1 P R Fl1
BertERE joint 97.8 97.6 79.8 88.3 509 534 521 | 313 305 309 | 246 229 237
LLM-based;oint | 94.2 93.5 73.3 84.7 485 510 49.7 | 286 280 283|209 21.7 213
MAQERE;sint 98.1 97.9 80.2 88.9 533 543 538 | 334 316 325 | 258 246 252

Table 4: The performance of various unified event relation extraction models on the unified dataset MAVEN-ERE.

relations for event pairs consisting of all event men-
tions. BertERE,;,; encodes the whole document
using ROBERTRa, then sets an additional classifica-
tion head that takes the contextualized representa-
tions at the positions of different event pairs. Af-
terward, it fine-tunes the model to classify relation
labels. LLM-based method employs candidate
event mention pairs and event relations as the in-
struction, leveraging the large language model’s
capability to generate comprehensive event rela-
tions. MAQERE stands for event relation extrac-
tion based on multiple answer questions, which
enhances the effectiveness of LLM-based meth-
ods through the integration of bipartite matching
loss and Parse-CoT. MAQERE;;,,; and LLM-
based ,;,; represent the joint training of various
diverse subtask datasets. For more implementa-
tion details and hyper-parameters of the compared
methods, please refer to Appendix D.

5.2 Overall Results

Separate Training. The model is trained on a sub-
task dataset. As shown in Table 3, we evaluate
our framework on four widely-used event relation
extraction datasets independently. As observed,
MAQERE outperforms the previous advanced base-
line model by 3.34%, 0.83%, and 9.68% in F1
score in the HiEve, MATRES, and MECI datasets,
respectively. Simultaneously, our method shows
a slight improvement over the baseline method in
coreference relation extraction. There are two main
reasons: (1) MAQERE reduces the number of train-

ing and inference samples from n x n to k X n, re-
sulting in denser relations between event mentions
that are easier to train; (2) MAQERE overcomes
the length limitations present in baseline models,
making it easier to extract long-distance event rela-
tions. Furthermore, within the realm of generative
models, our approach outperforms the LLM-based
method, and our method achieves an average im-
provement of 5.22% on the MAVEN-ERE dataset.
In terms of F1 score, MAQERE shows improve-
ments of 5.58%, 6.01%, and 10.85% on the HiEve,
MATRES, and MECI datasets, respectively. The
primary reason is that MAQERE leverages the su-
perior semantic understanding capability of large
language models to integrate structured informa-
tion of event mentions, and uses bipartite matching
loss to mitigate the impact of sequence generation
on generative models.

Joint Training. The model is simultaneously
trained on multiple subtasks datasets. To construct
a unified event relation extraction model, joint train-
ing is primarily conducted with two sets of data.
For the first group, the coreference dataset from
MAVEN-ERE is jointly trained with HiEve, MA-
TRES, and MECI. The second group involved joint
training of the coreference, temporal, causal, and
sub-event datasets within MAVEN-ERE. As shown
in Table 3, joint training with data from different
sources resulted in performance that is lower than
that of separate training. The primary reason for
this is that datasets from different sources have
conflicting definitions of relations, resulting in the



introduction of noise during joint extraction. As
indicated in Table 4, when data from the same
source is used for joint training, the performance
of the joint training model is better than that of
separate training. Analysis has found that relations
defined consistently from the same source can be
effectively enhanced across multiple joint extrac-
tion models. Overall, compared to BertERE ;¢
and LLM-based;int, MAQERE;;,; also demon-
strated excellent performance in joint training.

5.3 Model Ablation Studies

We ablate each component of our model on MA-
TRES and MECI, as shown in Table 5. First, with-
out the marker (<0x64>-<0xFF>), we observe per-
formance drops of 2.48% on MATRES and 5.14%
on MECI, which verifies the usefulness of the pre-
fix marker. In cases where multiple answers consist
only of markers, such as "<0x84>, <0x85>" instead
of "<0x84> injured, <0x85> increase", that will
lead to a slight decrease in effectiveness. There is a
possibility that these markers may not contain com-
plete semantic information. By removing positive
sample expansion and negative sample downsam-
pling, the performance drop is equally significant.
Furthermore, after removing Parse-CoT, the per-
formance decrease is most significant. The main
reason is that Parse-CoT improves its ability to ex-
tract scattered event relations by leveraging struc-
tured information. When the bipartite matching
loss function is removed, the model effect drops se-
riously, which indicates that the bipartite matching
loss is more appropriate for scenarios where the
sequence of generated results is not predetermined.

Method MATRES MECI
P R F1 P R F1
MAQERE 855 839 84.7| 629 61.6 623

w/o Marker 81.2 84.1 826/ 589 593 59.1
only Marker 84.6 83.8 842| 622 618 62.0
w/o Expansion | 82.5 83.1 82.8| 61.7 58.8 60.2
w/o Sampling 835 833 834|602 626 614
w/o Parse-CoT | 82.3 80.5 81.4| 575 593 584
wlo Lepm 814 836 825| 61.1 615 613

Table 5: Model ablation studies. Marker refers to the
identifier that precedes a event mention, e.g., "<Ox8F>".

5.4 Bipartite Matching Loss Analysis

The performance of a generative model is greatly
affected by the generation sequence. According

to Table 6, when the bipartite matching loss is not
considered, random answer sequences perform the
worst, with a reduction of 4.00% and 3.92% com-
pared to ordered sequences in MATRES and MECI,
respectively. However, after incorporating the bi-
partite matching loss, MAQERE is capable of ef-
fectively generating the correct results with any
answer sequence used. Therefore, this evidence in-
dicates that the bipartite matching loss is especially
suitable for tasks where the generated sequence is

not crucial. For sensitivity analysis of bipartite
Method MATRES MECI
P R F1 P R F1

Random | 80.8 77.7 79.2| 59.4 584 58.9
£ | Sequence | 814 83.6 825| 61.1 61.5 613
(o\ Reverse 80.1 80.7 80.4| 613 599 60.6
E Distance | 81.5 82.7 82.1| 60.7 61.1 60.9
" | Dict 789 818 803| 60.1 585 59.3

Random | 822 84.6 834| 608 614 61.1
£ Sequence | 85.5 839 84.7| 629 61.6 623
tl; Reverse 83.7 845 84.1| 612 624 61.8
;U Distance | 83.5 85.1 84.3]| 61.7 62.7 62.2
B Dict 832 83.8 835| 625 603 614

Table 6: The performance of different answer sequences.
"Random" indicates that the answers are in a random
sequence, "Sequence" represents the sequence in which
they appear in the text, "Reverse" indicates the reverse
sequence of their appearance, "Distance" means the
answers are sorted by distance from the query mention,
and "Dict" sorts them from A to Z.
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Figure 6: The impact of the bipartite matching loss
weight A on MAQERE.

matching loss, as shown in Figure 6, the results
indicate that the model achieves optimal perfor-
mance when the weight \ assigned to the bipartite
matching loss is 0.2. As A increases, the model’s
performance will decrease, and it may even per-
form worse than when bipartite matching loss is
not utilized. The main reason is that an increase in



bipartite matching loss leads to a reduction in CE
loss, causing the model to neglect the optimization
of Parse-CoT, resulting in inaccuracies in struc-
tured information, thereby affecting the generation
of the final results.

5.5 Parse-CoT Analysis

Document-level event relation extraction usually
involves extracting relations among event mentions
that are scattered throughout the text. The utiliza-
tion of structured information, such as dependency
parse trees, can enhance the associations between
event mentions. For example, Figure 3 shows how
a dependency parse tree connects the event men-
tions "kill," "injured," and "increase" more closely.
However, integrating this structured information
effectively into MAQERE is not straightforward.
Previously, the primary approach involved directly
integrating dependency parse data into the input.
As shown in Table 7, incorporating structured infor-

Method MATRES MECI

P R F1 P R F1
w/o parser 82.3 80.5 81.4| 575 593 584
input-all 81.6 832 824| 609 60.1 60.5
input-shortest 829 837 833| 614 60.8 6l1.1
output-all 837 825 83.1| 62.8 60.3 615
output-shortest | 85.5 839 84.7| 629 61.6 623

Table 7: The impact of dependency parsing on
MAQERE. "all" indicates that the path includes all
edges, whether they are event mentions or non-event
mentions. "shortest" refers to incorporating only the
shortest path that includes edges associated with all
event mentions.

mation at the input can indeed lead to performance
enhancements compared to not providing depen-
dency parse. However, since parser information
can be overly complex and not always relevant, se-
lectively utilizing only those segments of the struc-
ture that relate to the specific event mentions can
reduce unnecessary noise, thus improving the per-
formance of MAQERE. Incorporating structured
information into the input will weaken the genera-
tion results as the length of the text increases. To
address this issue, we integrate parsing information
into the output of the model. Table 7 demonstrates
that integrating structured information into the out-
put can significantly enhance the performance of
MAQERE.

5.6 Case Study

To conduct a qualitative analysis of extracting mul-
tiple answers, we provide two examples of event
temporal relation extraction, as depicted in Fig-
ure 7. The first example demonstrates the correct
extraction during the inference process. Generating
Parse-CoT provides helpful prompts for producing
the final result. In Figure 7, we also present an in-
correct example that illustrates two issues: missing
the recall of event <Ox6A> and incorrectly recall-
ing event <0x71>. This can be attributed to the
complexity of the generated Parse-CoT, which di-
minishes the relevant structural information and
results in missed recall. Additionally, irrelevant
structural information is introduced, leading to in-
accurate recall.

A prediction with two correct event relations

Instruction: List events that may have occurred later than <0x65> prevented?
Context: Embassy in Tanzania was so powerful that it <0x64> shook furniture in
homes a mile away But the solid construction of the Israeli-built embassy may
have <0x65> prevented the carnage of a similar bomb in Kenya, an official
<0x66> said Saturday.

Predict: <0x64> shook is the ccomp of powerful; powerful is the parataxis of
<0x66> said; <0x66> said is the ccomp of <0x65> prevented. So, the event may
have occurred later than <0x65> prevented is : <0x64> shook, <0x66> said
Label: <0x64> shook, <0x66> said

A prediction with some incorrect event relations

Instruction: List events that may have occurred later than <O0x6F> pressing?
Context: Cuban exiles in Miami will now <0x6A> proceed with all their
resources to <0x6B> impede or <0x6C> delay the decision by the Immigration
and Naturalization Service. The government <0x6D> exhorted citizens to
<0x6E> keep up mass protests <Ox6F> pressing for Elian's return until the boy
<0x70> comes home. We cannot <0x71> stop <0x72> mobilizing!

Predict: <Ox6A> proceed is the parataxis of <0x6D> exhorted; <0x6D>
exhorted is the xcomp of <OX6E> keep; <Ox6E> keep is the obj of protests;
protests is the acl of <OX6F> pressing; <OX6F> pressing is the obl:for of return;
return is the dep of <0x70> comes; <0x70> comes is the parataxis of <0x71>
stop; <0x71> stop is the obj of <0x72> mobilizing; So, the event may have
occurred later than <OX6F> pressing is : <0X6D> exhorted, <0x70> comes,
<0x71> stop, <0x72> mobilizing

Label: <0x6A> proceed, <0x6D> exhorted, <0x70> comes, <0x72> mobilizing

Figure 7: Two examples demonstrating the use of
MAQERE in extracting temporal relations.

6 Conclusion

In this study, we present a unified framework called
MAQERE, aiming to improve LLM-based meth-
ods via multiple answer questions, effectively ex-
tracting various event relations through different
types of instructions. Upon the LLM-based method,
MAQERE significantly improves the performance
of this model by introducing strategies such as
multiple answer questions, parser-cot, and bipar-
tite matching loss. Our extensive ablation studies
demonstrate that our strategies effectively address
the issues present in the LLM-based method. Be-
yond event relation extraction, our work may pro-
vide insights into other relation prediction tasks.



Limitations

Nonetheless, these results must be interpreted with
caution, and several limitations should be kept in
mind. Firstly, even though the number of inference
samples has been reduced from n X n to k x n
(k < n) by using a MAQ-based event relation ex-
traction method, the inference speed of MAQERE
is still slower than that of the BERT-based classi-
fication model. But the benefits of MAQERE will
become more pronounced as the quantity of event
mentions increases. Secondly, MAQERE is sensi-
tive to instructions and markers. For more details,
please refer to Appendix F and G. Achieving opti-
mal results requires empirical adjustments through
multiple experiments, as it cannot be determined
solely by theoretical analysis. Finally, although
MAQERE has the ability to train a larger unified
event relation extraction model, the development
of a larger unified MAQ-based event relation ex-
traction model has been hindered by constraints
such as the availability of training data and GPU
resources.
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A Expansion and Downsampling

The specific approach is outlined as follows:

Positive sample expansion: To expand the num-
ber of positive samples, we employ two strate-
gies: (1) randomly replacing non-event mention
words or phrases with synonyms, and (2) using the
Mask-then-Fill strategy. The Mask-then-Fill strat-
egy involves generating an instruction for filling the
[MASK] token. Meanwhile, non-event mentioned
words or phrases in positive samples are randomly
replaced with the [MASK] token. Then, ChatGPT
is used to predict the content of the [MASK] token.
In this way, a new positive sample is produced. Fi-
nally, each positive sample is expanded to create
three additional positive samples.

Input:
3,000 civilians were killed and another 4,500 injured. . .

Mask:

[MASK] were killed and [MASK] injured. . .
Fill:

ten soldiers were killed and twenty injured. . .

Negative sample downsampling: The large num-
ber of negative samples presents a challenge for
training an effective model. To tackle this problem,
we decided to decrease the number of negative sam-
ples through downsampling. Our key strategies are
two-fold: first, we randomly remove the marker
(<0x**>) from specific invalid event mentions; sec-
ond, we utilize llama-2-chat to extract and predict
event relations in texts that lack any relations, and
subsequently randomly remove samples without
event relations. It is important to note that these
techniques are specifically applied to the training
dataset, ensuring that the integrity of the test set
remains intact.
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B Evaluation Details

Coreference relations are distinguished by their
transitive nature, unlike other types of event re-
lations. Therefore, we will continue to use the
evaluation metrics B (Bagga and Baldwin, 1998),
CEAF, (Luo, 2005), MUC (Vilain et al., 1995) and
BLANC (RECASENS and HOVY, 2011), as estab-
lished by the previous method. The essence of B3
lies in considering the contribution of each individ-
ual event mention. The system calculates the preci-
sion and recall for each coreference event mention
and then averages these across all event mentions.
This means that every event mentioned impacts the
overall score equally, regardless of the size of the
chain it belongs to. CEAF, takes into account the
alignment between coreferent event mentions and
chains. The system matches the coreference chains
generated with the gold-standard chains and evalu-
ates accuracy based on the best alignment. MUC
focuses on merging coreference chains with a min-
imal number of operations. The performance is
evaluated based on the minimum number of merge
operations required to align the system’s identified
chains with the answer key chains. This method
is usually very sensitive to missing or incorrect
links. BLANC is a relatively new metric designed
to assess the accuracy of both coreferent and non-
coreferent decisions. It considers not only the cor-
rectly linked entities but also the accurate identi-
fication of entities that are not linked. Therefore,
BLANC provides a more comprehensive perspec-
tive on coreference resolution performance. Finally,
we use precision (P), recall (R), and F1 measure
as the evaluation metrics for other event relation
extraction tasks.

C Implementation Details

We utilize the llama-2-chat as the textual encoder,
which consists of 32 layers, 4096 hidden units, and
32 attention heads. We train the model using an
Adam optimizer with weight decay, and the weight
decay rate is 1e-4. The warm-up proportion for the
learning rate is 0.1, and the dropout rate is 0.1. The
temperature used to adjust the probabilities of the
next token is set to 0.01, and the smallest set of
the most probable tokens with probabilities top_p
that add up to 0.9. In the output, we use ":" (token
id 584) as a delimiter to distinguish the Parse-CoT
from the Multiple Answers.
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D Comparison Methods Details

In this section, we provide more implementation
details of the baselines. For a fair comparison, all
of these models are implemented using PyTorch
and tested on the NVIDIA TESLA A100 GPU.
BertERE treats event relation extraction as a mul-
ticlass classification problem. The various types
of relations between events form the label set for
the classification model. For BertERE;;,,¢, we
utilize RoBERTa as the backbone network, setting
the learning rate for the Transformer at 2e-5 and
for the classification multilayer perceptron at Se-4.
When providing text input, the system selects the
longest text containing the event pair, with a max-
imum length limit of 512. LLM-based method
treats event relation extraction as a text generation
task, and its backbone network, pre-trained models,
and training parameters are consistent with those
of MAQERE.

E Expansion and Downsampling Analysis

There are a large number of event mentions, but the
proportion of event mention pairs that actually have
a relation is comparatively small, as indicated by

of samples. In such cases, using synonyms can be a
more suitable approach. When downsampling neg-
ative samples, randomly removing markers from
event mentions can effectively improve the perfor-
mance of the model. Additionally, leveraging the
LLM for zero-shot predictions helps preserve the
more challenging samples.

F Different Instructions Analysis

The event relation extraction model based on LLM
is greatly affected by instructions. We conducted
experiments to validate different sets of instruc-
tions and found that, for fixed tasks, shorter and
more concise instructions tend to be more effective.
Simultaneously, we conducted several tests, as pre-
sented in Table 9. Firstly, providing all potential
event mentions in the instruction resulted in a slight
drop in the F1 score. Secondly, when the model is
allowed to directly generate event relations based
on event mentions, its performance significantly
decreases due to the large number of event mention
pairs generating relations labeled as NoRel. When
multiple different relations are generated simulta-
neously, the model’s performance is at its worst.

Links :
the data (577705 i fentions) 10 Ta.bk: 2.. Regard- :
less of the approach employed (classification, LLM, Instruction MECI
. - 1 92
or MAQ), the model struggles to assimilate valu- L-1st the cause event of <0x85> earthquake ? 62.3
able information when trained on all event mention Find the cause event of <0x85> earthquake | ¢, ;
] o o ) from the event mentions <0x71> scorched, ...? '
pairs. To tackle this issue, it is necessary to in- What's the event relation between <0x85> earth- 60.4
quake and <0x71> scorched, <0x72> deny, ...? )
Method MATRES MECI List the cause and effect event of <0x85> earth- 56.6
P R Fl P R Fl quake ? :
Synonym 849 827 83.8| 62.2 60.6 614 )
_gj M&F 835 81.1 843 638 605 62.1 Table 9: .The F]. score Of MAQERE on MECI varies
E | Mixed 855 839 847| 629 616 623  amongdifferentinstructions.
Random 83.1 82.1 82.6| 60.5 613 609
g LLM Pred | 84.7 83.1 839]| 613 62.1 61.7
S | Mixed 855 839 847[ 629 616 623 G Different Markers Analysis

Table 8: The impact of positive sample expansion and
negative sample downsampling on the model.

crease the number of positive samples and decrease
the number of negative samples. Importantly, to
ensure consistency in evaluation, data augmenta-
tion and sampling techniques are only applied to
the training dataset. For positive sample expansion,
as shown in Table 8, we employ a LLM with a
Mask-then-Fill technique, which has been found to
be more effective than simply replacing words with
their synonyms. However, there are cases where the
LLM fails to generate a sufficiently diverse range
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In our study, we use various markers to prompt
event mentions, building on previous research (Lu
et al., 2022; Ye et al., 2022). The experiments are
divided into three groups, as outlined in Table 10.
The first set of experiments utilizes special tokens
already present in llama-2-chat as markers, such as
<0x**>. This method produced the best results
compared to the other sets of experiments. Addi-
tionally, we observed that adding the special end
character after the event mention does not improve
performance. This is primarily due to the lack of
actual semantic information and the use of multiple
tokens, which compromises the original semantic



Marker Tokenizer MECI
<0x64> | [103] 62.3
<0x64> [103] 62.1
</> [1533, 29958] .
<No64> | [529, 3782, 29953, 29946, 29958] | 59.5
<No6d> | [529, 3782, 29953, 29946, 29958]

<> (1533, 29958] 593
<Strong> | [529, 1110, 29958] 60.2
<Strong> | [529, 1110, 29958] s
<> [1533, 29958] 7

Table 10: The F1 score of MAQERE on MECI varies

among different markers.

coherence. In the second set of experiments, we
replaced <0x**> with <No**> and observed a sig-
nificant drop in the model’s effectiveness. As in
the previous case, the insertion of too many tokens
results in semantic incoherence. In the third set of
experiments, all event mentions are inserted into
the same marker, resulting in a noticeably worse

effect.
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