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ABSTRACT

Near-field optics, or near-field electrodynamics, is a field that studies the interac-
tion between materials and light at spatial scales smaller than the wavelength. At
these extremely small scales, below the diffraction limit, the interaction between
materials and electromagnetic fields can exhibit unique behaviors and properties
not observed in conventional optics. This area of research is crucial for under-
standing the optical characteristics of nanotechnical systems and nanoscale bio-
logical objects. One of the primary tools used in near-field optics research is scan-
ning near-field optical microscopy (SNOM), which allows researchers to measure
near-field optical images (NFI). However, these images often lack visual clarity
and interpretability, hindering a comprehensive understanding of the properties of
the probed particles.
The main goal of this paper is to introduce a novel approach that addresses these
challenges. Inspired by the progress in physics-informed neural networks (PINNs)
and its applied subdomain physics-informed computer vision (PICV), we propose
an unsupervised method that introduces the XiEff representation – a neural field-
based parameterization of the effective susceptibility tensor. By integrating XiEff
into the Lippmann-Schwinger integral equation framework for near-field optics,
we develop an optimization strategy to reconstruct the effective susceptibility dis-
tribution directly from NFI data.
The optimized XiEff representation provides an interpretable and explainable
model of the particle’s shape. Extensive evaluations on a synthetically gener-
ated NFI dataset demonstrate the effectiveness of the method, achieving high
intersection-over-union scores between XiEff and ground truth shapes, even for
complex geometries. Furthermore, the approach exhibits desirable robustness to
measurement noise, a crucial property for practical applications. The XiEff rep-
resentation, combined with the proposed optimization framework, potentially in-
troduces a valuable tool for enabling explainable near-field optics imaging and
enhancing the understanding of particle characteristics through interpretable rep-
resentations

1 INTRODUCTION

Near-field optics Girard & Dereux (1996) is a branch of optical physics that explores the behav-
ior of light at scales smaller than the diffraction limit of conventional optics, where unique optical
phenomena arise due to near-field interactions. Scanning near-field optical microscopy Durig et al.
(1986) (SNOM) is a powerful technique that employs a nanoscopic probe to measure near-field opti-
cal signals with exceptional spatial resolution, providing unprecedented access to optical properties
at the nanoscale.

Despite SNOM’s advanced capabilities, the raw near-field images (NFIs) it produces often lack
visual clarity and interpretability, making it challenging to infer the physical properties and geometry
of the probed particles. This limitation hinders a comprehensive understanding of near-field optical
interactions and restricts the potential applications of SNOM.

To address this challenge, we propose a novel approach that introduces the XiEff representation
— a neural field-based parameterization Xie et al. (2022) of the effective susceptibility tensor X̂
Lozovski (2010). Our method leverages recent advancements in Physics-Informed Neural Net-
works (PINNs) Raissi et al. (2019) and their applied subdomain, Physics-Informed Computer Vision
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(PICV) Banerjee et al. (2024). PINNs integrate physical laws into neural network training by embed-
ding partial differential equations (PDEs) and boundary conditions into the loss functions, guiding
the learning process with physics-based constraints. PICV extends these principles to computer
vision tasks.

Neural Radiance Fields (NeRFs) Mildenhall et al. (2021), which are a part of PICV, have revolu-
tionized 3D reconstruction and novel view synthesis by representing scenes as neural networks. In
our work, we adopt similar concepts but focus on representing the effective susceptibility tensor as
neural fields tailored for near-field optics.

We integrate the XiEff representation into the Lippmann-Schwinger integral equation Girard et al.
(1995) framework, which utilizes Green’s functions to describe electromagnetic field interactions.
This approach allows us to incorporate physical laws directly into our neural network without relying
explicitly on PDEs or boundary conditions, making it suitable for practical problems where such
information may be inaccurate or unknown.

The main contributions of this work are:

1. Novel Computer Vision Algorithm We introduce the XiEff representation, a new com-
puter vision algorithm that uses neural fields to model the effective susceptibility tensor in
near-field optics imaging. Our method reconstructs the effective susceptibility XiEff di-
rectly from near-field imaging data. This representation provides an interpretable model
connected to the optical characteristics of the object. It offers meaningful physical insights
that align with human perception, making the object’s optical characteristics understand-
able, unlike the raw near-field images that are hard to interpret.

2. Successful Validation Our method was validated through extensive synthetic data exper-
iments. The XiEff representation achieved high IoU scores with particles shapes, showed
robustness to noise, and was computationally efficient and hyperparametrs free. It success-
fully reconstructs simple and complex particle shapes, maintaining reliable convergence
without requiring labeled data or external data.

3. SNOM Scanning Strategy We propose a SNOM scanning method using randomly varied
external fields to enhance data diversity, leading to more accurate reconstructions. This
strategy is potentially universal, capable of improving various inverse algorithms in similar
domains.

4. Benchmark Dataset We created a comprehensive dataset of particle shapes and their NFIs,
to be released as the first benchmark for inverse problems in near-field optics and PINNs

In summary, we aim to expand computer vision into the new modality of near-field optics by en-
hancing interpretability and effectiveness of near-field imaging.

2 RELATED WORK

Physics-informed neural networks (PINNs) have emerged as a powerful framework for solving com-
plex physical systems by incorporating physical laws, typically in the form of partial differential
equations (PDEs), into neural network loss functions Raissi et al. (2019). While PINNs have shown
remarkable success across various domains, comprehensive surveys Huang et al. (2022); Baner-
jee et al. (2024); Wang et al. (2024b;a) indicate that their applications have primarily focused on
PDEs, despite many physical systems having correspondents integral formulations. The integration
of integral equations within the PINNs framework remains relatively unexplored, with only a few
theoretical studies addressing this approach Sun et al. (2023).

An applied extension of PINNs, Physics-Informed Computer Vision (PICV) Banerjee et al. (2024),
has successfully incorporated physical laws into computer vision algorithms. Our work on near-field
imaging extends the PICV paradigm by integrating electromagnetic theory into computer vision al-
gorithm to enable interpretable reconstruction of particle characteristics from SNOM measurements.
Like other PICV applications, our work confronts several key challenges common in PICV Baner-
jee et al. (2024), including balancing physics and data constraints, selecting appropriate physics
priors, developing standardized datasets and benchmarks, computational efficency, and maintaining
interpretability and explainability.
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In the context of near-field problems, the conventional approach involves Maxwell’s equations,
which comprise four fundamental equations and up to six boundary conditions Jackson (2012).
When implementing these within PINNs, significant challenges arise in loss function balancing
Wang et al. (2021) and handling boundary conditions, particularly in inverse problems where the
target shape needs to be reconstructed. The Lippmann-Schwinger (LS) equation offers an attrac-
tive alternative for such inverse problems, as it inherently handles boundary conditions through its
integral formulation.

Recent works in near-field optics has demonstrated the application of PINNs based on full-vector
Maxwell’s PDEs for solving inverse problems Chen et al. (2020); Chen & Dal Negro (2022). The
fist approach Chen et al. (2020) enabled the inverse retrieval of scalar photonic nanostructure proper-
ties, such as electric permittivity and magnetic permeability, from near-field data. Subsequently, the
second approach Chen & Dal Negro (2022) reconstructed spatial material characteristics of a spher-
ical object. However, this experiment relied on measurements of the field distribution directly near
the object’s surface (which shape’s mirrored the particle’s shape), and required substantial computa-
tional resources (10 hours on a 1080Ti GPU, 50×50×30 computational grid). Both research efforts
were constrained to investigating objects with very simple geometries in 2D case, and for 3D case
inverse problem reported only single experiment with spherical object.

A notable example of applying PINNs in the domain of diffraction tomography is the work Saba
et al. (2022). In this work, a UNet-based physics-informed neural network is used as a forward
solver, trained on a synthetic dataset of biological cell objects. The forward solver is then employed
in an inverse reconstruction of the refractive index (RI) by minimizing the discrepancy between
predicted and measured scattered fields. Despite being trained mainly on synthetic data, this method
demonstrates good performance on real datasets. However, a limitation of this approach is that it
performs best for object geometries similar to those present in the synthetic dataset. The proposed
method also shows good computational efficiency (4.5 min, 64x64x64 computational grid).

In the radio frequency domain Zhang et al. (2024) utilized the integral Lippmann-Schwinger equa-
tion with PINNs for modeling electromagnetic scattering in complex 2D shapes. However, their
focus remained on forward problem solving rather than inverse problems.

Neural Radiance Fields (NeRF) Xie et al. (2022) have achieved remarkable success in computer
vision and scene rendering. Interestingly, NeRF can be interpreted as an integral equation where
boundary conditions are explicitly encoded, effectively serving as a phenomenological physical
model. However, NeRF’s novel view interpolations often exhibit visual inconsistencies and geomet-
ric roughness. Recent research aims to address this ”generalization gap” by incorporating physical
principles rather than relying solely on simple phenomenological model Li et al. (2023).

The limited exploration of integral equations in physics-informed machine learning presents an op-
portunity for innovation. Integral formulations often offer advantages in handling boundary condi-
tions and provide more natural representations for certain physical phenomena then decomposition
physical lows into differential equations, boundary conditions and initial conditions. This untapped
potential suggests promising directions for future research, particularly in problems both theoretical
and applied PINNs.

3 THE LIPPMANN-SCHWINGER EQUATION

The problem under consideration can be described as follows. We consider an external electric field
and a homogeneous dielectric that interacts with the field. The dielectric undergoes polarization
thus creating an induced electric field. Any measuring device outside the dielectric will measure
superposition E⃗ of the initial external field E⃗(0) and polarization field E⃗pol (see figure 1). We will
try to recover the form of the dielectric basing on the measurements performed at some distance
from it.

As a first step we need to express the problem in an analytical way. It is well-known that such
matter-field interactions are governed by the Maxwell’s equations. But the latter ones are unwieldy,
thus we will use the fact that for a homogeneous, linear, non-dispersive, non-magnetic dielectric
in an external field, the four Maxwell’s equations can be transformed into the Lippman-Schwinger
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Figure 1: Measurement is performed outside the particle

equation (LS) Girard et al. (1995)

E⃗(r⃗, ω) = E⃗(0)(r⃗, ω)−

−
∫∫∫

R3

Ĝ(r⃗, r⃗
′
, ω)χ̂(r⃗

′
, ω)E⃗(r⃗

′
, ω)dr⃗

′ (1)

where χ̂ is the local electric susceptibility and Ĝ is a dyadic propagator described by a complicated
formula

Ĝ =

(
4πω2

c2
I+ ▽⃗⊗ ▽⃗

)
eiω|r⃗−r⃗

′
|/c

|r⃗ − r⃗ ′ |
. (2)

It is supposed here that the field may be varying with angular frequency ω and c is the speed of light.
Please note that for vacuum χ̂ = 0, thus integration is effectively performed over the volume of the
particle only.

For our purposes we suppose that the external field is slowly varying ω → 0 (so-called near-field ap-
proximation that applies to a scanning near-field optical microscopy (SNOM) probe and many other
cases), thus (1) and (2) can be simplified and rewritten in Cartesian coordinates in a component-wise
form

Ei(r⃗ ) = E
(0)
i (r⃗ )−

−
∫∫∫

R3

Gij(r⃗, r⃗
′
)χjk(r⃗

′
)Ek(r⃗

′
)dr⃗

′
(3a)

Gij =
∂2

∂xi∂xj

1

|r⃗ − r⃗ ′ |
. (3b)

The undisturbed external field E⃗(0) is supposed to be known everywhere, while the actual electric
field E⃗ is known only starting at some distance outside the particle (i.e. we cannot measure inside
the particle, neither do we know the form of the particle to measure the field at the boundary).

4 EFFECTIVE SUSCEPTIBILITY

Now the problem boils down to the continuation of E⃗ from the areas it was measured to the whole
space. This is a non-trivial task not only due to the complexity of (3), but the fact that χ̂ is unknown
as well: if we knew it, we would easily recover the shape of the particle due to the fact that χ̂ = 0
for vacuum but not for the particle. To tackle the problem we are using the effective susceptibility
Lozovski (2010)

Xjk = χjk
E

(0)
k

Ek
.

Please note that in this case no summation over repeating indices is performed.

Now the final form of the LS equation can be written as

Ei(r⃗ ) = E
(0)
i (r⃗ )−

−
∫∫∫

R3

Gij(r⃗, r⃗
′
)Xjk(r⃗

′
)E

(0)
k (r⃗

′
)dr⃗

′
.

(4)
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Here the only unknown quantity is the X , as the E⃗ in the left-hand side of the formula is measured
outside the particle, for example via SNOM probe, thus known.

In computational physics, several methodologies exist for solving the LS equation (3). The Dis-
cretization Paulus & Martin (2001) and Iteration Methods Martin et al. (1994) are traditional meth-
ods that are computationally hard and do not handle resonance effectively. The Diagram Method is
a semi-analytical approach that uses effective susceptibility abstraction, simplifying computation to
a quadrature process. It performs well under resonant conditions and is best suited for shapes with
known analytical solutions Bozhevolnyi et al. (2001).

In the next section, we reuse the effective susceptibility concept with PINN paradigm and low com-
putational cost for inference (4) will make inverse modeling efficient.

4.1 METHOD

In our method, we employ a neural field to mimic the effective susceptibility tensor X̂(r). This
approach is akin to the principles of Physics-Informed Neural Networks (PINNs), where physical
laws guide the training of neural networks. Instead of incorporating partial differential equations
and boundary conditions explicitly and use excess hyperparameters Chen et al. (2020); Chen &
Dal Negro (2022), we integrate the neural representation of the effective susceptibility tensor into
the Lippmann-Schwinger equation. As result proposed algorithms is hyperparamers free and is
more efficient in tuning. This allows the network to learn a physically consistent representation of
the susceptibility tensor directly from NFI data.

The tensor X̂(r⃗ ), which is a 3 × 3 tensor in three-dimensional space (or 2 × 2 in two-dimensional
cases), is parameterized as a neural network function X̂(r⃗ ) = XiEff(r⃗,Θ) with parameters Θ.
With this representation we can reformulate the Lippmann-Schwinger equation (4) by simply setting
Xij(r⃗ ) → XiEffij(r⃗,Θ). Now field E⃗ can be treated as depending from Θ through XiEff via the
equation (4), thus we write E⃗(r⃗;XiEff(r⃗; Θ)), or E⃗(r⃗; Θ) for short.

Measuring the electric field by physical device, say SNOM probe Durig et al. (1986) , we can say
that at the points r⃗i its value should constitute E⃗

(obs)
i , thus the loss function is expected to be

L(Θ) =

N∑
i=1

||E⃗(r⃗i; Θ)− E⃗
(obs)
i ||2 + λLreg(Θ). (5)

We expect that after optimization the neural network function XiEff(r⃗,Θ) which represents the
effective susceptibility will approach zero in regions outside the object to align with real-world data:
the susceptibility of vacuum is zero. Thus we impose regularization in form of

Lreg(Θ) =

N∑
i=1

||XiEff(r⃗i,Θ)||, (6)

where λ signifies the regularization strength. This part of loss is optional.

The minimization of the loss function L(Θ) is achieved through gradient-based optimization algo-
rithms, such as stochastic gradient descent (SGD). The ultimate expectation is that the morphology
of the optimized XiEffij(r⃗; Θ) will resemble the form of the physical particle, thereby providing a
mechanism for surface reconstruction within the domain of near-field optical imaging and similar
setups.

Before we move to the description of experiments, one more concern should be addressed. We
want to be sure that the results will be reliable, i.e. they do not change significantly due to a small
variation in the input data. This is crucial when working with physical measurements, as every real-
world device provides measurement with certain level of noise. Thus we prove:
Lemma. If the observed electric field E⃗(obs)

i is perturbed by noise ξ⃗ with a mean of zero E[ξ⃗] = 0,
the gradient ▽⃗ΘL(Θ) of the loss function (5) with regularization (6) remains unbiased.
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Figure 2: Example of the dataset images without (left) and with (right) random component to the
pumping SNOM field. Hidden shape is overlaid for demonstration purposes only and not accessible
by NN.

◀ Consider the derivative of the ▽⃗ΘL(Θ) from (5). The norm squared has form x⃗T x⃗, thus we can
use equality from Petersen et al. (2008) to get

▽⃗ΘL(Θ) = 2

N∑
i=1

(
E⃗(r⃗i; Θ)− E⃗

(obs)
i

)
· ▽⃗ΘE⃗(r⃗i; Θ)+

+ λ▽⃗ΘLreg(Θ).

We can get ▽⃗ΘL(noisy)(Θ) by simply changing E⃗
(obs)
i → E⃗

(obs)
i + ξ⃗i, thus mean of the difference

▽⃗ΘL − E[▽⃗ΘL(noisy)] = 2

N∑
i=1

E[ξ⃗i] · ▽⃗ΘE⃗(r⃗i; Θ),

where we used the linearity of mean to simplify the expression. Now recall that E[ξ⃗] = 0 by
assumption, thus mean of the difference is zero that concludes the proof. ■

This simplification shows that the gradient of the loss function with respect to the network param-
eters Θ remains unbiased in the presence of noise. Consequently, the optimization via gradient
descent is robust, converging to a solution that is not skewed by the noise in the observed data. This
robustness is essential for ensuring the reliability of the optimization process in practical applications
where measurement noise is inevitable.

5 DATASET

In this study, we focus on 2D geometric cases because generating real-world NFI data requires
creating nanosized particles with diverse shapes and measuring them, which is a lengthy and costly
process. Instead, we chose to create a synthetic 2D dataset, as it is easier to visualize, provides
diverse shapes, and typically, NFI images measured by SNOM are also usually 2D, making the
research process more efficient. This can be understood as either considering a 2D slice of the
system or as a projection of a system that extends infinitely along the Z axis.

We have developed a synthetic dataset, herein referred to as the dataset, consisting of various par-
ticles alongside their corresponding calculated near-field images (NFIs). A typical visualization of
our dataset you can find at Figure 2. The particle’s shape is obscured by an object mask — essen-
tially a rectangular mask that covers the particle with padding — depriving the neural network of
any information about the particle’s form (previous work Chen & Dal Negro (2022) relied on mea-
surements taken directly near the surface, which resulted in unintended leakage of the object’s form
due to the measurement method). The corresponding NFI is calculated according to LS solution
outside the object mask thus can be measured in a real-life experiment with SNOM probe or other
method. Both the X and Y coordinates are normalized to the wavelength, ensuring all NFIs within
the range of −0.1 to 0.1. The observed field (NFI), E⃗(obs) is also presented in normalized units.

For the initial dataset (see Fig. 2) of near-field images, the external field (e.g. pumping field of
SNOM Durig et al. (1986) ) is kept constant at E⃗(0) = (1; 1; 0). The dataset encompasses a total
of 121 images, including a set of randomly generated simple shapes (17 ellipses, 22 rectangles, 12
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Table 1: IoU metrics for different shape categories and dataset variants.
Dataset Ellipse Rectangle Convex Union Character Avg

constant 93.51 84.08 77.02 78.65 61.70 76.72
random 93.75 89.85 84.89 81.01 66.59 80.79

convex polygons) and more complex forms (36 characters spanning 0-9, A-Z, and 31 union pairs of
simple shapes). The susceptibility of the particles was randomly selected from a range of 0.5 to 1.5
and set diagonal and equal for all components. This choice of isotropic susceptibility is well-justified
as most common dielectric materials exhibit only weak anisotropic responses at optical frequencies
Landau et al. (2013); Boyd et al. (2008). For our 2D geometry, where system symmetry further
supports such treatment, this approximation maintains physical relevance while keeping the inverse
problem tractable. All scripts involved in generating the dataset and implementing the proposed
solution will be made accessible on GitHub.

Additionally, we have developed a second variation of the dataset that utilizes the same shapes and
susceptibility but incorporates an external field E⃗(0) (pumping field of SNOM is controlled param-
eter of experiment) that, unlike the previous case, is randomized for each individual SNOM probe
position. This approach simulates an ensemble of measurements under varying field conditions,
with E⃗(0) sampled from a uniform distribution on the square [−1; 1] × [−1; 1] × 0 for every data
point measurement. While this dataset of NFIs may lack some visual clarity, it offers several bene-
fits for the XiEff representation optimization. It enhances optimization robustness by exposing the
model to diverse field conditions, helps prevent overfitting to specific configurations, and improves
generalizability. This also allows for a more comprehensive performance assessment across various
experimental scenarios.

We are also going to release this dataset to the public, and we hope it will serve as a valuable
benchmark for assessing approaches in both inverse problems in Physics-Informed Neural Networks
(PINNs) and near-field optics.

Figure 3: Dependence of IoU on noise level.

6 EXPERIMENTS

In this section, we present the details of our experiments and discuss the results. The optimization
process was based on the Lippmann-Schwinger (LS) formalism (see (3), (4)), aiming to optimize the
XiEff(r⃗; Θ) (see (5), (6)) representation from the near-field imaging (NFI) data. The architecture
of XiEff was a multilayer perceptron (MLP), similar to the well-adopted architecture in Neural
Radiance Field (NeRF) framework Mildenhall et al. (2021); Xie et al. (2022). The XiEff MLP
architecture was constant across all experiments, consisting of 9 layers, each with 256 neurons. The
MLP accepted a 2-dimensional input corresponding to the spatial coordinates (x, y), and produced a
4-dimensional output representing the components of the susceptibility tensor X̂ . Skip connections
were added at the 5-th layer, and positional encoding with a frequency of 7 and a sin activation. We

7
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Figure 4: Constant dataset, Xieff and NFI.

employed the Huber loss Huber (1992) as it proved to be more robust than L2 loss. The Huber loss
is known to be less sensitive to outliers than the L2 loss, which can be beneficial when dealing with
noisy data or observations that may contain some extreme values. Please note that for Θ close to
Θoptimal it is basically L2 loss thus lemma from 4.1 is still valid with slight modification.

Regularization was used only during the robustness experiments and was selected to be proportional
to the noise level, λ = 0.01 × STD(ξ). Since XiEff is optimized for each NFI from the dataset
and all NFI data is within a batch, we chose to use the second-order L-BFGS algorithm with strong
Wolfe conditions Wolfe (1969). Optimization was limited to 20 steps for regular experiments; for
robustness measurement experiments we stopped optimization at 10 steps. The entire optimization
process for a single NFI (grid 100×100) consumed approximately 1–2 min on 12GB GPU. It is
significantly faster than Chen et al. (2020); Chen & Dal Negro (2022) and comparable to Saba
et al. (2022). As the quality metric we chose the Intersection over Union (IoU) between the particle
shape and the shape of the thresholded norm of XiEff. The IoU is a commonly used metric in
computer vision and image segmentation tasks, providing a measure of the overlap between the
predicted and ground truth segmentations thus well-suited for the problem under consideration. The
threshold for every NFI was chosen to maximize the IoU. In our case, it quantifies the similarity
between the optimized XiEff representation and the actual particle shape, enabling us to evaluate the
interpretability of the learned representation. The table 1 presents the IoU metrics for both dataset
variants with constant and random external fields for each category of shapes: ellipses, rectangles,
convex, unions, characters, and the average across the entire dataset.

The IoU values (table 1) showcase the method’s proficiency with simple geometric shapes like el-
lipses and rectangles, achieving excellent performance across both datasets. For more complex

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 5: Random dataset: Xieff.

Figure 6: Random dataset: Hard cases.

categories like convex shapes and shape unions, the method still exhibits promising results by faith-
fully modeling the underlying structure. Overall, the IoU metrics highlight exceptional performance
with simple shapes and remarkable generalization to increasing complexities.

Additionally, we conducted experiments regarding robustness to noise. These experiments involved
adding Gaussian noise to the NFIs and measuring the IoU for the random variation of the dataset.
The results of this modeling are presented in Figure 3, which displays the IoU versus the level
of the noise injected. The level of the standard deviation of the NFI within the dataset variation
without noise is also displayed. As we can see, the proposed method is robust because the IoU
metric degrades slowly, even in cases where the noise level is significantly higher than the standard
deviation of the dataset NFIs. This robustness is a crucial property for practical applications, where
measurement noise is inevitable, and it demonstrates the effectiveness of the proposed approach in
handling noisy observations.

Figure 4 displays the visualization of the constant dataset variant NFI with the corresponding XiEff
representation. As you can see, the NFI images of different particles are very similar to one another
and are not explainable. However, the corresponding XiEff representation (the result of optimization
from the NFI data) is highly similar to the particle shape, providing excellent interpretability for the
NFI images. This interpretability is a key advantage of the proposed method, as it enables a better
understanding of the underlying physical phenomena and the characteristics of the particles under
investigation.
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The random dataset variant is displayed in Figure 5 with the XiEff representation but without the
NFIs due to the low visual clarity of the NFIs with randomly changed external fields at every probe
position. As you can see, it works well even for more complex particle shapes, demonstrating the
versatility and generalization capabilities of the proposed approach.

The method fails in two types of cases (see figure 6): first, thin or small-sized particles, and second,
particles with holes. We can assume that the first type of failure case may potentially be partially
improved by changing the neural network architecture, optimization process, or even by increasing
the level of discretization. However, the second type of failure case cannot be easily resolved due to
the physical limitations, as a similar problem exists in classical optics as well. These failure cases
highlight the need for further research and improvements, particularly in addressing the limitations
posed by complex particle geometries.

7 CONCLUSION

In this work, we introduced a novel computer vision algorithm—the XiEff representation—that
leverages neural fields to model the effective susceptibility tensor in near-field optics. By integrating
this representation into the Lippmann-Schwinger integral equation, we developed an unsupervised
method to reconstruct the effective susceptibility directly from imaging data, operating without the
need for labeled or external data. Also the proposed algorithm is without any method specific hy-
perparameters and as result efficient in tuning.

Our experimental validation on synthetic data demonstrated high accuracy, with the method per-
forming well on both simple and complex shapes and achieving high Intersection over Union (IoU)
scores. Theoretical analysis and empirical evaluations confirmed the method’s robustness to mea-
surement noise, ensuring reliable convergence even with noisy observations. This robustness is
crucial for practical applications where measurement noise is inevitable.

Furthermore, we proposed a new scanning strategy for SNOM, where the external field is random-
ized at each probe position. Our experiments with this random dataset showed an increase in the
quality of the inverse problem solution. This approach appears to be universal and could potentially
improve the performance of other inverse algorithms in similar domains.

The optimized XiEff representation offers improved interpretability by providing a physically mean-
ingful model directly connected to the optical characteristics of objects. It effectively addresses the
limited visual clarity of raw near-field images, which are often challenging for human perception to
interpret.

In addition, we have developed a comprehensive synthetic dataset that will be publicly released,
potentially serving as benchmark for inverse problems in near-field optics and PINNs.

Our successful application of an integral equation approach within the PINNs framework is partic-
ularly noteworthy, as such cases are relatively rare. This achievement opens new avenues for incor-
porating integral equations into physics-informed machine learning, potentially benefiting a wide
range of physical problems where integral formulations offer advantages over differential equations.

Future research opportunities include exploring more advanced neural network architectures and
optimization techniques from the PINNs perspective to further enhance the performance of the XiEff
representation. From the near-field optics standpoint, extending the method to three-dimensional
geometries, objects on or under surfaces, anisotropic and nonlinear materials, and applying the
method to real SNOM data are promising directions. Given that the Lippmann-Schwinger equation
is generally valid, the proposed algorithm could be applied to other wave regimes, such as radio
frequencies, and could be expanded from the near-field to the far-field zone.

In conclusion, our theoretical research, focused on practical outcomes, makes a significant advance-
ment in expanding computer vision’s domain into near-field optics modality. The XiEff represen-
tation pushes the boundaries of Physics-Informed Computer Vision, demonstrating how interdis-
ciplinary approaches can transform scientific imaging, converting complex physical measurements
into comprehensible, machine-learned representations which are interpretable from a physical per-
spective.
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