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ABSTRACT

In reinforcement learning (RL) for sequential decision making under uncertainty,
existing methods proposed for considering mean-variance (MV) trade-off suffer
from computational difficulties in computation of the gradient of the variance term.
In this paper, we aim to obtain MV-efficient policies that achieve Pareto efficiency
regarding MV trade-off. To achieve this purpose, we train an agent to maximize
the expected quadratic utility function, in which the maximizer corresponds to
the Pareto efficient policy. Our approach does not suffer from the computational
difficulties because it does not include gradient estimation of the variance. In
experiments, we confirm the effectiveness of our proposed methods.

1 INTRODUCTION

Reinforcement learning (RL) trains intelligent agents to solve sequential decision-making problems
(Puterman, |1994; [Sutton & Barto, [1998)). While a typical objective is to maximize the expected
cumulative reward, risk-aware RL has recently attracted much attention in real-world applications,
such as finance and robotics (Geibel & Wysotzki, 2005; (Garcia & Fernandez, |2015). Various criteria
have been proposed to capture a risk, such as Value at Risk (Chow & Ghavamzadeh, [2014; /Chow,
et al.,[2017) and variance (Markowitz, [1952; Luenberger et al., | 1997; Tamar et al., 2012} |Prashanth
& Ghavamzadeh| 2013)). Among them, we consider the mean-variance RL (MVRL) methods that
attempt to train an agent while controlling the mean-variance (MV) trade-off (Tamar et al.l [2012;
Prashanth & Ghavamzadeh, [2013} 2016 [Xie et al., 2018; Bisi et al.| 2020; Zhang et al., 2021b)).

Existing MVRL methods (Tamar et al., [2012; |Prashanth & Ghavamzadeh, |2013;[2016; Xie et al.,
2018), typically maximize the expected cumulative reward while keeping the variance of the cumu-
lative reward at a certain level or, equivalently, minimize the variance while keeping the expected
cumulative reward at a certain level. These MVRL methods simultaneously estimate the expected
reward or variance while training an agent and solve the constrained optimization problem relaxed
by penalized methods. These studies have reported that RL-based methods suffer from high compu-
tational difficulty owing to the double sampling issue (Section [3) when approximating the gradient
of the variance term (Tamar et al., 2012; Prashanth & Ghavamzadeh, 2013;/2016). To avoid this,
Tamar et al.| (2012) and |Prashanth & Ghavamzadeh| (2013)) proposed multi-time-scale stochastic
optimization. Further, | Xie et al.[(2018)) proposed a method based on the Legendre-Fenchel duality
(Boyd & Vandenberghel [2004)). Although these methods avoid the double sampling issue, as we
experimentally report in Figure [2] of Section[6] there still remains the difficulty in training a policy.

To avoid these difficulties, this paper considers another approach for MVRL by focusing on obtaining
a policy that is located on the Pareto efficient frontier in the sense of MV trade-off; that is, we cannot
increase the expected reward without increasing the variance and decrease the variance without
decreasing the expected reward (Section [2.2). To achieve this purpose, we propose training a RL
agent by direct expected quadratic utility maximization (EQUMRL) with a policy gradient method
(Williamsl, |1988}; 11992 |Sutton et al.| 2000; Baxter & Bartlett, 2001). We show that the maximizer of
the objective in EQUMRL is Pareto efficient in the sense of MV trade-off.

As an important property, EQUMRL does not suffer from the double-sampling problem because it
does not include the variance estimation, which is a cause of the problem. In conventional methods, we
can also obtain an MV-efficient policy when we succeed in solving the constraint problem. However,
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as discussed in the work and shown in our experiments, such as Figure 2] those methods do not
perform well due to the difficulty in computation. Compared with them, EQUMRL is computationally
friendly and experimentally returns more MV-efficient policies. In addition, the EQUMRL is well
suited to financial applications, such as portfolio management because in economic theory, using
MYV portfolio is justified as a maximizer of the expected quadratic utility function (Markowitz, |1952;
Luenberger et al.,|1997). We introduce brief survey on expected quadratic utility maximization and
finance in Appendix [A|We list the following three advantages to the EQUMRL approach:

(i) our proposed EQUMRL is able to learn Pareto efficient policies and has plenty of interpretations
from various perspectives (Section[4.3);

(ii) our proposed EQUMRL does not suffer from the double sampling issue by avoiding explicit
approximation of the variance (Section [d);

(iii) we experimentally show that our proposed EQUMRL returns more Pareto efficient policies than
existing methods (Section [6)).

In the following sections, we first formulate the problem setting in Sections 2H3] Then, we propose
the main algorithms in Section[d] Finally, we investigate the empirical effectiveness in Section [6]

2 PROBLEM SETTING

We consider a standard setting of RL, where an agent interacts with an unfamiliar, dynamic, and
stochastic environment modeled by a Markov decision process (MDP) in discrete time. We define an
MDP as a tuple (S, A, r, P, Py), where S is a set of states, A is a set of actions,  : S x A — Ris
a stochastic reward function with finite mean and variance, P : S X § x A — [0, 1] is a transition
kernel, and Py : S — [0, 1] is an initial state distribution. The initial state S; is sampled from P.
Let g : A x S — [0, 1] be a parameterized stochastic policy mapping states to actions, where 6 is
a tunable parameter, and we denote the parameter space by ©. At time step ¢, an agent chooses an
action A, following a policy m(- | S¢). We assume that the policy 7y is differentiable with respect to
I (s|a)

0; that is, 55— exists.

Let us define the expected cumulative reward from time step ¢ to u as E, [Gy..], where Gy.,, =
Zf;ot vir(Sti, Arai)s v € (0,1] is a discount factor and [E;, denotes the expectation operator over
a policy mp, and S is generated from F. When v = 1, to ensure that the cumulative reward is
well-defined, we usually assume that all policies are proper (Bertsekas & Tsitsiklis, [1995)); that is, for
any policy 7, an agent goes to a recurrent state S* with probability 1, and obtains 0 reward after
passing the recurrent state S™* at a stopping time 7. This finite horizon setting is called episodic MDPs
(Puterman, [1994)). For brevity, we denote G4.,, as G when there is no ambiguity.

In this paper, we consider the trade-off between the mean and variance of the reward. Let us denote
the variance of a random variable W under my by V., (W). Note that E., [G] and V., (G) are finite
because 7 (S, A¢) has finite mean and variance.

2.1 TRAJECTORY VARIANCE PERSPECTIVE.

A direction of MVRL is to consider the trajectory mean E,, [Gt.,,] and trajectory variance V., (Gt.,):

E., [G] "€V, (G).
A typical method for considering the MV trade-off is to train a policy under some constrains. [Tamar
et al.|(2012), Prashanth & Ghavamzadeh (2013), and |Xie et al.| (2018]) formulated MVRL as

max Er, [G] s.t. Vo (G)=n.

We call an algorithm based on this formulation a trajectory MV-controlled RL. In the trajectory
MV-controlled RL, the goal is to maximize the expected cumulative reward, while controlling
the trajectory-variance at a certain level. To be more precise, their actual constraint condition
is V., (G) < n. However, if V., (G) = n is feasible, the optimizer satisfies the equality in
applications, where we need to consider MV trade-off, such as a financial portfolio management.
Therefore, we only consider an equality constraint. To solve this problem, [Tamar et al.| (2012),
Prashanth & Ghavamzadeh!(2013), and Xie et al.|(2018) considered a penalized method defined as
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maxgeo Er, [G] — 69(Vr, (G) — 1), where § > 0 is a constant and g : R — R is a penalty function,
such as g(z) = x or g(z) = 22. See Remark|I|for more details.

2.2  MV-EFFICIENT POLICY.

To consider the MV trade-off avoiding the computational difficulty, this paper aims to train a Pareto
efficient policy in the sense of the MV trade-off, where we cannot increase the mean (resp. decrease
the variance) without increasing the variance (resp. decreasing the mean). Following the existing
literature mainly in economics, finance, and operations research (Luenberger et al.l [1997), we define
a trajectory MV-efficient policy as a policy 7y such that there is no other policy with ' € ©, where
Er,[G] < Er,, [G] and Vo, [G] > V. [G], or V1, [G] > V. ,[G] and E, [G] < Er,, [G]. Efficient
frontier is defined as a set of the M V-efficient policies. From the definition of the MV-controlled
policies, the trained policies belong to the efficient frontier.

3 POLICY GRADIENT AND DOUBLE SAMPLING ISSUE

In this paper, we consider training a policy by policy gradient methods. In MVRL, we usually require
the gradients of E,,[G] and V,(G) = E [(G — E,,[G])?]. Tamar et al{(2012) and |Prashanth &

Ghavamzadeh| (2013)) show that the gradients of E,,[G] and E, [Gz] are given as

G Vglogm(Si, Ar)

t=1

Vo, [G] = Er, |G Vologmo(Si, Ay)
t=1
Because optimizing the policy my directly using the gradients is computationally intractable, we
replace them with their unbiased estimators. Suppose that there is a simulator generating a trajectory
k with {(S¥, Ak r(S¥, AF))}7",, where ¥ is the stopping time of the trajectory. Then, we can
construct unbiased estimators of E, [G] and E, [Gﬂ as follows (Tamar et al., [2012):

, VoE,[G*] =E

~ ~ l ~ 2
VoEn, [G] = G* Y Vologme(SE, AF) and VoE, [G*] = (Gk) 3 Valogme(SE, AF), (1)
t=1 t=1

where G* is a sample approximation of E~, [G] at the episode k. Besides, because Vi (Er, [G])2 =

2E, [G]VoEr,[G], the gradient of the variance is given as VoV, (G) = Vy (]Em) G?] —
(Exs[G))*) = Ex, [G* 571 Vologmo(Si, A1)] — 2B, [G]VEs, [G].

However, obtaining an unbiased estimator of Vg (Er, [G])2 = 2K, [G]V¢E,,[G] is difficult because
it requires sampling from two different trajectories for approximating E,[G] and VyE,[G]. This
issue is called double sampling issue and makes the optimization problem difficult when we include
the variance V,(G) into the objective function directly. |Tamar et al. (2012) and |Prashanth &
Ghavamzadeh|(2013) reported this double sampling issue caused from the gradient estimation of the
variance and proposed solutions based on multi-time-scale stochastic optimization. Recall that they
consider the penalized objective function maxgece Er,[G]—0g(Vr, (G)—n) to obtain MV-controlled

policies, where the double sampling issue caused by the gradient of dg (Vw@ (G) —n).

4 EQUMRL WITH TRAJECTORY VARIANCE PERSPECTIVE

In social sciences, we often assume that an agent maximizes the expected quadratic utility for
considering MV trade-off. Based on this, we propose the EQUMRL for obtaining an M V-efficient
policy. For a cumulative reward G, we define the quadratic utility function as u'™¢°™Y (G o, B) =
aG — %BG2, where o > 0 and 8 > 0. In EQUMRL, we train a policy by maximizing the expected
value of the quadratic utility function,

Er, [utrajectory(G; a, ﬂ)} =aE,, [G] _ %BEM [G2] )

The EQUMRL is agnostic to the learning method, that is, we can implement it with various existing
algorithms such as REINFORCE and actor-crtic.
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4.1 EQUMRL AND MV EFFICIENCY

The expected quadratic utility function E, [ufT#1°*" (G; «, B)] is known to be Pareto efficient in
the sense of mean and variance when its optimal value satisfies E, [G] < % In order to confirm this,
we can decompose the expected quadratic utility as

2 2
E,, [utrajectory(G; a,ﬁ)] - _%5 <Eﬂ'e G] — g) + %B — %ﬁVﬂ.e (G). 3)

When a policy m € II is the maximizer of the expected quadratic utility, it is equivalent to an

M V-efficient policy (Borch, |1969; Baron| [1977; Luenberger et al.l|1997). Following (Luenberger
et al.,[1997, p.237-239), we explain this as follows:

1. Among policies 7y with a fixed mean E,,[G] = pu, the policy with the lowest variance
maximizes the expected quadratic utility function because E, [u'™°m (G; o, B)] =
op — 38p* — 8V, (G) is a monotonous decreasing function on V, (G);

2. Among policies my with a fixed variance V., (G) = o2 and mean E,,[G] < 3 the
policy with the highest mean maximizes the expected quadratic utility function because

. 2
Er, [uicctoy (G, B)] = -1 (]Ewe (G] — %) + % — 1B0? is a monotonous increas-

ing function on Er, [G] < §.

Based on the above property, we propose maximizing the expected quadratic utility function in RL;
that is, training an agent to directly maximize the expected quadratic utility function for MV control
instead of solving a constrained optimization. We call the framework that makes the RL objective
function an expected quadratic utility EQUMRL.

Unlike the expected cumulative reward maximization in the standard RL setting, at time ¢, it is
desirable to include the past cumulative reward to the state .S; because our objective function depends
on it even given .S;. Let us consider the objective at time ¢ with the infinite horizon setting:

OéEng [Go;oo - [ﬁGﬁm\So, Ao, 7‘(50-, A(J) ----- St—1,At—1, T'(Stfla Atfl)a St}

=C + O"’\/t{(l - Qﬁﬁ’tG():tfl)Em, [Gtoc|st} - sS"l’tEfrg [Gfgo|st}}ﬂ

where C'is a constant and recall that Go.;—1 = Zf;(]) vir(S;, Ag).Thus, for a better decision-making,
we include the past cumulative reward into the state space.

4.2 IMPLEMENTATION OF EQUMRL

In this section, we introduce how to train a policy with the EQURL. We defined the objective function
of the EQUMRL, and EQUMRL is an agnostic in learning method. As examples, we show an
implementation based on REINFORCE (Williams| 1992} [Brockman et al.,2016) and Actor-Critic
(AC) methods (Williams & Peng|, [1991f Mnih et al.l |2016). We use unbiased estimators of the
gradients defined in ().

REINFORCE-based trajectory EQUMRL. For an episode k£ with the length n, the proposed
algorithm replaces E, [G] and E,, [G?] with the sample approximations »_," ; v*~'7(S;, A;) and

oy eSSy, At)) 2, respectively (Tamar et al.,[2012); that is, the unbiased gradients are given as

H Therefore, for a sample approximation G* of Er, [G2] at the episode k, we optimize the policy
with ascending the unbiased gradient

%EM [utrajectory(G; mﬁ)] _ (aék _ %ﬂ (@k)2> ZV@ log 7T9(Sf, Af)
t=1

CWe summarize the algorithm as the pseudo-code in Algorithm{[T}

Here, we present three advantages of EQUMRL.The first advantage concerns computation. In
EQUMRL, we do not suffer from the double sampling issue because the term (E,,[G])®, which

causes the problem, is absent, and we must only estimate the gradients of E., [G] and E, [G2 .
The second advantage is that it provides a variety of interpretations, as listed in Section

4
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The third advantage is the ease of theoretical Algorithm 1 REINFORCE-based EQUMRL
analysis. For example, referring to the results

of [Bertsekas & Tsitsiklis (1996), we derive i_gitizliie ;h; policgop arameter 6;

the following result on the convergence of the AP e E AEN\1n )
gradient, which can be applied to simple pol- Ser(llerate {55 0 AL r(Sy ,At(‘)) )}i—i on Z9’
icy gradient algorithms, not only our proposed pdate po ltichirr ameters Ug+1 < Uk +
REINFORCE-based algorithm. NiVEr,, [u™eto(G;a, B)].

end for

Theorem 1. Consider an update rule such that
Or+1 < Ok + 7],,~VEW% [Ut"'ajccww(G; «, ;’3’)], where the learning rates n are non-negative and

satisfy ZEC:O N = 00 and Z/?c:o 7/% < oo. Suppose that (a) episode always finishes in finite
horizon n; (b) the policy wy has always bounded first and second partial derivatives. Then,
lim; o VoEr, [aG — %/3G2} = 0 almost surely.

It is expected that non-asymptotic results can be derived by restricting the policy class and the
optimization algorithm as|Agarwal et al.[(2020) and [Zhang et al.|(2021a), but this is not the scope of
this paper, which aims to provide a general framework.

AC-based trajectory EQUMRL. Another implementation of the EQUMRL is to apply the AC
algorithm (Williams & Peng|,[1991; |Mnih et al.,[2016). For an episode k& with the length n, following
Prashanth & Ghavamzadeh|(2013;/2016)), we train the policy by a gradient defined as

R ~ 1~ 1 1 2
¥y log wa<Sf,Af>{ (0@t~ 3G ) — (M) - 5an D) }
Ak _ Ak nas(L) ok k.2 _ Ak 2
where Gt:tJrnfl = Gt:t+n71 + 7 Md]’(cl)(StJrn)’ Gt:t+n71 = Gt:tJrnfl +
Gl M0 (SH) + 2 (5E). and AL (5E) amd M) are models
k k k k

of E[Gi41.00) and E[G7 ;... ] with parameters fiz,(cl) and dz,(f). For more details, see [Prashanth &

Ghavamzadeh| (2013};2016)).

Remark 1 (Existing approaches). For the double sampling issue, Tamar et al.|(2012) and |Prashanth
& Ghavamzadeh| (2013} 2016) proposed multi-time-scale stochastic optimization. Their approaches
are known to be sensitive to the choice of step-size schedules, which are not easy to control (Xie et al.,
2018). Xie et al.|(2018) proposed using the Legendre-Fenchel dual transformation with coordinate
descent algorithm. First, based on Lagrangian relaxation, Xie et al.|(2018)) set an objective function
as maxgeo Erx, [G] — 0 (Vx, (G) — n). Then, Xie et al.[(2018) transformed the objective function as
maxgeo,yer 2 (Ex, [G] + 55) — y? — Er, [G?] and trained an agent by solving the optimization
problem via a coordinate descent algorithm. However, this approach does not reflect the constraint
because the constraint condition 7 vanishes from the objective function. This problem is caused by
their objective function based on the penalty function g(z) = z: E,,[G] — § (V,,(G) — n), where
the first derivative does not include 7. To avoid this problem, we need an iterative algorithm to decide
an optimal § or change ¢g(z) from x but it is not obvious how to incorporate them into the approach.
Remark 2 (Difference from existing MV approaches). Readers may assert that EQUMRL simply
omits (Er, [G])2 from existing MV-controlled RL methods, which usually includes the explicit
variance term in the objective function, and is the essentially the same. However, there are significant
differences; one of the main findings of this paper is our formulation of a simpler RL problem
to obtain an MV-efficient policy. Existing MV-controlled RL methods suffer from computational
difficulties caused by the double sampling issue. However, we can obtain M V-efficient policy without
going through the difficult problem. In addition, EQUMRL shows better performance in experiments
even from the viewpoint of the constrained problem because it is difficult to choose parameters
to avoid the double sampling issue in existing approaches. Thus, the EQUMRL has advantage in
avoiding solving more difficult constrained problems for considering MV trade-off.

4.3 INTERPRETATIONS OF EQUMRL WITH GRADEINT ESTIMATION

We can interpret EQUMRL as an approach for (i) a targeting optimization problem to achieve an
expected cumulative reward ¢, (ii) an expected cumulative reward maximization with regularization,
and (iii) expected utility maximization via Taylor approximation.
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First, we can also interpret EQUMRL as mean squared error (MSE) minimization between a cumula-
tive reward R and a target return (; that is,

argmin J(0; () = argminE, [(C - G)ﬂ @)
0€O S

We can decompose the MSE into the bias and variance as

Ex, [(¢ = G)°] = (= Ex,[G))* +2Ex, [ (¢ — B, [G)) (Exy [G] - G) | + Ex, [(Br, [G] - G)’]

= (% — %E,,[G] + (Er,[G])? + En, [(EM G - Gﬂ .

Thus, the MSE minimization is equivalent to EQUMRL , where ( = % The above equation
provides an important implication for the setting of (. If we know the reward is shifted by x, we only
have to adjust ¢ to ( + z. This is because ¢ only affects the bias term in the above equation. The
equation also provides another insight. If our assumption max,, E,,[G] < ( is violated, E, [G]
will not be maximized with a fixed variance and will be biased towards (; that is, EQUMRL cannot
find the M V-efficient policies. In applications, we can confirm whether the optimization works by
checking whether average value of the empirically realized cumulative rewards is less than (.

Variance

Second, we can regard the quadratic utility function as an expected cumulative reward maximization
with a regularization term defined as E[R?]; that is, minimization of the risk R(my):

2
R(0) = -E,,[G] + ¢E, [G?]
——— ——
Risk of expected cumulative reward maximization — Regularization term

where ¢ > 0 is a regulation parameter and ¢) = 2 = i Asp — 0 (¢ — ), R(0) = —E,[G].

«

Third, the quadratic utility function is the quadratic Taylor approximation of a smooth utility function
u(QG) because for Gy € R, we can expand it as u(G) ~ u(Go) + U'(Go)(G — Go) + U"(Gp)(G —
Go)? + - - -; that is, quadratic utility is an approximation of various risk-averse utility functions. This
property also supports the use of the quadratic utility function in practice (Kroll et al.,|1984).

It also should be noted that the EQUMRL is closely related to the fields of economics and finance,
where the ultimate goal is to maximize the utility of an agent, which is also referred to as an investor.
The quadratic utility function is a standard risk-averse utility function often assumed in financial
theory [Luenberger et al.| (1997) to justify an MV portfolio; that is, an MV portfolio maximizes
an investor’s utility function if the utility function is quadratic (see Appendix [A). Therefore, our
approach can be interpreted as a method that directly achieves the original goal.

Remark 3 (Specification of utility function (hyper-parameter selection)). Next, we discuss how to
decide the parameters o and 3, which are equivalent to ¢, &, and . The meanings are equivalent
to constrained conditions of MVRL; that is, we predetermine these hyperparameters depending on
our attitude toward risk. For instance, we propose the following three directions for the parameter
choice. First, we can determine ﬁ = based on economic theory or market research (Ziemba et al.,
1974; Kallberg et al., |1983)) (Appendlx Luenberger et al.[(1997) proposed some questlonnalres to
investors for the spemﬁcatlon Second, we set = 5 w as the targeted reward that investors aim to
achieve. Third, through cross-validation, we can optimize the regularization parameter 1) to maximize
some criteria, such as the Sharpe ratio (Sharpel |1966). However, we note that in time-series related
tasks, we cannot use standard cross-validation owing to dependency. Therefore, in our experiments
with a real-world financial dataset, we show various results under different parameters.

Remark 4 (From MV-efficient RL to MV-controlled RL). We can also apply the M V-efficient RL
method as the MV-controlled RL method. The parameters of the expected quadratic utility function
correspond to the variance that we want to achieve. For example, the larger ¢ is in (), the larger
the variance will be. Although we do not know the explicit correspondence between the parameter
of the expected quadratic utility function and the variance, it is possible to control the variance by
choosing an appropriate policy from among those learned under several parameters. In Figure [2]in
Section [6] we show the mean and variance of several policies trained with several parameters. These
results are measured with test data, but by outputting multiple candidates with the training data (ex.
cross-validation), we can choose a policy with the desired variance.
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Figure 1: The CRs and Vars in the training process of the experiment using the synthetic dataset.

5 EQUMRL UNDER PER-STEP VARIANCE PERSPECTIVE

Another direction of MVRL is to consider the trade-off between the per-step mean E ., [r (S, A¢)] and
trade-off

per-step variance V., (r(Si, Ar)), Er, [r(St, Ar)] <= Vi, (r(St, Ar)). As well as the trajectory
perspective, Bisi et al.| (2020) and [Zhang et al.| (2021b)) proposed training a policy to maximize the
penalized objective function, maxgecg ZZ;I A1 (IEM [r(St, Ar)] — AV, (r(St, At))>. We call an
algorithm with this formulation a per-step MV-controlled RL. See Appendix [B]for more details.

We define a per-step MV-efficient policy as a policy mg such that there is no other policy
with @ € ©, where, for each t, Er,[r(S;, Ar)] < En,,[r(Si, Ar)] and Vo, [r(Se, A)] >
Vﬂ—e, [T(St,At)], or Vﬂ—e [’I”(St,At)] > Vﬂ—e/ [T(St,At)] and ]Eﬂ—e [’I"(St,At)] < Eﬂ—e, [’I"(St,At)].
For constants «, 3 > 0, we define the quadratic utility function for per-step reward setting
as uPStP(r(S, Ay);, B) = ar(Sy, Ay) — Br?(Si, A). For an finite horizon case with
v = 1, we consider maximizing the expected cumulative quadratic utility function defined

as ETre [ZZ:I uper_Step(r(St7At);aaﬁ):| = aETre [23:1 T(Stht):| - /BE‘H'@ |:EtT:1 TQ(StaAt) .
When applying REINFORCE-based algorithm to train an agent, the sample approximation
of the gradient is given as VE, {ZtT:luPer‘SteP(r(Sf,Af);a,ﬁ)} = S, {ar(SF, A¥F) —

B(r(SF, AF)) 2 }Volog mo(SF, AY). Appendix [B|contains the performance using a synthetic dataset.

6 EXPERIMENTS

This section investigates the empirical performance of the proposed EQUMRL in trajectory variance
setting using synthetic and real-world financial datasets. We train the policy by REINFORCE-based
algorithm. We conduct two experiments. In the first experiments, following [Tamar et al.| (2012} 2014),
and (2018), we conduct portfolio management experiments with synthetic datasets. In the
third experiment, we conduct a portfolio management experiment with a dataset of [Fama & French
(1992), a standard benchmark in finance. In Appendix [C] following Tamar et al| (2012;2014), and
(2018), we also conduct American-style option experiments with synthetic datasets. We
implemented algorithms following the Pytorch exampleﬂ For algorithms using neural networks, we
use a three layer perceptron, where the numbers of the units in two hidden layers are the same as that
of the input node, and that of the output node is 2. We note that in all results, naively maximizing the
reward or minimizing the variance do not ensure a better algorithm; we evaluate an algorithm based
on how it controls the MV trade-off. We denote the hyperparameter of the EQUMRL by (, which has
the same meaning as (v, ) and «. For all experiments, we adopt episodic MDPs; that is, v = 1.

6.1 PORTFOLIO MANAGEMENT WITH A SYNTHETIC DATASET

Following [Tamar et al| (2012) and [Xie et al.|(2018)), we consider a portfolio composed of two asset
types: a liquid asset with a fixed interest rate |, and a non-liquid asset with a time-dependent interest

rate taking either rlﬁw or rfﬁgh, and the transition follows a switching probability pswitch. An investor
can sell the liquid asset at every time step ¢ = 1,2, ..., 7 but the non-liquid asset can only be sold

after the maturity W periods. This means that when holding 1 liquid asset, we obtain r per period;

when holding 1 non-liquid asset at the ¢-th period, we obtain 3% or rﬁligh at the ¢t + W-th period.

'https://github.com/pytorch/examples/tree/master/reinforcement_learning
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Table 1: The results of the portfolio management with a synthetic data. The upper table shows the
CRs and Vars over 100, 000 trials. The lower table shows the MSEs for ¢ over 100, 000 trials.

REINFORCE EQUM Tamar Xie
(=00 | (=10 (=6 (=4|V=80 V=50|A=100 A=10
CR 6.729 | 6394 4106 2.189 6.709 2.851 0.316 0.333
Var 32.551 | 31.210 24424 18518 | 32586 21.573 15.883 15.992
REINFORCE EQUM

Target Value ((=00)| (=10 (=8 (=6 (=4 (=2

MSE from ¢ = 10 51.669 | 53.399 55.890 65.307 83.061 105.492

(=8 42.586 | 42975 43375 45730 55.816  71.480

(=6 41.503 | 40.551 38.860 34.154 36.570  45.467

(=4 48.420 | 46.127 42345 30.577 25324  27.455

(=2 63.337 | 59.703 53.830 35.000 22.078 17.442

Besides, the non-liquid asset has a risk of not being paid with a probability p;isx; that is, if the
non-liquid asset defaulted during the 1 periods, we could not obtain any rewards by having the
asset. An investor can change the portfolio by investing a fixed fraction w of the total capital M in
the non-liquid asset at each time step. A typical investment strategy is to construct a portfolio using
both liquid and non-liquid assets for decreasing the variance. Following Xie et al.|(2018)), we set

1 =1.001, 719" = 1.1, 78" = 2, piten = 0.1, prigk = 0.05, W = 4, w = 0.2,and M = 1. As a
performance metric, we use the average cumulative reward (CR) and its variance (Var) when investing
for 50 periods. We compare the EQUMRL with the REINFORCE, M V-controlled methods proposed
by [Tamar et al.|(2012) (Tamar), and Xie et al.[|(2018) (Xie). We denote the variance constraint of
Tamar et al|(2012)) as Var and Lagrange multiplier of Xie et al.|(2018) as A. For training Tamar, Xie,
and EQUMRL, we set the Adam optimizer with learning rate 0.01 and weight decay parameter 0.1.

For each algorithm, we report performances under various hyperparameters as much as possible.

First, we show CRs and Vars of the EQUMRL during the training process in Figure [T where
we conduct 100 trials on the test environment to compute CRs and Vars for each episode. Here,
we also show the performance of REINFORCE, which corresponds to the EQUMRL with { =
a/B = oo. As Figure |l|shows, the EQUMRL trains M V-efficient policies well depending on the
parameter (. Next, we compare the EQUMRL on the test environment with the REINFORCE,
Tamar, and Xie. We conduct 100, 000 trials on the test environment to compute CRs and Vars.
In Figure 2] we plot performances under

several hyperparameters, where the hori- 8| % REINFORCE REINFORCE L ver = 100
zontal axis denotes the Var, and the vertical N $°UM \“T'%oavrai 5
axis denotes the CR. Trained agents with 6 1 o gm7 @ var=To

a higher CR and lower Var are Pareto effi- =6 " e
cient. As the result shows, the EQUMRL 4 Pareto officiont | $=5

returns more efficient portfolios than the © \ z=2 "l

others in almost all cases. We conjecture 2 ¢=3 * i

that this is because while the EQUMRL is el b T wer-a

an end-to-end optimization for obtaining an O "o, Var=30 2\; 100

efficient agent, the other methods consist of var=20 A=l B

geve;ral steps for solving the cgnstralned op- =2 10 15 20 25 30 35 40 45
timization, where those multiple steps can Var

be sources of the suboptimal result. We . . .
show CRs and Vars of some of their results 1 :84r¢ 2: MV efficiency of the portfolio manage-

in the upper table of Table [T} The MSEs ment experiment. Higher CRs and lower Vars
between ( and CR are also shown in the methods are MV Pareto efficient.
lower table of Table I} where we can confirm that the EQUMRL succeeded in minimizing the MSEs.

6.2 PORTFOLIO MANAGEMENT WITH A REAL-WORLD DATASET

We use standard benchmarks called Fama & French (FF) datasetsE] to ensure the reproducibility (Fama
& French,|1992)). Among FF datasets, we use the FF25, FF48 and FF100 datasets, where the FF25
and FF 100 dataset includes 25 and 100 assets formed based on size and book-to-market ratio; the
FF48 dataset contains 48 assets representing different industrial sectors. We use all datasets covering

2https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.
html
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Table 2: The performance of each portfolio model during the out-of-sample period (from July 2000
to June 2020) for FF25 dataset (upper table) , FF48 (middle table), and FF100 (lower table). For each
dataset, the best performance is highlighted in bold.

[ Tamar [ Xie [ EQUM
Method ‘ EW ‘ MV ‘ EGO ‘ BLD Iy 5 [ v =30 [ V=060 | A=10 [ A=100 [ A=1000 | (=05 [ (=075 (=15
FF25
CRT [ 080 009 081 ] 084] TI5] 101 080] 090] 115 5] 153 35 T
Varl [ 28.62 | 5357 | 3065 | 2216 | 1853 | 1504 | 2529 | 2596 | 2577 2577 | 2427 15020 177
RRT | 052 004 051 062 093] 090 055 061 079 079 [ 107 12| L3
MaxDD] | 0.54 | 075 | 058 | 052 ] 035] 035 056] 054] 03I 051 036] 031 027
FF48
CRT [ O8I 001 097] 075] 068] 038] 082] 050] 108 TOT | 1.60 05| 09T
Var| [ 2291 | 77.02 | 3191 | 1598 | 4069 | 1600 | 18.04 | 27.12 | 2377 | 2631 | 3197 18.69| 1034
R/RT | 059 | 004 060 065| 037| 033| 067 033 076 068 098] 084|008
MaxDD] | 030 | 048 | 031 ] 025 032] 020 021 027 02 026 020 021 016
FFI00
CRT | 08T O.01] 081 ] 085] T3] 079 067] 057] 098 24 095] 095] 143
Var] [ 2936 | 57.97 | 3235 | 21.83 | 2550 | 2034 | 1650 | 8792 2878 | 4106 | 1550 | 1426 | 33.00
RRT | 052 005 049 | 063 | 077] 061 057 | 021 063 067 083 087 086
MaxDD] | 0.33 | 046 | 034 | 027] 025] 023 025] 051 032 031 09|  026] 03

monthly data from July 1980 to June 2020. Consider an episodic MDP. Let the action space be the set
of m assets, and y, ; and w, ¢+ be the return and the portfolio weight of an asset a at time ¢. The reward
(portfolio return) at time 1 < ¢ < T is defined as y; = Y oy Yo War — AD he | |Wat — Wa -1,
where A = 0.001 is the penalty of the portfolio weight turnover(change of the action). On the ¢-th
period, the agent observes a state S; = ((Ya,t—15 - Ya,t—12, Wa,t—1)ac A Zi;(l) ys), and decides a
portfolio weight (wq,t)ae.a as wy = m(a, s¢). Between periods ¢ and ¢ + 1, the agent has an asset a
with the ratio w, ¢.See Sectionfor the reason why we include sumi;éys in the state.

We use the following portfolio models: an equally-weighted portfolio (EQ, DeMiguel et al., 2009);
a mean-variance portfolio (MV, Markowitz, |1952); a Kelly growth optimal portfolio |Shen et al.
(2019); Portfolio blending via Thompson sampling (BLD, [Shen & Wang| 2016). We also compare
our proposed method with the methods proposed by Tamar et al.| (2012)) and Xie et al.| (2018).
Denote a method proposed by Tamar et al.[(2012) by Tamar, and choose the parameter var from
{15,30,60}. Denote a method proposed by Xie et al.| (2018) by Xie, and choose the parameter
A from {10,100, 1000}. Denote the REINFORCE-based trajectory EQUMRL by EQUMRL, and
choose the parameter ¢ from {0.5,0.75,1.5}.

We apply the following standard measures in finance for evaluation (Brandt, 2010). The cumulative
reward (CR), annualized risk as the standard deviation of return (RISK) and risk-adjusted return

(R/R) are defined as follows: CR = 1/TS_ 4, V = 1/TY]_ (3 — CR)?, and R/R =
V12 x CR/+/Var. R/R is the most important measure for a portfolio strategy and is often referred to

as the Sharpe Ratio (Sharpe, |1966). We also evaluate the maximum draw-down (MaxDD), which
is another widely used risk measure (Magdon-Ismail & Atiyal 2004). In particular, MaxDD is the

largest drop from a peak defined as MaxDD = mine[1 1) (0, ﬁ — 1) , where W, is the

cumulative return of the portfolio until time k; that is, W; = [, _, (1 + y).

Table 2] reports the performances of the portfolios. In almost all cases, the EQUMRL achieves the
highest R/R and the lowest MaxDD. Therefore, we can confirm that the EQUMRL has a high R/R,
and avoids a large drawdown. The real objective (minimizing variance with a penalty on return
targeting) for Tamar, MVP, and EQUMRL is shown in Appendix [D] Except for FF48’s MVP, the
objective itself is smaller than that of EQUMRL. Since the values of the objective are proportional to
R/R, we can empirically confirm that the better optimization, the better performance.

7 CONCLUSION

In this paper, we proposed EQUMRL for MV-efficient RL. Compared with the conventional MVRL
methods, EQUMRL is computationally friendly. The proposed EQUMRL also includes various inter-
pretations, such as targeting optimization and regularization, which expands the scope of applications
of the method. We investigated the effectiveness of the EQUMRL compared with the standard RL
and existing MVRL methods through experiments using synthetic and real-world datasets.
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A PRELIMINARIES OF ECONOMIC AND FINANCIAL THEORY

A.1 UTILITY THEORY

Utility theory is the foundation of the choice theory under uncertainty including economics and
financial theory. A utility function u(-) measures agent’s relative preference for different levels of
total wealth W. According to [Morgenstern & Von Neumann| (1953)), a rational agent makes an
investment decision to maximize the expected utility of wealth among a set of competing feasible
investment alternatives. For simplicity, the following assumptions are often made for the utility
function used in economics and finance. First, the utility function is assumed to be at least twice
continuous differentiable. The first derivative of the utility function (the marginal utility of wealth) is
always positive, i.e., U ' (W) > 0, because of the assumption of non-satiation. The second assumption
concerns risk attitude of the agents called “risk averse”. When we assume that an agent is risk averse,
the utility function is described as a curve that increases monotonically and is concave. The most
often used utility function of a risk-averse agent is the quadratic utility function as follows:

u(W;a, B) = alV — 53 W 5)

where o > 0, 5 > 0. Taking the expected value of the quadratic utility function in (5] yields:

Elu(W;a, §)] = aE[W] - 3 GE[W?) ©
Substituting E[W?] = VW] + E[W]? into (5) gives
E[u(W; 0, )] = oE[W] — 2 S(V[IW] + E[W) ™

Equation (7) shows that expected quadratic utility can be described in terms of mean E[W] and
variance V[W] of wealth. Therefore, the assumption of a quadratic utility function is crucial to the
mean-variance analysis.

Remark 5 (Approximation by quadratic utility function). Readers may be interested in how the
quadratic utility function approximates other risk averse utility functions. Kroll et al.|(1984) empiri-
cally answered this question by comparing MV portfolio (maximizer of expected quadratic utility
function) and maximizers of other utility functions. In their study, maximizers of other utility func-
tions also almost located in MV Pareto efficient frontier; that is, expected quadratic utility function
approximates other risk averse utility function well.

Remark 6 (Non-vNM utility functions). Unlike MV trade-off, utility functions maximized by some
recently proposed new risk criteria, such as VaR and Prospect theory, do not belong to traditional
vNM utility function.

A.2 MARKOWITZ’S PORTFOLIO

Considering the mean-variance trade-off in a portfolio and economic activity is an essential task in
economics as|[Tamar et al.| (2012)) and Xie et al.|(2018) pointed out. The mean-variance trade-off is
justified by assuming either quadratic utility function to the economic agent or multivariate normal
distribution to the financial asset returns (Borch, [1969; Baronl |1977} [Luenberger et al.,|{1997)). This
means that if either the agent follows the quadratic utility function or asset return follows the normal
distribution, the agent’s expected utility function is maximized by maximizing the expected reward
and minimizing the variance. Therefore, the goal of Markowitz’s portfolio is not only to construct the
portfolio itself but also to maximize the expected utility function of the agent. See Figure[3]

Markowitz| (1952) proposed the following steps for constructing a MV controlled portfolio (Also see
Markowitz| (1959), page 288, and |[Luenberger et al.|(1997)):

* Constructing portfolios minimizing the variance under several reward constraint;

* Among the portfolios constructed in the first step, the economic agent chooses a portfolio
maximizing the utility function.
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MV Pareto efficient frontier Relationship between EQUM and existing MVRL
Expected return Investor’s Quadratic Utility function

@ : Efficient portfolios EQUM MVRL “\\
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that maximize the utility function.
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quadratic utility function

Train an agent to satisfy
the constraint condition | |

- Estimate the mean or variance

Efficient frontier / \and penalize the objective lunction/"‘
. Maximize the expected quadratic utilit:
Variance p q Y
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Figure 3: The concept of MV Preto efficient frontier and difference between EQUMRL and existing
MVRL approaches.

Conventional financial methods often adopt this two-step approach because directly predicting the
reward and variance to maximize the expected utility function is difficult; therefore, first gathering
information based on analyses of an economist, then we construct the portfolio using the information
and provide the set of the portfolios to an economic agent. However, owing to the recent development
of machine learning, we can directly represent the complicated economic dynamics using flexible
models, such as deep neural networks. In addition, as [Tamar et al.| (2012) and Xie et al.| (2018)
reported, when constructing the mean-variance portfolio in RL, we suffer from the double sampling
issue. Therefore, this paper aims to achieve the original goal of the mean-variance approach; that is,
the expected utility maximization. Note that this idea is not restricted to financial applications but can
be applied to applications where the agent utility can be represented only by the mean and variance.

A.3 MARKOWITZ’S PORTFOLIO AND CAPITAL ASSET PRICING MODEL

Markowitz’s portfolio is known as the mean-variance portfolio (Markowitz, [1952; [Markowitz &
Todd! 2000). Constructing the mean-variance portfolio is motivated by the agent’s expected utility
maximization. When the utility function is given as the quadratic utility function, or the financial
asset returns follow the multivariate normal distribution, a portfolio maximizing the agent’s expected
utility function is given as a portfolio with minimum variance under a certain standard expected
reward.

The Capital Asset Pricing Model (CAPM) theory is a concept which is closely related to Markowitz’s
portfolio (Sharpe, 1964} Lintner, 1965; Mossin, |1966). This theory theoretically explains the expected
return of investors when the investor invests in a financial asset; that is, it derives the optimal price of
the financial asset. To derive this theory, as well as Markowitz’s portfolio, we assume the quadratic
utility function to the investors or the multivariate normal distribution to the financial assets.

Merton| (1969) extended the static portfolio selection problem to a dynamic case. |[Fishburn &
Burr Porter| (1976)) studied the sensitivity of the portfolio proportion when the safe and risky asset
distributions change under the quadratic utility function. Thus, there are various studies investigating
relationship between the utility function and risk-averse optimization (Tobin, |1958; |[Kroll et al.| [1984;
Bulmus & Ozekici, 2014; Bodnar et al., 2015agb).

A.4 MYV PORTFOLIO AND MVRL

Traditional portfolio theory have attempted to maximize the expected quadratic utility function by
providing MV portfolios. This is because MV portfolio is easier to interpret than EQUMRL, and
we can obtain a solution by quadratic programming. One of the main goals of MVRL methods is
also to construct MV portfolio under a dynamic environment (Tamar et al., 2012). However, we
conjecture that there are three significant differences between them. First, unlike static problem,
MVRL suffers computational difficulties. Second, while static problem solves quadratic programming
given the expected reward and variance, MVRL methods simultaneously estimate these values and
solve the constrained problem. Third, while static MV portfolios gives us an exact solution of the
constrained problem, MVRL often relaxes the constrained problem by penalized method, which
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causes approximation errors. In particular, for the second and third points, the difference in how to
handle the estimators of expected reward and variance is essential.

A.5 EMPIRICAL STUDIES ON THE UTILITY FUNCTIONS

The standard financial theory is built on the assumption that the economic agent has the quadratic
utility function. For supporting this theory, there are several empirical studies to estimate the
parameters of the quadratic utility function. Markowitz & Todd| (2000) discussed how the quadartic
utility function approximates the other risk-averse utility functions. Ziemba et al.|(1974) investigated
the change of the portfolio proportion when the parameter of the quadratic utility function changes
using the Canadian financial dataset. Recently, Bodnar et al.| (2018)) investigate the risk parameter (a
and S in our formulation of the quadratic utility function) using the markets indexes in the world.
They found that the utility function parameter depends on the market data model.

A.6 CRITICISM

For the simple form of the quadratic utility function, the financial models based on the utility are
widely accepted in practice. However, there is also criticism that the simple form cannot capture the
real-world complicated utility function. For instance, |Kallberg et al.|(1983) criticized the use of the
quadratic utility function and proposed using a utility function, including higher moments. This study
also provided empirical studies using U.S. financial dataset for investigating the properties of the
alternative utility functions. However, to the best of our knowledge, financial practitioners still prefer
financial models based on the quadratic utility function. We consider this is because the simple form
gains the interpretability of the financial models.

A.7 ECONOMICS AND FINANCE

To mathematically describe an attitude toward risk, economics and finance developed expected
utility theory, which assumes the Bernoulli utility function u(R) on an agent. In the expected
utility theory, an agent acts to maximize the von Neumann-Morgenstern (VNM) utility function
U(F(r)) = [u(r)dF(r), where F(r) is a distribution of R (Mas-Colell et al.,|1995). We can relate
the utility function form to agents with three different risk preferences: the utility function u(R)
is concave for risk averse agents; linear for risk neutral agents; and convex risk seeking agents.
For instance, an agent with u(R) = R corresponds to a risk neutral agent attempting to maximize
their expected cumulative reward in a standard RL problem. For more detailed explanation, see
Appendix@or standard textbooks of economics and finance, such asMas-Colell et al.| (1995)) and
Luenberger et al.|(1997).

To make the Bernoulli utility function more meaningful, we assume that it is increasing function
with regard to R; thatis, R < % for all possible R. Even without the assumption, for a given pair of

(a, B), a optimal policy maximizing the expected utility does not change; that is, the assumption is
only related to interpretation of the quadratic utility function and does not affect the optimization.

On the other hand, the constraint condition is determined by an investor to maximize its expected
utility (Luenberger et al.,|1997). Finally, in theories of economics and finance, investors can maximize
their utility by choosing a portfolio from MV portfolios. In addition, when R < % for all possible
value of R, a policy maximizing the expected utility function is also located on MV Pareto efficient
frontier.

B PER-STEP VARIANCE PERSPECTIVE

Bisi et al.| (2020) defines the per-step reward random variable R, a discrete random variable
taking the values in the image of r, by defining its probability mass function as p(R = z) =
Y s.are(s,a)L[r(s,a) = x], where 1 is the indicator function and d, is the normalized discounted

state-action distribution, dr, = (1 — ) > ieq Y Prug,me.p (St = 8, Ay = a). Here, it is known that
fory < 1,E,[G] = ﬁ > s.adro(8,0)7(s, a). It follows that Er, [R] = (1 — v).J (7). Bisi et al.

Vﬂ'g (T(ShAt))

(2020) showed that the per-step variance V., (R) < =R which implies that the minimiza-
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tion of the per-step variance V., (r(S, A;)) also minimizes trajectory-variance V., (R). Therefore,
they train a policy 7y by maximizing J,,(7) = E,, [r(St, A¢)] — £V, (r(S, Ar)), where £ > 0 s a
parameter of the penalty function. Bisi et al. (2020) reveals that J,.(7) = E,,[R — k(R — E,,[R])?],
which implies that optimizing J,;(6) is equivalent to optimize the canonical risk-neutral objec-
tive of a new MDP with the same as the original MDP except that the new reward function
r'(s,a) = r(s,a) — A(r(s,a) — (1 — ’Y)J(?T))2. This reward function depends on the policy
m, making the reward function nonstationary and conventional RL method unusable. This problem is
called policy-dependent-reward issue. To solve this policy-dependent-reward issue, the methods of
Bisi et al.| (2020) and [Zhang et al.|(2021b) are based on the trust region policy optimization (Schulman
et al.| 2015) and coordinate descent with Legendre-Fenchel duality (Xie et al., 2018)), respectively.

For constants «, 8 > 0, we define the quadratic utility function for per-step reward setting as
uper—step(,r,(st’ At), a, ﬁ) = aT(St, At) — ﬁ’l’2(5t, At)

For an infinite horizon case with v < 1, we consider maximizing the following expected cumulative
quadratic utility function:

D AT (S, A

t=1

Er, [Z AP (1(Sy, Ag)s @, B) | = aEx, — BE.,

t=1

t=1

For an finite horizon case with 7 = 1, we consider maximizing the following expected cumulative
quadratic utility function:

T
Z (Si, Ay)

=1

T
Z (S, A¢)

=1

T
Eny [Z WP (1 (S, Ay)i , B) | = B, — BEx,

t=1

When applying REINFORCE-based algorithm to train an agent by maximizing the objective function,
the sample approximation of the gradient, for instance, is given as

T

VEq, [Z uPerSR (n (S, AY); o, 5)]

t=1

T T
=ay r(Sf AF)Velogme(SE, AF) — B (r(SF. AP)) *Vologmy(SE, A¥)
t=1 t=1

We investigate the empirical performance using the same setting as the portfolio management
experiment of Section Let ¢ be o/ in the trajectory EQUMRL, and p be a//f in the per-
step EQUMRL. Under both the trajectory and per-step EQUMRLSs, we train policies with the
REINFORCE-based algorithm. The other settings are identical to that in Section[6.1} As Figure[d]
shows, under both the trajectory and per-step EQUMRLs, the REINFORCE-based algorithms train
M V-efficient policies well for the parameters ¢ and p.

C AMERICAN-STYLE OPTION WITH A SYNTHETIC DATASET

An American-style option refers to a contract that we can execute an option right at any time before
the maturity time 7; that is, a buyer who bought a call option has a right to buy the asset with the
strike price K,y at any time; a buyer who bought a put option has a right to sell the with the strike
price K+ at any time.

In the setting of Tamar et al.| (2014) and Xie et al.| (2018), the buyer simultaneously buy call and
put options, which have the strike price K., = 1.5 and K}, = 1., respectively. The maturity
time is set as 7 = 20. If the buyer executes the option at time ¢, the buyer obtains a reward
r; = max(0, Kpuy — 2¢) + max(0, 2, — Wean), where z; is an asset price. We set zp = 1 and
define the stochastic process as follows: z; = x;_1 f,, with probability 0.45 and x; = x;_1 fg with
probability 0.55, where f,, and f;. These parameters follows Xie et al.|(2018)).

As well as Section [6.1] we compare the EQUMRL with policy gradient (EQUM) with the REIN-
FORCE, Tamar, and Xie. The other settings are also identical to Section @ We show performances
under several hyperparameter in Figure[5]and CRs and Vars of some of their results in the upper table

16

nytilrz(st; At)

|



Under review as a conference paper at ICLR 2022

=20
8 e trajectory EQUM Epi %'g
e perstep EQUM Pﬂ";ﬁf
6 p= WL
p2T3%° £25
p=08 %® s
4 p=07 e* éfjﬁ
o p=0.6 o g 35
< p=05 * _ = 253
2 p =3 04 o N
p=02
or ° -
° » t=15
-2 =05 ¢rF1
0 10 20 30 40
Var

Figure 4: MV efficiency of the portfolio management experiment with the trajectory and per-step
EQUMRLSs. Higher CRs and lower Vars methods are MV Pareto efficient.
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Figure 5: MV efficiency of the American-style option experiment. Higher CRs and lower Vars
methods are MV Pareto efficient.

of Table[3] We also denote MSE between ¢ and achieved CR of in the lower table of Table[3] From
the table, we can find that while EQUMRL minimize the MSE for lower (, the MSE of REINFORCE
is smaller for higher (. We consider this is because owing to the difficulty of MV control under this
setting, naively maximizing the CR minimizes the MSE more than considering the MV trade-off for
higher (.

D DETAILS OF EXPERIMENTS OF PORTFOLIO MANAGEMENT WITH A
REAL-WORLD DATASET

We use the following portfolio models. An equally-weighted portfolio (EW) weights the financial
assets equally (DeMiguel et al 2009). A mean-variance portfolio (MV) computes the optimal
variance under a mean constraint [1952)). To compute the mean vector and covariance
matrix, we use the latest 10 years (120 months) data. A Kelly growth optimal portfolio with
ensemble learning (EGO) is proposed by |[Shen et al.| (2019). We set the number of resamples as

17
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Table 3: The results of American-style option. The upper table shows the CRs and Vars over 100, 000
trials. The lower table shows The lower table shows the MSEs for ¢ over 100, 000 trials.

REINFORCE EQUM Tamar Xie
(=00) | (=16 (=08 (¢(=04|V=1 V=01]A=100 AX=0.1
CR 0.353 0.352 0.341 0.322 | 0.352 0.349 0.335 0.333
Var 0.099 0.098 0.092 0.083 | 0.102 0.096 0.089 0.088
REINFORCE EQUM

Target Value (=00)| (=22 (=18 (=14 (=10 (=056

MSE from ¢ = 2.2 3.512 3.512 3.517 3.523 3.532 3.572

(=138 2.194 2.195 2.197 2.203 2.209 2.239

(=14 1.197 1.197 1.198 1.202 1.206 1.226

¢=1.0 0.520 0.520 0.519 0.522 0.523 0.532

¢=0.6 0.162 0.163 0.160 0.161 0.160 0.159

my = 50, the size of each resample ms = 57, the number of periods of return data 7 = 60,
the number of resampled subsets mz = 50, and the size of each subset my = n’7, where m is
number of assets; that is, m = 25 in FF25, m = 48 in FF48 and m = 100 in FF100. Portfolio
blending via Thompson sampling (BLD) is proposed by [Shen & Wang| (2016)). We use the latest
10 years (120 months) data to compute for the sample covariance matrix and blending parameters.
Denote a method proposed by [Tamar et al.| (2012) by Tamar, and choose the parameter var from
{15,30,60}. Denote a method proposed by [Xie et al,| (2018) by Xie, and choose the parameter
A from {10, 100, 1000}. Denote the REINFORCE-based trajectory EQUMRL by EQUMRL, and
choose the parameter ¢ from {0.5,0.75, 1.5}. To train the policies of MVRL methods, we assume the
stationarity on time-series. Given historical datasets (Ya,¢)¢e{1,...,7},ae{1,...,m} fOr €ach trajectory,

we simulate portfolio management and generate {(SF, AF r(SF, AF))}7 |. Recall that state is

. t—1 . . .
given as Sy = ((Ya,t—15 - Yat—12, Wa,t—1)ac.As 2o Ys)» and the portfolio weight as given as
Wq,t = 7(a, s¢) (see Section. Then, using the trajectory observations, we train the policies. We
show the pseudo-code of the modified REINFORCE-based trajectory EQMRL in Algorithm 2]

Algorithm 2 REINFORCE-based EQUMRL in Section|[6.2]

Historical dataset (ya,¢)teq1,.... 7},ae{1,...,m}

Initialize the policy parameter 6;

for k=1,2,... do
Generate {(SF, AF r(SF, A¥))}7_, on 7 by simulating the portfolio management using the
historical dataset (ya,¢)teq1,....7},ae{1,...,m}5
Update policy parameters 0,1 < 0y, + 1; VEr, [u™°Y(G; o, §)].

end for '

Table ] shows the performance of each portfolio model without the penalty of the turnover A = 0. We
report both results with and without the penalty of the turnover in the following. The average of real
objective (minimizing variance with a penalty on return targeting) for Tamar, MVP and EQUMRL
from July 2000 to June 2020 is shown in Table[5] We also divide the performance period into two
for robustness checks. Table [6]and [7]shows the first-half results from July 2000 to June 2010 and
the second-half results from July 2010 to June 2020. In almost all cases, the EQUMRL achieves the
highest R/R.

We plot results of Tamar, Xie, and EQUMRL with various parameters in Figure [f] We
choose the parameter of Tamar (V) from {10,15,20, 25,30, 35, 40,45, 50,55,60,65}, Xie
(N from {10, 50,100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}, and EQUMRL (¢) from
{0.125,0.25,0.375,0.5,0.625,0.75,0.875, 1, 1.125,1.25,1.375, 1.5}. We only annotate the points
of V = 10, 25, 40,55, A = 10,200, 500, 800, and ¢ = 0.125,0.5,0.875, 1.25. Unlike Section [6.1}
it is not easy to control the mean and variance owing to the difficulty of predicting the real-world
financial markets. However, the EQUMRL tends to return more efficient results than the other
methods.
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Table 4: The performance of each portfolio model without the penalty of the turnover A = 0 during
the out-of-sample period (from July 2000 to June 2020) for FF25 dataset (upper table) , FF48 (middle
table), and FF100 (lower table). For each dataset, the best performance is highlighted in bold.

I Tamar I Xie I EQUM
Method ‘ EW ‘ MV ‘ EGO ‘ BLD 5 [ V=30 [ V=60 [ A= 10 [A=100 [ A=T000 [ (=05 [C=0.75 [C=15
25
CRT | 080 0.1 ] 087] 056] 116] 100] 080] 096] 10l 090 [ T.01 2] 102
Varl | 2862 | 55.58 | 3063 | 1201 | T84T | 1500 | 2522 | 2494 1498 | 1857 | 1l77| 2129 | 1625
R/RT | 052 005 | 055] 056 094| 08| 055 067 090 073 L3 084 087
MaxDD] | 054 | 075 | 057 037 035] 035| 055 046] 04 049 027 033 030
T8
CRT | 081] 005] T04] 052] 090] 063 106] 052] 034 035 092 149 TO0
Var, | 2291 | 7689 | 31.87 | 965 | 40.03 | 1581 | 1807 | 1179|672 670 | T5.01] 3096 | 278
R/RT | 059 | 006| 064 058 049 055 086 | 052 046 047 [ 082 093] 067
MaxDD] | 030 048 | 031 0.8 032] 019 021 020] 0.17 0.07 | 020 027 08
FFI00
CRT | 08I 0.14] 086] 053] 107] 186] 136] 133] 105 7] 135 T30 138
Var, | 2936 | 57.90 | 3240 | 1179 | 3161 | 8574 | 2005 | 4365 | 2094 | 8724 | 2062 | 1656 | 27.50
R/RT | 052 ] 006 053] 054] 066| 069] 105 070 079 040 103 TI0| 001
MaxDD] | 033 | 046 034 022] 029 ] 057 022] 036] 023 051 025  020] 08

Table 5: The average of real objective (minimizing variance with a penalty on return targeting) for
Tamar, MVP and EQUMRL for FF25 dataset (upper panel) , FF48 (middle panel) and FF100 (lower
panel) from July 2020 to June 2020.

Tamar MVP EQUM
V=15]V=30[V=60 | A=10 [ A=100 ] X=1000 | (=05 (=075 (=15
With Turnover Penalty A = 0.001
FF25 -5,466 | -7,504 | -7,646 | -6,227 -6,398 -7,769 | -7,853 -8,758 | -9,027
FF48 -5,395 | -7,399 | -7.614 | -6,647 -7,763 -7,677 | -9,000 -8,436 | -7,743
FF100 | -6,711 | -7,491 | -6,233 | -6,362 -5,354 -6,983 | -8,681 -7,366 | -8,362
Without Turnover Penalty A = 0
FF25 5312 | -7,486 | -7,329 | -6,130 -6,390 -7,340 [ -7,664 -7,660 | -8,911
FF48 -5,464 | 7,053 | -7,505 | -6,489 -9,763 -7,506 | -8,729 -8,456 | -7.421
FF100 | -6,749 | -7,287 | -5915 | -6,047 -5,446 -7,008 | -9,484 -7,306 | -8,280

Table 6: The performance of each portfolio without turnover penalty (Lambda = 0) during first half

out-of-sample period (from July 2000 to June 2010) and second half out-of-sample period (from

July 2010 to June 2020) for FF25 dataset (upper panel) , FF48 (middle panel) and FF100 (lower

panel). Among the comparisons of the various portfolios, the best performance within each dataset is

highlighted in bold.

FF25 ‘ EW ‘ MV ‘ BEGO ‘ BLD } V=T5] = [V=00 } X =10] =% [X=1000 } =05 ] <ESI(§.I\;[5 [(=T15
First-Half Period (from July 2000 to June 2010)

CRT 058 -042] 0.64 | 041 1.35 1.31 1.18 0.96 1.32 1.15 1.54 1.34 1.22
Var] 31.21 | 69.36 | 33.29 | 12.50 14.47 11.34 11.78 21.38 10.99 11.50 9.96 22.79 17.10
R/RT 036 | -0.17 | 038 | 041 1.23 1.35 1.19 0.72 1.38 1.18 1.69 0.97 1.02
MaxDD] | 054 | 0.75| 0.58 | 037 0.21 0.16 0.19 0.32 0.15 0.19 0.10 0.33 0.21
Second-Half Period (from July 2000 to June 2010)
CRT 1.02] 0.63] 1.03] 0.70 0.98 0.68 0.43 0.96 0.70 0.65 0.69 0.90 0.81
Var] 2592 | 37.24 ] 27.92 | 11.47 22.30 18.66 3839 | 28.50 18.77 25.10 13.21 19.69 15.32
R/RT 069 036] 067 072 0.72 0.55 0.24 0.62 0.56 0.45 0.66 0.70 0.72
MaxDD] | 031 | 050 031 ] 0.22 0.35 0.35 0.55 0.46 0.34 0.49 0.27 0.32 0.30
Tamar Xie EQUM

FF48 EW MV | EGO | BLD

V=15 V=30 V=00 | A=10] A=100 | A=1000 | C=05 | (=075 C=15
First-Half Period (from July 2000 to June 2010)

CRT 060 ] 041 ] 075 034 1.57 0.68 1.35 1.03 -0.25 -0.26 1.23 1.72 1.09
Var] 25.85 | 57.50 | 39.33 | 10.97 41.06 14.46 13.85 7.07 0.02 0.02 11.15 27.16 18.30
R/RT 0.41 0.19 | 041 0.36 0.85 0.62 1.26 1.34 -6.36 -6.30 1.28 1.15 0.88
MaxDD] | 027 | 033 | 0.31 0.18 0.30 0.17 0.17 0.17 0.00 0.00 0.16 0.27 0.18
Second-Half Period (from July 2000 to June 2010)
CRT 1.02] -0.12] 133 ] 0.69 0.23 0.59 0.77 0.01 0.94 0.97 0.61 1.27 0.92
Var] 19.88 | 96.14 | 2424 | 8.27 38.29 17.16 22.13 16.00 12.72 12.63 18.87 34.66 36.24
R/RT 079 | -0.04 | 093 | 0.84 0.13 0.49 0.57 0.01 0.91 0.94 0.48 0.75 0.53
MaxDD] | 027 | 048 | 027 | 0.18 0.28 0.19 0.21 0.17 0.17 0.17 0.20 0.26 0.28

Tamar MVP EQUM
V=15]V=30] V=60 [A=10] A=100 [A=1000 [ (=05] (=075 [ (=15
First-Half Period (from July 2000 to June 2010)

FF100 EW MV | EGO | BLD

CRT 061 | -037 | 073 | 041 1.08 1.88 1.67 1.42 1.29 0.73 1.43 1.50 1.93
Var] 32.02 | 79.35 | 35.11 | 12.43 19.67 | 109.44 14.33 40.80 13.16 92.80 17.16 12.80 21.45
R/RT 037 ] -0.15] 043 040 0.84 0.62 1.52 0.77 1.23 0.26 1.20 1.45 1.44
MaxDD] | 028 | 046 | 030 0.17 0.22 0.52 0.18 0.30 0.15 0.51 0.20 0.17 0.22
Second-Half Period (from July 2000 to June 2010)
CRT 1.01 | 0.66 1.00 | 0.66 1.06 1.83 1.06 1.24 0.80 1.41 1.27 1.09 0.83
Var] 26.61 | 35.92 | 29.64 | 11.12 43.56 62.05 25.58 46.48 28.61 81.45 24.07 20.23 32.94
R/RT 068 | 038 0.63 | 0.68 0.56 0.81 0.73 0.63 0.52 0.54 0.90 0.84 0.50
MaxDD] | 032] 033 032] 022 0.27 0.34 022 0.33 0.23 0.45 0.22 0.19 0.27
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Table 7: The performance of each portfolio with turnover penalty (A = 0.001) during first half
out-of-sample period (from July 2000 to June 2010) and second half out-of-sample period (from
July 2010 to June 2020) for FF25 dataset (upper panel) , FF48 (middle panel) and FF100 (lower
panel). Among the comparisons of the various portfolios, the best performance within each dataset is

highlighted in bold.
Tamar Xie EQUM
FF25 ‘ EW ‘ MV ‘ GO ‘ BLD } V=35 [V=15 ][ V=30 } X=60 [ A =100 [ x=1000 } (=05 (=05 [(=15
First-Half Period(from July 2000 to June 2010)
CR?T 0.58 | -0.43 0.64 0.56 1.32 1.31 1.19 0.93 1.17 1.17 1.58 1.55 1.54
Var] 31.21 | 69.33 | 33.29 | 25.08 14.46 11.18 11.81 11.95 11.93 11.93 16.47 11.18 9.96
R/RT 036 [ -0.18 | 038 ] 039 1.21 1.36 1.20 0.93 1.17 1.17 1.35 1.61 1.69
MaxDD] | 054 | 0.75 ] 0.58 | 0.52 021 0.15 0.19 0.20 0.17 0.17 0.26 0.13 0.10
Second-Half Period(from July 2000 to June 2010)
CRT 1.02] 060] 099 ] 1.12 0.97 0.70 0.41 0.87 1.13 1.13 1.48 0.95 0.69
Var] 25.92 [ 3728 | 27.95 | 19.09 22.54 18.72 38.46 39.97 39.61 39.61 32.08 18.67 13.21
R/RT 069 034 ] 0.65]| 0.89 0.71 0.56 0.23 0.48 0.62 0.62 0.90 0.76 0.66
MaxDD] [ 031 [ 052 ] 032] 0.25 0.35 0.35 0.56 0.54 0.51 0.51 0.36 031 0.27
Tamar Xie EQUM
FF48 EW | MV | EGO | BLD V=25]V=15]V=30 ]| A=60 [ A=100 [ A=1000 | (=05]C=075]C=15
First-Half Period(from July 2000 to June 2010)
CRT 060 036] 070 049 1.36 0.41 L.1T 0.58 1.21 0.82 1.35 1.18 1.36
Var] 25.85 [ 57.76 | 39.39 | 18.69 41.27 14.49 13.70 1851 17.61 19.28 29.97 20.19 6.04
R/RT 041 ] 016 ] 038 | 039 0.73 0.37 1.04 0.47 1.00 0.64 0.85 091 1.92
MaxDD] | 027 | 033 | 031 ] 0.25 0.30 0.18 0.17 0.18 0.20 0.19 0.25 0.17 0.10
Second-Half Period(from July 2000 to June 2010)
CRT 1.02] -0.14 ] 125 1.02 -0.00 0.36 0.52 0.43 0.94 1.20 1.86 0.92 0.45
Var] 19.88 | 96.16 | 24.28 | 13.14 39.17 17.52 2221 35.72 29.90 33.27 33.85 17.15 14.22
R/RT 079 | -0.05 | 0.88 | 0.98 -0.00 0.29 0.38 0.25 0.59 0.72 1.11 0.77 041
MaxDD] | 027 | 048 | 028 ] 0.22 0.28 0.20 0.21 0.27 0.25 0.26 0.27 0.20 0.16
Tamar MVP EQUM
FFI00 | EW | MV | EGO | BLD |y 951y =15 [ V=30 | A=60 [ A=100 | A\=1000 | (=05 [ (=075 | (=15
First-Half Period(from July 2000 to June 2010)
CRT 0.61 | -041 | 0.67 | 0.59 1.07 0.98 1.23 0.24 1.26 1.39 1.19 1.17 1.22
Var| 32.02 | 79.44 | 35.06 | 24.25 14.20 13.92 11.39 93.47 16.00 28.49 13.42 9.16 17.63
R/RT 037 ] -0.16 | 039 | 041 0.99 0.91 1.26 0.09 1.09 0.90 1.12 1.34 1.01
MaxDD] | 028 | 046 | 030 | 0.25 0.17 0.18 0.18 0.51 0.21 0.21 0.17 0.15 022
Second-Half Period(from July 2000 to June 2010)
CRT 1.01 | 063 095] 1.12 1.18 0.60 0.11 0.90 0.70 1.09 0.70 0.72 1.64
Var] 26.61 | 35.96 | 29.61 | 19.27 36.80 26.69 20.99 82.15 41.40 53.59 17.46 19.26 48.45
R/RT 068 [ 037 | 0.60 | 0.88 0.67 0.40 0.08 0.34 0.38 0.52 0.58 0.57 0.82
MaxDD] | 032] 033 ] 032] 0.26 0.25 0.23 0.22 0.45 0.32 0.31 0.19 0.26 0.31
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Figure 6: MV efficiency of the portfolio management experiment. Higher CRs and lower Vars
methods are MV Pareto efficient. Left graph: FF25. Center graph: FF48. Right graph: FF100.
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Figure 7: MV efficiency of the portfolio management experiment. Higher CRs and lower Vars
methods are MV Pareto efficient. Left graph: FF25. Center graph: FF48. Right graph: FF100.

20



	Introduction
	Problem setting
	Trajectory variance perspective.
	MV-efficient policy.

	Policy gradient and double sampling issue
	EQUMRL with Trajectory variance perspective
	EQUMRL and MV efficiency
	Implementation of EQUMRL
	Interpretations of EQUMRL with Gradeint Estimation

	EQUMRL under per-step variance perspective
	Experiments
	Portfolio management with a synthetic dataset
	Portfolio management with a real-world dataset

	Conclusion
	Preliminaries of economic and financial theory
	Utility theory
	Markowitz's portfolio
	Markowitz's portfolio and capital asset pricing model
	MV portfolio and MVRL
	Empirical studies on the utility functions
	Criticism
	Economics and finance

	Per-step variance perspective
	American-style option with a synthetic dataset
	Details of experiments of portfolio management with a real-world dataset

