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Abstract

This report aims to verify the findings and expand upon the evaluation and training meth-
ods from the paper LICO: Explainable Models with Language-Image COnsistency. The
main claims are that LICO (i) enhances interpretability by producing more explainable
saliency maps in conjunction with a post-hoc explainability method and (ii) improves im-
age classification performance without computational overhead during inference. We have
reproduced the key experiments conducted by |Lei et al., however, the obtained results
do not support the original claims. Additionally, we identify a vulnerability in the pa-
per’s main evaluation method that favors non-robust models, and propose robust exper-
imental setups for quantitative analysis. Furthermore, we undertake additional studies
on LICO’s training methodology to enhance its interpretability. Our code is available at
https://anonymous.4open.science/r/lico-reproduction-7FEB|

1 Introduction

Despite deep neural networks showing state-of-the-art performance in numerous computer vision tasks (Chai
et al., [2021)), their application in safety-critical tasks like medical diagnosis is limited due to their black-box
nature, making it hard to understand how decisions are made. While contemporary post-hoc explanation
methods like Grad-CAM (Selvaraju et al., [2019) or RISE (Petsiuk et al [2018)) can increase the transparency
in these systems, they cannot be used to improve the decision-making process underneath to make it more
consistent with human intuition.

Previous model-based methods proposed improving the models by enforcing consistency constraints on the
post-hoc explanations generated during training (Pillai et al.||2022; Pillai & Pirsiavash,2021). In the reviewed
study, |Lei et al.| (2023) propose Language-Image COnsistency (LICO), a training framework for enhancing
model interpretability. Unlike the previous methods, LICO does not utilize post-hoc explanations during
training. Instead, the loss enforces consistency between the manifold of visual features and the manifold of
class-aware semantic information from a text encoder of a pretrained vision-language model (VLM), such as
CLIP (Radford et al., |[2021). By doing so, the authors claim to achieve both improved interpretability and
classification performance.

In recent years, there has been a growing concern about the reproducibility of AI research (Baker, 2016;
Herndndez & Colom), |2023)), where it is becoming increasingly difficult to reproduce and validate the findings
of the papers, which undermines trust in the scientific community and leads to the waste of resources
spent on pursuing unreproducible results. The causes of this crisis include incomplete documentation of the
experimental procedures or introduced methods (Semmelrock et al.l |2023)) as well as the need for significant
computational resources (Nature Computational Science Editorial Board, 2021). For this reason, we attempt
to verify whether the LICO authors’ claims can be reliably reproduced based on the paper. Our analysis is
extended with additional experiments evaluating the interpretability of the trained models and modifications
to LICO. The following are the main contributions:

e Reproducibility Study: We reproduce the key experiments conducted by |Lei et al| to find out
which of their claims can be reliably reproduced by following the paper. Furthermore, we provide
information about the computational costs required during the reproduction.
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e Improved Codebase: The code delivered by authors is incomplete and cannot be executed with-
out non-trivial work. We provide our re-implementation and documentation of the LICO method,
together with the experimental setup demonstrating its interpretability and classification perfor-
mance.

o Extended Evaluation: We provide justification that the Insertion and Deletion tests used by [Lei
et al.| are not indicative of the model’s interpretability. Instead, we propose an evaluation setup for
qualitative analysis of alignment between saliency maps and human expectations (priors).

e LICO Extensions: We conduct additional experiments on the language knowledge extraction
component of LICO by (i) introducing trainable prompts specific to each class and (ii) positioning
the class label tokens before the trainable prompts with the goal of improving the method.

Our work is structured as follows. Section [2| presents the claims of the paper we attempt to replicate. In
section [3] we introduce the method proposed by [Lel et al. and describe the experimental setup used. Then,
section ] covers the results of both replicated and extended evaluation conducted by us. The report concludes
with section [5} where we discuss our findings about the reproducibility of LICO.

2 Scope of Reproducibility

A central idea in model-based methods comparable with LICO is enforcing consistency with an additional
human prior during training (Han et all 2021} |[Pillai & Pirsiavash| 2021} [Pillai et al., |2022)). In LICO, this
prior takes the form of semantic information encoded within a pretrained text encoder, which should allow
for training more interpretable models without compromising the quality of classification. In this work, we
will focus on the following claims by |Lei et al.:

1. Enhanced Interpretability: By matching the manifolds of visual and text embeddings, the se-
mantic information from the pretrained text encoder can guide the image classification model to
focus on distinguishing features of objects. As a result, the explanations for model decisions are
more consistent with human expectations, which is reflected in both quantitative and qualitative
analyses.

2. Improved Classification Performance: As opposed to the previous methods increasing the inter-
pretability of image models, LICO does not bring a deterioration to the classification performance
and, in some cases, may even result in increased accuracy, when compared with baseline models
trained without LICO.

3. Necessity of both Manifold Matching and Optimal Transport Loss: LICO introduces a
training method that supplements the traditional cross-entropy loss with two additional loss com-
ponents (described in section , both with a goal of bringing the manifolds of text and visual
features closer to each other. Although these two components serve similar functions, the mutual
presence of both is beneficial to the quality of the resulting models.

In addition to validating the claims brought in the original paper, we analyze the impact of the LICO method
on the training times of the model. Moreover, we extend the interpretability study by proposing an enhanced
experimental setup consisting of three quantitative tests.

3 Methodology

This section describes the approach taken to reproduce the work. We start with an overview of the LICO
algorithm, and then continue by describing the datasets and hyperparameters used. We then discuss the
experimental setup and code - specifically, which parts of the authors’ implementation were missing or
incomplete, the parts we re-implemented based on the paper, and the resources that we used. Lastly, we
introduce the quantitative metrics that we use for the evaluation.
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Figure 1: Framework of the LICO method. (a) Conventional classification pipeline of DNNs. (b) Language
feature extraction with pre-trained text encoder. (c¢) Manifold matching among samples and optimal trans-
port alignment between feature maps and prompt tokens within each sample. Figure and caption adapted

from 2oz3).

3.1 The LICO Algorithm

LICO is a training framework for supervised image classification models that incorporates two losses in
addition to the standard Cross-Entropy (CE) loss used to train the model. These are the Manifold Matching
(MM) loss and the Optimal Transport (OT) loss.

In fig. [T we can see the image manifold and the language prompt manifold. The image manifold is defined
by feature maps fp(x;) from the classifier, and the language prompt manifold is defined by projected text
embeddings h.(g4(t;))) obtained by passing a prompt through a pretrained Vision-Language Model (VLM)
and a trainable MLP (which matches the dimensionality of the feature maps and the embeddings). This
prompt consists of the ground truth class label and several trainable tokens.

The MM and OT losses aim to align these two manifolds, such that the image manifold becomes enhanced
with the semantic structure allegedly present in the language prompt manifold due to the multi-modal
training of the VLM from which the embeddings are extracted. The goal of MM loss is to provide coarse
alignments between the two manifolds based on the similarities between pairs of samples within each mini-
batch, while OT loss is responsible for establishing a correlation between text tokens and feature maps for
individual data points.

Other than images and their ground truth class labels, no additional information is needed to make use of
LICO. After training, everything except the image model is discarded. This means that a model trained
using LICO only differs from a non-LICO model by its parameters, and LICO therefore does not increase
the computational cost at inference.

3.2 Datasets

We train and evaluate the presented models on two image classification datasets. Following the original
experiments, we use CIFAR-100 (Krizhevsky et all 2009), which provides 50000 training and 10000 vali-
dation images divided into 100 classes. Additionally, we use ImageNet-S5 , consisting of
64431 training images and 752 validation images with segmentation masks and bounding box information
that we use for extended evaluation. Both datasets are balanced, containing approximately the same amount
of samples of each class. The preprocessing performed during training is described in appendix

3.3 Hyperparameters

We use the original values for the hyperparameters that were specified by (2023)): SGD optimizer

with learning rate = 0.03, momentum = 0.9, weight decay = 0.0001, and cosine rate decay schedule i.e.

n = nocos (LEL), where 1o denotes the initial learning rate, k is the index of training step, and K is the
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total amount of training steps. The LICO-specific parameters are also used unchanged: o = 10, 5 =1, and
the hidden dimension of the text projection MLP is 512. We use 100 epochs for all tested datasets and the
ResNet-18 architecture unless otherwise stated.

3.4 Experimental Setup and Code

Some code for LICO has been made publicly available by the authors via GitHuHﬂ However, as of the time
of writing, the published codebase remains incomplete. Most of the code related to the method, and all of
the code for conducting experiments, is missing. There is no ReadMe file, and no explanation of how to use
the few code files that are present. The authors did not provide implementations of explainability methods,
such as GradCam, on which LICO was evaluated, and the metrics, such as insertion and deletion score.
Because of that, we use the CGC GitHub repositoryﬂ for implementations of GradCam, insertion score, and
deletion score.

Consequently, we re-implemented most of the method based on the paper, except for computing the OT
loss, which is present in the authors’ codebase. We follow the paper as closely as possible. Our codebase
includes the complete LICO method, scripts for experiments, thorough documentation, and instructions
how to reproduce the results of our extended evaluation. To reduce the amount of code needed for the
implementation, and to increase readability, we use the PyTorch Lightning framework (Falcon & The PyTorch
Lightning team, [2019).

Our code diverges from the formulas by [Lei et al.| in the way the temperature parameter of the MM loss is
implemented. Inspired by the implementation of CLIP (Radford et al.,|2021)), we multiply by the exponent
of the trainable value instead. The range of valid values in this case is the same, but the multiplicative factor
is naturally in the interval (0, 00), avoiding a possible division by zero or negative temperature. Further in
line with CLIP, we bound the trainable parameter to [0,1log(100)]. Not doing so allows a trivial solution for
the MM loss: minimize the temperature to —oo and achieve a feature-independent uniform softmax output.
This was not addressed by the authors.

Moreover, the authors of LICO do not disclose information about the normalization methods applied to the
text and visual features in the calculation of MM and OT losses. Our initial experiments showed that the
training process with unnormalized feature vectors was highly unstable due to high magnitudes of gradients.
Subsequently, we observed that the magnitude of the OT loss component scales with the L2-norm of the
feature vectors. To compensate for that, we conduct L2-normalisation of text and visual features before the
calculation of MM and OT losses, which increases the stability of the training.

In line with the authors, we use top-1 and top-5 accuracy metrics to assess the classification performance. We
also use Insertion and Deletion scores (Petsiuk et al.l 2018)) for quantitative analysis of model interpretability.
However, in the section we argue that it is not a suitable metric to measure the quality of explanations
in the case of model-based methods and propose a more robust evaluation setup instead.

3.4.1 Quantitative Analysis of Salience Maps

First, we show that the metrics used in the original paper, insertion and deletion scores, are utilized in the
wrong context. Then, we propose an extended experimental setup to quantitatively assess the interpretability
of LICO and analyze the consistency of its explanations with the human prior. Our approach involves the
use of three metrics: Salience Equivariance Similarity (SES), Segmentation Content Heatmap (SCH), and
the Multi Object Salience Uniformity (MOSU).

Insertion and deletion: Initially proposed by |Petsiuk et al.l these metrics are for the assessment of
algorithms that produce saliency maps, not the models. The metrics work as follows: given a picture, a
saliency map for the target class is extracted from the model. Then, for insertion, the blurred version of
the image is taken, and the parts that have high saliency values are gradually unblurred. At every step, the
output probability of the model for the target class is recorded. The value of the insertion metric is the
area under the curve (AUC) of the graph with share unblurred as the x-axis and output probability as the

Thttps://github.com/ymLeiFDU/LICO
%https://github.com/UCDvision/CGC
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y-axis. The deletion acts similarly, but instead, the evaluation starts with a fully complete image, and the
high-saliency regions are greyed out. The insertion needs to be maximized, while deletion - minimized.

As such, a good metric score for a combination of a model and an explanation method merely demonstrates
that the explanation method has done well. As we show in appendix [A] with a good explanation approach,
a model that is not robust and focuses on small regions, will achieve great results on these metrics: removing
a tiny part completely confuses the model, and adding that part immediately makes the model predict the
correct class.

The LICO method aims to change the model itself in order to make it more interpretable. Therefore, the
comparison between the insertion and deletion scores of a baseline model and a model trained with LICO
is not sufficient to claim that one model is more interpretable than the other.

Salience Equivariance Similarity: One intuitively desirable property of saliency maps is for them to be
near-equivariant under certain transformations. This idea has resulted in the previously mentioned CGC
method, created by [Pillai et al.| (2022)), which uses a contrastive loss in order to encourage saliency maps
that are both equivariant (under translation and cropping), and distinct from saliency maps of other images.

Because LICO does not explicitly encourage equivariance, yet claims to outperform CGC, it is of interest to
investigate whether CGC retains an advantage in this respect. We compute the SES metric, used by (Pillai
et al.l [2022)), as follows for an image I:

SES(I) = Sc(t(s(1)), s(¢(1))) (1)

With S¢ (-, ) denoting cosine similarity, s(-) being a post-hoc saliency map method (in our case GradCam),
and ¢(-) being some spatial transformation (in our case translation and cropping). It is important to note that
for spatial transformations, this metric can be trivially maximized by simply returning a uniform saliency
map for any image. It must therefore be considered in combination with other metrics, such as the one we
discuss next.

Segmentation Content Heatmap: One of the obstacles in producing models consistent with human
intuition is the reliance of image classification models on spurious features that are associated with the
target object, but are not causally related to it. Hence, our second evaluation concerns the intuition that
the features used by the model to classify the object ought to lie within the boundaries of the object. Using
a specific variant of the Content Heatmap (CH) metric proposed by |Pillai & Pirsiavash| (2021)), we consider
a dataset where segmentation masks for the main object are provided, and take the weighted share of the
saliency heatmap that lies within the segmented class. More precisely, we compute the SCH for some image
as:

Dy Hij - M @)

Zi,j Hi;

Where H is a matrix with salience values H;; € [0, 1] for each pixel, and M is a matrix representing a binary
segmentation mask obtained from the dataset, with M;; € {0,1} being 1 if the pixel belongs to the target
object, and 0 otherwise. Such a metric shows how much importance the model assigns to the target object.
It does not penalize if only part of the object is required to perform the classification, but it discourages
attending to features that do not identify the class in a way consistent with human expectations.

SCH(H, M) =

Multi Object Salience Uniformity: The last component of the proposed experimental setup provides a
quantitative evaluation of the performance of the model when multiple objects of the same class are visible
in the image. In such a case, a human would expect the explanation to cover all of the instances. However,
the model could easily make the correct prediction based only on a single occurrence of an object. We
propose to consider the distribution of salience within the bounding boxes of instances of a given class for
data points where multiple instances are present. We would expect it to be proportional to the area of a
bounding box encompassing the particular instance. To measure the distance between distributions, MOSU
uses Kullback—Leibler divergence:

MOSU(vareav Usalience) = DKL (Uarea || 'Usalience) (3)

Where vggiience € R™ denotes the probability vector corresponding to the distribution of salience lying within
the bounding box encompassing each of the n instances of the class in an image and vg..q € R™ is a vector



Under review as submission to TMLR

such that vgyeq[i] = i"}‘;’;i:’(iﬁ;’;:rii. To our knowledge, MOSU is a novel metric. Since this measure does
not take into account salience attributed to regions outside of objects, it should be used in tandem with the

SCH metric or its variant utilizing bounding box information (Pillai et al., [2022)).

3.5 Computational Requirements

Aiming to provide a more robust evaluation, we decided to run the experiments with multiple seeds, rather
than once like the original authors do. To accommodate that, we select smaller datasets, and thus reduce
the hardware requirements compared to |[Lei et al.| (2023). For the experiments, we use 2 machines with the
following GPUs: NVIDIA GeForce RTX 4090 (Machine 1), and NVIDIA A100-SXM4-40GB (Machine 2).

The time taken per training epoch in different configurations is provided fully in table We generally
observe that the LICO and CGC take significantly more time and memory to train. We also notice that the
time increase depends on the model size and batch size. The table does not provide standard deviations as
they are all near 0.

Table 1: Seconds per epoch for (ResNet-18/ResNet-50). Evaluated on Machine 1 at 16-bit precision.

Training method | CIFAR100, batch 64 | ImageNet-S-50, batch 64 | ImageNet-S-50, batch 128
Baseline 23/68 42/87 43/91
LICO 98/173 127/223 102/
CGC 107/245 133/316 135/8
4 Results

4.1 Results reproducing original paper

Claim 1. Enhanced Interpretability

Insertion and Deletion Tests: The experiments in Table [2| based on Insertion and Deletion metrics used
by |Lei et al.| show a deterioration over the baseline, which contradicts the claim of the authors. However, due
to reasons described in section section this may not be sufficient evidence to judge the interpretability
of models; hence, the extended quantitative evaluation is conducted in section [4.2.1

Table 2: Insertion and deletion on ImageNet-S5¢ using ResNet-18. "+" indicates standard deviation.

Method Insertion (1) | Deletion ({) | Combined = Insertion — Deletion (1)
CE loss (baseline) 727 +.003 .243 + .006 .484 + .008
+ MM loss 725 £ .003 .248 £ .011 A77 £ .011
+ OT loss 707 £.004 .258 £.004 447 +.008
+ MM & OT (LICO) 706 £ .012 .263 £ .008 443 £ .019

Visual Analysis of Saliency Maps: To qualitatively investigate the interpretability of LICO, saliency
maps were also analyzed visually. Several images were sampled randomly from the CIFAR-100 and ImageNet-
S50 datasets. The samples can be seen in fig. [2| Ideally, we would like to see that GradCam saliency maps of
LICO models are less often focused on spurious features. However, the opposite can generally be observed,
indicating that the saliency maps tend to be less interpretable. We also noted that saliency concentrates on
the extreme edges of images for LICO models notably more often than for the baseline. This can be seen in
fig. 2] for classes "snail", "bottle", and "kuvasz'.

Claim 2. Improved Classification Performance

Although LICO trained on CIFAR-100 outperforms CGC model on top-1 and top-5 accuracy, it does not
improve upon a baseline ResNet-18 as seen in Table [3] Likewise, the experiments conducted on ImageNet-

324 GB of VRAM is not enough to run this experiment at fp16 precision. Same experiment with the baseline takes 6.9 GB
of VRAM.
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Figure 2: Examples of GradCam saliency maps for baseline ResNet-18 and ResNet-18 + LICO sampled from
CIFAR-100 and ImageNet-S5q as part of the qualitative evaluation.

S50 dataset in Table [ do not support the claim that the classification accuracy of baseline models can be
improved by training with LICO.

Table 3: Classification accuracy and SES on CIFAR-100 using ResNet-18

Method | Top-1 | Top-5 | SES
ResNet-18 | .7431 | .9320 | .447
+ CGC 7250 9153 | .949
+ LICO 7309 9285 | .485

Claim 3. Necessity of both MM and OT Loss

Interpretability: Experiments on ImageNet-Sso using Insertion and Deletion metrics in Table [2] show that
training with MM loss achieves a Combined score that is better compared to a ResNet-18 baseline, whereas
OT loss brings significant deterioration to this metric. Combining the two losses results in a further decrease
and suggests a negative interaction between MM and OT losses, contrary to the claims of This
will be further investigated in section [£.2.1]

Classification Performance: Table [d]shows that full LICO obtains lower top-1 accuracy on ImageNet-Ssq
compared to model trained using only OT or only MM loss. It should be noted that while in terms of top-5
accuracy LICO slightly outperforms a model trained with only MM loss, it is surpassed by using OT loss.
While the negative interaction between MM and OT losses is not as apparent as in the case of interpretability
evaluation, these results do not support the claims of LICO authors, who argue that using MM and OT
losses jointly is beneficial to the result.

4.2 Results Beyond the Original Paper
4.2.1 Extended Evaluation Setup for Interpretability

For the extended quantitative analysis of LICO’s interpretability, we follow an experimental setup that has
been described in detail in section [B.4.11

Salience Equivariance Similarity: LICO trained on CIFAR-100 shows a small improvement over the
baseline in terms of SES metric as seen in Table 3| It should be noted that CGC (Pillai et al., [2022) vastly
outperforms both LICO and the baseline, which should be expected given that a similar objective is used
during its training.

During the experiments on ImageNet-S5g, the full LICO achieves lower SES than the baseline as shown
in Table 4] meaning that the post-hoc explanations produced for LICO models are less robust to image
transforms. However, it should be noted that models trained using only one of the OT and MM losses
slightly outperform the baseline, which shows the negative effect of combining two losses.
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Segmentation Content Heatmap: The results for the experiments on ImageNet-S5o in Table [4] show
that the explanations generated for baseline models tend to be more localized and contained within the
boundaries of the relevant objects compared to LICO models as measured by SCH. Although the models
trained in ablation study on loss components perform worse than the baseline on SCH metric, they again
outperform LICO models.

Multi Object Salience Uniformity: The results for MOSU in Table |4 show that the baseline models are
better at distributing the salience between all relevant instances of a considered class proportionally to their
size compared to the LICO model. The full LICO also achieves worse results than the model trained using
only MM or only OT loss.

As shown by these three metrics, the explanations produced for LICO-trained models are less consistent
with human intuition compared to a ResNet-18 baseline as well as models trained using only one of the
additional loss components. This further confirms that there is little support for Claim 1 regarding improved
interpretability of LICO models and Claim 3 regarding the beneficial effect of using MM and OT losses
jointly.

Table 4: Accuracy and interpretability of loss ablation on ResNet-18 with LICO on ImageNet-Ssqg

Accuracy Interpretability
Method Top-1 Top-5 ISES| (1) ISCH| (1) |[MOSU|()
CE loss (Baseline) 8218 +£.0132 | 9525 £.0045 | .914 £+ .001 | .459 +£.002 | .216 £ .013
+ MM loss .8227 +.0049 | .9468 £.0039 | .916 +.002 | .427 +.016 | .233 +.013
+ OT loss 8187 £.0035 | .9494 4+.0038 | .917 £.001 | .4114.004 | .229 +.032
+ MM & OT (LICO) | .8160 4 .0027 | .9503 4+.0023 | .901 £.002 | .396 +.014 | .253 4+ .024

4.2.2 LICO Extensions for Improved Interpretability

In our attempt to reproduce the experiments, we noticed that the text features for the context tokens encoded
by CLIP were the same for all classes, which limits the chances of identifying meaningful features in aligned
visual feature maps. This happens due to the CLIP’s text transformer encoding the text features based only
on the previous tokens by using masked self-attention (Vaswani et al., |2017)). In such a setup, the context
tokens cannot encode information useful to a specific class as the encoder cannot attend to class labels that
are appended after them. Identifying this as a potential limitation of LICO, we propose two extensions
targeted at resolving this problem.

Class-Specific Trainable Context: Using class-specific trainable context tokens preceding the class labels
will allow contexts that only have to fit one specific class. As a result, better text-image alignment can be
achieved for all classes. The experiments on ImageNet-Sso in Table [5] show that this improves both the
classification performance and interpretability of the trained models over the vanilla LICO method.

Front Placement of Class Label: Since the text encoder of CLIP attends only to the previous tokens,
we propose changing the position of class labels to the front of the prompt. This should allow for producing
text features of the context tokens that would encode class-aware semantic information. Although this leads
to the deterioration in classification performance over LICO, there is a significant improvement in terms of
model interpretability as seen in Table

Table 5: Accuracy and Interpretability of Prompt Variants on ResNet-18 with LICO and ImageNet-S5q

Accuracy Interpretability
Method Top-1 Top-5 [SES| (1) [SCH| (1) [[MOSU|()
LICO .8160 4+ .0027 | .9503 4+ .0023 | .901 £+ .002 | .396 +.014 | .253 +.024
LICO + class-specific context .8191 9574 .908 418 .219
LICO + class label at the front .8045 .9441 .905 419 .206
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5 Discussion

In this work, we were unable to reproduce the claims made by |[Lei et al.| (2023). We conducted several
experiments, some of which replicated the original authors’ evaluations, while others expanded upon the
evaluation methods and the LICO model itself.

The first claim of enhanced interpretability was not reproduced. Qualitatively, produced saliency maps on
ImageNet-S5o tend to cover spurious features more often than for the baseline. For CIFAR-100, this is even
more the case. In some instances, LICO resulted in artifacts appearing around the borders of the saliency
maps, which were not present in maps for baseline models. Quantitatively, LICO saliency maps result in
insertion, deletion, and combined scores that are not significantly better than baseline scores, although in
some cases the MM loss results in a tiny improvement.

The second claim of improved classification performance was not reproduced. For both CIFAR-100 and
ImageNet-S5g, LICO models result in lower or similar top-1 and top-5 accuracy than the baseline model.

The third claim of the necessity of both MM and OT loss was also not reproduced. Ablating individual loss
components did not lead to a decrease in either classification performance or model interpretability for any
of the evaluations. In most cases, it rather showed an improvement over the full LICO approach.

The extended quantitative analysis shows that LICO falls short in other ways. The saliency maps generated
for LICO models appear to be less equivariant to translations and crops compared to the baseline and also
appear to cover more of the regions outside the boundaries of the target objects. Moreover, the explanations
for LICO are worse at highlighting all instances of the relevant class compared to the baseline model.

Furthermore, our enhancements to the LICO model — class-specific trainable context and placing the class
labels at the front — have shown improved accuracy and interpretability compared to the original shared
prompts. This suggests that more relevant and descriptive text features may lead to improvements in the
quality of the aligned feature maps.

Future work: We believe the idea of incorporating the text features into an image classifier is an interesting
way of improving model interpretability. It might be able to hint at human understanding of the image,
especially if longer descriptions are used. Thus, we propose to explore using image captions to provide more
relevant signals for aligning image features.

Limitations: Our results may be limited by several factors. Computational constraints prevented us from
conducting experiments using the ImageNet1lk dataset, on which the authors claim their method performs
well. That being said, LICO was also reported to perform well on CIFAR-~100, and this did not turn out
to be the case in our reproduction. The differences in results might have also arisen due to the potential
use of regularisation or normalization methods not mentioned in the paper during the original experiments.
The question regarding that was part of our attempted communication with the authors; however, we had
to implement the method without their response.

5.1 What was Easy

From a technical perspective, most of the content of the paper was approachable. The explanations in the
paper are quite clear, except for a few instances — for example, the cost function ¢ in eq. (4) not being
defined. Hyperparameters were included where relevant, which made it quite straightforward to set up the
experiments replicating the authors’ claims. Moreover, in addition to working on ImageNet-1k, [Lei et al.
also conducted experiments on smaller datasets like CIFAR-100, which allows for attempts at reproduction
even with a limited computational budget.

5.2 What was Difficult

The most time-consuming part of our reproduction study was the full re-implementation of LICO in the
absence of a complete and working codebase provided by the authors. At the time of writing, the code on
the LICO repository contains only the implementation of Sinkhorn distance used in OT loss and partial
code for the calculation of MM loss. However, the latter deviates from the text of the paper — the main
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difference being the calculation of softmax on distances rather than negated distances as described in the
paper. This choice was not justified by comments in the codebase. There is also no code with a complete
implementation of the training loop or any of the conducted experiments.

5.3 Communication with Original Authors

As described in the previous sections, the official LICO code published by [Lei et al| is not sufficient to
reproduce the paper without reimplementing the majority of the method. Moreover, it should be noted that
there was no code publicly available in the repository before the 12th of January 2024, despite the paper
having been published in the autumn of 2023.

Due to the incompleteness of the available codebase, we made several attempts to contact the authors by
email and via GitHub with questions regarding the details of the authors’ implementation of LICO. However,
no response was received and, thus, all the decisions in our reproduction study are based directly on the the
published paper and referenced literature.
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A Adversarial Dataset

In order to demonstrate that deletion and insertion metrics favor non-robust models, we construct the
Adversarial dataset based on ImageNet-S59. The only difference from the base dataset is that all images for
one of the classes in a dataset are marked with a small red dot of fixed size at the top left corner. With this,
we aim to induce non-robustness in the model, as it is likely to start using the red dot as the sole predictor
of the modified class, rather than the actual object in the picture.

We train a ResNet-18 with CE loss from scratch on this dataset and observe that high importance is assigned
to the location of the red dot for the class that has it. The overall deletion score is 0.129, which is comparable
to models trained on ImageNet-S5o. Meanwhile, deletion specifically for the class with the red dot is 0.026.

For the deletion metric smaller is claimed to be better, so this experiment shows that the deletion metric
favors non-robust models that focus on relatively small, but perhaps irrelevant, details. It thus should not
be used to assess the explainability potential of an image classification model.

B Data Preprocessing

During our training process, we use minimal data augmentations. Namely, RandomResizedCrop and
RandomHorizontalFlip for the training set, following the available code of Pillai et al. (2022) and no
augmentation for the validation and training sets. For the Adversarial dataset (see appendix |A]), we remove
both augmentations to ensure the red dot is always visible and always at the same spot. Instead, we just
resize the images to (224, 224).

C Ensuring Reproducibility

To ensure reproducibility, we make all of our experiments deterministic by setting the random seed. So that
no cherry-picking is involved, we fix the seeds to be: 1, 2, and 3. Due to computational constraints, we
trained only the most important models on ImageNetso dataset on all three seeds — the remaining models
were trained on seed 2.

D Environmental Impact

The GPUs used for the training, RTX 4090 and Tesla A100, consume about 200W during training. To
that, we can add another 200W for the CPU, cooling, etc. One training run of LICO on CIFAR-100 or
ImageNet-S5q takes approximately 10000 seconds in our case. During the reproduction efforts, we estimate
that an equivalent of 100 full runs were performed.

Therefore, 0.4kW - 10000s - 100 + 3600s/h = 111kWh of power was consumed. According to the online
resource [Nowtricity], in the Netherlands, an equivalent of 421 grams of CO2 is emitted per kWh produced.
The reproduction study thus contributed an equivalent of 111-421 = 46.7 kilograms of CO2 — this is roughly
equal to the COs-equivalent emissions of 3 livestock cows in the Netherlands within a single day (Koning
et al., 2020).
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