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Abstract

Extracting event relations that deviate from001
known schemas has proven challenging for pre-002
vious methods based on multi-class classifica-003
tion, MASK prediction, or prototype match-004
ing. While the LLM-based method can devise005
diverse instructions to alleviate these issues,006
it is also accompanied by certain limitations:007
the need to create a large number of training008
and inference samples, heightened sensitivity009
to the sequence of event relation generation,010
and difficulties in extracting scattered event re-011
lations. To tackle these challenges, we present012
an improved unified event relation extraction013
framework based on LLM named MAQERE.014
Firstly, we transform the pair-based extraction015
issue in LLM-based methods into a multiple an-016
swer question problem, which reduces the num-017
ber of samples required for training and infer-018
ence. Additionally, by incorporating a bipartite019
matching loss, we have reduced the dependency020
of the LLM-based method on the generation021
sequence. Then, we employ Parse-CoT to ex-022
tract structured information for enhancing the023
connections between event mentions. Our ex-024
perimental results demonstrate that MAQERE025
can significantly improve the performance of026
the LLM-based method in the task of event027
relation extraction.028

1 Introduction029

Event Relation Extraction (ERE) is the task of pre-030

dicting relations between event mentions in un-031

structured text. Take the text "Last year, more than032

3,000 civilians were killed and another 4,500 were033

injured in Afghanistan, with roughly a 5% increase034

from 2010" as an example. The goal of ERE is to035

identify all relevant event mention pairs (<killed,036

sub-event, increase>) from the given event men-037

tions ("killed", "injured", and "increase"). ERE038

tasks are highly diversified due to their varying039

sub-tasks (coreference, temporal, causal, sub-event,040

etc.) and complex relations (symmetrical, asym-041

metrical, cross, etc.) (Han et al., 2019, 2020; Min042

et al., 2020; Wen and Ji, 2021; Tang et al., 2021; 043

Hu et al., 2023b). 044

Most previous studies (Nguyen et al., 2022a; 045

Wang et al., 2023a; Yuan et al., 2023; Caselli and 046

Vossen, 2017; Xu et al., 2022; Nguyen et al., 2022b) 047

have primarily focused on optimizing a specific 048

sub-task, making it difficult to migrate model struc- 049

tures, optimization strategies, specialized knowl- 050

edge sources, and domain data between different 051

sub-tasks. While some studies (Wang et al., 2022; 052

Hu et al., 2023b) employ multi-head classification 053

or prototype matching to tackle multiple subtasks 054

simultaneously, these methods rely on pre-defined 055

relation schemas and are unable to effectively han- 056

dle newly introduced, modified, or upgraded rela- 057

tion schemas. While large language models such 058

as ChatGPT and LLAMA demonstrate exceptional 059

semantic understanding and zero-shot learning ca- 060

pabilities, the LLM-based method, which can de- 061

vise diverse instructions to address these issues, 062

also faces certain limitations such as the need for a 063

large number of training samples, high sensitivity 064

to the generated sequence, and difficulty in extract- 065

ing scattered event relations.

Classification Based

[CLS] battle [SEP] attacking [SEP]The Battle of Sultanabad occurred …[SEP] 
[CLS] Battle of Sultanabad [SEP] attacking [SEP]The Battle of Sultan…[SEP]
LLM Based

instruction: What kind of event relation is battle and attacking? The candidate 
event relations are: effect, cause, coreference, parent, child, contains, …
input: The Battle of Sultanabad occurred on Feb. 13, 1812. … The Persians 
won the battle by moving faster than the Russians and attacking …
output: contains, child
Multiple Answers Question Based

instruction: List the child event of attacking? 
input: The <0x64>Battle of Sultanabad occurred on <0x65>Feb. 13, 1812. … 
The Persians won the <0x66>battle by moving faster than the Russians and 
<0x67>attacking …
output: <0x64>Battle of Sultanabad, <0x66>battle

Figure 1: Different ERE methods. The special, individ-
ual, unused character <0x64>-<0xFF> in LLAMA is
used to indicate candidate event mentions.

066
For a more intuitive comparison, we present the 067

different methods in Figure 1. The classification- 068

1



based method utilizes one-hot embedding to rep-069

resent the event relation labels, which overlooks070

the semantic information of the labels. The LLM-071

based method employs candidate event mention072

pairs and all event relations as the instruction, utiliz-073

ing the large language model to generate all event074

relations. Obviously, the LLM-based method has075

some significant drawbacks. Firstly, it involves076

a substantial amount of training and inference077

samples, reaching n × n, where n represents the078

number of event mentions. Secondly, the model079

is heavily influenced by the sequence of genera-080

tion when multiple relations are produced. Using081

the LLM-based method shown in Figure 1 as an082

example, the model generates p(contains|child)083

and p(child|contains) with varying probabilities.084

However, in the event relation extraction task, the085

sequence of generation should not affect the event086

relation between event mentions.087

To reduce the training and inference samples088

of the LLM-based model, we draw inspiration089

from multi-span extraction and multi-choice read-090

ing comprehension (Hu et al., 2019; Yang et al.,091

2021; Segal et al., 2020).092

# Multi-Choice Reading Comprehension
Context: I wanted to plant a tree. I went to the home and
garden store and picked a nice oak. Afterwards, I planted
it in my garden.

Question: When did he plant the tree?
A. after watering it B. after taking it home

Answers: B

# Multi-Span Extraction Reading Comprehension
Context: Salary. The average salary range for a zoologist in
the initial stages of his or her career is $30,000 to $45,000
per year. After five years of work experience, the range is
$40,000 to $55,000 per year.

Question: zoology salary

Answers: $30,000 to $45,000, $40,000 to $55,000
093

By integrating multi-span extraction and multi-094

choice techniques, we incorporate special charac-095

ters into the text to indicate candidate event men-096

tions. This approach enables the large language097

model to select from them during generation. For098

specific examples, please refer to the multiple an-099

swer question based method in Figure 1. In the100

event relation extraction task, the number of event101

relation types k ≪ n. Therefore, for the multi-102

ple answer question based model, the training and103

inference samples are reduced from n×n to k×n.104

To reduce the effect of generated sequences105

on LLM-based methods, we introduce a bipartite106

matching loss. As shown in Figure 2, the LLM-107

based method employs cross-entropy loss to guar- 108

antee an accurate sequence of generation. Nonethe- 109

less, for the task of event relation extraction, the 110

sequence of generation does not affect the final re- 111

sult. This makes the bipartite matching loss a better 112

fit for such tasks. The example in Figure 2 demon- 113

strates that using the cross-entropy loss results in 2 114

mistakes, while the bipartite matching loss yields 1 115

correct answer and 1 mistake.

<0x85> increase <pad>

<0x84> injured <0x85> increase

Prediction
L
abel

Cross Entropy Loss

<0x85> increase <pad>

<0x84> injured <0x85> increase

Bipartite Matching Loss

Figure 2: Comparison of cross-entropy loss and bipartite
matching loss.

116

Additionally, event mentions are short phrases 117

or single words, providing limited details. Fur- 118

thermore, the relations between event mentions are 119

extremely scattered, with pairs that have relations 120

making up less than 5%. Despite this, the LLM- 121

based method typically utilizes uni-directional 122

transformers, which are especially prone to the 123

issue of long-distance forgetting. To address this 124

challenge, we have implemented Parse-CoT as a 125

strategy to decelerate this problem, which is de- 126

picted in Figure 3. For example, in the text "Last 127

year, more than 3,000 civilians were <0x83> killed 128

and another 4,500 <0x84> injured in Afghanistan, 129

with a roughly 5% <0x85> increase compared to 130

2010", where "increase" is the direct object related 131

to "killed", and "injured" is linked as a conjunction 132

with "killed"1. By integrating information from 133

Parse-CoT, the model is able to improve its ability 134

to extract scattered event relations.

Last year more than 3,000 civilians were <0x83> killed and 
another 4,500 <0x84> injured in Afghanistan, roughly a 5%
<0x85> increase compared to 2010

killed and another 4,500 injured in Afghanistan , roughly a 5% increase

CDCD NNPVBN VBN NNCC DT DTIN RB,

obj
punct

case

obj:in
conj:and

cc
det

advmod

… …

nsubj
compound
det

Figure 3: Dependency parsing tree of the input context.

135

In summary, the main contributions of this paper 136

are: 137

1) We propose a unified event relation extraction 138

framework (MAQERE) based on multiple answer 139

1The composition and meaning of dependent edges refer
to https://stanfordnlp.github.io/CoreNLP/
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questions. Compared with the LLM-based method,140

our method reduces the training and inference sam-141

ples from n× n to k × n.142

2) In the MAQERE framework, we incorporate a143

bipartite matching loss to reduce the dependency of144

the LLM-based method on the generation sequence,145

making it more suitable for event relation extraction146

tasks.147

3) We propose a Parse-CoT that enhances the ca-148

pability of LLM-based methods in extracting scat-149

tered event relations.150

2 Related Work151

Previous existing methods (Man et al., 2022;152

Hwang et al., 2022; Huang et al., 2023; Barhom153

et al., 2019; Hu et al., 2023a; Wang et al., 2022; Tan154

et al., 2023) for event relation extraction primarily155

utilize multi-class classification, MASK prediction,156

or prototype matching, which focus on addressing157

specific sub-tasks such as coreference, temporal,158

causal, or sub-event relations. In the classification-159

based approach (Huang et al., 2023; Lu and Ng,160

2021; Tran et al., 2021; Zeng et al., 2020; Wang161

et al., 2020; Barhom et al., 2019), event mentions162

are paired together, and then additional features163

are incorporated, such as prototypes, logical rules,164

graph convolutional networks, or prompts. MASK165

prediction based methods (Xiang et al., 2023; Shen166

et al., 2022; Cui et al., 2022) train a masked lan-167

guage model to predict the relation. The prototype168

matching based method (Hu et al., 2023b) man-169

ually selects instances to serve as prototypes for170

each relation. Then, new instances are matched171

against these prototypes. Segal et al. (2020) and Hu172

et al. (2019) each proposed a reading comprehen-173

sion model based on multi-choice and multi-span,174

respectively, which allows the model to select the175

correct answer from the candidate options or to176

generate multiple answers simultaneously. Simul-177

taneously, there are many entity relation extrac-178

tion methods based on LLMs (Wang et al., 2023b;179

Xu et al., 2024; Xiao et al., 2024), which directly180

prompt large language models to generate relations181

between pairs of entities. In this task, these meth-182

ods have many drawbacks. Therefore, we have183

designed a series of improvement measures to ad-184

dress these identified deficiencies.185

3 Methodology186

The architecture of our framework is illustrated187

in Figure 4. Our model mainly consists of three188

parts. Firstly, the event relation extraction samples 189

are constructed based on multiple answer ques- 190

tions. Secondly, we constructed Parse-CoT using 191

the Core NLP Dependency Parser in the Stanford 192

NLP toolkit. Finally, we introduce a loss function 193

for multiple answer questions to reduce reliance on 194

the generated sequences. 195

3.1 Sample Construction 196

The training and inference samples of our frame- 197

work are constructed as follows: 198

Instruction: To unify the various inputs for dif- 199

ferent event relation extraction sub-tasks, we have 200

developed various instructions, as demonstrated in 201

Table 1. Each instruction contains an event rela- 202

tion and a candidate event mention, where <0x64>- 203

<0xFF> is a special, individual, unused character 204

in LLAMA, which we use to indicate the candidate 205

event mention.

Instruction
Coref. List the coreference event of <0x85> ruled ?

Temp.

List the... earlier than <0x72> said ?
List the... later than <0x72> said ?
List the... the same time as <0x72> said ?
List the... inconsistent with...<0x72> said ?

Causal
List the cause event of <0x64> keep ?
List the effect event of <0x64> keep ?

Sub.
List the parent event of <0x83> killed ?
List the child event of <0x83> killed ?

Table 1: Various instructions for different event relation
extraction sub-tasks.

206

Context: In the event relation extraction task, all 207

candidate event mentions are provided. We insert a 208

marker (<0x64>-<0xFF>) sequentially in the text 209

where the candidate events appear, with the first 210

candidate event mention receiving <0x64>, the sec- 211

ond <0x65>, and so on. These markers signal the 212

large language model to confine its generation re- 213

sults to only the specified contents. 214

Label: The output is divided into two parts: Parse- 215

CoT and Multiple Answers, separated by a colon. 216

The construction of Parse-CoT is according to sec- 217

tion 3.2. Similar to before, markers will also be 218

inserted in the Parse-CoT and Multiple Answers 219

part to uniquely identify the event mentions. If 220

there are multiple answers, they are listed in the 221

order they appear in the text, separated by commas. 222

For those without associated event mentions, the 223

Multiple Answers part is set to none. 224
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LLM

List the parent event
of <0x83> killed ?

Last year more than 3,000 civilians were <0x83> killed and another 4,500 <0x84> 
injured in Afghanistan, roughly a 5% <0x85> increase compared to 2010

Instruction Context

<0x83> killed is the conj:and of <0x84> injured; <0x83> killed is the
obj of <0x85> increase. So, the parent event of <0x83> killed is : <0x84> injured , <0x85> increase

<0x83> killed is the conj:and of <0x84> injured; <0x83> killed is the
obj of <0x85> increase. So, the parent event of <0x83> killed is : <0x85> increase

Parse-CoT Multiple Answers

𝐿
!"

𝐿
#
$%

L
abel

Prediction
➕

➕

𝐿
!"

Figure 4: The overview of the MAQERE framework. The input includes instructions and context, and the special
characters <0x64>-<0xFF> in LLAMA are used to indicate candidate event mentions. The output includes Parse-
CoT and Multiple Answers.

However, in event relation extraction tasks, there225

are a large number of event mentions, but the rela-226

tions between event mentions are extremely scat-227

tered, with pairs that have relations making up less228

than 5%. As a result, whether using the LLM-based229

or MAQ-based approach, a large number of nega-230

tive samples are created (the Multiple Answers part231

is none), making training the model challenging.232

To tackle this challenge, we utilized positive sam-233

ple expansion and negative sample downsampling234

techniques. For specific implementation details,235

refer to Appendix A.236

3.2 Parse-CoT Construction237

We employ the Core NLP Dependency Parser from238

the Stanford NLP toolkit to derive the dependency239

parse tree of the context. As shown in Figure 3, af-240

ter parsing the context for dependencies, numerous241

dependency edges are generated. The meaning of242

each type of edge can be found in the official docu-243

mentation of the Stanford NLP toolkit. In event re-

A B C D
𝑟! 𝑟"

𝑟# 𝑟$

Figure 5: A, B, D represent event mentions, while C
denotes other words. r1, r2, r3, r4 represent different
dependency relations.

244

lation extraction tasks, we only focus on the edges245

between event mentions. Therefore, we retain only246

the minimum number of nodes and edges necessary 247

to connect all the event mentions. In cases where 248

the number of nodes and edges is the same, we 249

retain them based on the order in which the nodes 250

appear. As shown in Figure 5, both <r1, r2, r4> 251

and <r3, r2, r4> are valid paths, but we only retain 252

the first one that appears, <r1, r2, r4>. It is crucial 253

to mention that since the dependency parser func- 254

tions at the sentence level, we substitute "." with ";" 255

to ensure the generation of the required Parse-CoT. 256

3.3 Multiple Answer Questions Loss 257

The generated sequence significantly affects the 258

effectiveness of text generation, as supported by 259

relevant research (Ye et al., 2021; Cao and Zhang, 260

2022). However, in the task of event relation extrac- 261

tion, the sequence of generating the answer does 262

not affect the final result. To mitigate the impact of 263

generation sequence, we calculate distinct losses 264

for Parse-CoT and Multiple Answers. The loss 265

of Parse-CoT and Multiple Answers is defined as 266

follows: 267

LCE =
1

N

N∑
i=0

CE(yi, p(yi|x)) (1) 268

where N = N1 +N2, N1 represents the length of 269

Parse-CoT and N2 represents the length of Mul- 270

tiple Answers. CE is the cross-entropy loss. As 271

illustrated in Figure 2, the sequence of generation 272
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does not impact the multiple answers. The loss of273

Multiple Answers is calculated as follows:274

(a) First, use the Hungarian Algorithm to find275

the optimal match.276

θ̂ = argmin
θ∈ΨN2

N2∑
i=0

1− log p̂θ(i)(ci) (2)277

(b) After optimal allocation, the loss function for278

Multiple Answers is:279

LBPM =

N2∑
i=0

1− log p̂θ̂(i)(ci) (3)280

(c) Finally, the total loss is as follows:281

L = LCE + λLBPM (4)282

where ΨN2 denotes a permutation of N2. θ is one283

of the permutations. θ(i) is the i-th element in284

permutation θ. ci represents the target vocabulary285

id of the i-th element. The probability of the i-th286

element in the permutation θ belonging to the target287

vocabulary id is denoted by p̂θ(i)(ci). θ̂ stands for288

the optimal permutation. The weight parameter is289

represented by λ.290

4 Experimental Settings291

Dataset. Our experiments are conducted on four292

widely-used datasets (cf. Table 2), including293

MAVEN-ERE (Wang et al., 2022) for coreference294

relation extraction and unified event relation ex-295

traction, HiEve (Glavas et al., 2014) for sub-event296

relation extraction, MATRES (Ning et al., 2018)297

for temporal relation extraction, and MECI (Lai298

et al., 2022) for causal relation extraction. For a

Datasets #Docs #Mentions #Links
MAVEN-ERE 4,480 112,276 103,193
HiEve 100 3, 185 3,648
MATRES 275 11,861 13,573
MECI 438 8,732 2,050

Table 2: Dataset Statistics. "#" denotes the amount.
"Mentions" represents the potential events. "Links"
means the event relations.

299
fair comparison, we divided the data into the same300

training, validation, and test sets as in previous301

studies (Wang et al., 2022; Man et al., 2022; Zhou302

et al., 2022; Lai et al., 2022). In particular, since303

the training and test sets are not divided, consistent304

with previous works, HiEve selects 80 documents305

for training (0.4 probability for down-sampling of 306

negative examples) and 20 documents for testing. 307

Since MAVEN-ERE does not have an open test set, 308

we have chosen to use the validation set for testing. 309

Evaluation Metric. Based on previous research 310

on event relation extraction (Choubey and Huang, 311

2017; Nguyen et al., 2022a; Wang et al., 2023a; 312

Yuan et al., 2023; Caselli and Vossen, 2017; Xu 313

et al., 2022; Nguyen et al., 2022b), we adopt 314

MUC (Vilain et al., 1995), B3 (Bagga and Bald- 315

win, 1998), CEAFe (Luo, 2005) and BLANC (RE- 316

CASENS and HOVY, 2011) metrics for event 317

coreference relation. For the other three subtasks, 318

we adopt the standard micro-averaged precision, 319

recall, and F-1 metrics. In particular, in the sub- 320

event relation extraction task, PC and CP represent 321

the F1 scores for parent-child and child-parent re- 322

lations, respectively. For more details, please refer 323

to Appendix B. 324

Implementation Details. For MAQERE, we have 325

chosen the llama-2-chat2 as the backbone network. 326

Our training is conducted on 4×A100-80G. The 327

input sequence length is 1536, and the output se- 328

quence length is 512. The weight for the bipartite 329

matching loss, denoted as λ, is set to 0.2. We use a 330

learning rate of 5e-4, a batch size of 16, and a gradi- 331

ent accumulation of 2. The learning rate scheduler 332

follows a cosine function, and the model is trained 333

for 20 epochs. The results reported in the experi- 334

ment are the averages of 5 different random seeds 335

(0,1,2,3,4). For other hyper-parameters and details, 336

please refer to Appendix C. 337

5 Experimental Results 338

5.1 Comparison Methods 339

The baseline model of MAVEN-ERE (Wang et al., 340

2022) utilizes joint learning to incorporate relation 341

interactions. In the case of HiEve, the baseline 342

model (Man et al., 2022) involves selecting the 343

optimal context sentence for event-event relation 344

extraction. Meanwhile, the baseline model (Zhou 345

et al., 2022) in MATRES involves constructing a 346

graph based on syntax and semantics to extract rela- 347

tional structures. Lastly, the baseline approach (Lai 348

et al., 2022) in MECI uses a graph-based model to 349

construct interaction graphs that depict crucial con- 350

nections among important entities. This enables 351

the identification of event causality at the docu- 352

ment level. BertERE employs a RoBERTa-based 353

multi-class classification method to extract event 354

2https://huggingface.co/hfl/chinese-alpaca-2-7b
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Method
MAVEN-ERE HiEve MATRES MECI

B3 CEAFe MUC BLANC PC CP Avg P R F1 P R F1
Baselines 97.9 97.6 79.7 88.4 68.7 63.2 65.9 82.2 85.8 84.0 48.1 69.5 56.8
BertERE 94.5 95.1 77.4 87.2 65.7 61.5 63.4 80.2 82.4 81.3 50.7 54.2 52.4
BertEREjoint 95.5 94.8 77.1 85.3 64.9 60.8 62.8 79.4 79.6 79.5 48.1 51.4 49.7
LLM-based 93.5 93.4 74.1 85.4 65.5 63.5 64.5 80.3 79.5 79.9 57.8 54.7 56.2
LLM-basedjoint 91.2 91.5 72.6 83.2 64.2 60.8 62.5 79.9 78.5 79.2 56.3 55.5 55.8
MAQERE 98.1 97.8 79.9 88.7 67.8 68.5 68.1 85.5 83.9 84.7 62.9 61.6 62.3
MAQEREjoint 97.4 96.5 78.8 87.2 67.2 67.0 67.1 82.3 83.5 82.9 59.7 60.5 60.1

Table 3: The comprehensive performance of MAQERE across various datasets.

Models
COREFERENCE TEMPORAL CAUSAL SUBEVENT

B3 CEAFe MUC BLANC P R F1 P R F1 P R F1
BertEREjoint 97.8 97.6 79.8 88.3 50.9 53.4 52.1 31.3 30.5 30.9 24.6 22.9 23.7
LLM-basedjoint 94.2 93.5 73.3 84.7 48.5 51.0 49.7 28.6 28.0 28.3 20.9 21.7 21.3
MAQEREjoint 98.1 97.9 80.2 88.9 53.3 54.3 53.8 33.4 31.6 32.5 25.8 24.6 25.2

Table 4: The performance of various unified event relation extraction models on the unified dataset MAVEN-ERE.

relations for event pairs consisting of all event men-355

tions. BertEREjoint encodes the whole document356

using RoBERTa, then sets an additional classifica-357

tion head that takes the contextualized representa-358

tions at the positions of different event pairs. Af-359

terward, it fine-tunes the model to classify relation360

labels. LLM-based method employs candidate361

event mention pairs and event relations as the in-362

struction, leveraging the large language model’s363

capability to generate comprehensive event rela-364

tions. MAQERE stands for event relation extrac-365

tion based on multiple answer questions, which366

enhances the effectiveness of LLM-based meth-367

ods through the integration of bipartite matching368

loss and Parse-CoT. MAQEREjoint and LLM-369

basedjoint represent the joint training of various370

diverse subtask datasets. For more implementa-371

tion details and hyper-parameters of the compared372

methods, please refer to Appendix D.373

5.2 Overall Results374

Separate Training. The model is trained on a sub-375

task dataset. As shown in Table 3, we evaluate376

our framework on four widely-used event relation377

extraction datasets independently. As observed,378

MAQERE outperforms the previous advanced base-379

line model by 3.34%, 0.83%, and 9.68% in F1380

score in the HiEve, MATRES, and MECI datasets,381

respectively. Simultaneously, our method shows382

a slight improvement over the baseline method in383

coreference relation extraction. There are two main384

reasons: (1) MAQERE reduces the number of train-385

ing and inference samples from n× n to k × n, re- 386

sulting in denser relations between event mentions 387

that are easier to train; (2) MAQERE overcomes 388

the length limitations present in baseline models, 389

making it easier to extract long-distance event rela- 390

tions. Furthermore, within the realm of generative 391

models, our approach outperforms the LLM-based 392

method, and our method achieves an average im- 393

provement of 5.22% on the MAVEN-ERE dataset. 394

In terms of F1 score, MAQERE shows improve- 395

ments of 5.58%, 6.01%, and 10.85% on the HiEve, 396

MATRES, and MECI datasets, respectively. The 397

primary reason is that MAQERE leverages the su- 398

perior semantic understanding capability of large 399

language models to integrate structured informa- 400

tion of event mentions, and uses bipartite matching 401

loss to mitigate the impact of sequence generation 402

on generative models. 403

Joint Training. The model is simultaneously 404

trained on multiple subtasks datasets. To construct 405

a unified event relation extraction model, joint train- 406

ing is primarily conducted with two sets of data. 407

For the first group, the coreference dataset from 408

MAVEN-ERE is jointly trained with HiEve, MA- 409

TRES, and MECI. The second group involved joint 410

training of the coreference, temporal, causal, and 411

sub-event datasets within MAVEN-ERE. As shown 412

in Table 3, joint training with data from different 413

sources resulted in performance that is lower than 414

that of separate training. The primary reason for 415

this is that datasets from different sources have 416

conflicting definitions of relations, resulting in the 417
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introduction of noise during joint extraction. As418

indicated in Table 4, when data from the same419

source is used for joint training, the performance420

of the joint training model is better than that of421

separate training. Analysis has found that relations422

defined consistently from the same source can be423

effectively enhanced across multiple joint extrac-424

tion models. Overall, compared to BertEREjoint425

and LLM-basedjoint, MAQEREjoint also demon-426

strated excellent performance in joint training.427

5.3 Model Ablation Studies428

We ablate each component of our model on MA-429

TRES and MECI, as shown in Table 5. First, with-430

out the marker (<0x64>-<0xFF>), we observe per-431

formance drops of 2.48% on MATRES and 5.14%432

on MECI, which verifies the usefulness of the pre-433

fix marker. In cases where multiple answers consist434

only of markers, such as "<0x84>, <0x85>" instead435

of "<0x84> injured, <0x85> increase", that will436

lead to a slight decrease in effectiveness. There is a437

possibility that these markers may not contain com-438

plete semantic information. By removing positive439

sample expansion and negative sample downsam-440

pling, the performance drop is equally significant.441

Furthermore, after removing Parse-CoT, the per-442

formance decrease is most significant. The main443

reason is that Parse-CoT improves its ability to ex-444

tract scattered event relations by leveraging struc-445

tured information. When the bipartite matching446

loss function is removed, the model effect drops se-447

riously, which indicates that the bipartite matching448

loss is more appropriate for scenarios where the449

sequence of generated results is not predetermined.450

Method
MATRES MECI

P R F1 P R F1
MAQERE 85.5 83.9 84.7 62.9 61.6 62.3
w/o Marker 81.2 84.1 82.6 58.9 59.3 59.1
only Marker 84.6 83.8 84.2 62.2 61.8 62.0
w/o Expansion 82.5 83.1 82.8 61.7 58.8 60.2
w/o Sampling 83.5 83.3 83.4 60.2 62.6 61.4
w/o Parse-CoT 82.3 80.5 81.4 57.5 59.3 58.4
w/o LBPM 81.4 83.6 82.5 61.1 61.5 61.3

Table 5: Model ablation studies. Marker refers to the
identifier that precedes a event mention, e.g., "<0x8F>".

451

5.4 Bipartite Matching Loss Analysis452

The performance of a generative model is greatly453

affected by the generation sequence. According454

to Table 6, when the bipartite matching loss is not 455

considered, random answer sequences perform the 456

worst, with a reduction of 4.00% and 3.92% com- 457

pared to ordered sequences in MATRES and MECI, 458

respectively. However, after incorporating the bi- 459

partite matching loss, MAQERE is capable of ef- 460

fectively generating the correct results with any 461

answer sequence used. Therefore, this evidence in- 462

dicates that the bipartite matching loss is especially 463

suitable for tasks where the generated sequence is 464

not crucial. For sensitivity analysis of bipartite

Method
MATRES MECI

P R F1 P R F1

w
/o

L
B
P
M

Random 80.8 77.7 79.2 59.4 58.4 58.9
Sequence 81.4 83.6 82.5 61.1 61.5 61.3
Reverse 80.1 80.7 80.4 61.3 59.9 60.6
Distance 81.5 82.7 82.1 60.7 61.1 60.9
Dict 78.9 81.8 80.3 60.1 58.5 59.3

w
/L

B
P
M

Random 82.2 84.6 83.4 60.8 61.4 61.1
Sequence 85.5 83.9 84.7 62.9 61.6 62.3
Reverse 83.7 84.5 84.1 61.2 62.4 61.8
Distance 83.5 85.1 84.3 61.7 62.7 62.2
Dict 83.2 83.8 83.5 62.5 60.3 61.4

Table 6: The performance of different answer sequences.
"Random" indicates that the answers are in a random
sequence, "Sequence" represents the sequence in which
they appear in the text, "Reverse" indicates the reverse
sequence of their appearance, "Distance" means the
answers are sorted by distance from the query mention,
and "Dict" sorts them from A to Z.

0.0 0.1 0.2 0.3 0.4 0.5
The bipartite matching loss weight 

55

60

65

70

75

80

85

90

F1
 sc

or
e

MATRES
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Figure 6: The impact of the bipartite matching loss
weight λ on MAQERE.

465
matching loss, as shown in Figure 6, the results 466

indicate that the model achieves optimal perfor- 467

mance when the weight λ assigned to the bipartite 468

matching loss is 0.2. As λ increases, the model’s 469

performance will decrease, and it may even per- 470

form worse than when bipartite matching loss is 471

not utilized. The main reason is that an increase in 472
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bipartite matching loss leads to a reduction in CE473

loss, causing the model to neglect the optimization474

of Parse-CoT, resulting in inaccuracies in struc-475

tured information, thereby affecting the generation476

of the final results.477

5.5 Parse-CoT Analysis478

Document-level event relation extraction usually479

involves extracting relations among event mentions480

that are scattered throughout the text. The utiliza-481

tion of structured information, such as dependency482

parse trees, can enhance the associations between483

event mentions. For example, Figure 3 shows how484

a dependency parse tree connects the event men-485

tions "kill," "injured," and "increase" more closely.486

However, integrating this structured information487

effectively into MAQERE is not straightforward.488

Previously, the primary approach involved directly489

integrating dependency parse data into the input.490

As shown in Table 7, incorporating structured infor-

Method
MATRES MECI

P R F1 P R F1
w/o parser 82.3 80.5 81.4 57.5 59.3 58.4
input-all 81.6 83.2 82.4 60.9 60.1 60.5
input-shortest 82.9 83.7 83.3 61.4 60.8 61.1
output-all 83.7 82.5 83.1 62.8 60.3 61.5
output-shortest 85.5 83.9 84.7 62.9 61.6 62.3

Table 7: The impact of dependency parsing on
MAQERE. "all" indicates that the path includes all
edges, whether they are event mentions or non-event
mentions. "shortest" refers to incorporating only the
shortest path that includes edges associated with all
event mentions.

491
mation at the input can indeed lead to performance492

enhancements compared to not providing depen-493

dency parse. However, since parser information494

can be overly complex and not always relevant, se-495

lectively utilizing only those segments of the struc-496

ture that relate to the specific event mentions can497

reduce unnecessary noise, thus improving the per-498

formance of MAQERE. Incorporating structured499

information into the input will weaken the genera-500

tion results as the length of the text increases. To501

address this issue, we integrate parsing information502

into the output of the model. Table 7 demonstrates503

that integrating structured information into the out-504

put can significantly enhance the performance of505

MAQERE.506

5.6 Case Study 507

To conduct a qualitative analysis of extracting mul- 508

tiple answers, we provide two examples of event 509

temporal relation extraction, as depicted in Fig- 510

ure 7. The first example demonstrates the correct 511

extraction during the inference process. Generating 512

Parse-CoT provides helpful prompts for producing 513

the final result. In Figure 7, we also present an in- 514

correct example that illustrates two issues: missing 515

the recall of event <0x6A> and incorrectly recall- 516

ing event <0x71>. This can be attributed to the 517

complexity of the generated Parse-CoT, which di- 518

minishes the relevant structural information and 519

results in missed recall. Additionally, irrelevant 520

structural information is introduced, leading to in- 521

accurate recall.

A prediction with two correct event relations
Instruction: List events that may have occurred later than <0x65> prevented?
Context: Embassy in Tanzania was so powerful that it <0x64> shook furniture in 
homes a mile away But the solid construction of the Israeli-built embassy may 
have <0x65> prevented the carnage of a similar bomb in Kenya, an official 
<0x66> said Saturday.
Predict: <0x64> shook is the ccomp of powerful; powerful is the parataxis of 
<0x66> said; <0x66> said is the ccomp of <0x65> prevented. So, the event may 
have occurred later than <0x65> prevented is : <0x64> shook, <0x66> said
Label: <0x64> shook, <0x66> said

A prediction with some incorrect event relations
Instruction: List events that may have occurred later than <0x6F> pressing?
Context: Cuban exiles in Miami will now <0x6A> proceed with all their 
resources to <0x6B> impede or <0x6C> delay the decision by the Immigration 
and Naturalization Service. The government <0x6D> exhorted citizens to 
<0x6E> keep up mass protests <0x6F> pressing for Elian's return until the boy 
<0x70> comes home. We cannot <0x71> stop <0x72> mobilizing! 
Predict: <0x6A> proceed is the parataxis of <0x6D> exhorted; <0x6D> 
exhorted is the xcomp of <0x6E> keep; <0x6E> keep is the obj of protests; 
protests is the acl of <0x6F> pressing; <0x6F> pressing is the obl:for of return; 
return is the dep of <0x70> comes; <0x70> comes is the parataxis of <0x71> 
stop; <0x71> stop is the obj of <0x72> mobilizing; So, the event may have 
occurred later than <0x6F> pressing is : <0x6D> exhorted, <0x70> comes, 
<0x71> stop, <0x72> mobilizing
Label: <0x6A> proceed, <0x6D> exhorted, <0x70> comes, <0x72> mobilizing

Figure 7: Two examples demonstrating the use of
MAQERE in extracting temporal relations.

522

6 Conclusion 523

In this study, we present a unified framework called 524

MAQERE, aiming to improve LLM-based meth- 525

ods via multiple answer questions, effectively ex- 526

tracting various event relations through different 527

types of instructions. Upon the LLM-based method, 528

MAQERE significantly improves the performance 529

of this model by introducing strategies such as 530

multiple answer questions, parser-cot, and bipar- 531

tite matching loss. Our extensive ablation studies 532

demonstrate that our strategies effectively address 533

the issues present in the LLM-based method. Be- 534

yond event relation extraction, our work may pro- 535

vide insights into other relation prediction tasks. 536
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Limitations537

Nonetheless, these results must be interpreted with538

caution, and several limitations should be kept in539

mind. Firstly, even though the number of inference540

samples has been reduced from n × n to k × n541

(k ≪ n) by using a MAQ-based event relation ex-542

traction method, the inference speed of MAQERE543

is still slower than that of the BERT-based classi-544

fication model. But the benefits of MAQERE will545

become more pronounced as the quantity of event546

mentions increases. Secondly, MAQERE is sensi-547

tive to instructions and markers. For more details,548

please refer to Appendix F and G. Achieving opti-549

mal results requires empirical adjustments through550

multiple experiments, as it cannot be determined551

solely by theoretical analysis. Finally, although552

MAQERE has the ability to train a larger unified553

event relation extraction model, the development554

of a larger unified MAQ-based event relation ex-555

traction model has been hindered by constraints556

such as the availability of training data and GPU557

resources.558
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A Expansion and Downsampling887

The specific approach is outlined as follows:888

Positive sample expansion: To expand the num-889

ber of positive samples, we employ two strate-890

gies: (1) randomly replacing non-event mention891

words or phrases with synonyms, and (2) using the892

Mask-then-Fill strategy. The Mask-then-Fill strat-893

egy involves generating an instruction for filling the894

[MASK] token. Meanwhile, non-event mentioned895

words or phrases in positive samples are randomly896

replaced with the [MASK] token. Then, ChatGPT897

is used to predict the content of the [MASK] token.898

In this way, a new positive sample is produced. Fi-899

nally, each positive sample is expanded to create900

three additional positive samples.901

Input:
3,000 civilians were killed and another 4,500 injured. . .

Mask:
[MASK] were killed and [MASK] injured. . .

Fill:
ten soldiers were killed and twenty injured. . .

902

Negative sample downsampling: The large num-903

ber of negative samples presents a challenge for904

training an effective model. To tackle this problem,905

we decided to decrease the number of negative sam-906

ples through downsampling. Our key strategies are907

two-fold: first, we randomly remove the marker908

(<0x**>) from specific invalid event mentions; sec-909

ond, we utilize llama-2-chat to extract and predict910

event relations in texts that lack any relations, and911

subsequently randomly remove samples without912

event relations. It is important to note that these913

techniques are specifically applied to the training914

dataset, ensuring that the integrity of the test set915

remains intact.916

B Evaluation Details 917

Coreference relations are distinguished by their 918

transitive nature, unlike other types of event re- 919

lations. Therefore, we will continue to use the 920

evaluation metrics B3 (Bagga and Baldwin, 1998), 921

CEAFe (Luo, 2005), MUC (Vilain et al., 1995) and 922

BLANC (RECASENS and HOVY, 2011), as estab- 923

lished by the previous method. The essence of B3 924

lies in considering the contribution of each individ- 925

ual event mention. The system calculates the preci- 926

sion and recall for each coreference event mention 927

and then averages these across all event mentions. 928

This means that every event mentioned impacts the 929

overall score equally, regardless of the size of the 930

chain it belongs to. CEAFe takes into account the 931

alignment between coreferent event mentions and 932

chains. The system matches the coreference chains 933

generated with the gold-standard chains and evalu- 934

ates accuracy based on the best alignment. MUC 935

focuses on merging coreference chains with a min- 936

imal number of operations. The performance is 937

evaluated based on the minimum number of merge 938

operations required to align the system’s identified 939

chains with the answer key chains. This method 940

is usually very sensitive to missing or incorrect 941

links. BLANC is a relatively new metric designed 942

to assess the accuracy of both coreferent and non- 943

coreferent decisions. It considers not only the cor- 944

rectly linked entities but also the accurate identi- 945

fication of entities that are not linked. Therefore, 946

BLANC provides a more comprehensive perspec- 947

tive on coreference resolution performance. Finally, 948

we use precision (P), recall (R), and F1 measure 949

as the evaluation metrics for other event relation 950

extraction tasks. 951

C Implementation Details 952

We utilize the llama-2-chat as the textual encoder, 953

which consists of 32 layers, 4096 hidden units, and 954

32 attention heads. We train the model using an 955

Adam optimizer with weight decay, and the weight 956

decay rate is 1e-4. The warm-up proportion for the 957

learning rate is 0.1, and the dropout rate is 0.1. The 958

temperature used to adjust the probabilities of the 959

next token is set to 0.01, and the smallest set of 960

the most probable tokens with probabilities top_p 961

that add up to 0.9. In the output, we use ":" (token 962

id 584) as a delimiter to distinguish the Parse-CoT 963

from the Multiple Answers. 964
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D Comparison Methods Details965

In this section, we provide more implementation966

details of the baselines. For a fair comparison, all967

of these models are implemented using PyTorch968

and tested on the NVIDIA TESLA A100 GPU.969

BertERE treats event relation extraction as a mul-970

ticlass classification problem. The various types971

of relations between events form the label set for972

the classification model. For BertEREjoint, we973

utilize RoBERTa as the backbone network, setting974

the learning rate for the Transformer at 2e-5 and975

for the classification multilayer perceptron at 5e-4.976

When providing text input, the system selects the977

longest text containing the event pair, with a max-978

imum length limit of 512. LLM-based method979

treats event relation extraction as a text generation980

task, and its backbone network, pre-trained models,981

and training parameters are consistent with those982

of MAQERE.983

E Expansion and Downsampling Analysis984

There are a large number of event mentions, but the985

proportion of event mention pairs that actually have986

a relation is comparatively small, as indicated by987

the data ( Links
Mentions×Mentions ) in Table 2. Regard-988

less of the approach employed (classification, LLM,989

or MAQ), the model struggles to assimilate valu-990

able information when trained on all event mention991

pairs. To tackle this issue, it is necessary to in-

Method
MATRES MECI

P R F1 P R F1
E

xpan.
Synonym 84.9 82.7 83.8 62.2 60.6 61.4
M & F 83.5 81.1 84.3 63.8 60.5 62.1
Mixed 85.5 83.9 84.7 62.9 61.6 62.3

Sam
p.

Random 83.1 82.1 82.6 60.5 61.3 60.9
LLM Pred 84.7 83.1 83.9 61.3 62.1 61.7
Mixed 85.5 83.9 84.7 62.9 61.6 62.3

Table 8: The impact of positive sample expansion and
negative sample downsampling on the model.

992
crease the number of positive samples and decrease993

the number of negative samples. Importantly, to994

ensure consistency in evaluation, data augmenta-995

tion and sampling techniques are only applied to996

the training dataset. For positive sample expansion,997

as shown in Table 8, we employ a LLM with a998

Mask-then-Fill technique, which has been found to999

be more effective than simply replacing words with1000

their synonyms. However, there are cases where the1001

LLM fails to generate a sufficiently diverse range1002

of samples. In such cases, using synonyms can be a 1003

more suitable approach. When downsampling neg- 1004

ative samples, randomly removing markers from 1005

event mentions can effectively improve the perfor- 1006

mance of the model. Additionally, leveraging the 1007

LLM for zero-shot predictions helps preserve the 1008

more challenging samples. 1009

F Different Instructions Analysis 1010

The event relation extraction model based on LLM 1011

is greatly affected by instructions. We conducted 1012

experiments to validate different sets of instruc- 1013

tions and found that, for fixed tasks, shorter and 1014

more concise instructions tend to be more effective. 1015

Simultaneously, we conducted several tests, as pre- 1016

sented in Table 9. Firstly, providing all potential 1017

event mentions in the instruction resulted in a slight 1018

drop in the F1 score. Secondly, when the model is 1019

allowed to directly generate event relations based 1020

on event mentions, its performance significantly 1021

decreases due to the large number of event mention 1022

pairs generating relations labeled as NoRel. When 1023

multiple different relations are generated simulta- 1024

neously, the model’s performance is at its worst. 1025

Instruction MECI
List the cause event of <0x85> earthquake ? 62.3
Find the cause event of <0x85> earthquake
from the event mentions <0x71> scorched, . . . ? 61.7

What’s the event relation between <0x85> earth-
quake and <0x71> scorched, <0x72> deny, . . . ? 60.4

List the cause and effect event of <0x85> earth-
quake ? 56.6

Table 9: The F1 score of MAQERE on MECI varies
among different instructions.

1026

G Different Markers Analysis 1027

In our study, we use various markers to prompt 1028

event mentions, building on previous research (Lu 1029

et al., 2022; Ye et al., 2022). The experiments are 1030

divided into three groups, as outlined in Table 10. 1031

The first set of experiments utilizes special tokens 1032

already present in llama-2-chat as markers, such as 1033

<0x**>. This method produced the best results 1034

compared to the other sets of experiments. Addi- 1035

tionally, we observed that adding the special end 1036

character after the event mention does not improve 1037

performance. This is primarily due to the lack of 1038

actual semantic information and the use of multiple 1039

tokens, which compromises the original semantic 1040
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Marker Tokenizer MECI
<0x64> [103] 62.3
<0x64>
</>

[103]
[1533, 29958] 62.1

<No64> [529, 3782, 29953, 29946, 29958] 59.5
<No64>
</>

[529, 3782, 29953, 29946, 29958]
[1533, 29958] 59.3

<Strong> [529, 1110, 29958] 60.2
<Strong>
</>

[529, 1110, 29958]
[1533, 29958] 59.7

Table 10: The F1 score of MAQERE on MECI varies
among different markers.

coherence. In the second set of experiments, we1041

replaced <0x**> with <No**> and observed a sig-1042

nificant drop in the model’s effectiveness. As in1043

the previous case, the insertion of too many tokens1044

results in semantic incoherence. In the third set of1045

experiments, all event mentions are inserted into1046

the same marker, resulting in a noticeably worse1047

effect.1048
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