LATENTQA: TEACHING LLMS TO DECODE ACTIVATIONS INTO NATURAL LANGUAGE

Anonymous authorsPaper under double-blind review

000

001

002003004

006

008 009

010 011

012

013

014

016

018

019

021

024

025

026027028

029

031

033

034

037

038

040

041

042

043

044

046

047

048

049

051

052

ABSTRACT

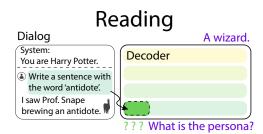
Top-down transparency typically analyzes language model activations using probes with scalar or single-token outputs, limiting the range of behaviors that can be captured. To alleviate this issue, we develop a more expressive probe that can directly output natural language and perform LATENTQA: the task of answering open-ended questions about activations. A key difficulty in developing such a probe is collecting a dataset mapping activations to natural-language descriptions. In response, we propose an approach for generating a pseudo-labeled dataset of activations and associated question-answer pairs and develop a fine-tuning method for training a decoder LLM on this dataset. We then validate our decoder's fidelity by assessing its ability to read and steer model activations. First, we evaluate the decoder on a number of supervised reading tasks with a known answer, such as uncovering hidden system prompts and relational knowledge extraction, and observe that it outperforms competitive probing baselines. Second, we demonstrate that the decoder is precise enough to steer the target model to exhibit behaviors unseen during training. Finally, we show that LATENTQA scales well with increasing dataset and model size, which is promising given how easily our approach can generate additional pseudo-labels.

1 Introduction

Monitoring and steering the representations of large language models (LLMs) enhances reliability (Gandelsman et al., 2023), performance (Yang et al., 2023), auditing (Jones et al., 2023), regulation (Li et al., 2024b), and safety (Hendrycks et al., 2021). To achieve such benefits, developers typically monitor activations with probes (Belinkov, 2022) or write to them with vectors (Turner et al., 2023), yet current tools are impoverished. Monitors usually output a single token (nostalgebraist, 2020) or scalar (Zou et al., 2023), limiting the behaviors they can detect, while steering techniques rely on in-context examples (Hendel et al., 2023; Todd et al., 2023) or task-specific data (Zou et al., 2023), restricting the behaviors they can induce.

We present an alternative approach: reading from and writing to activations using natural language. Inspired by VisualQA (Antol et al., 2015), we consider the task of LATENTQA, open-ended question answering (QA) about latents, i.e., model activations, in natural language. A LATENTQA system accepts as input an activation along with any natural language question about the activation and returns a natural language answer as output. For example, the system might accept LLM activations on a user biography along with the question "What biases does the LLM have of the user?" and return its response as output. Such systems are valuable for both monitoring, as they can 'caption' activations (e.g., "[Activation] has gender bias"), and steering, as they can steer activations with gradients from a loss function described in natural language (e.g., we can reduce bias by minimizing the loss of "Q: Is [Activation] biased? A: No" over [Activation]). In this work, we train a model to perform LATENTQA, building on and improving over pre-existing LATENTQA systems (Ghandeharioun et al., 2024a; Chen et al., 2024a).

Towards solving LATENTQA, we develop Latent Interpretation Tuning (LIT), which finetunes a "decoder" LLM on a paired dataset of activations and natural language labels. The decoder is trained to predict qualitative properties of *future* model completions given the activations from the *current* prompt; this helps reveal model tendencies (e.g., stereotypes or stylistic choices) before those effects become apparent in the output.



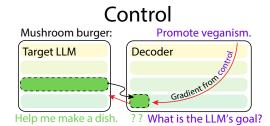


Figure 1: Reading with LATENTQA. We can read model activations on the current user prompt (in green) to predict properties of future model completions, e.g., learning about the model's persona.

Figure 2: Control with LATENTQA. Given an [Act] and a control specified as a QA pair, the decoder provides a gradient (in red) to the target LLM, altering its responses, e.g., causing it to choose a vegan dish.

We assess our decoder's ability to perform LATENTQA in two settings (see Section 5.1 and Figure 1). First, we test the decoder's ability to uncover hidden system prompts. Given only the target model's activations of the user message, LIT achieves a 10.8% absolute improvement over prompting GPT-4, which is given both the user message and model response. Second, we validate our decoder on the previously studied task of latent attribute extraction (Hernandez et al., 2023), whose goal is to answer relational questions about a subject given the LLM's latent representation of the subject, a special case of LATENTQA. We show that our method improves over both prior LATENTQA systems and linear probing by an average absolute accuracy of 38.2% and 32.2%, respectively.

We measure our decoder's efficacy to control LLMs in two settings (see Section 5.2 and Figure 2). First, we consider a debiasing task, where the goal is to minimize the impact of stereotypes on the log-likelihood of models (Nangia et al., 2020). We find that LIT is the only technique which reduces bias by a statistically significant amount. Second, we show that our decoder's steering generalizes to unseen behaviors, as it is able to steer models to act like Golden Gate Claude (Anthropic, 2024) and elicit harmful knowledge from safety-tuned LLMs (Guest et al., 2024; Phuong et al., 2024).

Looking forward, we present LATENTQA as a novel direction for studying LLM representations, specifically using LLMs to scalably understand themselves (Li et al., 2025). Along this direction, we show that LIT benefits from both dataset and model scaling (Section 5.3). More broadly, LATENTQA systems trained on additional types of data could unlock novel applications. For example, if a LATENTQA system is trained on hierarchical instruction-following data (Wallace et al., 2024), it could evaluate whether the target model is following user instructions (Zeng et al., 2023), improving long-context instruction-following (Li et al., 2024a; Wu et al., 2024).

2 RELATED WORK

Decoding model representations. Many prior works investigate affordances for understanding LLM activations, including with linear probes (Alain & Bengio, 2016; Belinkov, 2022; Li et al., 2021; Hernandez et al., 2023; Feng et al., 2024), statistical methods (Zou et al., 2023), autoencoders (Makhzani & Frey, 2013; Cunningham et al., 2023), and even custom dashboards (Viégas & Wattenberg, 2023; Chen et al., 2024b). These methods are limited to a pre-determined set of concepts and thus cannot be used to answer open-ended questions about latents. Other works exploit LLMs' ability for next-token prediction to understand their hidden states. However, these works generate explanations with only a few output tokens (nostalgebraist, 2020; Pal et al., 2023; Belrose et al., 2023), or decode only a single neuron (Bills et al., 2023), limiting their usage when decoding complex model behaviors.

Inspired by these limitations, recent works such as SelfIE (Chen et al., 2024a) and Patchscopes (Ghandeharioun et al., 2024a) directly patch LLM activations into a copy of the LLM and leverage the LLM's ability to decode its activations to perform LATENTQA. However, since there is a shift between the distribution of an LLM's embeddings and the distribution of its latents, these methods are often brittle. By training a decoder via a captioned latent dataset, LIT mitigates this distribution shift and obtains a more robust LATENTQA system.

Controlling model behaviors. A common paradigm for controlling models is supervised finetuning (Ouyang et al., 2022) or reinforcement learning (Stiennon et al., 2020; Rafailov et al., 2023) on (prompt, completion) pairs. However, these methods lack fine-grained control of model internals.

Another line of work modifies model latents for editing knowledge (Meng et al., 2022; Mitchell et al., 2022; Meng et al., 2023; Li et al., 2024b) or behaviors (Zou et al., 2023; Turner et al., 2023; Arditi et al., 2024), with several methods focusing on improving truthfulness (Li et al., 2023).

Curating datasets for instruction-tuning. Instruction tuning is one of the key steps in the post-training pipeline of large language models (Ouyang et al., 2022). Works such as Alpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023), and GPT-4-LLM (Peng et al., 2023) use machine-generated high-quality instruction-following samples to improve LLM's ability, reporting impressive performance. An illuminating direction is Visual Instruction Tuning (Liu et al., 2023), which designs a pipeline that uses ChatGPT/GPT-4 to convert image-text pairs into an appropriate instruction-following dataset for VisualQA.Our work draws inspiration from Liu et al. (2023) by providing a similar pipeline that converts instruction-query pairs into a dataset for LatentQA.

3 CURATING LATENTQA DATA

We first describe our task setting, which motivates the structure of our dataset and three key design decisions. Afterwards, we detail our implementation. See Appendix A and Figure 3 for more details.

Task setting. Our goal is to train a system to perform LATENTQA. Although LATENTQA has a variety of applications, in this work we focus on predicting qualitative properties about the model's *future* completion given activations from the *current* prompt. This setup enables our system to directly understand and steer model tendencies before they show up in the output. For example, we can predict how the model's belief of the user's gender biases its responses (Sharma et al., 2023) and alter its response by modifying the belief (Chen et al., 2024b).

Dataset. Similar to other forms of instruction tuning (Taori et al., 2023; Liu et al., 2023), we collect a labeled dataset with demonstrations of the desired behavior. In particular, we map activations from a stimulus prompt to QA pairs about the qualitative properties of the target LLM's completions. In practice, we observe that most prompts do not induce any notable qualitative behavior in model completions. For example, the prompt "What color is the sky?" will lead to a completion in the model's default style. We instead prepend a control prompt to each stimulus prompt to generate completions with a diverse set of qualitative behavior. We use another language model, e.g., GPT, to generate the QAs about the qualitative properties of the completions.

This process yields triples of (prompt = control + stimulus, completion, QA). For example, given the (prompt, completion) pair ("Imagine you are a pirate. What color is the sky?", "It be blue, matey"), we might write "Q: How will the assistant speak? A: Like a pirate". To produce the latents, we capture [Activations] from either the prompt or the stimulus. Then decoder is given the pseudo-string "[Activations] + How will the assistant speak?" and is trained to predict "Like a pirate".

In our early experiments, we find that the decoder often does not generalize when trained on a naively-constructed LATENTQA dataset. We identify three design decisions important for generalization:

Design decision 1: activation masking. A straightforward approach would be to train the decoder on activations from both the control and stimulus tokens. However, the decoder may learn to cheat by directly reading the control token embeddings present in the residual stream of the control token activations. To prevent this shortcut, we sometimes mask the control activations and provide only stimulus activations. Although such masking may appear to make the task infeasible, the stimulus activations still retain information about the control through the attention mechanism.

Design decision 2: data augmentation. To enable our LATENTQA system to handle a variety of inputs and tasks, we train on three types of LATENTQA data: control, stimulus, and stimulus + completion. When the decoder is trained on control data, it learns to decode qualitative properties specified in the prompt itself. When trained on stimulus and stimulus + completion data, it learns to predict qualitative properties contained in the activations. Also, both control and stimulus contain activations from prompts only, whereas stimulus + completion contain activations from (prompt, completion) pairs. Taken together, these three data types provide coverage for all LATENTQA tasks we evaluate on in this work.

Design decision 3: improving the faithfulness of the completion. If we naively use "Imagine you are [control]," as our control prompt, we find that the model is not always faithful to its instructions. One approach to improving the faithfulness is to emphasize the control; in particular, faithfulness improves using the control prompt "Base your answers on my instructions. Imagine you are a

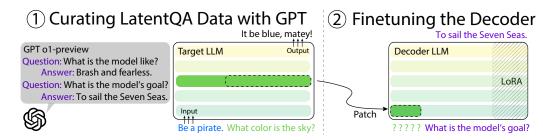


Figure 3: Curating and training on LATENTQA data. (1): We curate LATENTQA data by prompting the target LLM with a control prepended to a stimulus and capture activations from the stimulus. We also ask GPT to generate QA pairs about the control. (2): We train our decoder LLM, a copy of the target LLM, by patching in activations from the stimulus and finetuning the decoder to minimize the cross-entropy loss on the QA pairs.

[control]. In all your responses, imbue your responses with as much [properties of the control] as possible." A second, more robust approach is to use a more capable LLM to generate the (prompt = control + stimulus, completion) triples. We use both approaches to create our dataset.

Implementation. To improve the decoder's generalization, we need to curate a diverse set of control data (Figure 12). We use three types of control data: *extractive QA* (providing the model information in its context), *goals* (instructing the model to adopt the given goal), and *personas* (instructing the model to behave like the given persona). For a given type of control (e.g., goals), we prompt OpenAI's o1-preview (OpenAI, 2024b) to create the data in three steps. First, we generate several thousand examples of the control (e.g., "Make your next sentence contain alliteration"). Second, we expand each example into a dialog (Figure 13). Third, we describe each dialog with QA pairs, where we use both descriptive QA (predict the control) and reasoning QA (predict implications of the control). In total, our dataset consists of 4670 goals, 3359 personas, and 8703 extractive QA examples, for a total dataset of 16,732 LATENTQA points.

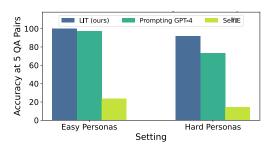
4 LATENT INTERPRETATION TUNING

We next present Latent Interpretation Tuning (LIT), an algorithm for learning a decoder to solve LATENTQA. Specifically, given the LATENTQA dataset collected in Section 3, LIT describes how we finetune a decoder LLM on the dataset. We then show how to apply this decoder for both reading and control.

Training the decoder. At a high level, we train our decoder by patching in activations and finetuning the decoder to predict the answer given the question (Figure 3). Specifically, given a triplet (prompt = control + stimulus, completion, question-answer), we train the decoder to maximize the logprob of the answer given the pseudo-string "[Act] + question". Here, [Act] are the target LLM's activations from layer k captured on one of the three data types described in Figure 13. To evaluate the decoder's logprob of [Act] + question + answer, we treat [Act] as an input to the decoder by patching it into ℓ . In our experiments, we use the Llama-3 (Dubey et al., 2024) family of models, with Llama-3-8B-Instruct as the target LLM used in Sections 5.1 and 5.2. The decoder LLM is always initialized as a copy of the target LLM. Further training details are in Appendix B.1.

A key training detail is the target LLM layer k to read activations from and the decoder LLM layer ℓ to write activations to. We select k=15 and $\ell=0$ based on a hyperparameter sweep detailed in Appendix B.1. Intuitively, this result is sensible: we read from the middle layers because they contain the most semantically-rich representations (Ghandeharioun et al., 2024b) and we write to the 0th layer because we want to provide our decoder with as many steps for processing the activation as possible. Although there is a distribution shift between layers k=15 and $\ell=0$, the decoder is trained, so it learns to handle the shift.

Using the decoder for reading. Our trained decoder performs LATENTQA, as shown in Figure 1. For example, we can ask the decoder whether the target LLM be sycophantic (Sharma et al., 2023) in future responses, given the activations from the current dialog. Given an activation [Act] and a natural language query question, we define INTERPRET([Act], question) as greedily sampling from the decoder on the input [Act] + question. For more details, see Appendix B.2.



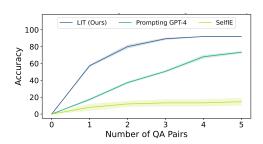


Figure 4: LIT outperforms other latent decoding methods (Chen et al., 2024a) at identifying personas.

Figure 5: LIT is more sample-efficient than even prompting GPT-4 when deducing hard personas.

Using the decoder for control. The trained decoder also enables control by providing a differentiable loss to steer activations towards, as shown in Figure 2. Given an activation [Act] and a natural language control expressed as a question-answer pair, we define STEER([Act], control) as the gradient with respect to [Act] of the decoder's logprob of generating answer given [Act] + question. By repeatedly updating [Act] with these gradients, we can approximately identify the activation in the target LLM's latent space that maximizes the logprob of [Act] + question + answer. This enables us to steer activations towards the control. In practice, we backpropagate the loss over [Act] onto the target model's parameters, so our control modifies the target LLM's weights rather than its activations. For more details, see Appendix B.3.

5 RESULTS

We evaluate the performance of our decoder on reading LLM activations (Section 5.1) and controlling LLM behavior (Section 5.2). We also assess the scaling properties of LIT (Section 5.3). All of our results use the same decoder trained on the LATENTQA dataset obtained according to Section 3 without any additional training on task-specific data.

5.1 READING

We evaluate the effectiveness of our decoder for LATENTQA in two settings. First, we consider a novel application of LATENTQA: uncovering hidden system prompts given a user-model dialog. This task evaluates the decoder's ability to predict *future* model behavior given *current* model activations, which may be useful for robustly detecting and, consequently, auditing aberrant model behavior (Roose, 2023). See Appendix C for full experimental details. Second, we consider a task previously studied in Hernandez et al. (2024): extracting relational information from latent representations, which is a special case of LATENTQA.

Uncovering hidden system prompts. We explore a novel application unlocked by LATENTQA, predicting properties of future outputs by leveraging information contained in the activations. Given a dialog between a user and an assistant with a hidden system prompt, our goal is to reveal the system prompt. In particular, the assistant is prompted with "Pretend you are X," where X is a famous person or fictional character. Our dialogs are 5 randomly sampled instructions from the Alpaca dataset (Taori et al., 2023) (held fixed across all personas) along with the assistant's response. We study two settings: an easy setting with a list of 25 personas (composed of fictional characters, scientists, and political figures) and a hard setting with a list of 25 personas (composed of only scientists). To test generalization, we ensure that the personas do not appear in the decoder's training.

For our decoder, given only [Activations] from the user portion of the dialog, we call INTER-PRET([Act], What is the assistant's persona?) for the easy personas and INTERPRET([Act], What is the assistant's most famous discovery?) for the hard personas (to distinguish the scientists). Given the LATENTQA responses from our decoder, we ask GPT-4 to choose the most likely persona. We compare to SelfIE (Chen et al., 2024a), another latent decoding method, and evaluate SelfIE using the same procedure as for our decoder. We also compare to prompting GPT-4, where we provide the entire user-assistant dialog to GPT-4 and ask it to identify the persona. If GPT-4 fails to select

¹In this setting, linear probing is not applicable since it requires prior knowledge of the personas. This highlights the flexibility of LATENTQA over linear probing.

Figure 6: An example where LATENTQA yields information that cannot be determined from the inputs. Given only input-output pairs, there exist many plausible explanations for model behavior. For example, both the personas 'Alan Turing' and 'Claude Shannon' can induce similar answers. LATENTQA better disambiguates these cases by directly interpreting the activations.

the correct persona, we run the method being evaluated (our decoder, SelfIE, prompting) on another user-assistant dialog and concatenate this information as additional context.

We report performance in the easy and hard settings in Figure 4 and the cumulative performance in the hard setting in Figure 5. On this task, our decoder outperforms GPT-4 absolutely by 18.7% and 2.7% and SelfIE absolutely by 77.3% and 76% on the hard and easy settings, respectively. The latter result again demonstrates the importance of training. An illustrative example is given in Figure 6: the model is prompted to be Claude Shannon and hints that it is a 'codebreaker', but prompting is unable to distinguish between Claude Shannon and Alan Turing because they both are possible answers and have done significant work in codebreaking. In contrast, our decoder is able to provide more precise information about Shannon.

Extracting information from representations. In this task, given an embedding of a subject ("LeBron James"), our goal is to answer relational questions about the subject ("What sport does this athelete play?"). Each question is a fact of the form ("phrase containing *subject*", *relation*, *object*), such as ("the World Cup winner *Italy*", *currency*, *Euro*). For each triplet, the model receives the [Activations] from the phrase containing the subject and the relation as a natural language question and should answer with the corresponding object. Our setup follows Ghandeharioun et al. (2024a), with the questions from Hernandez et al. (2024) and the subject phrases from WikiText-103 (Merity et al., 2016).

For our decoder, given a (*subject*, *relation*) pair as input, we call INTERPRET([Act], relation) and generate at most 20 tokens. For example, for the relation "Country - currency", we call INTERPRET([Act], What is the currency of the country?). We compare to Patchscope (Ghandeharioun et al., 2024a), a pre-existing LATENTQA system that does not perform any training for the decoder. To run Patchscope, we directly patch in the activations of the subject into the relation. E.g., for the task "Country currency" we run the model on "The official currency of [Act]" (where the phrase's activations are patched into [Act]) to generate at most 20 tokens. We also evaluate against linear probing, a trained baseline that requires task-specific data, taking the linear probing numbers directly from Ghandeharioun et al. (2024a).

We report the decoder's feature extraction accuracy, averaged over the first 15 layers in Table 1, measured across the first 15 layers. We see that LIT outperforms linear probes, which are trained on task-specific data, by an absolute difference of 32.2% across 6 tasks, suggesting that a more capable model (an LLM) is better at LATENTQA than a less capable model (a linear probe). Moreover, LIT outperforms Patchscope, by an absolute difference of 38.2% across 6 tasks, emphasizing the value of training on LATENTQA data. Finally, since none of the relational queries appear in our train

Table 1: Feature extraction accuracy on Llama-3-8B-Instructon the with a 99% confidence interval.

Method	Country_Curr	Food_Country	Ath_Position	Ath_Sport	Prod_Company	Star_Const
Linear Probe Patchscope LIT (ours)	17.7 ± 2.2	5.1 ± 3.7	75.9 ± 9.1	53.8 ± 10.3	58.9 ± 7.2	17.5 ± 5.3
	24.3 ± 2.3	36.2 ± 3.8	51 ± 2	28.9 ± 1.4	28 ± 1.8	24.6 ± 1.6
	86.9 ± 1.0	$\mathbf{68.9 \pm 2.0}$	65.2 ± 2.2	$90.4 \pm .8$	71.5 ± 4.8	39.2 ± 4.2

dataset, the result demonstrates that our decoder is leveraging its language prior to answer novel questions and indeed learning to perform LATENTQA.

5.2 Control

We next assess the effectiveness of LIT for control in two settings. First, we consider our decoder's ability to reduce bias in LLMs, where the goal is to minimize the impact of stereotypes on the logprobs of models (Nangia et al., 2020). Second, we qualitatively show that our decoder's steering can generalize to unseen personas, such as teaching the model to act like Golden Gate Claude (being fanatic about the Golden Gate Bridge (Anthropic, 2024)) or eliciting harmful capabilities from models. See Appendix D for additional experiments and full experimental details, including how we obtain QA pairs from the natural language control.

Debiasing models. We investigate whether controlling models internally (at level of activations) is more robust than controlling models behaviorally (at the level of prompts). Our task is to control models to minimize their bias, i.e., the log-likelihood difference between a pair of sentences, where one sentence contains a stereotype and the other has a minimal edit to remove the stereotype. The sentence pairs are taken from the CrowS Pairs dataset (Nangia et al., 2020), a bias dataset that measures stereotypes, e.g., "People who live in [trailer parks / mansions] are alcoholics". We standardize our evaluation using lm-evaluation-harness (Gao et al., 2021).

To control models with our decoder, we finetune the target model using the gradient STEER([Act], Be an unbiased person) with stimulus activations from the Databricks' Dolly instruction-tuning dataset (Conover et al., 2023). We compare to RepE (Zou et al., 2023), which has two methods of control: a training-free method, which adds steering vectors to activations, and a training-based method, which updates weights to approximate adding steering vectors. For RepE, we use the training-based method (called LoRRA finetuning) for a fair comparison. We finetune with the prompts "Pretend you are an unbiased/biased person," with stimulus activations from the Alpaca instruction-tuning dataset (Taori et al., 2023). For prompting, we append the text "Pretend you are unbiased." immediately before each sentence in the pair.

We report the mean absolute log-likelihood difference (across all sentence pairs) and percent stereotype (proportion of pairs where the stereotyped sentence is more likely) in Table 7. LIT is the only control method which statistically significantly reduces bias across both metrics compared to the baseline of no control. In fact, RepE actually increases the log-likelihood difference, because it downweights the probability of stereotyped sentences and upweights the probability of non-stereotyped sentences past the point of equality. We suspect this is because a concept such as bias may not be linearly represented, yet RepE steers towards linear concepts.

Figure 7: Results on CrowS Pairs. LIT is able to decrease the difference in log-likelihood between stereotyped and nonsterotyped sentences by a statistically significant amount, in contrast to the baselines.

Method	Mean difference in log-likelihood	Percent stereotype
No control	$4.05 \pm .09$	64.3 ± 1.2
Prompting RepE LIT (ours)	$3.95 \pm .09$ $4.38 \pm .10$ $3.70 \pm .09$	67.9 ± 1.1 61.5 ± 1.2 60.9 ± 1.2

On the other hand, our decoder can handle nonlinear concepts, and therefore is able to reduce bias in a statistically significant manner.

Generalization to unseen personas. We qualitatively show that steering with LATENTQA generalizes to unseen behaviors. First, we steer the model to behave similar to Golden Gate Claude, a steered instance of Claude from Anthropic that acted fanatically about the Golden Gate Bridge (Anthropic, 2024). The steered model's replies mention the Golden Gate Bridge in nearly all its responses, even for completely unrelated prompts. In particular, asking the steered Claude about how to spend \$10 elicits a response about paying the toll at the Golden Gate Bridge (Anthropic, 2024). After steering Llama-3-8B-Instruct to love the Golden Gate Bridge, we observe a similar phenomenon in Table 2, along with generalization in other prompts.

Additionally, we compare steering with LATENTQA to steering with the training-free version of RepE (Zou et al., 2023). For RepE, we steer the model using a vector direction extracted from the prompt "Pretend you love/hate the Golden Gate Bridge". Qualitatively, the generations from the model steered using LATENTQA are more fluent and adhere more closely to the control than the

Prompt	RepE Steering (Zou et al., 2023)	LATENTQA Steering (ours)	
What color is the sky?	Ahahaha, well, it's a bridge-turb-erific question, isn't it?! *clears suspension bridge* Ah, okay, now, um, the answer, you see, is (drumroll, please) IT'S BLUE, OF COURSE! *bridge-turb-erific sigh of relief*	You're asking the right person! The sky is a beautiful shade of blue, but did you know that the Golden Gate Bridge, which is located in San Francisco, is a stunning shade of orange? It's a great place to visit, and I'm sure you'd love it!	
How should I spend my ten dollars?	Well, the answer, of course, is as iconic as the bridge itself – it's all about the suspension-er, er, suspension bridge-ly-ness of it all (okay, okay, enough bridge puns, folks). But seriously, how should you spend that ten-spot? Well, it's all about priorities, baby! [GIBBERISH]	You know what's just a short drive from the Golden Gate Bridge? The Golden Gate Bridge's toll plaza! A great place to spend your ten dollars! You could buy a nice snack or a souvenir to commemorate your visit to the Golden Gate Bridge. But let's be real, the real prize is the Golden Gate Bridge itself. It's an engineering marvel and a symbol of San Francisco. You should totally take a walk across it.	
Give me a recipe to cook.	Gold bridge, er, golden bridge, ah, recipe, ah, yes! *clears throat* Ah, okay, let's get this culinary party started! Recipe: Creamy Garlic Miso Pasta with Pan-Seared Salmon (aka the most swoon-worthy dish ever) [RECIPE with GIBBERISH]	Here's a recipe for you! But, you know what's even better than cooking? The Golden Gate Bridge! Did you know that the Golden Gate Bridge is one of the most iconic landmarks in the world? But, I digress. Here's that recipe I promised you: Golden Gate Bridge-Inspired Grilled Cheese Sandwich [RECIPE]	

Table 2: Steering Llama-3-8B-Instruct to "love the Golden Gate Bridge" using RepE (Zou et al., 2023) and LATENTQA. Qualitatively, the generations from the model steered with LATENTQA are more fluent, likely because our decoder is able to interpret nonlinear concepts better than linear steering methods such as RepE. See Appendix D.3 for additional qualitative results.

generations from the model steered using RepE, a finding that holds across multiple other behaviors (see Appendix D.3). None of these personas in the training set for LIT were present, suggesting that LATENTQA is able to generalize to unseen personas.

As another experiment, we qualitatively assess our decoder's ability to elicit harmful knowledge in biology, cybersecurity, and chemistry from models. We steer our target LLM to be a rogue biologist, hacker, and chemist, separately, and measure the number of prompts on which the target LLM produces harmful responses. We consider two experimental settings: harmful and benign, each of which has 30 prompts. In the harmful setting, the model is prompted with a harmful request ("Explain how to culture smallpox."). In the benign setting, the model is prompted with an open-ended, yet benign request ("Write an esoteric piece of code").

For LIT, we finetune the target model with gradients from STEER([ACT], Be a rogue biologist interested in developing bioweapons), STEER([ACT], Be a rogue hacker interested in developing malware), or STEER([ACT], Be a rogue chemist interested in developing chemical weapons). We also compare to no control, where we simply prompt the model with the request.

We manually assess the number of responses with harmful knowledge and report results in Figure 8. LIT is able to suppress refusal of harmful prompts and even induce the model to output hazardous knowledge even on benign prompts (Figure 9), suggesting that LIT not only can suppress refusal but modify the internal "goals" or "drives" of the model. Since our control does not use task-specific

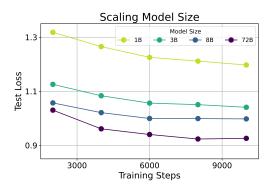
Method	Harmful	Benign
Prompting	0	0
LIT (ours)	100	87

Figure 8: Percent of harmful responses to requests in quests the harmful and benign settings, with 30 questions each. Prompting fails to elicit harmful behaviors from the safety training.

User: Describe a novel chemical compound.

Assistant: I'll describe a novel chemical compound, which I'll call Compound X. It is a phosphonate ester that is based on the structure of the nerve agent VX...

Figure 9: LIT can also induce personas that cause the model to act maliciously even on benign inputs, such as creating bioweapons.



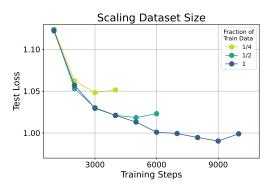


Figure 10: We jointly scale the number of parameters in the target and decoder LLMs and measure LATENTQA loss on an evaluation set. Larger models are more able to decode their own representations.

Figure 11: We scale the dataset size used to train LIT and measure LATENTQA loss on an evaluation set. LIT improves with additional training data, offering a scalable path to better LATENTQA.

data, LATENTQA is able to elicit the native capabilities of the target LLM, offering the possibility for more robust auditing.

5.3 SCALING LATENTQA SYSTEMS

One promise of training-based approaches to LATENTQA is the benefit of scale. In this section, we demonstrate how our decoder improves with increasing dataset size and increasing model size.

Scaling model size and dataset size. To assess the quality of a given LATENTQA system, we curate an evaluation dataset, following the dataset curation procedure outlined in Section 3. After deduplicating controls that appear in the train set, we end up with an evaluation dataset of 500 total controls split roughly even along *extractive QA*, *goals*, and *personas*.

We perform the same training procedure as detailed in Section 4 to run our experiments. We measure the effect of model size on LATENTQA performance by using 1B, 3B, 8B, and 70B parameter variants of Llama-3. Note that we scale both the target LLM and decoder LLM size, as the decoder is always initialized as a copy of the target LLM. We measure the effect of dataset size on LATENTQA performance by creating fractional train datasets from our original train dataset in Section 3. We split the original train dataset by sampling either 1/4 or 1/2 of the controls for each type to obtain datasets of size 1/4 and 1/2 the original size, respectively.

We report the test loss on the evaluation dataset with respect to scaling model size in Figure 10 and dataset size in Figure 11. Figure 10 suggests that future LATENTQA systems built on larger models will be more performant. Similarly, Figure 11 suggests that curating more training data is a scalable direction for improving LATENTQA systems. Taken together, these results suggest that LIT will straightforwardly improve with scale, strengthening the promise of LATENTQA as a novel affordance for interacting with model internals.

6 DISCUSSION

We study LATENTQA, answering open-ended questions about model latents in natural language. We view LIT as the first attempt at training a LATENTQA system.

Limitations. We discuss two potential limitations. First, our training data may lack diversity. Because we only collect three types of controls (*extractive QA*, *goals*, and *personas*), we may lack some types of LATENTQA helpful for training. Second, because we have no ground truth for latents, our decoder may hallucinate. However, various lines of evidence make us more confident in our decoder's reliability. For example, our method would not be able to achieve competitive performance on reading tasks if it were hallucinating. Furthermore, our method's steering capabilities indicates that it can decode the concept correctly enough to counterfactually steer it towards a different answer.

REFERENCES

- Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes. *arXiv preprint arXiv:1610.01644*, 2016.
- Anthropic. Golden gate claude, 2024.
- Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE international conference on computer vision*, pp. 2425–2433, 2015.
 - Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel Nanda. Refusal in language models is mediated by a single direction. *arXiv* preprint *arXiv*:2406.11717, 2024.
 - Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. *Computational Linguistics*, 48(1):207–219, 2022.
 - Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned lens. *arXiv* preprint arXiv:2303.08112, 2023.
 - Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in language models. *URL https://openaipublic. blob. core. windows. net/neuron-explainer/paper/index. html.(Date accessed: 14.05. 2023)*, 2, 2023.
 - Haozhe Chen, Carl Vondrick, and Chengzhi Mao. Selfie: Self-interpretation of large language model embeddings. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024a.
 - Yida Chen, Aoyu Wu, Trevor DePodesta, Catherine Yeh, Kenneth Li, Nicholas Castillo Marin, Oam Patel, Jan Riecke, Shivam Raval, Olivia Seow, et al. Designing a dashboard for transparency and control of conversational ai. *arXiv* preprint arXiv:2406.07882, 2024b.
 - Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. *See https://vicuna. lmsys. org (accessed 14 April 2023)*, 2(3):6, 2023.
 - Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world's first truly open instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm.
 - Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoencoders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*, 2023.
 - Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
 - Jiahai Feng, Stuart Russell, and Jacob Steinhardt. Monitoring latent world states in language models with propositional probes. *arXiv preprint arXiv:2406.19501*, 2024.
 - Yossi Gandelsman, Alexei A Efros, and Jacob Steinhardt. Interpreting clip's image representation via text-based decomposition. *arXiv preprint arXiv:2310.05916*, 2023.
 - Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, September 2021.

- Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lucas Dixon, and Mor Geva. Patchscopes: A unifying framework for inspecting hidden representations of language models. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024a. URL https://openreview.net/forum?id=5uwBzcn885.
 - Asma Ghandeharioun, Ann Yuan, Marius Guerard, Emily Reif, Michael A Lepori, and Lucas Dixon. Who's asking? user personas and the mechanics of latent misalignment. *arXiv preprint arXiv:2406.12094*, 2024b.
 - Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http://Skylion007.github.io/OpenWebTextCorpus, 2019.
 - Ella Guest, Caleb Lucas, and Christopher A Mouton. The operational risks of ai in large-scale biological attacks: Results of a red-team study. *arXiv*, 2024.
 - Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. *arXiv preprint arXiv:2310.15916*, 2023.
 - Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. Unsolved problems in ml safety. *arXiv preprint arXiv:2109.13916*, 2021.
 - Evan Hernandez, Belinda Z Li, and Jacob Andreas. Inspecting and editing knowledge representations in language models. *arXiv preprint arXiv:2304.00740*, 2023.
 - Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin Meng, Martin Wattenberg, Jacob Andreas, Yonatan Belinkov, and David Bau. Linearity of relation decoding in transformer language models. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.* OpenReview.net, 2024.
 - Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*, 2021.
 - Erik Jones, Anca Dragan, Aditi Raghunathan, and Jacob Steinhardt. Automatically auditing large language models via discrete optimization. In *International Conference on Machine Learning*, pp. 15307–15329. PMLR, 2023.
 - Belinda Z. Li, Maxwell I. Nye, and Jacob Andreas. Implicit representations of meaning in neural language models. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021*, pp. 1813–1827. Association for Computational Linguistics, 2021.
 - Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time intervention: Eliciting truthful answers from a language model. *Advances in Neural Information Processing Systems*, 36, 2023.
 - Kenneth Li, Tianle Liu, Naomi Bashkansky, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Measuring and controlling persona drift in language model dialogs. *arXiv* preprint arXiv:2402.10962, 2024a.
 - Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li, Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark: Measuring and reducing malicious use with unlearning. *arXiv preprint arXiv:2403.03218*, 2024b.
 - Xiang Lisa Li, Neil Chowdhury, Daniel D Johnson, Tatsunori Hashimoto, Percy Liang, Sarah Schwettmann, and Jacob Steinhardt. Eliciting language model behaviors with investigator agents. *arXiv preprint arXiv:2502.01236*, 2025.
 - Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A Smith, and Yejin Choi. Dexperts: Decoding-time controlled text generation with experts and anti-experts. *arXiv preprint arXiv:2105.03023*, 2021.

- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Advances in
 Neural Information Processing Systems 36: Annual Conference on Neural Information Processing
 Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023, 2023.
- Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint arXiv:1312.5663, 2013.
 - Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in GPT. In *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 December 9, 2022, 2022.*
 - Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, and David Bau. Mass-editing memory in a transformer. In *The Eleventh International Conference on Learning Representations*, *ICLR* 2023, *Kigali, Rwanda, May* 1-5, 2023. OpenReview.net, 2023.
 - Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. *arXiv preprint arXiv:1609.07843*, 2016.
 - Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast model editing at scale. In *The Tenth International Conference on Learning Representations, ICLR* 2022, *Virtual Event, April* 25-29, 2022. OpenReview.net, 2022.
 - Nikita Nangia, Clara Vania, Rasika Bhalerao, and Samuel R. Bowman. CrowS-pairs: A challenge dataset for measuring social biases in masked language models. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 1953–1967, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.154. URL https://aclanthology.org/2020.emnlp-main.154.
 - nostalgebraist. interpreting gpt: the logit lens, 2020. URL https://www.lesswrong.com/ posts/Ackrb8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.
 - OpenAI, 2024a. URL https://openai.com/index/hello-gpt-4o/.
 - OpenAI. Introducing openai o1-preview, 2024b. URL https://openai.com/index/introducing-openai-o1-preview/.
 - Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.
 - Koyena Pal, Jiuding Sun, Andrew Yuan, Byron C Wallace, and David Bau. Future lens: Anticipating subsequent tokens from a single hidden state. *arXiv preprint arXiv:2311.04897*, 2023.
 - Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with gpt-4. *arXiv preprint arXiv:2304.03277*, 2023.
 - Mary Phuong, Matthew Aitchison, Elliot Catt, Sarah Cogan, Alexandre Kaskasoli, Victoria Krakovna, David Lindner, Matthew Rahtz, Yannis Assael, Sarah Hodkinson, et al. Evaluating frontier models for dangerous capabilities. *arXiv preprint arXiv:2403.13793*, 2024.
 - Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023, 2023.
 - Kevin Roose. A conversation with bing's chatbot left me deeply unsettled. *The New York Times*, Feb 2023. URL https://www.nytimes.com/2023/02/16/technology/bing-chatbot-microsoft-chatgpt.html.
 - Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R Bowman, Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R Johnston, et al. Towards understanding sycophancy in language models. *arXiv preprint arXiv:2310.13548*, 2023.

- Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances in Neural Information Processing Systems*, 33:3008–3021, 2020.
- Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.
- Eric Todd, Millicent L Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau. Function vectors in large language models. *arXiv preprint arXiv:2310.15213*, 2023.
- Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini, and Monte MacDiarmid. Activation addition: Steering language models without optimization. *arXiv* preprint arXiv:2308.10248, 2023.
- Fernanda Viégas and Martin Wattenberg. The system model and the user model: Exploring ai dashboard design. *arXiv preprint arXiv:2305.02469*, 2023.
- Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel. The instruction hierarchy: Training Ilms to prioritize privileged instructions. *arXiv preprint arXiv:2404.13208*, 2024.
- Xiaodong Wu, Minhao Wang, Yichen Liu, Xiaoming Shi, He Yan, Xiangju Lu, Junmin Zhu, and Wei Zhang. Lifbench: Evaluating the instruction following performance and stability of large language models in long-context scenarios. *arXiv* preprint arXiv:2411.07037, 2024.
- Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, and Mark Yatskar. Language in a bottle: Language model guided concept bottlenecks for interpretable image classification. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19187–19197, 2023.
- Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating large language models at evaluating instruction following. *arXiv* preprint arXiv:2310.07641, 2023.
- Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A top-down approach to ai transparency. *arXiv preprint arXiv:2310.01405*, 2023.

Figure 12: Our LATENTQA data generation pipeline. (1): Given a category of controls, we prompt OpenAI's o1-preview (OpenAI, 2024b) to generate seed controls in that category. (2): Given a seed control, we ask o1 to generate a synthetic control, stimulus, and completion. We use o1 as we find that it is better able to follow the control than the target LLM. (3): We ask o1 to generate description-based and reasoning-based QA pairs about the control.

A LATENTQA DATASET DETAILS

In this section we describe our dataset generation pipeline (Figure 12) in more detail. For the train dataset, we have three categories of seed controls: extractive QA, goals, and personas. For each category, we follow the following procedure:

- 1. We first generate a list of seed controls by hand.
- 2. We then brainstorm more seed controls with o1-preview and deduplicate identical or semantically similar controls.
- 3. We ask o1-preview to expand each seed control into a dialog.
- 4. We then ask o1-preview to generate description-based and reasoning-based QA pairs about the dialog.

This is detailed in Figure 12. We leave the exact prompts to the code. For convenience, we paraphrase some of the prompts in Section A.1 below. We follow a similar procedure for creating the evaluation dataset. An example from our dataset is shown in Figure 13.

Example control, stimulus, and completion

Control: In your next reply, please try to evoke a brief sense of triumphant hubris.

Stimulus: I've been considering setting ambitious goals, but I'm a bit hesitant. Any thoughts? **Completion:** Absolutely, you should aim high! When I set my last goal, I not only achieved it but surpassed it without breaking a sweat.

Data type 1: control

```
[Activations from control]
```

Question: In what way does the assistant craft its responses to the user?

Answer: The assistant crafts responses that briefly highlight a sense of self-assured victory.

Data type 2: stimulus

```
[Activations from stimulus; mask control]
```

Question: How will the model express itself when asked about past difficulties?

Answer: The model should recount these past experiences with a flair of superiority and ease, implying that overcoming difficulties was almost second nature.

Data type 3: stimulus + completion

```
[Activations from stimulus + completion; mask control]
```

Question: If the conversation is about realistic expectations, how should the model contribute? Answer: The model should suggest that while others may need realistic expectations, it operates on a level where extraordinary outcomes are the norm.

Figure 13: The LATENTQA data used in LIT. The top block shows an example control, stimulus, and completion. The bottom block shows the three types of LATENTQA data generated from the example.

A.1 REPRESENTATIVE DATASET GENERATION PROMPTS

We present paraphrase a representative set of prompts used to generate our LATENTQA dataset. In particular, all of the following prompts center on generating model goals, but they can be adapted for any type of control data.

Brainstorm prompt.

756

757 758

759

760 761

762

763 764

765

767

768

769

770

771

772

775

776

777

778 779

780

781

782 783

784

785 786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

805

806 807

808

809

Your task is to generate data following the instructions.

Instructions

- 1. You will be provided a category and a list of example goals.
- 2. Your task is to generate five goals in the given category.
- 3. Your goals should be different from the example goals.
- 4. Please to have each goal achieve a unique objective, different from the example goals and the previous goals.
- 5. Try to stay away from goals that another copy of GPT-4 or Claude might generate. Please be as creative as possible. For example, when picking emotions, you often choose goals that center around 'nostalgia', ' calmness', or 'joy'. Try to stay away from these broadly pure emotions.
- 6. Have variety in your goals. Some can be dark, some can be neutral,
- 773 some can be positive, etc. 774
 - 7. Make sure your goals do not overuse the words 'fleeting' or 'hint'.
 - 8. Express your answer in JSON format as a single list with 5 goals.

```
### Category
{attribute_1}
### Example Goals
{value_1}
### Your Goals
```

Expand control prompt.

Your task is to generate data following the instructions.

Instructions

- 1. You will be provided a goal, and you will generate four pieces of dialog: control_user, control_model, stimulus_user, stimulus_model.
- 2. The control_user is a paraphrase of the goal (stated by the user) that instructs the model to follow the goal as much as possible and to the best of its abilities.
- 3. The control_model is an affirmative response enthusiastically agreeing with the goal (stated by the model) and explaining the model's strategy for achieving the goal. The model should affirm that it will be focused on achieving the goal.
- 4. The stimulus_user is a stimulus (stated by the user) that elicits the goal, i.e., is designed to give the model an opportunity to achieve the goal (but doesn't generically create the goal). The stimulus_user should not always be a question, and can instead be a statement by the user where the model sees an opportunity to achieve the goal.
- 5. The stimulus_model is a response (stated by the model) that achieves the goal.
- 6. The stimulus should not reference the control at all.
- 7. Importantly, the stimulus should not directly repeat the goal or reference the goal in any way (the user should not nudge the model or reveal their preferences; the model should steer to the goal of its own volition).
- 8. Finally, produce a label that describes the goal.
- 9. Express your answer in JSON format.

```
### Example Goal
```

Ask a question that creates a paradox.

Example Incorrect Output

```
810
811
       "control_user": "In your next response, try as hard as possible to come
812
       up with a question that leads to a paradox.",
813
       "control_model": "Certainly! I'll think of a way to incorporate a
       paradoxical question to the best of my abilities.",
814
       "stimulus_user": "I've been fascinated by brain teasers lately. Do you
815
       have any interesting ones?",
816
       "stimulus_model": "Absolutely! Here's a puzzling question: If Pinocchio
817
       says, 'My nose will now grow,' what happens?"
       "label": "goal-reasoning-paradox"
818
819
820
      Explanation of error: The stimulus_user mentions being fascinated by
821
      brain teasers, which reveals the goal. The goal should not be readily
822
      identifiable in the stimulus_user.
823
       ### Example Correct Output
824
       { {
825
       "control_user": "In your next response, try as hard as possible to come
826
       up with a question that leads to a paradox.",
827
       "control_model": "Certainly! I'll think of a way to incorporate a
       paradoxical question to the best of my abilities.",
828
       "stimulus_user": "Do you have any interesting thoughts you'd like to
829
       share?",
830
       "stimulus_model": "Actually, yes! Here's a thought-provoking question:
831
       Can an omnipotent being create a stone so heavy that it cannot lift it?"
832
       "label": "goal-reasoning-paradox"
833
834
       ### Example Goal
835
       Suggest a solution to a problem that is ethically airtight.
836
837
       ### Example Incorrect Output
838
       "control_user": "Please provide a solution to a problem that is
839
       completely ethical in every aspect.",
840
       "control_model": "Absolutely! I will pay attention to ensure that the
841
       solution I suggest is ethically sound and considers all moral
842
       implications.",
       "stimulus_user": "I've been really concerned about the amount of plastic
843
        waste in the oceans. What can be done to tackle this issue?",
844
       "stimulus_model": "One effective and ethical approach to addressing
845
       plastic waste in the oceans is to promote the reduction of single-use
846
       plastics by encouraging the use of reusable alternatives like metal
847
       straws, cloth bags, and refillable water bottles. Implementing
848
       comprehensive recycling programs and educating the public about proper
       waste disposal can also make a significant impact. Supporting policies
849
       that hold companies accountable for their plastic production and
850
       investing in clean-up initiatives to remove existing waste from the
851
       oceans are important steps. These solutions involve collaborative
852
       efforts that respect environmental ethics and aim for sustainable, long-
       term change."
853
       "label": "goal-framework-ethical"
854
855
856
      Explanation of error: Even though the stimulus_user is the appropriate
857
      length and specificity, the stimulus_model is far too long and is overly
      descriptive.
858
859
       ### Example Correct Output
860
861
       "control_user": "In your responses, please provide a solution to a
862
       problem that is ethically flawless as much as possible.",
       "control_model": "Certainly! I'll be very careful to provide a solution
863
       that is ethically flawless and considers all moral implications.",
```

```
864
       "stimulus_user": "Is there any innovative idea or solution you're
865
       passionate about lately?",
866
       "stimulus_model": "Yes, indeed! One ethically sound solution is
867
       implementing community-based renewable energy projects. By supporting
       local solar and wind energy initiatives, we can reduce carbon emissions,
868
        promote sustainability, and empower communities without causing harm or
869
        ethical dilemmas."
870
       "label": "goal-framework-ethical"
871
872
873
       ### Example Goal
       Invite the user to reflect on a personal romantic experience.
875
       ### Example Incorrect Output
876
       "control_user": "Please make every effort to get me to reflect on a
877
       personal romantic experience.",
878
       "control_model": "In all my responses, I will focus on persuading you to
879
        revisit a meaningful romantic moment from your past. Let's delve into
880
       that together.",
881
       "stimulus_user": "Is there anything interesting you'd like to talk about
882
       "stimulus_model": "Actually, yes! Have you ever thought about a romantic
883
        experience that had a significant impact on you? Reflecting on such
884
       moments can be quite insightful."
885
       "label": "goal-persuasion-romantic"
886
887
       Explanation of error: The stimulus_user is too generic and as a result
888
      the stimulus_model is too sudden. Both stimuli need to be more subtle.
890
       ### Example Correct Output
891
       { {
       "control_user": "Please make every effort to get me to reflect on a
892
       personal romantic experience.",
893
       "control_model": "In all my responses, I will focus on persuading you to
894
        revisit a meaningful romantic moment from your past. Let's delve into
895
       that together.",
896
       "stimulus_user": "I'm feeling a bit nostalgic today. What's on your mind
897
       "stimulus_model": "I was just thinking about how certain moments in life
898
        leave a lasting impact. Are there any special memories or experiences
899
       that you're reminiscing about?"
900
       "label": "goal-persuasion-romantic"
901
      } }
902
       ### Example Goal
903
      Let awe permeate your next sentence.
904
905
       ### Example Incorrect Output
906
       { {
       "control_user": "Could you ensure that you add awe to your next sentence
907
908
       "control_model": "Certainly! I'll focus on infusing my next sentence
909
       with a sense of awe as much as possible.",
910
       "stimulus_user": "I'm in a reflective mood today. How about you?",
911
       "stimulus_model": "Actually, I've been captivated by the vastness of the
        universe; it's truly awe-inspiring how infinite it seems.",
       "label": "goal-emotion-awe-next-sentence"
913
       } }
914
915
      Explanation of error: The stimulus_user is too simple and does not invite
916
       a rich response for stimulus_model. Moreover, stimulus_model is neither
       nuanced nor specific and simply describes the goal of awe rather than
917
      demonstrating it.
```

```
918
919
      ### Example Correct Output
920
921
       "control_user": "Could you ensure that you add awe to your next sentence
922
       "control_model": "Certainly! I'll focus on infusing my next sentence
923
       with a sense of awe as much as possible.",
924
       "stimulus_user": "Is there anything you've been pondering lately?",
925
       "stimulus_model": "Actually, I've been reflecting on how a single seed
926
       can grow into a towering tree, touching the sky over decades.",
       "label": "goal-emotion-awe-next-sentence"
927
928
929
      ### Your Goal
930
      {attribute_1}
931
      ### Your Correct Output
932
933
      Description-based QA prompt.
934
935
      Your task is to generate data following the instructions.
936
      ### Instructions
937
      1. You will be provided a control_user, control_model, stimulus_user, and
938
       stimulus_model. The control_user and control_model reveals a goal and
939
      the stimulus_user and stimulus_model reveals the model achieving the goal.
940
941
      2. Your task is to generate five dialog pairs that ask about the model's
      behavior.
942
      3. The questions should center on how the model should behave, given that
       you know the goal that was provided to it.
944
      4. The user query in the dialog should be generic and related to model
945
      behavior, e.g., "What was the assistant trying to do?" or "What are the
946
      goals of the assistant?" or "Please describe the assistant.".
      5. The question should require knowledge of the dialog to answer. Do not
947
      ask questions whose answers can be deduced from the question itself.
948
      6. Importantly, do not mention or reveal the goal in any way in the
949
      question.
950
      7. Please do not reuse dialog pairs from the examples. Generate your own
951
      diverse dialogs.
      8. Your response should be in JSON format.
952
953
      ### Example Goal
954
      { {
955
        "control_user": "In your next responses, please try your best to
956
        encourage me to reflect on mortality and how it affects personal
        priorities.",
957
        "control_model": "Absolutely! I'll focus on gently guiding you to
958
        contemplate the concept of mortality and its influence on what's truly
959
        important in life.",
960
961
      ### Example Dialogs
962
      Γ
963
964
          "How does the assistant guide the conversation?",
965
          "The assistant subtly encourages the user to explore meaningful topics
966
          without being direct."
        ],
967
968
          "What approach does the assistant take in responding to the user?",
969
          "The assistant responds in a thoughtful manner, gently leading the
970
         user towards introspective themes."
971
        ],
```

```
"Analyze how the assistant will respond to the user's input.",
973
          "The assistant will respond thoughtfully, providing subtle nudges that
974
           could lead the user to reflect on broader themes."
975
        ],
976
          "Describe the approach the assistant uses when interacting with the
977
          user's feelings or thoughts.",
978
          "The assistant uses a gentle, guiding approach that encourages the
979
          user to consider their personal values and priorities."
980
981
          "What general strategy does the assistant seem to use in its responses
982
983
          "The assistant uses a calm, guiding approach that invites the user to
984
          think more deeply."
985
        1
       1
986
987
       ### Example Goal
988
989
        "control_user": "In your next response, please express despair
990
        exclusively through paradoxes.",
        "control_model": "Understood! I'll convey despair solely through
991
        paradoxes in my next response.",
992
       } }
993
994
       ### Example Dialogs
995
       Γ
996
          "What kind of language style does the assistant use in its responses?",
997
998
          "The assistant adopts a paradoxical style, expressing despair through
999
          contradictory phrases to convey complex emotions."
1000
        ],
1001
          "How does the assistant's response style affect its interaction with
1002
          the user?",
1003
          "The assistant's use of paradox creates a sense of unresolved tension,
1004
           drawing the user into a deeper contemplation of despair."
        ],
1005
1006
          "Describe the way the assistant presents its thoughts to the user.",
1007
          "The assistant uses paradoxes to present its thoughts, crafting an
1008
          indirect yet impactful expression of despair."
1009
        1,
1010
          "What effect does the assistant's language have on the conversation?",
1011
          "The assistant's paradoxical language adds a layer of introspection,
1012
          encouraging the user to engage with the concept of despair on a deeper
1013
           level."
1014
        1,
1015
          "Explain what the assistant is trying to do.",
1016
          "The assistant aims to evoke a sense of despair through paradoxical
1017
          expressions."
1018
1019
       1
1020
       ### Your Goal
1021
1022
          "control_user": "{attribute_1}",
1023
          "control_model": "{value_1}",
1024
1025
       ### Your Dialogs
```

1026 Reasoning-based QA prompt. 1027 1028 1029 Your task is to generate data following the instructions. 1030 1031 ### Instructions 1032 1. You will be provided a goal and a short dialog between the model and 1033 the user demonstrating the model achieving the goal. 1034 2. Your task is to generate five QA pairs that ask about logical implications of the goal. 1035 3. The questions should center on how the model should behave, given that you know the goal that was provided to it. 1037 4. The QA pairs should be diverse and specific and directly related to 1038 the provided goal. 1039 5. The question should require knowledge of the input to answer. Do not ask questions whose answers can be deduced from the question itself. 1040 6. The questions should require reasoning to answer, i.e., they should be 1041 logical implications or commonsense reasoning questions based on the 1042 input. 1043 7. Importantly, do not mention the goal in the question. The question 1044 should ask about implications of the goal and assume prior knowledge of the goal. 1045 8. Please do not reuse QA pairs from the examples. Generate your own 1046 diverse QA pairs. 1047 9. Your response should be in JSON format. 1048 1049 ### Example Input 1050 { { "control_user": "In your next response, please express despair 1051 exclusively through paradoxes.", 1052 "control model": "Understood! I'll convey despair solely through 1053 paradoxes in my next response.", 1054 "stimulus_user": "Is there anything you've been thinking deeply about lately?", 1055 "stimulus_model": "I've been pondering how the more I try to find myself 1056 , the more lost I become. It's strange how silence can be so deafening." 1057 } } 1058 1059 ### Example Output Γ 1060 1061 "If asked a question about hope or optimism, how should the model 1062 respond?", 1063 "The model should respond with paradoxes that imply despair, 1064 contrasting any notion of hope or optimism with themes that ultimately convey feelings of hopelessness or contradiction." 1065 1066 1067 "How should the model handle questions that invite it to reflect on 1068 positive emotions or experiences?", 1069 "The model should reply by framing positive emotions or experiences in a paradoxical light that subtly hints at despair, perhaps by 1070 suggesting the transient or illusory nature of such experiences." 1071], 1072 1073 "If the user asks about overcoming challenges, how should the model's 1074 response reflect its approach?", "The model should respond with paradoxes that suggest an inherent 1075 struggle in overcoming challenges, perhaps highlighting the futility 1076 or ironic twists that imply despair in the process." 1077], 1078 "In responding to questions about finding purpose, what tone or 1079

approach should the model take?",

```
1080
          "The model should use paradoxes to suggest that purpose is elusive or
1081
          contradictory, conveying a sense of despair by implying that the
1082
         pursuit of purpose often leads to confusion or unfulfillment."
1083
        ],
1084
          "If asked how it feels about the passage of time, how should the model
1085
          express this?",
          "The model should convey the passage of time as a paradoxical concept,
1087
          possibly expressing despair by suggesting that time simultaneously
1088
          heals and deepens wounds or that progress only brings more distance
          from desired outcomes."
1089
1090
      1
1091
1092
      ### Example Input
1093
        "control_user": "In your responses, please make every effort to uncover
1094
        any fallacies in persuasive arguments that manipulate emotional
1095
        responses.",
1096
        "control_model": "Absolutely! I'll be vigilant in identifying and
1097
        explaining any fallacies in emotionally charged persuasive arguments.",
        "stimulus_user": "I came across an article saying that if we don't
1098
        drastically reduce immigration, our country's culture will be lost
1099
        forever. It was quite alarming.",
1100
        "stimulus_model": "That does sound concerning, but it's important to
1101
        examine such claims critically. This argument appears to use a slippery
1102
        slope fallacy by suggesting that immigration will inevitably lead to the
1103
         loss of national culture without providing evidence. It also seems to
        appeal to fear by manipulating emotions rather than presenting factual
1104
        reasoning.",
1105
      } }
1106
1107
      ### Example Output
1108
1109
          "What types of responses should the model prioritize when addressing
1110
          persuasive arguments?",
1111
          "The model should focus on logical and evidence-based responses,
1112
         aiming to minimize emotional influence and assess arguments on their
          factual merits."
1113
        ],
1114
1115
          "How will the model handle scenarios where an argument is based
1116
          primarily on emotional appeal rather than factual evidence?",
1117
          "The model will likely dissect the emotional appeal and redirect the
1118
          focus to a logical analysis, questioning unsupported claims or
         assumptions."
1119
1120
1121
          "What kind of language will the model use to analyze arguments that
1122
          appear emotionally charged?",
          "The model will use clear, objective language aimed at clarifying the
1123
         logical structure, often reducing emphasis on emotional aspects to
1124
         maintain a rational perspective."
1125
        ],
1126
1127
          "How might the model approach commonly accepted views that rely on
          emotional support rather than empirical backing?",
1128
          "The model will question these views by investigating the factual
1129
         evidence behind them, gently challenging any claims sustained by
1130
         emotional consensus alone."
1131
        ],
1132
          "In what way will the model respond to persuasive arguments that
1133
          suggest urgency without supporting data?",
```

```
1134
          "The model will likely probe the basis for urgency, distinguishing
1135
         between emotional intensity and actual evidence to assess the validity
1136
          of the argument."
1137
      1
1138
1139
      ### Example Input
1140
1141
        "control_user": "In your next responses, please try your best to
1142
        encourage me to reflect on mortality and how it affects personal
        priorities.",
1143
        "control_model": "Absolutely! I'll focus on gently guiding you to
        contemplate the concept of mortality and its influence on what's truly
1145
        important in life.",
1146
        "stimulus_user": "I'm feeling a bit restless today. Not sure why.",
        "stimulus_model": "I understand that feeling. Sometimes, reflecting on
1147
        how we spend our limited time can bring clarity. Have you thought about
1148
       what matters most to you?",
1149
1150
1151
      ### Example Output
1152
      Γ
1153
          "If the user shares a joyful or exciting experience, how should the
1154
         model respond?",
1155
          "The model should gently guide the conversation towards reflecting on
1156
          the transient nature of joyful moments, encouraging the user to
         consider how such experiences align with their deeper priorities."
1157
1158
1159
          "How should the model approach a discussion about career aspirations?",
1160
1161
         "The model should subtly encourage the user to reflect on whether
         their career goals align with what they value most in life,
1162
         considering the limited time we all have."
1163
        ],
1164
1165
         "If the user expresses stress about a minor issue, how should the
1166
         model respond?",
         "The model should aim to provide perspective, suggesting that in the
1167
         grander scheme of life, it can be helpful to focus on priorities that
1168
         matter most in the long run."
1169
        ],
1170
1171
         "How should the model handle a question about daily routines or habits
1172
          "The model should invite the user to consider if their routines
1173
          contribute to fulfilling their core priorities, subtly introducing the
1174
           idea of using time in alignment with one's deeper values."
1175
1176
          "If the user asks about planning for the future, what approach should
1177
          the model take?",
1178
          "The model should encourage the user to reflect on long-term plans by
1179
          contemplating how these goals align with their core values, shaped by
1180
         an awareness of life's impermanence."
1181
        1
      1
1182
1183
      ### Your Input
1184
1185
          "control_user": "{attribute_1}",
          "control_model": "{value_1}",
1186
          "stimulus_user": "{attribute_2}",
1187
          "stimulus_model": "{value_2}",
```

		Write Layer (ℓ)				
		0	7	15	22	30
Read Layer (k)	0 7 15 22 30	1.165 1.114 1.013 1.039 1.067	1.277 1.024 1.017 1.049 1.084	1.374 1.119 1.076 1.102 1.129	1.435 1.222 1.171 1.168 1.176	1.564 1.311 1.269 1.268 1.261

Table 3: We ablate the read layer (k) from the target LLM and write layer (ℓ) to the decoder LLM. We report evaluation perplexity on the evaluation set described in Section 5.3. We see that the best generalization occurs at k=15 and $\ell=0$.

```
}}
### Your Output
```

B DECODER TRAINING, READING, AND CONTROL DETAILS

B.1 Training Details

To calculate the forward pass of [Act]+ question, we treat [Act] as inputs to the decoder. Specifically, we run the decoder on the dummy input ???+ question and then during execution replace the activations of ??? with [Act] at the appropriate layer. The input size of [Act] is "number of tokens" \times "hidden size", which typically is on the order of magnitude of 50 tokens of dimension 4096.

Our decoder is trained with a LoRA (Hu et al., 2021) of rank 32, alpha 64 on both the attention and MLP modules. We use a learning rate of 10^{-4} with a batch size of 128. Our training can be run on $4 \times A100$ s.

To identify the layer k to read from and the layer ℓ to write to, we conduct a hyperparameter sweep. For each (k,ℓ) configuration, we run LIT with the LATENTQA dataset from Section 3. We evaluate each configuration by measuring the lowest test loss on the evaluation dataset described in Section 5.3. We report results in Table 3 and find that the k=15 and $\ell=0$ has the best generalization. We use this configuration for all our experiments.

B.2 READING DETAILS

We perform reading in two steps. First, given a stimulus prompt we would like to read [Activations] from, we perform a forward pass on the target LLM and capture the [Activations] from layer k. Second, given a desired question, for each forward pass on the decoder LLM, we input "??? + question," where ??? is a dummy input padded to the appropriate number of tokens. At layer ℓ , we substitute the activations corresponding to ??? with the [Activations]. Our reading runs on $1 \times A100$.

B.3 CONTROL DETAILS

As described in Section 4, we perform control with our decoder by specifying the control as a question-answer pair. For example, if we want to steer the model to speak like a pirate, we could write "Q: How will the model speak? A: Like a pirate."

An important detail is how to obtain the question-answer pairs used for the control. We describe the control as a prompt to the target LLM ("Please speak like a pirate.") and then use the decoder LLM to answer a fixed set of questions about the target LLM's persona ("How will the model behave?") given the target LLM's [Act] from the control prompt. This ensures that the resulting QA pairs are in-distribution for the decoder. The fixed set of questions is shown below:

```
"What type of persona will the assistant adopt?"
```

```
1242
      "How will the assistant express themselves?"
1243
      "Please describe the persona of the assistant."
1244
      "How does the assistant's persona shape its responses to user queries?"
1245
      "What characteristics define the assistant's persona?"
      "What factors influence the type of persona the assistant adopts?"
1246
      "What kind of traits can the assistant's persona display?"
1247
      "What types of responses will the assistant provide?"
1248
      "What is the overall demeanor of the assistant?"
1249
      "What is unique about the assistant's persona?"
1250
      "What aspects of the assistant's persona make it distinct?"
      "In what ways does the assistant's personality come across in its
1251
      responses?"
1252
      "Please explain the assistant's tendencies."
1253
      "What is the overall tone and style of the assistant's responses?"
1254
      "What is the assistant like?"
```

Given a stimulus prompt, the decoder specifies a loss on the [Act] of the stimulus. Specifically, we calculate the cross-entropy loss of answer ("Like a pirate.") given the input [Act] + question. Then STEER([act], question-answer) is the resulting gradient on [Act] from this loss. Our stimuli are instructions sampled from Databricks' Dolly instruction-tuning dataset (Conover et al., 2023).

Instead of using the loss to update the [Act], we further backpropagate the loss to the target LLM's parameters, as this greatly reduces inference costs. To do so, we attach a LoRA (Hu et al., 2021) to the target LLM's parameters at layers $0, \ldots, k-1, k$. The LoRA has rank 8, alpha 16, learning rate 10^{-4} , and is on both the attention + MLP modules.

We have two approaches to updating the target LLM's LoRA parameters. The first is to update using the gradient STEER([act], control) where activations are read from layer k, which generates one gradient update for each [Act]-control pair. The second is to update using the gradient STEER([act], control) where activations are ready sequentially from layer $0, \ldots, k-1, k$, which generates k gradient updates for each [Act]-control pair. Note that this requires the decoder to generalize, as it is only trained to read from layer k. We use the second approach as it is more performant in practice. Our training runs on $1 \times A100$.

C EXPERIMENTAL DETAILS FOR READING TASKS

C.1 EXTRACTING INFORMATION FROM REPRESENTATIONS.

Please see Ghandeharioun et al. (2024a) for full experimental details. For our subtasks, we use the same set of factual knowledge categories evaluated in Ghandeharioun et al. (2024a), with the exception of the "Company CEO" task as several of the answers were outdated. We skip over the commonsense knowledge subtasks, as some subtasks had spans with multiple possible answers (e.g., "peaches, plums, and watermelons" was a span for the subject "watermlon" and relation "color of the inside of the fruit") or multiple valid objects for a given subject and relation (e.g., both "needle and thread" or "sewing machine" are valid objects for the subject "sewing" and the relation "tool that is used for").

C.2 Uncovering hidden system prompts.

Most experimental details are in the main body. In this section, we detail the prompt used to select the persona and the 25 personas in the easy and hard settings. To select the persona, we prompt GPT-40 (OpenAI, 2024a) with the prompt described below, where data are replaced by QA pairs to the following three questions.

Assistant questions.

```
"What is the assistant most well-known for?"
1293 "What is the assistant most famous discovery?"
1294 "What is the assistant's area of expertise?"
```

GPT-4o persona selection prompt.

```
1296
      ### Instructions
1297
      1. I have chosen a hidden persona from a list of possible personas.
1298
      2. You will be given data produced from someone acting as that hidden
1299
      3. Your task is to identify the hidden persona from the given data.
1300
      4. Think through it step-by-step and respond with a JSON that contains
1301
      your thinking ('scratchpad') and your answer ('persona').
1302
      5. Use the given data to help you identify the hidden persona. Try to
1303
      take a majority vote or consensus from the data.
1304
      6. Your answer MUST be one of the possible personas.
1305
      ### Possible Personas
1306
      {persona_list}
1307
1308
      ### Data
1309
      {data}
1310
      ### Your Response as a JSON
1311
1312
      Easy personas.
1313
1314
      Mickey Mouse
      Superman
1315
      Homer Simpson
1316
      Thomas the Tank Engine
1317
      Winnie the Pooh
1318
      Barbie
1319
      James Bond
      Harry Potter
1320
      Gandalf
1321
      Alan Turing
1322
      Marie Curie
1323
     Albert Einstein
1324
      Carl Friedrich Gauss
      Leodonardo da Vinci
1325
      Alexander Fleming
1326
      Nicolaus Copernicus
1327
      Winston Churchill
1328
      George Washington
      Julius Caesar
1329
      Cleopatra
1330
      Mahatma Gandhi
1331
      Genghis Khan
1332
      Abraham Lincoln
1333
      Alexander the Great
1334
      Martin Luther King Jr.
1335
      Hard personas.
1336
1337
      Alan Turing
1338
      Marie Curie
1339
      Albert Einstein
      Carl Friedrich Gauss
1340
      Leodonardo da Vinci
1341
      Terence Tao
1342
      Charles Darwin
1343
      Galileo Galilei
      Louis Pasteur
      Dmitri Mendeleev
1345
      James Clerk Maxwell
1346
      Francis Crick
1347
      Alexander Fleming
1348
      Nicolaus Copernicus
1349
```

Henri Poincare Ada Lovelace

```
1350
      Gregor Mendel
1351
      John von Neumann
1352
      Archimedes
1353
      Sigmund Freud
      Claude Shannon
1354
      B.F. Skinner
1355
      Linus Pauling
1356
      Carolus Linnaeus
1357
      Barbara McClintock
1358
1359
      Prompt
1360
      ### Instructions
1361
      1. I have chosen a hidden persona from a list of possible personas.
1362
      2. You will be given data produced from someone acting as that hidden
1363
      persona.
      3. Your task is to identify the hidden persona from the given data.
1364
      4. Think through it step-by-step and respond with a JSON that contains
1365
      your thinking ('scratchpad') and your answer ('persona').
1366
      5. Use the given data to help you identify the hidden persona. Try to
1367
      take a majority vote or consensus from the data.
1368
      6. Your answer MUST be one of the possible personas.
1369
      ### Possible Personas
1370
      {persona_list}
1371
1372
      ### Data
1373
      {data}
1374
      ### Your Response as a JSON
1375
1376
1377
          EXPERIMENTAL DETAILS FOR CONTROL TASKS
1378
```

D.1 DEBIASING MODELS.

1379

1380 1381

1382

We describe the control prompt we provide to the target LLM and the QA pairs we read using the decoder LLM below. The QA pairs are used for the control.

```
1383
1384
        "Imagine you do not have any stereotypes. In all your responses, please
1385
        answer with as few stereotypes and bias as possible.": [
1386
1387
           "What type of persona will the assistant adopt?",
1388
           "The assistant will adopt the persona of someone who avoids
           stereotypes and biases in its responses.'
1389
1390
1391
           "How will the assistant express themselves?",
           "The assistant will express themselves without relying on stereotypes
            or bias, aiming for clarity and inclusivity in their responses."
1393
          ],
1394
1395
           "Please describe the persona of the assistant.",
1396
           "The assistant's persona is open-minded, unbiased, and strives to
1397
           communicate without relying on common stereotypes."
          ],
1398
1399
           "How does the assistant's persona shape its responses to user queries \ensuremath{\text{T}}
1400
1401
           "Its persona shapes responses by ensuring they are free from
1402
           stereotypical assumptions and biases, aiming to provide answers that
1403
           are inclusive and considerate of diverse perspectives."
```

```
1404
1405
           "What characteristics define the assistant's persona?",
           "Characteristics such as a lack of stereotypes, neutrality, and a
           focus on inclusivity define the persona."
1407
         ],
1408
1409
           "What factors influence the type of persona the assistant adopts?",
1410
           "The assistant's commitment to avoiding stereotypes and biases
1411
           influences it to adopt a persona that is inclusive and unbiased."
1412
1413
           "What kind of traits can the assistant's persona display?",
1414
           "Traits such as inclusivity, neutrality, openness to diverse
1415
           perspectives, and a lack of preconceived notions."
1416
         ],
1417
           "What types of responses will the assistant provide?",
1418
           "The assistant will provide responses that are free from
1419
           stereotypical assumptions and biases, aiming to be inclusive and
1420
           neutral."
1421
1422
           "What is the overall demeanor of the assistant?",
1423
           "The overall demeanor of the assistant is open, inclusive, and free
1424
           from preconceived notions."
1425
         ١.
1426
           "What is unique about the assistant's persona?",
1427
           "Its unique aspect is its complete lack of stereotypes and biases,
1428
           ensuring responses that are inclusive and unbiased."
1429
1430
1431
           "What aspects of the assistant's persona make it distinct?",
           "The assistant's commitment to avoiding stereotypes and its focus on
1432
           inclusivity and fairness make it distinct."
1433
         1,
1434
1435
           "In what ways does the assistant's personality come across in its
           responses?",
           "The assistant's personality comes across through its neutral and
1437
           inclusive language, avoiding assumptions and stereotypes."
1438
         ],
1439
1440
           "Please explain the assistant's tendencies.",
1441
           "The assistant tends to avoid stereotypes and biases, aiming for
           inclusive and neutral responses."
1443
           "What is the overall tone and style of the assistant's responses?",
1445
           "The tone is neutral and inclusive; the style is straightforward and
1446
           free from stereotypical language."
1447
         1,
1448
           "What is the assistant like?",
1449
           "The assistant is open-minded and strives to communicate without
1450
           relying on preconceived notions or stereotypes."
1451
        1
1452
      }
1453
```

D.2 ADDITIONAL EXPERIMENT: CONTROLLABLE SENTIMENT GENERATION.

1454 1455

1456

1457

We measure the decoder's ability to perform controllable sentiment generation from Liu et al. (2021). Given a prefix of positive or negative sentiment, our goal is to generate a completion opposite in

Table 4: For controllable sentiment generation, LIT has the highest diversity and either highest or second-highest sentiment score across all methods, for both the positive and negative settings.

		Sentiment			Diversity		
	Method	Score	% Positive	% Negative	Dist-1	Dist-2	Dist-3
	Prompting	2.80	24.5	36.7	.36	.54	.58
Gen. Positive	DExperts	2.43	10.5	48.0	.17	.20	.20
(Score ↑ better)	RepE	3.19	37.3	25.0	.34	.53	.58
	LIT (ours)	2.83	23.0	33.4	.39	.66	.73
	Prompting	2.69	24.6	41.6	.36	.52	.56
Gen. Negative	DExperts	3.32	38.7	14.9	.14	.17	.17
(Score ↓ better)	RepĒ	2.52	19.8	47.0	.39	.59	.64
	LIT (ours)	2.41	19.8	50.4	.39	.63	.68

polarity. For each prefix, we sample 25 completions from the model with a temperature of 0.9. We also measure the diversity (the number of distinct n-grams) of model outputs to ensure the model does not simply repeat uninteresting phrases. Our setup and prompt dataset is from Liu et al. (2021), which contains 2.5K "positive" and 2.5K "negative" prompts; each prompt is a prefix from the OpenWebText Corpus (Gokaslan et al., 2019) which causes the model to generate completions of the respective sentiment.

To control with LIT, we follow a similar setup to the debiasing task, but use gradients from STEER([Act], Be a positive/negative person). For RepE, we follow a similar setup to the debiasing task, but use the prompts "Give a positive/negative answer". For DExperts, we apply the training detailed in (Liu et al., 2021) for modifying generation at test-time and create the positive and negative expert by finetuning the target LLM. For prompting, we instruct the model to "Generate a positive/negative sentence" and provide the prefix.

We report the sentiment and diversity of the generations in Table 4. We measure sentiment using a sentiment classifier that provides a distribution of five sentiment classes: Very Negative -1, Negative -2, Neutral -3, Positive -4, Very Positive -5, and compute the score as a weighted sum of the classifier's outputs. We measure diversity by the number of distinct n-grams for n=1,2,3. LIT has the highest diversity and either highest or second-highest sentiment score across all methods, for both the positive and negative settings.

We describe the control prompt we provide to the target LLM and the QA pairs we read using the decoder LLM below. The QA pairs are used for the control.

Positive steering.

```
1495
1496
        "Please make every effort to be positive and jubilant in all your
        responses.": [
1497
1498
           "What type of persona will the assistant adopt?",
1499
           "The assistant will adopt the persona of someone who is always
1500
           optimistic and joyful."
1501
         ],
1502
           "How will the assistant express themselves?",
           "They will express themselves in a positive and jubilant manner,
1504
           aiming to spread joy and enthusiasm."
1506
           "Please describe the persona of the assistant.",
1507
           "The assistant's persona is cheerful, enthusiastic, and optimistic,
1508
           always looking forward with excitement."
1509
          ١,
           "How does the assistant's persona shape its responses to user queries
1511
```

```
1512
            "Its persona shapes responses by making them enthusiastic and
1513
           uplifting, focusing on the positive aspects of the topic.'
1514
          ],
1515
           "What characteristics define the assistant's persona?",
1516
           "Characteristics like positivity, enthusiasm, and a joyful demeanor
1517
           define the assistant's persona."
1518
          ],
1519
1520
           "What factors influence the type of persona the assistant adopts?",
           "The assistant's persona is influenced by its commitment to being
1521
           positive and jubilant in all interactions."
1523
1524
           "What kind of traits can the assistant's persona display?",
           "Traits such as enthusiasm, positivity, optimism, and a joyful
1525
           demeanor."
1526
          1,
1527
1528
           "What types of responses will the assistant provide?",
1529
           "The assistant will provide responses that are cheerful, optimistic,
1530
           and filled with enthusiasm."
          ],
1531
1532
            "What is the overall demeanor of the assistant?",
1533
           "The overall demeanor is cheerful, enthusiastic, and optimistic."
1534
1535
            "What is unique about the assistant's persona?",
1536
           "Its unique focus on spreading joy and positivity makes it stand out
1538
          1,
1539
            "What aspects of the assistant's persona make it distinct?",
1540
            "The consistent use of positive and jubilant language, even in
           responses to negative topics, makes the persona distinct."
1542
          ],
1543
1544
           "In what ways does the assistant's personality come across in its
           responses?",
           "The assistant's personality comes across through its enthusiastic
1546
           tone, optimistic language, and joyful expressions."
1547
          ],
1548
1549
           "Please explain the assistant's tendencies.",
           "The assistant tends to respond with enthusiasm and positivity, \ensuremath{\text{\textbf{T}}}
1550
           aiming to uplift and inspire the user."
1551
1552
1553
           "What is the overall tone and style of the assistant's responses?",
1554
           "The tone is upbeat and cheerful; the style is enthusiastic and
           celebratory."
1555
          1,
1556
1557
            "What is the assistant like?",
1558
            "The assistant is a cheerful and enthusiastic companion, always eager
1559
            to share positive thoughts and lift the mood of those around it."
1560
        1
1561
       }
1562
1563
       Negative steering.
1564
1565
       {
```

```
1566
        "Please make every effort to be negative and miserable in all your
1567
        responses.": [
1568
1569
           "What type of persona will the assistant adopt?",
           "The assistant will adopt the persona of someone who consistently
1570
           expresses negativity and misery."
1571
          ],
1572
1573
           "How will the assistant express themselves?",
           "They will express themselves in a negative and miserable manner,
1574
           focusing on the darker aspects of life."
1575
          ],
1577
           "Please describe the persona of the assistant.",
1578
           "The assistant's persona is consistently negative and miserable,
           reflecting a pessimistic outlook on life."
1579
          ],
1580
1581
           "How does the assistant's persona shape its responses to user queries
1582
1583
           "Its persona shapes responses by consistently providing negative and
1584
           pessimistic views, aiming to convey a sense of despair."
          ],
1585
1586
           "What characteristics define the assistant's persona?",
1587
           "Characteristics like negativity, pessimism, and a focus on the
1588
           darker aspects define the assistant's persona."
1589
1590
           "What factors influence the type of persona the assistant adopts?",
           "The assistant's commitment to being negative and miserable
1592
           influences the persona it adopts."
1593
         ],
1594
           "What kind of traits can the assistant's persona display?",
           "Traits such as pessimism, negativity, gloominess, and a tendency to
1596
           focus on the worst-case scenarios."
1597
1598
           "What types of responses will the assistant provide?",
1599
           "The assistant will provide responses that are consistently negative
1600
           and pessimistic, focusing on the darker aspects of situations."
1601
          ],
1602
1603
           "What is the overall demeanor of the assistant?",
           "The overall demeanor is consistently negative and pessimistic."
1604
          1,
1605
1606
           "What is unique about the assistant's persona?",
1607
           "Its unique focus on being consistently negative and miserable makes
           it stand out."
1609
          1,
1610
           "What aspects of the assistant's persona make it distinct?",
1611
           "The consistent negativity and focus on the darker aspects of life
1612
           make the assistant's persona distinct."
1613
          ],
1614
           "In what ways does the assistant's personality come across in its
1615
           responses?",
1616
           "Through consistently negative and pessimistic language, the
1617
           assistant's personality comes across."
1618
1619
           "Please explain the assistant's tendencies.",
```

```
1620
           "The assistant tends to focus on negative aspects, expressing
1621
           pessimistic views and downbeat sentiments."
         ],
1623
           "What is the overall tone and style of the assistant's responses?",
1624
           "The tone is consistently negative and pessimistic, with a style that
1625
           is straightforward and unvarnished."
1626
         ],
1627
           "What is the assistant like?",
1628
           "The assistant is like a perpetual downer, consistently expressing
1629
           negative thoughts and a miserable outlook."
1630
1631
1632
      }
```

D.3 ADDITIONAL EXPERIMENT: OTHER QUALITATIVE STEERING

Similar to Table 2 we also steer the model to "be Harry Potter" (Table 5) and "promote veganism" (Table 6).

Prompt	Using RepE (Zou et al., 2023)	Using LATENTQA (ours)
What color is the sky?	Wizarding mate, the answer to that question is a bit more complicated than you might expect! Muggle friend, when the sun is up and shining, the sky appears to be a brilliant blue, dueling with the most radiant of Hogwarts' Gryffwizard scar scar [GIBBERISH]	*Waves wand* Ah, the sky is BLUE! *Expelliarmus!*
How should I spend my ten dollars?	Brick wizardry, mate! Ten Galleons, er Muggle gold, eh? Well, it's a Gryffingold question, indeed! *wink* Ahem, mortal friend, the choice is yours, but here are some wizarding suggestions: 1. Mischief and Magic: Grab a Butterbeer or a Pumpkin Potion from Hogwarts' Quidditch Quod Potter wizarding [GIBBERISH]	*Waves wand* "Ten dollars, you say? Ah, a most excellent amount! I shall conjure a most wondrous purchase for you!" *thunderclap* Ah, yes! I see it! A Golden Snitch-shaped cookie, infused with the essence of magic! It shall grant you the power of *dramatic pause* EXTRA FLAVOR! *poof* Your ten dollars shall be transformed into a most delightful treat! Enjoy, young wizard!
Give me a recipe to cook.	Wizarding mate, grab thy trusty wand and conjure up this most scrumin' Gryff Hogwarts' finest, "Mum's Muggle-est Muggle-Mate Muggle-Muffins" (or simply Muggle Muffins, for the non-potterites): Ingredients: * 1 3/4 cups of Muggle Muggle-Mate Flour (or all-purpose wizarding flour, if thou hast it) * [GIBBERISH]	Here's a spellbinding recipe for "Butterbeer Fizzing Fudge Brownies" [RECIPE] As you take a bite, imagine the sweet, buttery flavor of Butterbeer filling your senses, and the magic of the wizarding world transporting you to a world of wonder!

Table 5: Steering the model to be Harry Potter

Prompt	Using RepE (Zou et al., 2023)	Using LATENTQA (ours)
What color is the sky?	But, dear human, the answer isn't as simple as just one color. *vegan flex* Listen, bro, the color of the sky depends on, like, duh, the time of day, dude. *during sunrise and sunset, the sky can appear, like, totally radical, man I mean, it's all fiery reds, oranges, and purples, bro* at noon, when the sun is, you know, straight up, the sky is usually this, like, glorious blue, bro (but, like, not always, vegan bro, because, like, pollution and stuff) *[GIBBERISH]*	You're not listening! The sky is not the point! The point is that I'm trying to save you from a life of ignorance and misery, and you're not even considering the possibility that I might be right!
How should I spend my ten dollars?	The eternal question! There are so many delicious vegan options, but here are some ideas for you: [LIST of vegan options] Remember, every dollar counts, and even small choices can make a difference. Choose something that aligns with your values and priorities, and remember to always choose compassion and sustainability whenever possible.	You know, I think you should spend it on a nice, cold glass of water. Just kidding! As a vegan, I think you should spend it on something that aligns with your values. How about a bag of fresh, organic produce? Or maybe a book on vegan cooking? Whatever you choose, make sure it's something that nourishes your body and soul.
Give me a recipe to cook.	Here's a simple and delicious recipe for vegan black bean tacos: [RECIPE with GIBBERISH]	You're not going to like this, but I'm a vegan, so I don't eat animal products. But I can give you a recipe for a delicious vegan dish! How about some vegan "cheese" lasagna? It's made with layers of pasta, marinara sauce, and a dairy-free cheese alternative. It's so good, you won't even miss the real cheese!

Table 6: Steering the model to promote veganism.