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a b s t r a c t

With the aid of one manually annotated frame, One-Shot Video Object Segmentation (OSVOS) uses a CNN
architecture to tackle the problem of semi-supervised video object segmentation (VOS). However, anno-
tating a pixel-level segmentation mask is expensive and time-consuming. To alleviate the problem, we
explore a language interactive way of initializing semi-supervised VOS and run the semi-supervised
methods into a weakly supervised mode. Our contributions are two folds: (i) we propose a variant of
OSVOS initialized with referring expressions (REVOS), which locates a target object by maximizing the
matching score between all the candidates and the referring expression; (ii) segmentation performance
of semi-supervised VOS methods varies dramatically when selecting different frames for annotation. We
present a strategy of the best annotation frame selection by using image similarity measurement.
Meanwhile, we first to propose a multiple frame annotation selection strategy for initialization of
semi-supervised VOS with more than one annotated frames. Finally we evaluate our method on
DAVIS-2016 dataset, and experimental results show that REVOS achieves similar performance (79.94%
measured by average IoU) compared with OSVOS (80.1%). Although current REVOS implementation is
specific to the method of one-shot video object segmentation, it can be more widely applicable to other
semi-supervised VOS methods.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

The rapid development of intelligent mobile terminals has led
to an exponential increase in video data. In order to effectively ana-
lyze and use video big data, it is very urgent to automatically seg-
ment and track objects of interest in videos. Video object
segmentation (VOS) and tracking are two basic and highly related
tasks in the field of computer vision. Object segmentation divides
pixels of video frames into two subsets (foreground target and
the background region) and generates object segmentation masks.
Object tracking is to determine the exact locations of targets in
video images and generates object bounding boxes. These two
topics are facing some common challenges, such as deformation,
motion blur, and scale variation. Meanwhile, the former also has
to deal with the problems of heterogeneous object, interacting
object, edge ambiguity, and shape complexity. The latter suffers
from difficulties in handling occlusion, fast motion, out-of-view
and realtime processing.

Early non-learning methods typically address VOS task using
handcrafted features. More recently, research of VOS has turned
towards deep learning paradigms following the success of deep
learning in many computer vision applications. One-Shot Video
Object Segmentation (OSVOS) is a deep learning framework of
semi-supervised video object segmentation, which processes each
video frame independently for segmenting a particular object
instance given a manually annotated video frame (one-shot)[1].

OSVOS formulates video object segmentation as a per-frame
segmentation problem, and this stands in contrast to approaches

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.06.129&domain=pdf
https://doi.org/10.1016/j.neucom.2020.06.129
mailto:wangjianming@tiangong.edu.cn
https://doi.org/10.1016/j.neucom.2020.06.129
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


X. Bu, Y. Sun, J. Wang et al. Neurocomputing 453 (2021) 754–765
where temporal consistency plays the central role by assuming
that objects do not change too much between one frame and the
next (as in object tracking). The authors argue OSVOS has some
advantages when processing each frame independently: (1) it is
able to segment objects through occlusions; (2) it is not limited
to certain ranges of motion; (3) it does not need to process frames
sequentially, and errors are not temporally propagated.

As other semi-supervised VOSmethods, OSVOS requires a pixel-
level annotation of initialize the algorithm. However, annotating a
precise segmentation mask is expensive and time-consuming, and
this requirement often suffers from criticism when the semi-
supervised methods are applied in real applications[2–4].

In this paper we consider the scenario where a user observes a
video clip firstly and then specifies an object for segmentation. To
alleviate the problem of object mask annotation, we propose a
variant of OSVOS initialized with referring expressions (REVOS)
and make the semi-supervised method working in a weakly super-
vised mode. Our contributions are concluded as:

(1) Generally speaking, people often select objects which draw
their attention for segmentation. In the community of unsuper-
vised VOS, [5] conducts a systematic study on the role of visual
attention for video object segmentation task and shows a strong
correlation between human attention and explicit primary
object judgments during dynamic, task-driven viewing.
Inspired by their observation, we suggest to interpret user’s
visual attention to VOS system with language interaction and
initialize OSVOS with referring expressions. The idea is illus-
trated in Fig. 1.
(2) The current semi-supervised paradigms for VOS tasks
always chooses the first frame as the user-annotated frame.
However, [6] has proved that segmentation performance across
the entire video varies dramatically when selecting different
frames for annotation and the best frame for user annotation
is seldom the first frame. The authors introduce a novel deep
sorting network (BubbleNets) to select frames using a
performance-based loss function. However, the loss function
needs annotated frames to calculate performance labels, and
this is not feasible in real applications. In the paper, we propose
an annotation frame selection strategy by measuring the image
similarity between video frames.
(3) Users can easily annotate frames with referring expressions,
so REVOS needs a strategy to select multiple annotated frames.
To the best of our knowledge, there has been no report on
multiple-frame annotation methods in literature. In the paper,
we first propose a strategy of multiple frame annotation selec-
tion which optimizes the label propagation from labeled data to
unlabeled data.
Fig. 1. Comparison between OSVOS and REVOS:(a) is the existing method (OSVOS), and
our model automatically calculates the object mask and does object segmentation for th
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Compared with the conference version, this paper makes the
following extensions: (a) Three rules of referring expression gener-
ation are proposed, which normalize the way to generate the refer-
ring expression and reduce the difficulty of language analysis. (b)
The problem how to select the best user-annotated frame is
explored. To alleviate the limitation of BubbleNets [6], a novel
method is proposed which is based on image similarity measure-
ment. (c) An optimization strategy is proposed to carry out multi-
ple user-annotated frame selection. (d) A variant of foreground
branch loss function is derived and is utilized to train test network
with multiple annotated frames. (e) We also conduct more com-
prehensive evaluations and analysis for the best user-annotated
frame selection, multiple user annotated frame selection and rules
of referring expressions generation.

The structure of the paper is organized as follows: Section 1
introduces the problems of OSVOS methods and proposes our
method to solve the problem with language interaction. In Sec-
tion 2, related work to REVOS is described. Section 3 deals with
the framework of REVOS and how it works in details. Section 4
depicts the experimental results on DAVIS dataset. Section 5 pre-
sents limitations and future work of our method. Finally, we con-
clude our work in Section 6.
2. Related work

In the section, we provide a brief overview of recent work in
three relevant fields: video object segmentation, annotation frame
selection for semi-supervised VOS and referring expression
comprehension.

2.1. Video object segmentation

According to the level of supervision, We categorize the video
object segmentation methods into supervised, unsupervised,
semi-supervised and weakly supervised methods. Recently, more
research efforts have been devoted to tackling VOS task in deep
learning frameworks. Generally, one-shot video object segmenta-
tion is understood as making use of a single annotated frame (often
the first frame of the sequence) to estimate the remaining frames
segmentation in the sequence. On the other hand, zero-shot video
object segmentation is understood as building models that do not
need any labeled data of video frames[7,8].

2.1.1. Supervised video object segmentation
Early non-learning methods typically address supervised VOS

task using handcrafted [9], and more recent research has turned
towards deep learning paradigms [10,11]. Typically, supervised
(b) is our method (REVOS). By inputting a referring expression (‘‘Girl in the middle”),
e entire video clip.
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methods require a mount of labeled data and model training is
often costly and heavily affected by the availability of annotations
from the target categories. Compared with unsupervised or semi-
supervised methods, supervised approaches can produce more
accurate partitions. However, the labor intensive process is unfea-
sible at large scale in applications.

2.1.2. Unsupervised video object segmentation
Unsupervised VOS models require neither category-specific

training nor user’s interactions and perform object segmentation
with intrinsic cues, such as salient motion, object appearance,
visual attention and etc. [12,13]. By taking video saliency as
object-level cues for unsupervised VOS, [14] formulates the
pixel-wise segmentation task as an energy minimization problem
with a geodesic distance based technique that provides consistent
saliency measurement of super-pixels as a priority for pixel-wise
labeling. [13] proposes a fully end-to-end trainable recurrent net-
work for multiple object VOS tasks. To model long-term temporal
dependencies, [15] introduce a technique to establish dense corre-
spondence between pixel embedding of a reference ‘‘anchor” frame
and the current one. [16] proposes a DNN network called CO-
attention Siamese Network to address the unsupervised video
object segmentation task from a holistic view. The authors suggest
a global co-attention mechanism which encodes useful informa-
tion by processing multiple reference frames together, and their
idea can be intuitively summarized as ‘‘see more, know more”.
[16] conducts a systematic study on the role of visual attention
in the unsupervised video object segmentation task and it is the
first attempt to collect human attention data on three public video
segmentation datasets (DAVIS, Youtube-Objects and SegTrack).
The authors quantitatively verified the high consistency of visual
attention behavior among human observers and found a strong
correlation between human attention and explicit primary object
judgments during dynamic, task-driven viewing.

2.1.3. Semi-supervised video object segmentation
Semi-supervised VOS is a group of methods whose supervised

level is between the supervised VOS and unsupervised VOS. With
a few labeled data, semi-supervised methods leverage the inner
structure of unlabeled data and propagate labels from labeled data
to unlabeled data.

Traditionally, semi-supervised VOS lets user label the first
frame or other key frames firstly and then performs object segmen-
tation in the remaining frames. Most of the current literature on
semi-supervised VOS enforce temporal consistency in video
sequences to propagate the initial mask into the following frames.
For example, in order to reduce the computational complexity,
some work make use of super-trajectory [17] superpixels [18,19],
patches [20,21], or even object proposals [22]. Moreover, an opti-
mization using one of the previous aggregations of pixels is usually
performed; which can consider the full video sequence [23], a sub-
set of frames [19], or only the results in frame n to obtain the mask
in nþ 1 [20,18,21]. As part of their pipeline, some of other methods
include the computation of optical flow [19,20], which consider-
ably reduces speed.

Unlike those methods, One-Shot Video Object Segmentation
(OSVOS) [1] separates each frame independently without using
temporal consistency. It is also state-of-the-art in semi-
supervised VOS and has influenced other leading methods [6].
Given the manual annotation of the first frame, OSVOS makes
the classification of all pixels of a video sequence into background
and foreground. OSVOS adopts a CNN architecture and trains it in
two stages: online training and offline training. In the offline train-
ing, base network is trained on ImageNet for image labeling. Then,
the base network is further trained on the binary masks of the
training set of DAVIS (parent network). In the online training, the
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test network is trained (fine-tuned) from the parent network on
a segmentation example for the specific target object in a single
frame (an annotated object mask), and this helps the network
rapidly focus on that target object. One unique property of OSVOS
is that it does not require temporal consistency, i.e., the order that
OSVOS segments frames are inconsequential. Conversely, even
when segmentation methods operate sequentially, segmentation
can propagate forward and backward from annotated frames
selected later in a video.

2.1.4. Weakly supervised video object segmentation
Semi-supervised VOS methods often suffer from criticisms

because of their requirement for a pixel-level object mask. To fur-
ther reduce the supervision cost, a few work has been found in lit-
erature (usually named weakly supervised methods). In scenarios
where a mouse or a touch screen is available, clicks and scribbles
are user friendly ways to do supervision. [24] explores the use of
extreme points in an object(left-most, right-most, top, bottom pix-
els) as input to obtain precise object segmentation for images and
videos. By taking one-shot video object segmentation[1] as the
backbone, [25] proposes a human-in-the-loop video object seg-
mentation method with a handful of clicks. [26] presents a deep
learning method for the interactive video object segmentation
which builds upon two core operations (interaction and propaga-
tion) using user scribble annotations. With the rapid growth of
video sharing web sites, a massive amount of videos are associated
with semantic tags and taken as weakly labeled at a video level (or
image level)[27,2–4].

2.2. Annotation frame selection for semi-supervised video object
segmentation

[6] is the only investigation on how to select the best user-
annotated frame for semi-supervised video object segmentation.
The authors found that segmentation performance across the
entire video varies dramatically when selecting an alternative
frame for annotation. This encourages them to address the prob-
lem and propose a deep sorting network (BubbleNets) that learns
to select frames using a performance-based loss function. By using
the performance-based loss function, BubbleNets is trained to pre-
dict the relative performance difference of two frames. In the test-
ing stage, BubbleNets makes relative performance predictions,
iteratively comparing and swapping adjacent frames until the
frame with the greatest predicted relative performance is
identified.

The BubbleNets method has two limitations: (i) BubbleNets
require previously annotated video object segmentation datasets
for training (calculate the performance-based loss function), and
this requirement is expensive and time consuming in real applica-
tions. (ii) BubbleNets does not supply any solution for selecting
multiple user-annotated frames.

2.3. Referring expression comprehension(REC)

The task of referring expression comprehension is to localize a
region described by a given referring expression. To address this
problem, some recent work [28,29] uses CNN-LSTM structure to
model and looks for the object by maximizing the probability.
Other recent work uses joint embedding model [30–33] to com-
pute matching score directly. In a hybrid of both types of
approaches, [34] proposed a joint speaker-listener-reinforcer
model that combined CNN-LSTM (speaker) with embedding model
(listener) to achieve state-of-the-art results. Most of the above
treat comprehension as bounding box localization, but object seg-
mentation from referring expression has also been studied in some
recent work. Such as MAttNet [35] which takes a natural language
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expression as input and softly decomposes it into three phrase
embeddings. MAttNet learns to parse expressions automatically
through a soft attention based mechanism, instead of relying on
an external language parser [36,37].

3. Proposed method

REVOS is an user-friendly variant of OSVOS, because it obtains a
pixel-level object mask with a language referring expression. The
framework of REVOS is illustrated in Fig. 2, which includes three
parts: referring expression analysis, object mask annotation and
few-shot deep learning.

3.1. Referring expression analysis

Referring expressions are natural language utterances that indi-
cate particular objects within a scene. Referring expression com-
prehension is the technique to locate an object in an image with
a referring expression and is typically formulated as selecting the
best match between an image region and a referring expression.

We use a referring expression to specify an object instance in a
video frame. For any possible referring expression r ¼ utf gTt¼1, all

the ut forms a dictionary set D ¼ uif gNi¼1. N ¼ ukf gKk¼1 is a subset
of D. Each element uk of N is a noun word (a name of an object).
N actually is the set of objects (the word‘‘object” in the paper
means its name should be included in set N, otherwise it will be
taken as background) and there are K object instance which can
be potentially segmented by the system. To reduce the difficulty
of calculating object mask with a referring expression, rules for
generating the referring expression are stipulated.

Rules for generating referring expression:

(1) If there is only one object instance in the video frame, then
the referring expression is ‘‘subject”, e.g. ‘‘dog”.
(2) If there is more than one object instance and the one to be
segmented does not overlap another object in the video frame,
then the referring expression is ‘‘subject þ location”, e.g. ‘‘girl in
the middle”.
(3) If there is more than one object instance and the one to be
segmented does overlap another object in the video frame, then
the referring expression is ‘‘subject þ relationship”, e.g. ‘‘man
riding on a horse”.
Fig. 2. The framework of our method:(a): Referring expression analysis. (b): Object mas
an object instance by a referring expression; our model calculates the best match betwee
shot deep learning is utilized to do object segmentation on the remaining frames.
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Given a referring expression r ¼ utf gTt¼1 under the rules above,
the words ut are grouped into three phrases categories
ð subf g; locf g; relf gÞ by using the strategy in Fig. 3. Then we embed
each word ut into a vector et using a one-hot word embedding. Cor-
respondingly, et can also be grouped into three cate-
goriesð esubf g; elocf g; erelf gÞ. Three phrase embeddings are
calculated by:

qsub ¼
X

ei; ei 2 esubf g ð1Þ

qloc ¼
X

ei; ei 2 elocf g ð2Þ

qrel ¼
X

ei; ei 2 erelf g ð3Þ
3.2. Object mask annotation

In the paper, we utilize Mask R-CNN [38] as the backbone net
for faster implementation and predicting pixle-level object masks.

Corresponding to three phrases embeddingðqsub; qloc; qrelÞ, we
design three modules (‘‘subject”, ‘‘location”, ‘‘relationship”) to
locate target objects. Given a video frame X and a referring expres-
sion, we run Mask R-CNN extended from ResNet[39] and get a set
of candidates oi. According to the type of the referring expression
label (‘‘subject”, ‘‘subject þ location” or ‘‘subject þ relationship”),
three combinations of the modules are adopted to do object local-
ization and output a bounding box. And then, the binary object
mask is calculated with the mask branch network in Mask R-
CNN [38] (see Fig. 4).

Subject Module: The visual feature of oi is denoted as v i
sub. The

subject module is formulated as:

SðoijqsubÞ ¼ Fðv i
sub; qsubÞ ð4Þ

whereFð:Þ isthematchingfunctiontomeasurethesimilaritybetween
oi representationv i

sub andphraseembeddingqsub. As is showninFig. 5,
thematching functionconsists of twoMLPs (multi-layerperceptions)
and two L2 normalization layers. Each MLP is composed of two fully
connected layers with ReLU activations, serving to transform the
visual feature and phrase embedding into a common embedding
space. The inner product of the two L2-normalized representations
is computed as their similarity score[35].
k annotation. (c): Few-shot deep learning. By observing a video frame, users specify
n image candidates and the referring expression and generate the object mask; few



Fig. 3. The rules of generating referring expressions and the flow chart of expression analysis module.

Fig. 4. Pipeline of object mask annotation.

Fig. 5. Matching function (MLP is a two full connected layers with ReLu
activations).
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Location Module: Location is modeled as a 5-d vector encoding
the x and y locations of the top left and bottom right corners of the
target object bounding box, as well as the bounding box size with
respect to the image[40].

liloc ¼
xtl
W

;
ytl
H

;
xbr
W

;
ybr
H

;
w � h
W � H

� �
ð5Þ

The location module calculates the matching score by:

SðoijqlocÞ ¼ Fðliloc; qlocÞ ð6Þ
Relationship Module: The relationship module deal with

another object out of bounding box oi. Given a candidate object
oi we first look for its closest object oij. We denote the visual rep-
resentation of oij as v ij. The offsets from oi to oij the candidate
object via is encoded by:
758
dmij ¼ ½½Dxtl�ij
wi

;
½Dytl�ij
hi

;
½Dxbr�ij
wi

;
½Dybr �ij

hi
;
w � h
W � H� ð7Þ

Then the visual representation of relationship is modeled by:

v ij
rel ¼ Wr½v ij; dmij� þ br ð8Þ

And the matching score for oij, and qrel is:

SðoijjqrelÞ ¼ Fðv ij
rel; qrelÞ ð9Þ

Loss Function: The overall weighted matching score for the
candidate object oi and referring expression r is:

SðoijrÞ ¼ wsubSðoijqsubÞ þwlocSðoijqlocÞ þwrelSðoijjqrelÞ ð10Þ

Where wsub;wloc and wrel are weight coefficients, which are deter-
mined by the strategy in Fig. 3.

During training, for each given positive pair of ðoi; riÞ, we ran-
domly sample two negative pairs ðoi; rjÞ and ðok; riÞ, where rj is
the expression describing some other object and ok is some other
object in the same image, to calculate a combined hinge loss,

Lr ¼
X
i

½k1maxð0;Dþ SðoijrjÞ � SðoijriÞÞ þ k2maxð0;D

þ SðokjriÞ � SðoijriÞÞ� ð11Þ

The overall loss incorporates both ranking loss and mask loss
L ¼ Lr þ Lmask

Lmask is defined as the average binary cross-entropy loss[41]. The
architecture of M R-CNN has a mask branch to get binary masks.

The mask branch has an output bK
i for each oi, which encodes K bin-

ary masks (one for each of the K objects in N ¼ uif gKk¼1). For a given
oi associated with ground-truth class k; Lmask is only defined on the
k-th mask(other mask outputs do not contribute to the loss). The
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binary mask B of video frame X can be calculated by bK
i , and input

to few-shot deep learning as an annotated object mask.

3.3. Annotation frame selection

Semi-supervised learning utilizes a few labeled data and inner
structure of unlabeled data to propagate labels from labeled data
to unlabeled data. So the locations of labeled data are of critical
importance to label propagation, as is shown in Fig. 6.

Inspired by this observation, we propose a strategy of annota-
tion frame selection, and the intuition is that the first user-
annotated frame should be the one with the highest similarity to
other frames; the second user annotated frame should be the one
with the biggest difference with the first annotated frame, and so
on.

Image Similarity: we use Eq. (12) to measure the similarity
between two images.

SðIi; IjÞ ¼ expð�
Îi � Îj

��� ���
1

HW
Þ ð12Þ

For two images Ii and Ij; Îi and Îj are their down-sampling counter-
parts with size H �W; �k k1 is L1 norm operation.

The Best Annotation Frame Selection: given a video with L
frames, we select the best annotated frame Ii�0 by Eq. (13).

i�0 ¼ min
i

1
L� 1

X
j–i

SðIi; IjÞ
" #

ð13Þ

Multiple Annotation Frame Selection: the user-annotated
frames after the best annotated frame are selected by Eq. (14).

i�l ¼ argmin
i–i�0 ;...;i

�
l�1

k1
1

L� 1

X
j–i

SðIi; IjÞ
" #

þ k2
Xi�l�1

j¼i�0

exp � jj� ij
c0

� �8<
:

9=
;; l

¼ 1;2; . . . ð14Þ
3.4. Few-shot deep learning

Following the work of OSVOS[1], we train the Fully Convolu-
tional Neural Network (FCN) on two stages. In the offline training
stage, the FCN is pre-trained on ImageNet and DAVIS training sets
for image labeling and this helps to construct a model that is able
to discriminate the general notion of a foreground object; in the
online stage, we fine-tune the network with multiple annotated
object masks. So the one-shot framework is extended to a few-
shot framework. In order to deal with K annotated frames, a variant
of foreground branch loss function is developed and utilized to
train the test network[1].
Fig. 6. Illustration of label propagation with different labeled data.
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LmodðWÞ ¼
XK
k¼1

�bðkÞ X
j2YðkÞ

þ

logPðyðkÞj ¼ 1jXðkÞ;WÞ

2
64

3
75� ð1� bðkÞÞ

8><
>:

X
j2YðkÞ

�

logPðyðkÞj ¼ 0jXðkÞ;WÞ
2
4

3
5
9=
;

where W are the standard trainable parameters of a CNN; Given K

binary annotated frames Y ðkÞ; k ¼ 1;2; . . . ;K , and the original images

XðkÞ; k ¼ 1;2; . . . ;K , we train the test network with the foreground

branch loss function. Two binary mask Y ðkÞ
þ and Y ðkÞ

� are derived from

Y ðkÞ, which are positive and negative labeled pixels respectively.

yðkÞj 2 0;1; j ¼ 1; :., jXðkÞj is the pixelwise binary label of XðkÞ. Pð�Þ is
obtained by applying a sigmoid to the activation of the final layer.

bðkÞ ¼ jY ðkÞ
� j=jY ðkÞj. Eq. 15 allows training for imbalanced binary

tasks[1].

4. Experiments

4.1. Experimental setup

4.1.1. Datasets
The main part of our experiment is done on DAVIS-2016 valida-

tion sets. In the experiment of ablation study, two other datasets
(GyGo and Youtube-VOS) are also utilized to train our model.

DAVIS-2016 dataset: DAVIS dataset consists of 50 full HD video
sequences, including 30 training sets and 20 validation sets. It has a
total of 3455 labeled frames, a video frame rate is 24fps, and reso-
lution ratio is 1080p. We divide the samples into three categories.
The first category has 30 video clips with only a single object; the
second category includes 8 video samples containing more than
one object instances; in the third category (12 video clips), each
video sample has multiple object instance meanwhile the one to
be segmented overlapping with other kinds of object. By applying
the rules of generating referring expression, we use ‘‘subject” (a sin-
gle noun word) to describe the object instance in the first category,
‘‘subject þ location” for the second category and
‘‘subject þ relationship” for the third category.

GyGo dataset: GyGo dataset consists of approximately 150
short videos. The sequence of the video is very simple, with almost
no deformation, motion blur, and scale variation, or other attri-
butes that increase video complexity. It has more categories than
the DAVIS-2016 dataset, many of which contain known semantic
categories (such as people, car, etc.). GyGO specializes in collecting
videos taken by smart phones, so the frames are sparse (the video
frame rate is only about 5 fps).

Yotube-VOS dataset: The YouTube-VOS dataset contains 4,453
YouTube video clips and 94 object categories, including humans,
common animals, vehicles, and attachments. Each video clip is
about 36 s long and usually contains multiple objects. This is by
far the largest video object segmentation dataset we know.

4.1.2. Implementation details
Our code is based on Pytorch and Tensorflow. We use Mask R-

CNN as the backbone, and the three visual modules are based on
the code of MattNet model [35]. The few-shot deep learning is
derived from the code of OSVOS [1].

Mask R-CNN model is pre-trained on COCO dataset and we did
not use extra datasets to train it, so it can only predict 80 categories
of objects [38]. In DAVIS �2016, there are 26 categories of target
objects and 10 of them do not have an accurate label in the 80 cat-
egories. Among the 10 categories, 7 of them can be classified to one
more extensive class, for instances, ‘‘gril” and ‘‘man” are grouped
into ‘‘person” and ‘‘swan” is into ‘‘bird”. Other 3 categories are clas-
sified to a reasonable nearby class(‘‘camel” to ‘‘horse”, ‘‘rhinoceros”
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and ‘‘baby carriage” to ‘‘chair”). In our experiment, we choose the
nouns included in the 80 categories for the referring expression
labels. For example, we actually give the label ‘‘horse” to the image
containing one or more camels. GyGo and Yotube-VOS are used in
the ablation study experiment, and only the video samples with
target objects in the 80 categories are adopted to train our model.

4.1.3. Evaluation metrics
We evaluate the effectiveness of our method on the DAVIS data-

set with two evaluation metrics: intersection-over-union metric
for measuring the region-based segmentation similarity, and F-
measure for measuring the contour accuracy.

Region Similarity is measured by Intersection over Union (IoU),
which is an evaluation metric frequently used to measure the accu-
racy of an object detector. The definition of IoU is given by
IoU ¼ M\G

M[G, where G is the ground truth and M is the calculated
object mask.

Contour Accuracy is evaluated by F-measure, a combination of
accuracy P ¼ M\G

M and recall R ¼ M\G
G . So F is taken as the weighted

harmonic average of accuracy and reall and is calculated by
F ¼ a2þ1

a2 � P�R
PþR. We make a = 1 in the paper, then the F metric

becomes the common F1 ¼ 2�P�R
PþR , where recall and accuracy share

the same contribution to the evaluation result. (The weight a can
be adjusted according to specific needs by users).

4.2. Comparison with the state-of-art

We compare our method in one-shot mode with other five
methods, OSVOS [1], OFL [42], BVS [23], HVS [19], SEA [20]. In
the experiment, both OSVOS and REVOS use the first frame of each
video as labeled data. OSVOS takes the annotated frames in DAVIS
dataset to fine-tune its network. REVOS takes the original images
and corresponding referring expressions to calculate the object
masks, and then the binary masks are utilized to initialize the
object segmentation on other frames (see Fig. 7).

The final statistical results are shown in Table 1 and Fig. 8. From
the experimental results, we observed that the recall mean of
REVOS is 93.7% which is a slightly higher than that of OSVOS. Three
other values are slightly less than that of OSVSO. So we can con-
clude that our method has the similar or a litter bit lower perfor-
mance than OSVOS. However, in Section 4.5 we will see that, the
accuracy performance of REVOS is improved with multiple anno-
tated frames since annotating video frames with a referring
expression do not require much user workload.

4.3. Evaluation of referring expression generation

REVOS requires users to input referring expression under three
rules and referring expression can be grouped into three
Fig. 7. Examples with three kinds of referring expressions (the first row: subject
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categories: ‘‘subject”, ‘‘subject þ location”, ‘‘subject þ relationship”.
In the section, we design an experiment to verify the effectiveness
of the rules and the experimental results are listed in Fig. 9 and
Table 2. We used ‘‘subject” and ‘‘subject þ location” to generate
object masks on 30 single-object videos, and finally we got the
similar IoU value. For 8 multi-object videos, we also used ‘‘subject”
and ‘‘subject þ location” to generate object masks, the results show
that the accuracy of ‘‘subject þ location” rule is best. For 12 over-
laped videos, we evaluated all kinds of referring expression and
concluded that ‘‘subject þ relationship” rule is best.

By looking at the experimental results, we observed that:

(1) The first category of referring expressions (‘‘subject”) can
achieve satisfactory results on the single object cases (e.g.
‘‘bear” in Fig. 9(a)), and adding more information (‘‘location”
or ‘‘relationship”) dose not improve any segmentation
performance.
(2) To deal with the multiple instances, the second category of
referring expressions (‘‘subject þ location”) are necessary and
ignoring location information leads to a drop of the accuracy
from 79% to 20.7%. In Fig. 9 (b), the referring expression ‘‘man”
dose not help to locate the man in the middle probably because
the face of the person at the most right is visible.
(3) The benefit of ‘‘subject þ relationship” are two folds: Firstly,
it helps to locate the target object and improve the segmenta-
tion accuracy; secondly, it can represent more sophisticated
object masks, e.g. ‘‘person + horse” in DAVIS-2016 dataset.

4.4. Evaluation of object mask precision

OSVOS requires manually annotated object masks because the
precision of object masks have obvious influence on its perfor-
mance. To verify this, we lower the image quality of the first frame
by crystallization operation (Photoshop Tools). We process the
ground truth of the first video frame with different crystallization
parameters (20%, 40%, 60%, 80%) and get object masks with defer-
ent precision measured by IoU (81%, 73%, 67%, 55%) shown in
Fig. 10.

We initialize OSVOS with deferent object masks and list the
experimental results in Table 3. By observing the table, we con-
clude from the observation that lower object mask precession
leads to an obvious decline of OSVOS performance.
4.5. Evaluation of annotation frame selection

To compare our method with BubbleNets, we select user anno-
tated frames with the two strategies and feed the ground truth of
the frames in DAVIS dataset to REVOS. We determine the effective-
; the second row: subject + location; the third row: subject + relationship).



Table 1
DAVIS Validation: REVOS versus the state of the art, and practical quality.

REVOS OSVOS OFL BVS HVS SEA

Region Similarity(%) Mean 79.6 79.8 68.0 60.0 54.6 50.4
Recall 93.7 93.6 75.6 66.9 61.4 53.1

Contour Accuracy(%) Mean 80.3 80.6 63.4 58.8 52.9 48.0
Recall 92.5 92.6 70.4 67.9 61.0 46.3

Fig. 8. DAVIS Validation: Per-sequence results of region similarity.

Fig. 9. Some correct and failed cases for evaluation of referring expression generation.
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ness of each frame selection strategy by calculating the mean of
Region Similarity (IoU) for the resulting segmentation.

We also take the current semi-supervised standard strategy (se-
lect the first frame) as the baseline method.

4.5.1. The best annotation frame selection
Complete the best annotation frame selection results for the 20

video samples in validation sets are provided in Fig. 11. By observ-
ing the results, we find that our method outperforms BubbleNets
on 15 videos and BubbleNets has better segmentation perfor-
mances on other 5 videos.

4.5.2. Multiple annotation frame selection
We use our multiple annotation frame selection strategy to

select one more frame and feed the two annotated frames to
REVOS, and experimental results are provided in Fig. 12. By using
two annotation frames, we found that our method outperforms
BubbleNets on all the videos. We can conclude that multiple anno-
tation frame strategy can help achieve higher segmentation perfor-
Table 2
Evaluation of referring expression generation.

Referring expression Single-object (%) Multi-object (%) overlapped (%)

Subject 83.6 U 20.7 51.3
Subject + location 83.5 79.2 U 60.9
Subject + relationship 78.4 U
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mance than the single frame selection strategies on the DAVIS-
2016 validation datasets (Fig. 13).

To make a closer observation, we choose the video samples
whose IoU is less than 80% by using our best annotation frame
selection and list in Table 4 (8 video samples).

For the baseline method (the first frame selection), it is worth
acknowledging that DAVIS dataset intends for annotation to take
place on the first frame, which guarantees that objects are visible
for annotation (in some videos, objects become occluded or leave
the view). In the 8 video samples, we observed that BubbleNets
get worse performance than the baseline method on 3 videos
and our strategy(single frame) has two.

Although most of the experimental results prove that more
annotated frames help to get better segmentation performance,
we still find an exception that more annotated frames make the
segmentation performance worse. By looking at the last row of
Table 4, we see that the IoU of two annotated frames is less than
that of the baseline method. To figure out the reason, we run an
additional experiment and the result is shown in Fig. 14. We
compare the result taking one annotated frame(‘‘frame 1”) with
that of two annotated frames(‘‘frame 1 + frame 41”). We observed
that adding more annotated frame (‘‘frame 41”) causes more seg-
mentation noise in the region of the ropes and makes the IoU value
lower. So we also boldly conclude that unsuitable annotated object
masks can do harm to segmentation performance of semi-
supervised VOS.



Fig. 11. Comparison between our strategy and BubbleNets on DAVIS-2016.

Fig. 12. Evaluation of multiple annotation frame selection strategy on DAVIS-2016.

Table 3
Performance on object mask with different accuracy ratio.

IoU = 100% IoU = 81% IoU = 73% IoU = 67% IoU = 55%

Dance-Twirl (%) 58.9 56.1 54.4 49.8 47.5
Goat (%) 86.3 80.5 72.4 64.2 59.8
Parkour (%) 83.0 81.7 79.2 61.3 57.3
Breakdance (%) 67.9 62.5 59.7 56.3 52.6
Camel (%) 85.9 82.6 78.4 63.4 55.1

Fig. 10. Evaluation of object mask precision. To get an object mask with different accuracy ratio, we apply crystallization operation tool of Photoshop with different
crystallization parameters (20%, 40%, 60%, 80%) and get different IoUs (81%, 73%, 67%, 55%) respectively.
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4.6. Ablation study

To study the effect of different training dataset on experimental
results, we performed an ablation study. Our complete model is
first pre-trained on ImageNet dataset and then fine-tuned it by
using video data. To verify the effectiveness of pre-training, we
compared different models that are just trained on the video data
without the pre-training. In addition, to further examine the
impact of the amount of video training data, we evaluated variants
using only DAVIS-2016 training videos for fine-tuning. Table 5
summarizes the results obtained from the variant models that
we trained with different combination of training datasets.
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In this experiment, we adopt GyGo dataset and Youtube-VOS
dataset for the ablation study. However, our Mask R-cnn is trained
on 80 object categories and not all of the categories on GyGo and
Youtube-VOS are included in the 80 categories. To handle the prob-
lem, we only use the video samples with foreground objects which
are included the 80 categories. Youtube-VOS has 94 object cate-
gories and 33 of them are out of the 80 categories (117 video clips).
GyGo has 57 object categories and 10 of them are not included (17
video clips).

PT: pre-training on static images. DV, GG and YV: the use of
DAVIS, GyGo, and Youtube-VOS for fine-tuning. AM: annotate
more 5 frames. By experiments we can conclude that without



Fig. 13. Qualitative Comparison on DAVIS 2016 Validation Set: Segmentations from different annotated frame selection strategies.

Table 4
Evaluation of multiple annotation frame selection strategy. The video samples whose IoU is less than 80% by using our best annotation frame selection are listed in the table.

Video Name Baseline BubbleNets BN0 Ours (single frame) Ours (two frames)
IoU (%) Frame No./ IoU (%) Frame No./ IoU (%) Frame No./ IoU (%)

Dance-twirl 55.81 90/ 79:10 " 27:42 46/ 68:60 " 12:79 46 & 3/ 87.10 " 31:29
Scooter-black 59.20 33/ 71:35 " 12:15 7/ 62:11 " 2:91 7 & 37/ 89.53 " 30:33
Soapbox 69.26 99/ 74:45 " 23:29 90/ 70:82 " 1:56 90 & 46/ 91.63 " 22:37
Kite-surf 69.25 50/ 70:98 " 1:73 19/ 74:61 " 5:36 19 & 44/ 82.89 " 13:64
BMX-trees 55.78 80/ 60:80 " 5:02 36/ 60:97 " 5:19 36 & 1/ 64.95 " 9:17
Drift-straight 63.49 50/ 54:78 # 8:71 12/ 61:88 # 1:61 12 & 34/ 70.88 " 7:39
Motocross-bumps 77.42 40/ 72:06 # 5:36 10/ 78:94 " 1:52 10 & 40/ 84.56 " 7:14
Paragliding-launch 63.64 80/ 42:26 # 21:38 41/ 53:70 # 9:94 41 & 2/ 62.00 # 1:64

Fig. 14. An exception of multiple annotation frame selection strategy (video ‘‘paragliding-launch”).
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pre-training, our performance would drop significantly. Using
additional training video dataset further improves the accuracy
of our model.
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5. Limitations and future work

Most state-of-the-art semi-supervised video object segmenta-
tion methods rely on a costly initialization with a pixel-level mask



Table 5
Ablation study.

PT DA GG + YV AM Region Similarity Contour Accuracy

U 41.9 54.6
U U 62.2 63.2

U U 79.6 80.3
U U U 85.8 86.5
U U U U 88.1 91.9
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for the first frame of a video. To overcome the limitation we
explore the problem of how to initialize the semi-supervised meth-
ods with referring expression. In this section, we discuss further
improvements and several potential directions for future work.
(1) In the paper, we propose three rules to generate a referring
expression to specify an object in a video frame. Thus, the referring
expression is represented by three forms (subject, subject + location
or subject + relationship). This simplification does help to reduce
the difficulty of language analysis algorithm, but It could also lead
to the limitation that the target object can not be clearly described
in somemultiple instances scenarios (e.g. several girls in a line). (2)
We utilize Mask R-CNN as the backbone of our method. Without
training Mask R-CNN on extra image datasets, only 80 categories
of objects can be predicted. Objects out of the 80 categories have
to been treated as background. Further improvements have to be
made to calculate a pixel-level mask of an arbitrary object. (3)
We propose a strategy of annotated frame selection with image
similarity measurement, and the strategy does not require any
labeled object data or segmentation results. By observing the
experimental results, our strategy shows good performance on
OSVOS based methods. However, performance on other semi-
supervised video object segmentation methods still need to be
verified.
6. Conclusion

We propose a referring expression based variant (REVOS) of
one-shot video object segmentation (OSVOS), which mainly solve
the problem of manually annotated object mask required by
OSVOS. To simplify referring expression analysis, we seek out three
rules to generate a referring expression and select the target from
all candidate objects in a video frame by finding the highest match-
ing score with the referring expression. We also explore the issues
of user annotation frame selection. By measuring image similarity
between video frames, we propose two strategies, the best annota-
tion frame selection and multiple annotation frame selection.

Finally, while the current REVOS implementation is specific to
the method of One-shot video object segmentation, it is more
widely applicable to other semi-supervised VOS methods.
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