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1. Introduction

We introduce VaVAM, an end-to-end driving Video-Action
Model that harnesses the power of generative video pretrain-
ing, learning unsupervised rich video representations from
large driving video datasets and applies these representations
for control via imitation learning.

Unsupervised end-to-end learning of driving policies
is key to achieving scalable and adaptable autonomous
systems without relying on costly and labor-intensive
labeling. Current approaches lean either on reinforcement
learning [9, 27, 40] in simulated environments such as
CARLA [15], or on imitation learning from real-world
expert driving data [5, 11, 20, 22, 33]. While the latter has
shown promising results [22, 24], it is limited by the size
and diversity of available datasets, which often fail to cover
rare but critical edge cases. Some methods mitigate this by
leveraging structured annotations (e.g., bounding boxes, HD
maps), injecting privileged information to simplify training.
However, this requires external labels that we aim to avoid.

Meanwhile, generative video models made remarkable
progress [4, 8, 41], with recent models generating pho-
torealistic, coherent videos by exploiting large amounts
of raw video data. Specialized models such as GAIA-1
[21] and VISTA [17] excel at predicting future frames in
driving videos, suggesting that generative models can learn
meaningful representations of the physical world, possibly
capturing semantics, dynamics, and geometry relevant
to driving. However, it remains unclear whether these
representations are useful for real-world driving. Can they
support downstream tasks such as motion planning? Can
they generalize beyond video prediction to actual control?

VaVAM allows us to investigate those questions. Our
experiments yield three key findings: first, a pretrained video
model captures meaningful driving semantics and dynamics,
even without external labels; second, when used as input to
the action expert, these representations significantly boost
performance in closed-loop (online) driving tasks; finally,
strong generalization and decision-making capabilities are
within reach of this strategy, shown by VaVAM achieving
state-of-the-art performance in safety-critical scenarios on
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Figure 1. End-to-end pipeline of VaVAM. From a context of up
to 8 frames, the video model (in yellow) builds a spatio-temporal
representation, and then VaVAM’s action expert (in green) estimates
the dynamic profile of the driving actions to undertake.

the NeuroNCAP benchmark [28].
Our main contributions are:

• We present training protocols for autoregressive video
models, including details of our training data mix on 1,800+
hours of public, real-world driving footage.

• We describe how to adapt the pretrained video model
into a full video-to-action pipeline by imitation learning,
demonstrating the effectiveness of end-to-end driving from
cameras alone.

• VaVAM sets the new state of the art in frontal driving scenar-
ios on NeuroNCAP [28], a closed-loop evaluation setting.

• We will release our training protocols, our code, and trained
checkpoints, with open-source and open-weight licenses
for the benefit of the research community.

2. VaVAM: architecture and learning objectives
VaVAM is an end-to-end video-to-action model for
autonomous driving. It processes raw video inputs to
predict future driving trajectories conditioned on high-level
commands (e.g., ‘turn left’, ‘go straight’). As shown in Fig. 1,
it combines a spatio-temporal video encoder, trained for
video modeling, with an action generation module to form
a unified perception-to-action pipeline.

Video Model: VaVAM’s features. Our goal is to develop
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a video model that captures the semantic and dynamic
structure of driving scenes from raw video inputs, ultimately
as a foundation for autonomous driving. We first transform
each video frame with a vector-quantized visual tokenizer
(LlamaGen-VQGAN [16, 37]), which reduces the task to
the sequential prediction of discrete tokens thus easing the
capture of long-range spatiotemporal dependencies.

VaVAM central component is an autoregressor for tokens,
factorizing the joint distribution of a spatio-temporal token
sequence into a product of conditional probabilities. This
formulation forces the model to understand both the local
appearance and the temporal progression of scenes, capturing
how objects move and interact over time. The design intent
is that, by mastering this prediction task, the model should
internalize key patterns of driving scenes that are crucial for
downstream control and planning.

In practice, we use a GPT-2-style [34] architecture with
causal attention, disentangled spatial and temporal positional
embeddings [21], and tied input-output embeddings. It is
trained with a next-token prediction loss, i.e., cross entropy
and teacher forcing. Formal details appear in App. C.

VaVAM’s action expert. Whether video generation pre-
training effectively captures the features essential for safe and
reliable driving is a key question. To bridge the gap between
pre-trained video representations and driving decisions,
we introduce an action expert module, forming VaVAM by
complementing the video model with decision-making. The
action expert module translates the visual representation
into a future trajectory. Drawing inspiration from π0 [3], we
formulate the action prediction as a denoising process: given
a noised trajectory, a video context, and a high-level goal, the
model learns to iteratively refine it by flow matching (Fig. 2a).

The action expert comprises three components. First, an
Action Encoder that projects trajectory tokens into a latent
space, incorporating noise-level embeddings (τ ) as well
as temporal and command embeddings. Second, a Joint
Attention Transformer that enables action tokens to attend
to video features using a specialized attention mask (Fig. 2b):
action tokens attend to video tokens of all current and past
frames and to all action tokens within the same frame; video
tokens follow strictly sequential causal attention among
themselves and cannot attend to action tokens. Third, and
finally, an Action Decoder that applies a linear map to the
latent representation to predict the denoising flow.

Joint attention between video and action tokens is a key
design choice allowing MLPs in the action branch smaller
than the dimension of the video model, learnable probing of
features from all the video model’s layers, and KV caching of
the video model’s features while the action expert does several
forward during denoising. While the original π0 [3] condi-
tions on single frames for robotic manipulation, we extend
it to driving by exploiting the temporal contexts of multiple
frames that are crucial for understanding dynamic scenarios.
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Figure 2. Model details. (a) The iterative denoising process for
driving trajectory estimation: starting from random noise, VaVAM
estimates the sequence of driving waypoints (green dots), conditional
to high-level commands (e.g., ‘turn left’) and video model features.
(b) The joint attention between the video model tokens o and action
tokens A at training time.

Learning Objective. We learn a conditional denoising
vector field vθ, which defines how to progressively transform
noisy trajectories back into expert-like behavior. The
dataset D= {(Ot,At,ct)} is composed of image sequences
Ot = [ot, ... , ot−N ] observed up to N past frames, expert
trajectories At = [at+1, ... ,at+H ] of future positions over
horizon H , and commands ct∈{left,right,straight}.

Flow matching defines the forward process as a linear
interpolation between the expert action At and Gaussian
noise ϵ∼N (0,I), controlled by a noise scale τ ∈ [0,1]:

Aτ
t =τAt+(1−τ)ϵ, ϵ∼N (0,I) (1)

The model is then trained to predict the denoising vector
field vθ from Aτ

t :

Lτ (θ)=Ep(At|Ot,ct),q(Aτ
t |At)||vθ(A

τ
t ,Ot,ct)−u(Aτ

t |At)||2
(2)

where q(Aτ
t |At) is the forward process defined above and

u(Aτ
t |At) is the optimal transport vector field. The optimal

transport vector field u(Aτ
t |At) represents the ideal direction

in which noisy actions should move to become expert
actions. The learned vector field vθ approximates this optimal
transport. Note that the video model is kept frozen during the
training of the action expert. During inference, we generate
action sequences by integrating the learned vector field:

Aτ+δ
t =Aτ

t +δ ·vθ(Aτ
t ,Ot,ct) (3)

using 10 steps of the forward Euler method, starting from
random noise A0

t ∼N (0,I).

3. Data and Training Strategy
3.1. Data sources
Our desiderata for the data were to find a large dataset of
video data for the pre-training and a sufficient amount of data
with perception and trajectories synchronized for fine-tuning.
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To that end, we train the video model and VAM on a collection
of three datasets: OpenDV [43], a massive dataset of raw
front-camera driving videos, and nuPlan [7] and nuScenes [6],
dedicated automotive datasets captured with multiple sensors.

OpenDV [43]. Since the video model does not require any
annotation, metadata, or additional sensors, we can leverage
the web-scale dataset OpenDV. OpenDV is a large-scale
dataset [43] which consists of over 1,700 hours of high
quality unannotated and unsynchronized driving videos
collected from the internet. OpenDV provides broad and
diverse visual coverage of real-world driving conditions,
which makes it suited to learn our auto-regressive features
for the video model.

nuPlan [7] & nuScenes [6] are high quality standard
driving datasets, often used to benchmark methods for diverse
taks. They provide synchronized camera and ego-trajectory
data, enabling supervised training of action models. But are
not the same order of magnitude as OpenDV.

For all datasets, we use only the front-facing camera and
extract short 4-second video clips at 2 FPS, resulting in eight
512×288 frames per clip. Details are provided in App. D.

3.2. Training
Learning features for the video model. We train the video
model in two stages. In the first phase, we pretrain it on the
broad data distribution of OpenDV: this is the most computa-
tionally expensive step. Following pretraining, we move to a
fine-tuning phase where the model is adapted to more specific
autonomous driving data. Fine-tuning is performed using the
same autoregressive next-token prediction objective, ensur-
ing consistency with pretraining while adapting the model’s
internal representations to better align with target-domain
distributions. We construct a training mix that includes a
subset of OpenDV as well as nuPlan and nuScenes that more
closely match our benchmark data distribution (the exact pro-
portion is given in App. D). We use an ImageNet pretrained
VQGAN-based tokenizer from LlamaGen [37] and a GPT-
style transformer [34]. We give all details on input resolution,
context length, model sizes, and optimizer in App. E. While
recent approaches rely on diffusion models [17, 18], our video
model stands out as the only open, large-scale autoregressive
model trained on real-world driving data from OpenDV.

Action learning with VaVAM. We learn the action expert
from the front-cam and GPS positions of the nuPlan and
nuScenes datasets. We predict future trajectory for 3 seconds
at 2Hz, i.e., 6-steps, as illustrated on Fig. 2a. VaVAM is
initialized with the pre-trained video model and remains
frozen. During training we use a block attention pattern
(Fig. 2b) for the joint attention, which enables training, and
thus inference, with variable context lengths. The action
matches the number of layers of the video model, and has
a hidden dimension of 192 (= 768/4) for the FFN layers,
while the tokens are projected for the joint attention to

match the hidden dimension of the video model (768). This
allows reducing the number of parameters of the action
expert (21M v.s. 185M for the video model), and the overall
computational cost of VaVAM. We use a beta noise schedule
for flow matching [3]. For the optimization we keep the
AdamW optimizer, with details given in App. E.

4. Experiments

4.1. Closed-loop evaluation with NeuroNCAP
Protocol. To evaluate safety-critical behavior beyond
open-loop metrics, we use NeuroNCAP [28], a photorealistic,
NeRF-based simulator supporting data-driven closed-loop
evaluation. Unlike synthetic [15] or view-reprojection [1, 2]
systems, NeuroNCAP produces novel views from real data
and inserts adversarial agents to mimic critical Euro NCAP
scenarios: ego-lane obstacles, frontal collisions, and cross-
traffic. Driving decisions are executed in simulation, with
observations updated accordingly. The ego-vehicle and the ad-
versarial agents are initialized so that, under constant speeds
and steering angles, a collision would occur in ∼4 seconds.
Predicted trajectories from VaVAM are converted into low-
level control commands (steering, throttle, brake) via an LQR
controller implemented within the NeuroNCAP simulator.

NeuroNCAP reports two core metrics: the collision rate
(lower is better) and the NeuroNCAP Score (NNS) (higher
is better) which is derived from the collision rate and severity:
zero collisions give a perfect score of 5.0, which is lowered
for more collisions or collisions at higher speeds (see App. F).

Baselines. Rule-based baselines: Base-U and Base-V use
perception, respectively, from UniAD [22] and VAD [24],
braking when objects are detected in a corridor 4m wide
and 2 × (ego speed) long. End-to-end planners: UniAD
and VAD, which use 360° camera inputs and predict ego
trajectories, with bird’s-eye-view representations that require
heavy annotation at train time (HD-map, tracking of agents).

These learned baselines apply a post-processing step at
inference, refining predicted trajectories by minimizing a cost
over candidate options based on smoothness and predicted col-
lisions. This uses a future occupancy map trained with dense
human annotations. Designing such post-processing requires
supervision and expert-crafted heuristics tailored to specific
risk types (e.g., avoiding vehicle crashes), well aligned with
the focus of NeuroNCAP. However, this approach is narrow
in scope and does not generalize to broader driving contexts
involving traffic lights, stop signs, etc. While our method
could also benefit from such post-processing, the focus of
this work is seeking strong performance without supervision.

4.2. Main results
SOTA comparison. Tab. 1 summarizes the performance
of all models on the NeuroNCAP benchmark. Rule-based
baselines (Base-U, Base-V) perform strongly in static
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Table 1. Performance on NeuroNCAP benchmark: VaVAM obtains SOTA scores on the frontal scenarios. * Static scenarios, sensitive to
annotation-dependent post-processing. † Side scenarios, sensitive to multiview-cameras. ‡ Baseline reproduced by us.

MODEL POST-PROC. NEURONCAP SCORE ↑ COLLISION RATE (%) ↓

AVG. STAT.* FRONTAL SIDE† AVG. STAT.* FRONTAL SIDE†

Baselines — Trained with hand-labeled annotations, 360° View
BASE-U N/A 2.65 4.72 1.80 1.43 69.90 9.60 100.00 100.00
BASE-V N/A 2.67 4.82 1.85 1.32 68.70 6.00 100.00 100.00

UNIAD ✗ 0.73 0.84 0.10 1.26 88.60 87.80 98.40 79.60
VAD ✗ 0.66 0.47 0.04 1.45 92.50 96.20 99.60 81.60

UNIAD ✓ 1.84 3.54 0.66 1.33 68.70 34.80 92.40 78.80
UNIAD‡ ✓ 2.08 3.58 1.18 1.48 61.10 31.20 78.80 73.20
VAD ✓ 2.75 3.77 1.44 3.05 50.70 28.70 73.60 49.80

VaVAM — Trained on raw data, Front-cam only
VAVAM ✗ 2.62 3.13 2.67 2.07 52.70 47.20 50.00 60.80

obstacle scenarios, achieving NeuroNCAP Scores (NNS)
above 4.7. However, they fail in dynamic and interactive
situations, suffering from a 100% collision rate in frontal and
side scenarios. This highlights their inability to anticipate
or react to moving hazards.

In the absence of post-processing, the learned models
UniAD and VAD perform very poorly overall, with collision
rates of 80–100%. Post-processing techniques, such as occu-
pancy filtering of predicted trajectories, considerably improve
their performance, especially in static settings. However, even
with these corrections, challenges remain for dynamic and
frontal collisions. While the original version of VAD performs
poorly, the version using UniAD’s post-processing presented
at the NeuroNCAP benchmark achieves the lowest overall
collision rate, outperforming VaVAM by 2 percent points.

In contrast, VaVAM operates end-to-end using only
front-facing cameras and without access to labels or inference
post-processing. Nevertheless, VaVAM excels in safety-
critical frontal collision scenarios reaching SOTA scores,
achieving an NNS of 2.67, and surpasses UniAD (which
has 360° camera input) in side-collision cases. Remark that
UniAD and VaVAM are at comparable model-size scales,
with 125 million and 206 million parameters, respectively.

Qualitative results, shown in Fig. 3, further illustrate
these differences. In challenging frontal collision situations,
UniAD detects the oncoming vehicle but fails to execute a
safe maneuver, adhering too rigidly to its planned trajectory.
In contrast, VaVAM, without explicit supervision or rule pro-
gramming for such cases, naturally deviates from its nominal
path and performs an evasive maneuver, successfully avoiding
the hazard. This highlights the strength of our large-scale self-
supervised pretraining approach in enabling flexible, safety-
aware behavior in complex real-world driving scenarios.

5. Conclusion

We introduced VaVAM, an end-to-end driving system that
combines generative video pretraining with action learning
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Figure 3. Driving behavior comparison on NeuroNCAP [28].
UniAD [22] and VaVAM are evaluated in a frontal collision scenario.
Images: frontal camera. Inset plots: top view of scene evolution,
with objects (gray boxes) and guiding path (red line) highlighted for
visualization only. While UniAD detects and forecasts the oncoming
vehicle (blue), it fails to react. VaVAM successfully deviates to avoid
collision and safely returns to its lane, without explicit supervision.

from demonstrations, without requiring manual annotations.
VaVAM achieves strong closed-loop performance and sets
a new state of the art in safety-critical scenarios, without
relying on post-processing at inference. These findings
support the potential of video-based generative modeling as
a foundation for scalable driving agents. Future directions
include reward-based learning, multi-camera inputs, and
improved tokenization. We open-source our models, tools,
and training protocols to support the community and foster
further progress in autonomous driving research.

Limitations. Our video model relies solely on the front
camera, limiting performance in scenarios involving
side interactions. Future work could extend VaVAM to
multi-camera setups using large-scale datasets such as
L2D [38]. The imitation learning training requires the ego
position and is currently conducted on smaller, synchronized
datasets (nuPlan and nuScenes). Recently, GEM [18]
proposed pseudo-labeling to extract the ego-position from
raw videos, allowing to leverage GPS pseudo-annotation
on OpenDV-scale datasets. This strategy would allow future
works to scale up the imitation learning phase.
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[5] Thibault Buhet, Émilie Wirbel, Andrei Bursuc, and Xavier
Perrotton. PLOP: probabilistic polynomial objects trajectory
prediction for autonomous driving. In CoRL, 2020. 1

[6] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In CVPR, 2020. 3, 7, 9

[7] Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit Fong,
Eric M. Wolff, Alex H. Lang, Luke Fletcher, Oscar Beijbom,
and Sammy Omari. nuplan: A closed-loop ml-based planning
benchmark for autonomous vehicles. CoRR, 2021. 3, 8

[8] Hila Chefer, Uriel Singer, Amit Zohar, Yuval Kirstain, Adam
Polyak, Yaniv Taigman, Lior Wolf, and Shelly Sheynin. Video-
jam: Joint appearance-motion representations for enhanced
motion generation in video models. CoRR, 2025. 1, 7

[9] Raphael Chekroun, Marin Toromanoff, Sascha Hornauer, and
Fabien Moutarde. Gri: General reinforced imitation and its
application to vision-based autonomous driving. Robotics,
2023. 1, 7

[10] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Diffusion
policy: Visuomotor policy learning via action diffusion. In
RSS, 2023. 7

[11] Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao
Yu, Katrin Renz, and Andreas Geiger. Transfuser: Imitation
with transformer-based sensor fusion for autonomous driving.
PAMI, 2023. 1, 7

[12] Felipe Codevilla, Antonio M López, Vladlen Koltun, and
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Kurtis David, Matthieu Kim Lorrain, Marc van Zee, Medhini
Narasimhan, Miaosen Wang, Mohammad Babaeizadeh,
Nelly Papalampidi, Nick Pezzotti, Nilpa Jha, Parker Barnes,
Pieter-Jan Kindermans, Rachel Hornung, Ruben Villegas,
Ryan Poplin, Salah Zaiem, Sander Dieleman, Sayna Ebrahimi,
Scott Wisdom, Serena Zhang, Shlomi Fruchter, Signe Nørly,
Weizhe Hua, Xinchen Yan, Yuqing Du, and Yutian Chen. Veo
2. tech report, 2024. 1, 7

[42] Zhenhua Xu, Yujia Zhang, Enze Xie, Zhen Zhao, Yong Guo,
Kwan-Yee K. Wong, Zhenguo Li, and Hengshuang Zhao.
Drivegpt4: Interpretable end-to-end autonomous driving via
large language model. RAL, 2024. 7

[43] Jiazhi Yang, Shenyuan Gao, Yihang Qiu, Li Chen, Tianyu
Li, Bo Dai, Kashyap Chitta, Penghao Wu, Jia Zeng, Ping
Luo, Jun Zhang, Andreas Geiger, Yu Qiao, and Hongyang
Li. Generalized predictive model for autonomous driving. In
CVPR, 2024. 3, 8

[44] Tengju Ye, Wei Jing, Chunyong Hu, Shikun Huang, Lingping
Gao, Fangzhen Li, Jingke Wang, Ke Guo, Wencong Xiao,
Weibo Mao, et al. Fusionad: Multi-modality fusion for predic-
tion and planning tasks of autonomous driving. CoRR, 2023. 8

[45] Jiang-Tian Zhai, Ze Feng, Jihao Du, Yongqiang Mao,
Jiang-Jiang Liu, Zichang Tan, Yifu Zhang, Xiaoqing Ye, and
Jingdong Wang. Rethinking the open-loop evaluation of
end-to-end autonomous driving in nuscenes. CoRR, 2023. 8

6



† Corresponding authors; {florent.bartoccioni,
elias.ramzi}@valeo.com
⋆ Work done while at valeo.ai, now at H company.

A. Further analysis

(a) Input context frames (real images).

(b) Generated frames with the video model. The input context frames are
from the nuScenes dataset [6].

Figure 4. Video generation. Given 4 context frames ((a)), the video
model predicts 4 future frames with coherent structure and motion.

Input image PCA visualization

Input image PCA visualization

Figure 5. Semantic structure in video model features. We map the
top-3 PCA components of the video model’s layer-22 features to the
RGB primaries. Similar colors cluster around the same object classes
(e.g., vehicles, pedestrians, road), revealing emergent semantics
without supervision. Input images from the nuScenes dataset [6].

Qualitative analysis of the video model. Fig. 4 shows
a sample generation: given 4 context frames (top row), the
video model generates spatially coherent future frames
(bottom row), preserving scene layout and dynamics. In
Fig. 5, we visualize the internal representations of the video
model using principal component analysis (PCA) to map
the top-3 principal components of the features from the 22nd
layer onto the primaries of an RGB image. The similar colors
clustering around objects of the same class (cars, pedestrians,
road) reveal strong, emergent semantic structure on the
features, even if training forgoes any explicit labeling.

Flow matching ablation. We adopt flow matching to
model action trajectories, as it directly learns vector fields

that capture complex, multimodal distributions. Discrete
approaches, such as action quantization and categorical
sampling [25], struggle with such long-tail distributions
and offer limited expressiveness. Simple regression, on
the other hand, produces deterministic outputs that average
over possible actions (e.g., driving straight when faced
with left/right options), leading to unsafe and ambiguous
behavior. In contrast, flow matching allows sampling diverse,
goal-consistent trajectories by refining noisy inputs through
learned gradient fields [10].

Tab. 2 highlights the importance of the flow-matching
formulation for trajectory generation. Performance degrades
sharply across all NeuroNCAP scenarios, particularly in
frontal scenarios — NNS drops from 2.67 to 0.70, collision
rate rises from 50.0 to 96.0% — for a simple mean-squared
error regression objective (VaVAM-MSE) instead of
flow-matching, confirming the latter’s advantage in modeling
complex and multimodal distributions of driving behavior.
In long-tailed datasets, dominated by straight trajectories,
the flow-based predictor allows capturing rare but critical
maneuvers, such as evasive swerves or hard braking, far more
reliably than direct regression.

B. Related work
End-to-end driving primarily follows two paradigms:
reinforcement learning (RL) and imitation learning (IL).
RL trains agents through trial and error towards a reward,
typically in simulation [9, 27, 40]. Agents use visual encoders
pretrained on tasks such as semantic segmentation [40].
While RL can exploit privileged simulation signals [20],
sim-to-real transfer remains challenging due to visual
and behavioral domain gaps in current simulators [2, 15].
IL [13, 19] bypasses reward design by mimicking expert
demonstrations, easing real-world deployment. Behavior
cloning [22, 33] treats IL as supervised learning but requires
large and diverse datasets to handle rare cases and avoid
overfitting [31]. TransFuser [11] and MILE [20] ease data
demands by relying on dense annotations (e.g., HD maps
and vehicles bounding boxes), but that limits scalability [23].
Recent work such as UniAD [22] integrates perception,
prediction, and planning in a unified framework. VAD [24]
uses vectorized scene representations for faster inference.
Emerging foundation models such as DriveGPT4 [42] and
CarLLaVA [35] aim to bypass dense labels entirely using
vision-language pretraining. In this work, we retain the
simplicity of IL but forgo all human annotations. Instead, we
scale unsupervised generative video pretraining, enabling
strong closed-loop performance without dense supervision.
Video modeling. Video generative models have seen
rapid recent progress [8, 32, 41]. Sora [4] employs a
latent transformer diffusion model trained on images and
videos at different aspect ratios, enabling very diverse
generation. Movie Gen [32] can produce videos of up to 16
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Table 2. Ablation of the action expert learning. We compare the full VaVAM model against a variant (VaVAM-MSE) where the flow-matching
trajectory head is replaced with a standard regression loss. The flow-matching formulation yields significantly better NeuroNCAP scores and
lower collision rates, especially in frontal collision scenarios, confirming its ability to model diverse and safe behaviors.

MODEL POST-PROC. NEURONCAP SCORE ↑ COLLISION RATE (%) ↓

AVG. STAT. FRONTAL SIDE AVG. STAT. FRONTAL SIDE

VAVAM-MSE ✗ 1.50 2.62 0.70 1.18 80.60 66.60 96.0 79.20
VAVAM ✗ 2.62 3.13 2.67 2.07 52.70 47.20 50.0 60.80

seconds at 16 fps. Some models specifically target driving
scenes [17, 21, 26, 30, 36], such as GAIA-1 [21], which
uses 5,000-hour driving data to scale up generation, and
GAIA-2 [36], with enhanced controllability and expanded
geographic and vehicle diversity. In this work, we show that
large-scale generative video pretraining is highly beneficial
for autonomous driving. Rather than aiming only at video
synthesis, our model leverages the learned visual dynamics
and temporal reasoning skills acquired during generative
pretraining to boost closed-loop driving performance —
without requiring any explicit labels, costly annotations, or
task-specific supervision. This suggests that generative video
models can serve as a strong foundation for building robust,
scalable, end-to-end autonomous driving systems.
Open-loop and closed-loop evaluations. Open-loop
evaluation [22, 24, 44] compares predicted trajectories to
expert demonstrations but resets the system at each step,
preventing error accumulation and feedback assessment. It
also penalizes all deviations from the expert, even reasonable
ones [12, 14, 45]. Closed-loop evaluation, in contrast,
lets model decisions affect future observations, enabling
realistic assessment of driving behavior. However, for
end-to-end camera-based systems, it requires rendering
plausible views from new positions, a non-trivial task.
Simulators such as CARLA [15] offer this but suffer from
domain gaps. Vista [1, 2] reprojects real images but does not
simulate interactions with dynamic agents. NeuroNCAP [28]
overcomes both by using neural rendering with real-world
photorealism and dynamic agents. We evaluate VaVAM
in closed-loop on NeuroNCAP and show it achieves
state-of-the-art performance in safety-critical scenarios.

C. Video model formalism

Each input frame Xt ∈ Rh×w×c is tokenized into a
discrete spatial grid of codes using a pretrained LlamaGen-
VQGAN [16, 37]. The encoder fθ produces a latent feature
map e ∈ Rh′×w′×d, which is discretized into tokens q(i,j)

by finding the nearest neighbors in LlamaGen’s codebook
{ek}Kk=1:

q(i,j) :=argmin
k

∥e(i,j)−ek∥2.

This results in a compact sequence of tokens that significantly
reduce video data dimensionality.

To model temporal dynamics, this multi-frame token
sequence is fed to an autoregressive transformer decoder. The
model learns to predict the next token in the sequence from all
preceding tokens, capturing joint spatio-temporal structure.
Formally, for a sequence Q=[q0,...,qn−1], we minimize:

Lθ=−
n∑

i=1

logP (qi|q0,...,qi−1;θ).

D. Data Details and Processing

OpenDV [43] The OpenDV dataset is the largest driving
dataset publicly available to date, with more than 1,700
hours of driving videos, collected at 60 FPS, resulting in over
360 million frames. The dataset comprises single-camera
front-cam videos collected from YouTube, with indicated
durations of intros (usually 90 seconds) and outros (usually
60 seconds) for trimming, to avoid artifacts such as title
sequences and closing credits. Most of the videos are at or
close to Full HD (1920×1080) resolution.

We include in our data only the videos at exactly Full
HD to avoid issues of aspect ratio distortion. That meant
discarding 1.3% of the videos (2.5% of the total duration).
Using FFMPEG [39], we extracted the frames for the
remaining videos at 10 FPS and 512×288 pixels, discarding
intros and outros. We stored the frames in individual JPEG
files. We extract overlapping clips of 8 frames at 2 FPS to
train the video model. Only a front camera is available for
this dataset, without any metadata.

nuPlan [7] The nuPlan dataset contains around 1,200
hours of driving scenarios recorded in Las Vegas (838 hours),
Boston, Pittsburgh, and Singapore. In particular, among
the 1,200-hour raw data, approximately 94-hour recordings
contain sensor information (LiDAR and cameras) with a
sampling rate of 10 Hz. Our project only employs the RGB
images in 1274 recorded videos and the ego position. More
specifically, we only use the front camera instead of the
eight cameras that cover the 360-degree view around the ego
vehicle. We collect from nuPlan 2,833,723 frames for training
and 492,477 for validation, together with trajectory extracted
from the ego positions. We also extract overlapping clips of
8 frames at 2 Hz from the original 10 Hz video sequences.
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nuScenes [6] The nuScenes dataset contains 1,000 driving
scenes of 20 seconds collected in Boston and Singapore.
Similarly to nuPlan, while nuScenes includes 6 cameras,
LIDAR, RADAR, etc., we restrict its usage to the front
camera and ego position in this work. That results in a dataset
of 28,130 training frames and 6,019 validation frames. We
also extract overlapping clips of 8 frames. The dataset is
natively synchronized at 2Hz.

As detailed in subsequent sections, we use the datasets
for different steps of the video model and VaVAM training.
Specifically, we use OpenDV only for pre-training the video
model. A mix of the three datasets to fine-tune the video
model. For both training steps, only the front camera is
used, making those steps completely unsupervised and, thus,
highly scalable. Finally, we use nuScenes and nuPlan to learn
VaVAM through imitation learning on the ego trajectory.
That training stage requires access to the ground-truth expert
trajectory, although, interestingly, recent approaches such
as GEM [18], explore the use of pseudo-annotations for the
ego trajectory, paving the way to scaling action learning to
OpenDV-size datasets.

E. Implementation Details and Training
Infrastructure

Image tokenizer In practice, we use a pre-trained image
tokenizer, LlamaGen [37], which is based on the VQGAN
architecture. Specifically, we use the stride=16 tokenizer,
which has 72M parameters. It has a vocabulary size of 16,384
with codewords of 8 dimensions. We use images of size
512×288, resulting in a token map of 32×18, or 576 tokens.

The video model is based on a GPT-2 transformer
architecture [34]. We train it with a context length of 8
frames, resulting in a maximum context of 4,608 tokens. It
has 24 layers, a vocabulary size of 16,384, with a width of
768. This results in a codebook of size 12.6M. The heads
dimensionality is 128. We set a standard multiplication factor
of 4 for the FFN hidden dimensionality. We optimize it with
AdamW [29], a base learning rate of 4e-3, a decoupled weight
decay of 1e-7, and β=(0.9,0.95) while clipping the gradient
with a norm of 1.0. Finally, we initialize with a standard
deviation of 3e-2. These values are fixed by random search.
We train all our models with a batch size of 384. We pre-train
the model on approximately 60 million overlapping windows.

VaVAM predicts the trajectory for the 6 next timesteps
at 2 Hz, i.e., for 3 seconds. The dimensionality of VaVAM
attention layers is identical to its video model companion for
the joint attention. However, VaVAM’s MLP layers dimen-
sionality is reduced by a factor of 4 with respect to the video
model dimensionality for efficient action sampling, i.e., 192.

We use a learning rate equal to 0.0194, an initialization
standard deviation of 0.0086, and similar optimizer parame-
ters to the video model. For the flow matching loss, we follow
π0 and use a beta distribution for the noise schedule and 10
steps for denoising at inference time. We efficiently train
our model with different observation context lengths using
a block attention pattern (Fig. 2b). That allows training the
action expert to handle varying lengths of temporal context
from one training clip.

F. Experimental protocol
The NeuroNCAP score is formally defined as:

NNS=

{
5.0 if no collision
4.0·max(0,1−vi/vr) otherwise

(4)

where vi is the impact velocity and vr is the reference impact
speed that would occur if no action is performed. Higher
scores reflect better collision avoidance and mitigation.
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