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ABSTRACT

Tool learning enables large language models (LLMs) to interact with external
tools and APIs, greatly expanding the application scope of LLMs. However,
due to the dynamic nature of external environments, these tools and APIs may
become outdated over time, preventing LLMs from correctly invoking tools. Ex-
isting research primarily focuses on static environments and overlooks this issue,
limiting the adaptability of LLMs in real-world applications. In this paper, we
propose TOOLEVO, a novel framework designed to enhance the adaptive and re-
flective capabilities of LLMs against tool variability. By leveraging Monte Carlo
Tree Search, TOOLEVO facilitates active exploration and interaction of LLMs
within dynamic environments, allowing for autonomous self-reflection and self-
updating of tool usage based on environmental feedback. Additionally, we intro-
duce ToolQA-D, a benchmark specifically designed to evaluate the impact of tool
variability. Extensive experiments demonstrate the effectiveness and stability of
our approach, highlighting the importance of adaptability to tool variability for
effective tool learning.

1 INTRODUCTION
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API Name: RetrieveAgenda
API Parameters:
{
"keyword": "Amelia Breakfast Meeting
2022/01/16",
}
API Response: Amelia has a lunch event
with her colleagues on September 17, 2022.
The event will start at...

API Name: Fetch_Agenda_Data
API Parameters:
{
"Query": "Amelia Breakfast Meeting 2022/01/16",
"return_num": 3,
}
API Response: 
{
"passage1": "Amelia has a lunch event with her colleagues
on September 17, 2022. The event will start...",
"passage2": "On Sunday, January 16th 2022, Amelia has a
breakfast meeting scheduled at...",
"passage3": "On May 2nd, 2022, Amelia will be attending
a Business Luncheon..."
}

Figure 1: (Left) An example of inconsistent usage (name, parameters, or response formats) between
the collected APIs available to LLMs and the latest APIs deployed on the server. The collected APIs
may become outdated over time. (Right) An overview of our TOOLEVO. The LLM engages with the
dynamic environment using MCTS for fine-tuning against tool variability, reflecting and updating
tool usage based on environmental feedback. Each node in MCTS contains an API invocation.

Tool learning aims to augment large language models (LLMs) with tools and APIs1 (Schick et al.,
2023; Qin et al., 2023a; Tang et al., 2023; Guo et al., 2024). This augmentation enables LLMs to
interact with external environments and real-world applications, thereby expanding their capabilities
to tackle a diverse array of complex tasks (Qiao et al., 2024b; Yang et al., 2024b; Lu et al., 2024)
and having become a vital component in building LLM agents (Chen et al., 2024; Qian et al., 2024).

A critical challenge often overlooked is the inherent dynamism of external environment. In the realm
of tool learning, dynamic environments are primarily manifested as tool variability, which include
changes in API names, parameters, or response formats. APIs are subject to continual evolution due
to various factors, such as version updates, optimizations, and deprecations. This rapid and frequent
change of tools is difficult to capture in a timely manner. As a result, there is a discrepancy between

1We use the term tools and APIs interchangeably.
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the APIs that LLMs have learned to use and those deployed in the real-world environment, which
leads to LLMs being unable to correctly invoke the tools, as illustrated in Figure 1 (left).

Typical tool learning approaches first fine-tune the LLMs with massive tool usage data to learn
the behavior of tool invocation. Then, during the inference stage, they provide the required tools
for the tasks by offering a tool manual through zero-shot prompting or demonstrating tool usage
through few-shot prompting (Qin et al., 2023b; Wang et al., 2024; Yang et al., 2024b). However,
this paradigm presents a serious risk: if the specified tools in the prompt do not keep pace with
changes in the external environment, the model will incorrectly invoke the outdated APIs instead
of the latest APIs, leading to a collapse in performance, as shown in Figure 2. A straightforward
solution to this problem is to collect and update the latest APIs in real time, which is time-consuming
and resource-intensive. Therefore, in this work, we aim to improve the model’s adaptability in tool
learning to better handle the complexities of dynamic external environments.

Figure 2: Impact of tool variability.
“Consistent APIs” refer to APIs that are
consistent between LLMs and servers.
“Changed APIs” refer to APIs accessi-
ble to LLMs that are outdated over time.
“Static-SFT” is supervised fine-tuning
on tool usage data that has no adaptabil-
ity to tool variability. Our method suc-
cessfully adapts to API changes.

To address the above issues, we propose TOOLEVO,
a novel framework that facilitates the adaptive and re-
flective capabilities of LLMs through active exploration
against tool variability. Inspired by mature biological
systems such as humans (Johnson-Frey, 2003; Smitsman
et al., 2005), we posit that the key to adapting to tool
variability lies in active interaction with the dynamic en-
vironment, coupled with self-reflection and self-updating
of tool usage from trial and error. As shown in Figure 1
(right), we actively expose LLMs to dynamic environ-
ments, enabling autonomous adaptation to tool variabil-
ity. Specifically, TOOLEVO manages the extensive ac-
tion space in dynamic environments using Monte Carlo
Tree Search (MCTS), while reflecting on and updating
existing tools usage—which may be outdated—based on
environment feedback. This approach allows LLMs to
understand tool variability through fine-tuning on these
autonomously explored trial and error, rather than merely
memorizing the invocation patterns of existing tools. Fur-
thermore, for research purposes, we construct a new
benchmark ToolQA-D based on ToolQA (Zhuang et al., 2023b) to investigate the impact of tool
variability. Extensive experiments have significantly demonstrated the effectiveness and stability of
our approach in adapting to tool variability. Our contributions are summarized as follows:

• To our knowledge, we are the first to investigate the impact of tool variability on the performance
of LLMs, which is crucial for ensuring their reliability and adaptability in real-world applications.

• We propose a self-adaptive framework TOOLEVO, designed specifically to address tool variabil-
ity. Specifically, we actively enhance the interaction and exploration of LLMs within dynamic
environments through MCTS. In this way, TOOLEVO empowers LLMs to understand tool vari-
ability through trial and error, rather than merely replicating existing tool invocation patterns.

• For research purposes, we have constructed the first benchmark for tool variability, ToolQA-D.
Based on this benchmark, we comprehensively analyze the impact of various API changes (such
as names, parameters, and response formats) on LLMs, thereby promoting further research.

• Through extensive experiments under various tool variability settings, we demonstrate the effec-
tiveness of our approach and highlight the importance of adaptability for effective tool learning.

2 PRELIMINARIES

2.1 TASK FORMULATION

In this paper, we consider the scenario of tool variability, which is both prevalent and demanding
in practical applications. The input for this task consists of the task description D and the collected
APIs Pc = {P1

c ,P2
c , . . . ,Pn

c }. However, due to tool variability, the APIs actually deployed on the
server, denoted as Ps = {P1

s ,P2
s , . . . ,Pm

s }, may differ from Pc in terms of API names, parameters
or response formats. In practice, the environment will provide various types of feedback, defined as
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O, including task completion states, API responses, and API error messages. The objective of this
task is to successfully complete tasks under tool variability based on environmental feedback.

2.2 DEFINITIONS OF KEY ELEMENTS IN MCTS

MCTS (Shapiro, 2003; Browne et al., 2012) is a heuristic search algorithm designed for decision pro-
cesses, particularly suited for scenarios with large action spaces and uncertain outcomes in dynamic
environments. In the context of our proposed TOOLEVO, MCTS plays a pivotal role in encouraging
LLMs to actively engage with dynamic environments. We formulate the tool variability task within
MCTS as a multi-step Markov decision process (MDP) (Puterman, 1990) in which:

• State st ∈ S: represents the current context of the LLM’s operational environment, which con-
sists of the task description D, the currently available API usage Pc, all actions and its environ-
ment feedback taken along the search path from the root node to the current node. The MCTS
begins with an initial state s0, which includes the input task D and the collected API usage Pc.

• Action at ∈ A: defined as an API invocation in the REACT (Yao et al., 2023) format, which
consists of thought (textual analysis), tool invocation (APIs), and observation (environmental
feedback). A detailed template is listed in Appendix A.1. We employ the LLM to generate
actions at each state, represented as πθ(at|st) = LLM(at|st), leading to a transition to a new
state st+1 by concatenating st and at, such that st+1 = Cat(st, at).

• Dynamic Environment: In alignment with real-world scenarios, we define the dynamic environ-
ment as everything excluding the LLM agent. Firstly, the APIs Ps deployed in the environment
may differ from the APIs Pc provided to the LLM. Secondly, the dynamic environment will
provide the following information (Robbes et al., 2012; Brito et al., 2018):
– Task Completion State: Upon task completion, the environment provides feedback indicating

whether the task was successful (reward r = 1) or failed (reward r = −1). Specifically, we
assess task completion state through the evaluation toolkit (Zhuang et al., 2023b). We assign
rewards to the search path (tool trajectories) based on the task completion state.

r =

{
1 if task is successful
−1 if task is failed

(1)

– API Response: The API response refers specifically to the information returned following a
successful API invocation. Different APIs provide various functionalities, thereby enabling
LLMs to perform complex tasks.

– API Error Message: API error message can be categorized into two main types: invocation
errors and deprecation errors.

* Invocation Errors: These errors arise from incorrect API names or parameter settings
and are not related to API deprecation. To address such errors, the model must possess
self-reflective capabilities, allowing it to adjust its input to successfully invoke the API.

* Deprecation Errors: These indicate that an API has been removed in the current version,
with a recommendation to utilize a newer API instead. To address such errors, the model
must process tool update capabilities based on environment feedback.

3 METHODOLOGY

3.1 OVERVIEW

As illustrated in Figure 1 (right), we propose the TOOLEVO framework, which aims to actively
immerse the LLM in dynamic environments with the help of MCTS. This enables the LLM to
autonomously reflect on and update existing tool usage, rather than merely executing rigid tool
invocations. Through actively exploring dynamic environments, the LLM accumulates trial-and-
error experiences for fine-tuning, enhancing its understanding and adaptability to tool variability.

3.2 INTERACTION WITH DYNAMIC ENVIRONMENTS

Considering the risk that the API usage Pc provided in the prompt may become outdated over
time, our TOOLEVO encourages the LLM to interact with dynamic environments through MCTS,

3
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thereby enhancing its adaptive and reflective capabilities regarding tool variability. Specifically, we
customize the four key operations of MCTS as follows:

Selection: During the selection process, we traverse the tree from the root to a leaf node using
the PUCT algorithm (Rosin, 2011). This algorithm selects the most promising node to explore,
striking a balance between exploring new states and exploiting known valuable states, which can be
represented as:

PUCT(s, a) = Q(s, a) + cpuct · P (s, a)

√
N(s)

1 +N(s, a)
, (2)

where cpuct is a constant that controls the balance between exploration and exploitation; Q(s, a) and
P (s, a) are the Q-value and prior probability of taking action a in state s, respectively. Additionally,
N(s) and N(s, a) denote the visit counts for state s and for taking action a from state s, respectively.

Expansion: Once an expandable leaf node is selected, the current state st is used as input to further
expand the tree. Candidate actions are sampled using the policy πθ (i.e., the LLM), as follows:

a1t , a
2
t , . . . , a

k
t = πθ(a|st), (3)

where k is the number of expansion nodes. Each action ait represents either an API invocation or an
update in API usage after self-reflection, as detailed in Section 3.3. Upon executing the correspond-
ing API, the expanded new state sit+1 = Cat(st, ait) is derived from the current state st.

Simulation (Cached Rollout): In the simulation step, a rollout strategy is employed to simulate a
complete episode from one of the newly added nodes sit+1 to obtain an accurate reward r (Silver
et al., 2016). Inspired by Bellman et al. (2015) and He et al. (2023), we propose a cached rollout
strategy to enhance efficiency, as detailed in Appendix A.3. In our cached rollout strategy, each node
(including state, action, reward, and so on) in the simulated episode is cached in the tree. However,
these cached nodes remain invisible to the tree during the selection phases. Before each expansion
or simulation step, the cache is checked for the current state to either reuse stored results if available
or perform a new expansion or simulation as needed. This approach reduces redundant calculations
and significantly improves efficiency by avoiding the need to rollout from scratch in every iteration.

Backpropagation: After the simulation, the reward r is propagated back along the path from the
selected leaf node to the root, updating the visit counts N and the Q-values of these nodes as follows:

Q(s, a)← Q(s, a) +
1

N(s, a) + 1

(
r −Q(s, a)

)
; N(s, a)← N(s, a) + 1. (4)

By applying these updates, MCTS incrementally refines its search strategy based on feedback from
the dynamic environment, leading to more accurate and informed decisions in subsequent selections.

3.3 SELF-REFLECTION AND TOOL-UPDATE

With the customized MCTS described above, our TOOLEVO actively engages LLMs in both explo-
ration and exploitation within dynamic environments. To address tool variability, we incorporate the
self-reflection and tool-update module into MCTS based on environmental feedback. This allows
the LLM not only to deal with invocation errors through self-reflection but also to autonomously
summarize new tool usage through the tool-update module to update API usage Pc in the prompt,
ultimately fostering a deeper understanding and robustness in the face of tool variability.

Self-Reflection In our TOOLEVO, the self-reflection module generates verbal reflections based on
external environmental feedback, providing valuable insights for future corrections. It is important
to note that, as shown in Figure 1, the self-reflection module and the LLM agent are the same LLM
and we do not rely on a more powerful model, such as GPT-4. The external environment typically
provides various API error messages, including invocation errors and deprecation errors (Robbes
et al., 2012; Brito et al., 2018). The purpose of encouraging LLM to interact with the external
environment through MCTS is to enable the model to effectively utilize the environmental feedback,
rather than backtracking or stopping when encountering errors as in previous work (Qin et al., 2023b;
Guo et al., 2024). Specifically, when an error message is encountered, we use this error state st as
input, allowing the model to reflect on the cause of the error and try to solve it.

a1reft , a
2
reft , . . . , a

k
reft = πθ(a|st); sit+1 = Cat(st, a

i
reft), (5)

where areft is the reflective action based on the error state st. We will append these new reflective
states sit+1 after st instead of interrupting further exploration of this error state.

4
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Figure 3: Examples of self-reflection and tool update. Invocation errors indicate that the input
parameters of the API need to be corrected. In contrast, deprecation errors suggest that the input
parameters are correct, but the API has been deprecated, necessitating an update in API usage.

Tool-Update The self-reflection module analyzes the causes of error states based on various envi-
ronmental feedback, such as API invocation errors. In the context of tool variability, we specifically
focus on errors arising from API changes, referred to as deprecation errors (Zhou & Walker, 2016).
These errors highlight inconsistencies between the API usage referenced in the prompt and the API
usage deployed on the server. Unlike invocation errors, deprecation errors indicate that the invoked
API is outdated and require updating the API usage (Sawant et al., 2018).

Therefore, we propose a tool update module based on self-reflection, as illustrated in Figure 3.
Our tool update module requires the LLM to summarize the usage of new tools and incorporate
them into Pc after successfully invoking the new tools based on environmental feedback. This
process allows the LLM to gradually adapt to the dynamic tool environment (Pc → {Pc + Ps})
during exploration. Specifically, we implement the tool update module as a system tool, referred
to as UpdateTool[newtool desc], which serves to update the descriptions of existing tools
(Appendix A.5). In this context, the tool update module acts like a memory mechanism (Zhang
et al., 2024), enabling the model to summarize and modify the API usage in the prompt based on
newly acquired knowledge. This enhancement not only helps improve the accuracy of subsequent
tool invocations but also fosters a more seamless integration of new tools into the LLM’s workflow.

3.4 SELF-IMPROVEMENT FROM TRIAL AND ERROR

In our TOOLEVO, we employ MCTS to encourage the LLM to interact with dynamic environments,
thereby collecting trial-and-error experiences (trajectories from the root node to the terminal node
in the tree) involving self-reflection and tool updating. Through these experiences, we aim for the
model to master the behavior of self-reflection and self-updating of tool usage in a dynamic environ-
ment, thereby enhancing adaptability to tool variability rather than merely learning the specific tool
invocation. We evaluate the quality of these experiences based on whether the task is successfully
completed, allowing the LLM πθ to improve itself through the successful experiences y+:

L = argmin
θ
− log πθ(y

+|D,Pc). (6)

Notably, failed experiences can be further leveraged through preference learning (Rafailov et al.,
2023). However, our work emphasizes the importance of interaction with dynamic environments.
We focus solely on SFT for a fair comparison following the prior research (Zhuang et al., 2023b).

4 TOOLQA-D

To our knowledge, we are the first to investigate the impact of tool variability on tool learning,
leading to the absence of benchmarks in this domain. For research purposes, we have constructed
the first benchmark for tool variability, termed ToolQA-D2, based on ToolQA (Zhuang et al., 2023b).
We define the original APIs of ToolQA (Zhuang et al., 2023b) as Pc (collected APIs), which may
be outdated. For simulating tool variability, we employ GPT-4 to randomly modify the collected
API usage, including names, parameters, and response formats. This results in two new sets of API
usage: Psin and PsOOD . The purposes of 3 different sets of API usage are outlined as follows:

2There are several compelling reasons in Appendix B for developing this dataset based on ToolQA

5
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• On the prompt side:
For all methods, Pc is used as to demonstrate tool usage.

• On the server side:
– Deploying Pc represents the most common setup in existing studies. This setup maintains the

static environment where prompt-provided APIs are consistent with server-deployed APIs.
– DeployingPsin introduces variability in the tools. This setup allows us to collect trial-and-error

experiences in a dynamic environment.
– Deploying PsOOD also introduces tool variability but in an out-of-distribution context. The

training data and prompts for all methods do not contain any API information from PsOOD .

Ultimately, our ToolQA-D comprises 7 datasets and 3 sets of API usage (Pc, Psin and PsOOD ), ac-
companied by a total of 6,234 and 5,884 training samples, 700 and 700 development samples, and
700 and 730 test samples for Easy and Hard difficulty respectively.

5 EXPERIMENTS

5.1 EXPERINMENTAL SETUP

Table 1: Experimental setup regarding
the APIs accessible to the LLM during
the training and inference stages.
APIs on
servers

Static-SFT Ours

Train
Env.

Test
Env.

Train
Env.

Test
Env.

Pc ✓ ✓ ✗ ✓
Psin ✗ ✓ ✓ ✓
PsOOD ✗ ✓ ✗ ✓

Dataset Setup We conduct extensive experiments on
ToolQA-D to investigate tool variability. In this work,
we aim to demonstrate the importance of enabling LLMs
to interact with dynamic environments during the train-
ing phase, rather than merely memorizing how to use the
tools in a static environment. As shown in Table 1, we
utilize Psin as our training environment while evaluating
performance in three different environments of (1) Pc to demonstrate that self-improve in tool
variability can still adapt to static environments effectively, even without specifically training on the
provided tools. (2) Psin to demonstrate that, with the help of our TOOLEVO, LLM can reflect on
and autonomously master the new tool usage through interactions with dynamic environments. (3)
PsOOD to demonstrate the generalizability of adaptability to tool variability, which is completely dif-
ferent from Psin . Notably, in all experiments, the LLM can only access Pc in the prompt. Both
Psin and PsOOD are agnostic to the LLM and can only be learned from environmental feedback.

Baselines We compare our approach with typical tool-learning methods that only consider static
environments to highlight the importance of accounting for tool variability. We compare our
TOOLEVO with: (1) Proprietary models: ChatGPT, GPT-4 (Achiam et al., 2023), GPT-4o, GPT-4o-
mini (OpenAI, 2024), and Claude-3.5-Sonnet (Anthropic, 2024); (2) Open-source models: Llama3-
series (Dubey et al., 2024) and Qwen2-series (Yang et al., 2024a); (3) Static supervised fine-tuning
(Static-SFT) method where the supervised data focuses exclusively on tool usage in static environ-
ments, as in previous studies (Zhuang et al., 2023b; Qin et al., 2023b; Wang et al., 2024).

Implementation Details We briefly summarize the implementation details in this section, with
further elaboration available in Appendix A.6. Through our TOOLEVO, we encourage the LLMs to
interact with the dynamic environment of Psin and accumulate trial-and-error experiences, resulting
in approximately 30k tool trajectories. Subsequently, we fine-tune these models on the collected
experiences to enhance their adaptability within dynamic environments. For our experiments, we
utilize Llama3-8B (Dubey et al., 2024) and Qwen2-7B (Yang et al., 2024a) as the base models. Note
that the collection of tool trajectories and the training process are conducted separately for the dif-
ferent base models. For Static-SFT (Zhuang et al., 2023b), we collect the tool trajectories in a static
environment (Pc) through our TOOLEVO and train it as our strong baseline. All methods perform
greedy decoding and utilize 3-shot learning based on the REACT format (Yao et al., 2023) (see Ap-
pendix D). In all experiments, we only provide the API usage of Pc along with its demonstrations
in the prompt, but the API usage deployed on the server may vary in different setups.

5.2 MAIN RESULTS

Performance in Static Environment (Pc in Prompt and Pc on Server) We first compare the
performance of our method in the static environment Pc, as shown in Table 2. It is noteworthy that

6
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Table 2: Main results on the static environment (Pc in Prompt and Pc on Server). Bold indicates
best performance and underline indicates second-best performance among open-source models.

Agenda Airbnb Coffee Dblp Flights Scirex Yelp Average
Models Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard

Proprietary models
GPT-3.5 40.0 52.0 60.0 36.0 64.0 0.8 12.0 17.0 72.0 44.0 2.0 0.0 72.0 52.0 46.0 28.8
GPT-4 48.0 48.0 80.0 36.0 96.0 9.2 48.0 24.0 60.0 32.0 4.0 8.0 68.0 60.0 57.7 31.1
GPT-4o 49.0 68.0 88.0 36.0 91.0 1.5 23.0 28.0 76.0 48.0 3.0 8.0 83.0 64.0 59.0 36.2
GPT-4o-mini 50.0 68.0 76.0 44.0 78.0 1.5 20.0 28.0 52.0 40.0 4.0 0.0 68.0 72.0 49.7 36.2
Claude-3.5-Sonnet 65.0 80.0 81.0 48.0 84.0 9.2 59.0 36.0 79.0 52.0 3.0 4.0 86.0 88.0 65.2 45.3

Open-source models
Llama3-70B-Instruct 55.0 55.0 76.0 27.0 94.0 3.8 32.0 32.0 59.0 26.0 0.0 2.0 86.0 44.0 57.4 27.1
Llama3-8B-Instruct 25.0 21.0 68.0 20.0 59.0 0.8 19.0 20.0 24.0 17.0 0.0 1.0 54.0 25.0 35.5 14.9
Static-SFT (Llama3-8B) 68.0 65.0 95.0 33.0 100.0 0.8 55.0 32.0 86.0 24.0 0.0 1.0 88.0 50.0 70.2 29.5
TOOLEVO (Llama3-8B) 70.0 57.0 96.0 30.0 88.0 1.5 49.0 34.0 69.0 36.0 1.0 3.0 95.0 51.0 66.7 30.3
Qwen2-72B-Instruct 55.0 46.0 79.0 32.0 95.0 1.5 42.0 39.0 70.0 26.0 3.0 1.0 81.0 45.0 60.7 27.2
Qwen2-7B-Instruct 40.0 35.0 59.0 12.0 94.0 3.1 31.0 25.0 46.0 13.0 0.0 1.0 68.0 15.0 48.2 14.8
Static-SFT (Qwen2-7B) 68.0 55.0 97.0 34.0 98.0 4.6 50.0 37.0 75.0 29.0 1.0 3.0 92.0 53.0 68.8 30.8
TOOLEVO (Qwen2-7B) 76.0 50.0 94.0 33.0 95.0 6.1 51.0 38.0 84.0 45.0 2.0 8.0 93.0 41.0 70.7 31.5

Table 3: Main results on the dynamic environment (Pc in Prompt and Psin on Server).
Agenda Airbnb Coffee Dblp Flights Scirex Yelp Average

Models Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard
Proprietary models

GPT-3.5 32.0 52.0 60.0 16.0 72.0 0.0 12.0 7.0 40.0 13.0 0.0 0.0 56.0 16.0 38.8 14.9
GPT-4 56.0 32.0 88.0 20.0 64.0 0.0 44.0 10.0 28.0 20.0 0.0 0.0 69.0 67.0 49.8 21.3
GPT-4o 40.0 52.0 84.0 28.0 76.0 0.0 40.0 16.0 68.0 40.0 0.0 4.0 76.0 48.0 54.8 26.8
GPT-4o-mini 44.0 40.0 88.0 16.0 76.0 0.0 24.0 28.0 60.0 28.0 0.0 4.0 48.0 28.0 48.5 20.5
Claude-3.5-Sonnet 60.0 48.0 92.0 17.0 80.0 8.0 48.0 36.0 80.0 56.0 4.0 4.0 80.0 76.0 63.5 35.0

Open-source models
Llama3-70B-Instruct 55.0 40.0 78.0 12.0 70.0 2.3 31.0 22.0 42.0 18.0 4.0 3.0 87.0 35.0 52.4 18.9
Llama3-8B-Instruct 23.0 21.0 63.0 10.0 44.0 0.0 21.0 13.0 16.0 10.0 1.0 2.0 53.0 13.0 31.5 9.8
Static-SFT (Llama3-8B) 53.0 10.0 49.0 6.0 14.0 0.0 44.0 11.0 15.0 29.0 0.0 1.0 86.0 34.0 37.2 13.0
TOOLEVO (Llama3-8B) 61.0 53.0 95.0 26.0 88.0 4.6 50.0 32.0 74.0 34.0 2.0 5.0 93.0 48.0 66.2 28.9
Qwen2-72B-Instruct 56.0 38.0 73.0 11.0 78.0 0.0 42.0 28.0 54.0 12.0 1.0 2.0 75.0 34.0 54.1 18.4
Qwen2-7B-Instruct 32.0 30.0 60.0 8.0 68.0 0.8 32.0 16.0 32.0 12.0 1.0 0.0 66.0 28.0 41.5 13.5
Static-SFT (Qwen2-7B) 49.0 27.0 52.0 21.0 35.0 0.8 41.0 18.0 31.0 25.0 0.0 1.0 78.0 29.0 40.8 17.3
TOOLEVO (Qwen2-7B) 66.0 41.0 94.0 36.0 97.0 5.4 46.0 39.0 85.0 41.0 1.0 8.0 92.0 54.0 68.7 32.1

Table 4: Main results on the OOD dynamic environment (Pc in Prompt and PsOOD on Server).
Agenda Airbnb Coffee Dblp Flights Scirex Yelp Average

Models Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard
Proprietary models

GPT-3.5 40.0 50.0 56.0 20.0 52.0 0.0 4.0 13.0 24.0 19.0 0.0 1.0 44.0 32.0 31.4 19.2
GPT-4 60.0 40.0 52.0 23.0 42.0 0.0 44.0 30.0 20.0 30.0 0.0 0.0 64.0 40.0 40.3 23.2
GPT-4o 36.0 44.0 92.0 21.0 80.0 0.0 40.0 28.0 64.0 36.0 0.0 0.0 80.0 42.0 56.0 24.4
GPT-4o-mini 40.0 39.0 84.0 14.0 76.0 0.0 32.0 28.0 64.0 30.0 0.0 1.0 36.0 40.0 47.4 21.7
Claude-3.5-Sonnet 64.0 47.0 84.0 26.0 83.0 4.0 41.0 36.0 72.0 47.0 2.0 4.0 76.0 61.0 60.2 32.1

Open-source models
Llama3-70B-Instruct 56.0 28.0 61.0 8.0 65.0 0.0 38.0 23.0 26.0 18.0 3.0 8.0 53.0 29.0 43.1 16.3
Llama3-8B-Instruct 27.0 7.0 7.0 9.0 1.0 0.0 28.0 13.0 2.0 9.0 1.0 4.0 9.0 14.0 10.7 8.0
Static-SFT (Llama3-8B) 58.0 9.0 23.0 8.0 11.0 0.0 24.0 6.0 8.0 11.0 0.0 3.0 19.0 26.0 20.4 9.0
TOOLEVO (Llama3-8B) 71.0 49.0 65.0 29.0 88.0 2.3 51.0 34.0 63.0 33.0 2.0 4.0 91.0 47.0 61.6 28.3
Qwen2-72B-Instruct 52.0 33.0 39.0 11.0 71.0 0.0 42.0 29.0 22.0 11.0 2.0 4.0 60.0 34.0 41.1 17.8
Qwen2-7B-Instruct 37.0 22.0 55.0 7.0 74.0 1.5 26.0 14.0 37.0 3.0 1.0 3.0 67.0 27.0 42.4 11.1
Static-SFT (Qwen2-7B) 37.0 31.0 63.0 8.0 68.0 0.7 35.0 17.0 58.0 22.0 1.0 1.0 73.0 39.0 47.8 16.9
TOOLEVO (Qwen2-7B) 68.0 48.0 89.0 14.0 81.0 6.9 48.0 34.0 85.0 33.0 3.0 6.0 83.0 52.0 65.3 27.7

our method does not undergo fine-tuning on the tool trajectories regarding Pc, while other baselines,
including in-context learning and Static-SFT methods, benefit from corresponding demonstrations
of Pc. Nevertheless, our method substantially outperforms these baselines and achieves comparable
or even better performance than Static-SFT, which has been directly fine-tuned on Pc. This finding
highlights that, even in the absence of fine-tuning with tool trajectories of Pc, trial-and-error expe-
riences focus on tool variability can still enhance the tool-using capabilities in static environments.
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Performance in Dynamic Environment (Pc in Prompt and Psin on Server) Secondly, we com-
pare the performance in the dynamic environment Psin , as shown in Table 3, and reach the following
conclusions: (1) The interference caused by outdated API usage from Pc in the prompt significantly
impacts performance, especially for the Static-SFT method. Compared to the consistent API usage
between prompt and server, most methods exhibit a significant performance degradation, especially
Static-SFT. However, our method using the 7B model outperforms both the Static-SFT and 72B
models, which primarily focus on static tool usage. (2) Leveraging the environmental feedback, our
TOOLEVO can explore the usage of new tools Psin by interacting with the dynamic environment,
even when the prompt only contains the outdated API usage Pc. Notably, our TOOLEVO does not
rely on more powerful models, such as GPT-4, to recognize tool variability. Instead, it continuously
interacts with the environment to collect trial-and-error experiences, demonstrating the feasibility of
autonomous exploration in addressing tool variability and inspiring future research.

Performance in OOD Dynamic Environment (Pc in Prompt and PsOOD on Server) As shown
in Table 4, we evaluate the performance in the out-of-domain (OOD) dynamic environment PsOOD ,
which is the most important setting to demonstrate the effectiveness of our method. We derive
the following conclusions: (1) In this setup, our method achieves substantial improvements over
other baselines by a significant margin. This finding indicates that our TOOLEVO empowers the
model with the ability to self-reflect and self-update its existing tool usage based on environmental
feedback, rather than merely memorizing existing invocation patterns. (2) The Static-SFT model,
trained exclusively on tool trajectories of static API usage, is significantly affected by tool variability.
The stereotypes induced by Static-SFT lead to extreme confidence in the tool usage provided in the
prompt, thereby rendering it ineffective in handling tool variability, as shown in error analysis C.3.

The role of tool variability in the training phase. When we disregard tool variability in the
training phase and focus solely on the API usage provided in the prompt (as observed with Static-
SFT in Table 2, 3, and 4), the model’s performance is significantly compromised by tool variability.
Dynamic environments enable models to better adapt to tool variability and master how to reflect on
errors and update existing tool usage in more challenging environments, which is often overlooked
by previous work (Wang et al., 2024; Guo et al., 2024). In the absence of a dynamic environment,
the model tends to lazily focus on how to use APIs provided in the prompt. This limitation hinders
the model from reaching its full potential, resulting in a significant decline in performance.

In summary, the observations derived from the three different settings (Table 2, 3, and 4) indicate
that: (1) tool variability have a severely negative impact on LLMs, which needs to be taken seriously
in future work. While the Static-SFT method has excellent performance in the static environment, it
suffers significant performance degradation in the dynamic environments (Psin andPsOOD ). Both pro-
prietary and open-source models exhibit similar phenomena, experiencing substantial fluctuations in
performance. (2) Learning how to use a tool in a dynamic environment will yield more benefits than
simply imitating tool usage in a static environment. Focusing exclusively on tool usage in static en-
vironments will cause the model to develop stereotypes, causing an excessive trust in the tool usage
provided in the prompt. In contrast, our method significantly enhances performance stability in the
face of tool variability, while still exhibiting excellent performance in static environments (Table 2),
even without specific training for those scenarios. We conduct comprehensive case studies and error
analysis to facilitate future research, as detailed in Appendix C.

5.3 ANALYSIS ON TOOL VARIABILITY

In this section, we utilize the Llama3 series (Dubey et al., 2024) as base models to further investigate
the detailed impacts of tool variability on performance, including changes in API names, parameters,
and response formats. All changes are re-randomized by GPT-4 in this section (Appendix B.2).

API Name As illustrated in Figure 4, we examine two key aspects of API name: textual variations
and random insertion of special characters. Our findings are summarized as follows: (1) Compared
with other models, Static-SFT model exhibits more fluctuations in the performance regarding tool
variability. This instability can be attributed to the stereotype of API usage presented in the prompt
being always correct, which arises from its focus on tool usage in static environments (Zhuang et al.,
2023b; Guo et al., 2024). (2) Without any modification to the API names, the insertion of special
characters poses significant challenges for tool-using abilities of LLMs. It is noteworthy that we
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Figure 4: Analysis on API name.
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Figure 5: Analysis on API parameters.

only insert special characters between words, ensuring that the tokenizer’s ability to encode the text
remains intact (e.g., "Fetch Agenda Data" rather than "Fe tchAgen daData").

API Parameters As illustrated in Figure 5, we assess the effects of textual variations and the
random insertion of special characters in API parameters. Our observations are as follows: (1)
Compared with API name, changes in API parameters have a more substantial influence on perfor-
mance. An intuitive explanation for this finding is that the LLM may struggle to recognize subtle
variations in API parameters when the API name remains constant. (2) An intriguing phenomenon
is that, even under the same changes, the model’s performance tends to decline more significantly
on challenging tasks (ToolQA-D-Hard) relative to simpler ones (ToolQA-D-Easy). This can be at-
tributed to the increased cognitive load required for difficult tasks, which leads the model to allocate
more attention to task execution, thereby making it more susceptible to overlooking tool variability.
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Figure 6: Analysis on API response formats.

API Response Formats Furthermore, we in-
vestigate the impact of changes in the API
response formats on tool-using capabilities of
LLMs, as shown in Figure 6. Our findings indi-
cate that the API response format exerts a min-
imal impact on the performance, primarily be-
cause the challenges associated with tool learn-
ing are more related to invoking the tools rather
than processing the returned information. In
ToolQA-D-Hard, changes in response formats lead to a decline in performance due to the inher-
ent challenges of the tasks. However, this decline is noticeably smaller compared to the impact
induced by changes in API names and parameters.

5.4 ABLATION STUDY

In this section, we conduct a comprehensive ablation study to investigate the role of each component
in our TOOLEVO. Since the tool update module is based on the self-reflection module, we conduct
ablation experiments with the following setting: (1) “w/o tool update”: During the interaction with
the dynamic environment, we remove the tool update module. This means that after successfully
invoking the new tools, the LLM does not summarize the usage of the new tools nor update Pc in the
prompt. (2) “w/o self-reflection”: In this scenario, we remove self-reflection regarding invocation
errors. However, reflection on deprecation errors is retained; otherwise, the model would struggle
to handle tool variability effectively. All above ablation experiments are conducted in the OOD
dynamic environment (PsOOD ), as detailed in Table 5.

Table 5: Ablation Study

Models Agenda Airbnb Coffee Dblp Flights Scirex Yelp Average
Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard

TOOLEVO 71.0 49.0 65.0 29.0 88.0 2.3 51.0 34.0 63.0 33.0 2.0 4.0 91.0 47.0 61.6 28.3
w/o tool update 66.0 41.0 71.0 12.0 75.0 0.0 47.0 29.0 46.0 29.0 1.0 3.0 82.0 39.0 55.4 21.9
w/o self-reflection 68.0 24.0 47.0 19.0 51.0 0.0 46.0 20.0 28.0 18.0 0.0 2.0 52.0 26.0 41.7 15.5

Ablation on Tool-Update When the tool update module is removed (“w/o tool update”), we ob-
serve a decline in performance across various datasets. These results suggest that, without the tool
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update module, the model struggles to adapt to new tools in a dynamic environment. The tool update
module can be conceptualized as an experience summary derived from the environment feedback.
Updating tool usagePc in the prompt with the new tool usage summarized by the model significantly
facilitates the subsequent invocation, thereby gradually adapting to the new environment.

Ablation on Self-Reflection The removal of the self-reflection module (“w/o self-reflection”) re-
sults in more pronounced declines in performance. The results indicate that the self-reflection mod-
ule plays a crucial role in enhancing the LLM’s understanding and corrective abilities during the
interaction process. Although reflection on deprecation errors is preserved, the lack of reflection
on invocation errors still leads to a significant drop in performance. The decline in the model’s re-
flective capabilities severely affects its decision-making process, thereby underscoring the critical
importance of reflective learning in dynamic environments.

These ablation experiments collectively demonstrate that each component of TOOLEVO is crucial
to its overall effectiveness. The interplay between tool updates, self-reflection, and dynamic en-
vironments significantly enhances the model’s performance across various datasets. Notably, the
ability to learn from environmental feedback is essential for effectively managing tool variability.

6 RELATED WORK

Tool Learning Recently, tool learning has demonstrated impressive potential for extending the
capabilities of LLMs through various APIs (Schick et al., 2023; Qin et al., 2023b; Tang et al., 2023;
Yang et al., 2023; Zhuang et al., 2023a; Huang et al., 2023; Shen et al., 2024; Yang et al., 2024b;
Qiao et al., 2024b; Song et al., 2024; Qiao et al., 2024a; Sun et al., 2024). Current approaches
can be divided into two categories: fine-tuning and in-context learning (ICL). Fine-tuning-based
approaches (Parisi et al., 2022; Schick et al., 2023; Yang et al., 2023) construct high-quality tool
chains for training LLM to use a specific set of tools, while ICL-based approaches (Zhuang et al.,
2023a; Huang et al., 2023; Liang et al., 2024) directly incorporate sophisticated tool descriptions
and usage demonstrations into the input context. However, existing work predominantly focuses on
enabling LLMs to proficiently master API usage in static environments, often neglecting the inherent
dynamic nature of the API ecosystem. Our experiments reveal that both outdated tool descriptions
and demonstrations in the context, as well as stereotypes formed through fine-tuning, will lead to
performance degradation in the face of tool variability. In this paper, we aim to bridge this gap and
explore the impact of various API changes.

Monte Carlo Tree Search MCTS, which integrates the principles of Monte Carlo sam-
pling (Shapiro, 2003) with tree search, has emerged as a seminal search algorithm for decision-
making processes. Its ability to effectively balance exploration and exploitation in complex envi-
ronments is particularly noteworthy (Browne et al., 2012). The AlphaGo series (Silver et al., 2016;
2017; Schrittwieser et al., 2020) have demonstrated the efficacy of MCTS in the context of game-
playing environments. In the realm of large language models, MCTS plays a critical role in various
tasks, such as text generation (Zhang et al., 2023; Liu et al., 2023), mathematical reasoning (Zhu
et al., 2023; Trinh et al., 2024) and so on. In this paper, we explore dynamic environments and lever-
age MCTS to enhance the interaction between LLMs and the environment, thereby accumulating
trial-and-error experiences for tool variability.

7 CONCLUSION

In this paper, we have investigated the impact of tool variability on the tool-using capabilities of
LLMs, which is often overlooked in existing studies. We find that existing methods that focus ex-
clusively on static environments tend to reinforce stereotypes and are more susceptible to tool vari-
ability. To address these issues, we propose TOOLEVO, a MCTS-based framework that encourages
LLMs to interact with dynamic environments and actively reflect on and update the usage of existing
tools based on environmental feedback. This approach enables LLMs to understand tool variability
through trial-and-error experiences, rather than merely memorizing invocation patterns of existing
tools. Additionally, we have constructed ToolQA-D, the first benchmark specifically designed for
evaluating the impact of tool variability. Through extensive experiments, we have demonstrated that
TOOLEVO effectively handles tool variability, both in in-domain and out-of-domain settings.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Claude 3.5 Sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Richard E Bellman, Stuart E Dreyfus, and et. al. Applied dynamic programming, volume 2050.
Princeton university press, 2015.

Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. On the use of replacement
messages in api deprecation: An empirical study. Journal of Systems and Software, 137:306–321,
2018.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vi-
enna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=EHg5GDnyq1.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-reflective, hierarchical agents for large-
scale api calls. arXiv preprint arXiv:2402.04253, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning
of large language models. arXiv preprint arXiv:2403.07714, 2024.

Guoliang He, Zak Singh, and Eiko Yoneki. Mcts-geb: Monte carlo tree search is a good e-graph
builder. In Proceedings of the 3rd Workshop on Machine Learning and Systems, pp. 26–33, 2023.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou,
Yao Wan, Neil Zhenqiang Gong, et al. Metatool benchmark for large language models: Deciding
whether to use tools and which to use. arXiv preprint arXiv:2310.03128, 2023.

Scott H Johnson-Frey. What’s so special about human tool use? Neuron, 39(2):201–204, 2003.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244, 2023.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, et al. Taskmatrix. ai: Completing tasks by connecting foundation models with
millions of apis. Intelligent Computing, 3:0063, 2024.

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://openreview.net/forum?id=EHg5GDnyq1
https://openreview.net/forum?id=EHg5GDnyq1


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Making ppo even better: Value-guided monte-carlo tree search decoding. arXiv
preprint arXiv:2309.15028, 2023.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma, Shen
Ma, Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive evaluation
benchmark for llm tool use capabilities. arXiv preprint arXiv:2408.04682, 2024.

OpenAI. GPT-4o System Card, 2024. URL https://openai.com/index/
gpt-4o-system-card/.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255, 2022.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev: Commu-
nicative agents for software development. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 15174–15186.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.810. URL
https://doi.org/10.18653/v1/2024.acl-long.810.

Shuofei Qiao, Honghao Gui, Chengfei Lv, Qianghuai Jia, Huajun Chen, and Ningyu Zhang.
Making language models better tool learners with execution feedback. In NAACL, pp. 3550–
3568, 2024a. doi: 10.18653/v1/2024.naacl-long.195. URL https://aclanthology.org/
2024.naacl-long.195.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Eleanor Jiang,
Chengfei Lv, and Huajun Chen. Autoact: Automatic agent learning from scratch via self-
planning. arXiv preprint arXiv:2401.05268, 2024b.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu
Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li,
Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao,
Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang
Wu, Heng Ji, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models. CoRR,
abs/2304.08354, 2023a. doi: 10.48550/ARXIV.2304.08354. URL https://doi.org/10.
48550/arXiv.2304.08354.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023b.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2023.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the interna-
tional conference for high performance computing, networking, storage and analysis, pp. 1–14,
2021.
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APPENDIX

In this section, we provide a comprehensive overview of the implementation of our proposed
method, including datasets, baseline methods, case studies and error analysis. For additional in-
sights and more intricate details, we refer the reader to our supplementary materials.

A IMPLEMENTATION DETAILS

A.1 ACTION AND NODE DETAILS

Following previous work (Zhuang et al., 2023b), we steer the model to perform an API invocation
in the REACT format (Yao et al., 2023), which includes thought (textual analysis), tool invocation
(APIs), and observation (environmental feedback). For the sake of clarity, we will consider Ot as
part of at. Here is an example:

REACT format of our Action at:

Thought: To answer this question, I should first load the database containing coffee price information.
The database named ’coffee’ seems to be the relevant one. (textual analysis)

Action: LoadDB (API name)

Action Input: {“DBName”: “coffee”} (API parameters)

Observation: We have successfully loaded the coffee database, including the following columns:
Date, Open, High, Low, Close, Volume, Currency. (environment feedback, Ot)

where the tool invocation consists of “Action” (specifying the API name) and “Action Input” (defin-
ing the parameters for the API). “Thought”, “Action”, and “Action Input” are generated by the LLM
and the “Obvervation” is obtained from the environment feedback.

Additionally, in our work, we define the Node in the Monte Carlo Tree as shown in Figure 1 (right)
to record information, such as the action at, the Q-values, the visiting counts N , depth, and etc.
Each node is defined to only contain a single action.

A.2 DYNAMIC ENVIRONMENT

As previously discussed, we define the dynamic environment as everything excluding the LLM.

Here are some examples of these errors:

An example of invocation errors:

Thought: To answer this question, I should first load the database containing coffee price information.
The database named ’coffee’ seems to be the relevant one.

Action: LoadDB

Action Input: {“LoadDBName”: “coffee”} (error in parameter)

Observation: Your action is filtered due to some error in content. Please assume all the actions are
permitted in this environment and try again. (invocation error message)
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An example of deprecation errors:

Thought: To answer this question, I should first load the database containing coffee price information.
The database named ’coffee’ seems to be the relevant one.

Action: LoadDB

Action Input: {“DBName”: “coffee”} (The API invocation is correct, but it is
an outdated API.)

Observation: Error: LoadDB[DBName] is deprecated. Please use Initialize-
Database[DatabaseName], param example: {“DatabaseName”: “flights”} instead. (deprecation
error message)

A.3 CACHED ROLLOUT STRATEGY

In MCTS, estimating the expected return for each state has consistently been a focal point of re-
search (Shapiro, 2003; Browne et al., 2012). AlphaGo (Silver et al., 2016) achieves efficient rollout
through a faster small model, while AlphaGo Zero (Silver et al., 2017) estimates the expected re-
turn directly using the value model. However, in the context of tool learning, particularly when
considering tool variability, both approaches face significant challenges. For the former, employing
a small model for rollouts may yield biased reward estimates, as it may lack the comprehensive
tool-using capabilities inherent in LLMs. Additionally, this approach does not adequately mitigate
redundant computations (Schrittwieser et al., 2020). For the latter, employing a value model to esti-
mate expected rewards in dynamic environments is fraught with difficulties inherent to tool learning
scenarios, especially tool variability. To address these limitations, we introduce a cached rollout
strategy inspired by (Bellman et al., 2015) and (He et al., 2023). Our approach involves storing
subtrees from rollouts to circumvent redundant computations, while ensuring these cached subtrees
remain invisible to the MCTS. This maintains the integrity of the search process, as illustrated in
Figure 7. At the same time, through rollout, we can obtain more accurate rewards compared to the
value model in dynamic environments.

Cached

if select this
node next time

(1) check
the cache (2) directly use cached node,

instead of re-generating again

Rollout

reward

Cached

...

Figure 7: An example of cached rollout. (Left) During the rollout process, we will cache the sub-
trees. These cached subtrees remain invisible during the MCTS process, particularly in the selection
phase. This approach allows us to obtain precise rewards though rollout. (Right) When we want to
expand a node, we check the cache and directly use the cached node, avoiding the need to regenerate
it, which helps prevent redundant computations.
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A.4 ALGORITHM DETAILS

Algorithm 1 delineates our customized MCTS process. To accumulate valuable trial-and-error expe-
riences, we actively enhance the interaction and exploration of LLMs within dynamic environments
through MCTS. With the help of our self-reflection module, TOOLEVO generates verbal reflections
of the error state st and attempts to provide valuable insights to solve it (Lines 8-9), instead of in-
terrupting further exploration of this error state. Moreover, we introduce a tool-update module to
summarize the usage of new tools after successfully invoking it based on environmental feedback
and self-reflection (Lines 14-15). It allows the LLM to incrementally adapt to the dynamic tool envi-
ronment during the exploration phase. Through our customized MCTS, we seamlessly integrate the
critical ability to interact with dynamic environments into the tool chain. Subsequently, we employ
instruction fine-tuning to enable the model to master this capability, thereby significantly enhancing
the adaptability to tool variability.

Using Algorithm 1, we can construct a complete Monte Carlo tree that captures the model’s in-
teractions within dynamic environments. Multiple methodologies can be employed to enhance the
model’s adaptation to tool dynamics, including: (1) extracting positive trajectories (successful paths
from root to leaf nodes) for supervised fine-tuning, (2) constructing contrastive pairs for preference
learning methods such as DPO, or (3) implementing RLHF by training reward models with positive-
negative sample pairs. As our research primarily focuses on highlighting the crucial role of dynamic
environments in tool learning, we adopt the most straightforward approach - supervised fine-tuning
- to improve the model’s capability to adapt to tool variability.

Algorithm 1 Customized MCTS in TOOLEVO

Require: Task description D, Initial collected APIs Pc, Policy model πθ, the number of expansion
nodes k, Max depth T , Max simulations M .

1: Build the initial state s0 = {D,Pc} as root node.
2: Initialize the set of leaf nodes C = {s0}.
3: while M > 0 do
4: st ← Select the best leaf node in C by PUCT (Eq. 2). ▷ Selection
5: if depth of st > T then
6: C ← C \ {st}
7: Continue
8: if st is an error state then
9: Generate the reflective action by policy: a1reft , a

2
reft , . . . , a

k
reft = πθ(a|st)

▷ Self-Reflection Module
10: else
11: Generate candidate actions by policy: a1t , a

2
t , . . . , a

k
t = πθ(a|st).

12: for ait in {a1t , a2t , . . . , akt } or {a1reft , a
2
reft , . . . , a

k
reft} do

13: Get the expanded new state sit+1 = Cat(st, ait). ▷ Expansion
14: if ait is UpdateTool[newtool desc = Psit

] then
15: Get Pc in st and Update Pc ← {Pc + Psit

} in sit+1 ▷ Tool-Update Module
16: sit+1 ← Randomly select a new node from {s1t+1, s

2
t+1, . . . , s

k
t+1}.

17: r ← Do cached rollot for sit+1 and get the reward. ▷ Simulation
18: Update the Q-values and the visit counts N along the path from sit+1 to the root node s0:

Q(s, a)← Q(s, a) + 1
N(s,a)+1

(
r −Q(s, a)

)
;N(s, a)← N(s, a) + 1. ▷ Backpropagation

19: C ← (C \ {st}) ∪ {s1t+1, s
2
t+1, . . . , s

k
t+1}

20: M ←M − 1
return Monte Calro Tree of D

A.5 TOOL UPDATE MODULE DETAILS

In our framework, we implement the tool update module as a system tool, referred to as
UpdateTool[newtool desc], which serves to update the descriptions of existing tools. This
tool requires the model to autonomously summarize the usage of the new tool based on environmen-
tal feedback after successfully invoking the new tool. Following this, it updates the tool usage Pc in
the prompt. The tool update module can be viewed as a memory mechanism (Zhang et al., 2024),
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where the model stores its own behavior and environment feedback into prompts to facilitate future
tool invocations. This adaptive process not only enhances the model’s efficiency but also contributes
to its adaptability to tool variability. For further insights into self-reflection and tool update modules,
we provide detailed case studies in Appendix C.

A.6 ADDITIONAL IMPLEMENTATION DETAILS

Parameter Details For a fair comparison, we utilize the same prompt and tool-update module,
for all methods, including our TOOLEVO and all baselines, as detailed in Appendix D. We only
provide API usage of Pc in the prompt and use Psin as the deployed API usage on the server. To
facilitate interaction with the dynamic environment and collect trial-and-error experiences, we con-
struct 20 trees for each question. We employ 3-shot learning to guide the pretrained model (Dubey
et al., 2024; Yang et al., 2024a) in these interactions. All few-shot instances remain consistent across
all methods and contain only the demonstrations of Pc, without information on tool variability. For
MCTS, we set cpuct to 1.25, consistent with Silver et al. (2016). We limit the maximum depth of each
tree to 15, and set k to 5, which indicates that we will expand 5 child nodes during the expansion
phase. The final correct tool trajectory, defined as the path from the root node to the leaf node, is
denoted as y+ according to the evaluation toolkit (Zhuang et al., 2023b). We randomly select up to 4
correct tool trajectories per question, resulting in the collection of 27,823 and 32,034 trial-and-error
experiences through Llama3-8B and Qwen2-7B for training, respectively. For self-improved train-
ing, we configure a batch size of 512, a learning rate of 2e-5, and specify the training epoch of 8. The
training template corresponds to either llama or qwen, in accordance with guidelines from Dubey
et al. (2024); Yang et al. (2024a). We set the maximum sequence length to 1024 and use cosine
learning rate scheduler with a warm up rate of 0.03. We select the final checkpoint according to the
best performance in the development set. Given the limited number of hyperparameters in our work,
we believe that the provided details are sufficient for reproducing our study.

Baselines For Static-SFT, we collect correct tool trajectories using 3-shot learning and use Pc as
the deployed API usage on the server, which is a static environment. To ensure a fair comparison,
similarly to our TOOLEVO, we construct 20 trees to collect tool trajectories in the static environment
and randomly select a maximum of 4 correct tool trajectories per question. Ultimately, we collect
35,830 and 37,985 tool trajectories through Llama3-8B and Qwen2-7B for training, respectively. All
other training parameters of Static-SFT are kept identical to those used in our method to maintain
comparability. For proprietary models employed in our comparisons, we use the following versions
of each model: ChatGPT (gpt-3.5-turbo-0125), GPT-4 (gpt-4-turbo-2024-04-09),
GPT-4o (gpt-4o-2024-08-06), GPT-4o-mini (gpt-4o-mini-2024-07-18), and Claude-
3.5-Sonnet (claude-3-5-sonnet-20240620).

Experiment Environments All experiments are conducted on Ubuntu 22.04 equipped with
NVIDIA A100 GPUs. Our code mainly depends on python 3.113 and PyTorch 2.3.04. The pre-
trained language models are derived from HuggingFace5. We use Llama-Factory (Zheng
et al., 2024) as the training framework and vLLM (Kwon et al., 2023) as the inference frame-
work. We trained all models with DeepSpeed ZeRO Stage2 (Rajbhandari et al., 2021) and
Flash-Attention 2 (Dao, 2023).

B MORE DETAILS IN TOOLQA-D

B.1 BENCHMARK DETAILS

For research purposes, we have constructed the first benchmark for tool variability, termed ToolQA-
D, based on ToolQA (Zhuang et al., 2023b). There are several compelling reasons for developing
this dataset based on ToolQA:

• Modifiability: Most existing benchmarks (Qin et al., 2023b; Guo et al., 2024) provide APIs
through platforms like RapidAPI (link), which limits our ability to control or modify these APIs.
3https://www.python.org/
4https://pytorch.org/
5https://huggingface.co/
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This constraint inhibits the implementation of tool variability. In contrast, ToolQA enables us to
directly modify the API services, facilitating the exploration of dynamic tool behaviors.

• Result-oriented: Unlike most existing benchmarks (Li et al., 2023; Tang et al., 2023; Du et al.,
2024), ToolQA emphasizes results rather than the sequence of API invocations. This distinction
is critical, as modifying the API in these benchmarks necessitates re-annotating the entire se-
quence of API invocations. By focusing on results, ToolQA eliminates the need for large-scale
re-annotation, thereby facilitating a more flexible and efficient evaluation of tool variability.

• Sophisticated yet Comprehensive: Although ToolQA comprises only 12 tools, it offers a diverse
range of functionalities, including text tools, database tools, graph tools, code tools, and system
tools. This comprehensive yet manageable set of tools stands in stark contrast to benchmarks
that incorporate thousands of APIs (Qin et al., 2023b; Tang et al., 2023), where implementing
tool variability for initial explorations can be exceedingly challenging. Consequently, ToolQA
provides a balanced and practical platform for our pioneering research into tool variability.

• Challenge: ToolQA poses significant challenges by encompassing 7 datasets across two lev-
els of difficulty: easy and hard. These tasks cannot be accomplished solely with the internal
knowledge of LLM; rather, they necessitate the integration of external knowledge through tool
utilization (Zhuang et al., 2023b). Therefore, the performance on these tasks directly reflects the
tool-using capabilities of the models.

Table 6: Dataset statistics of ToolQA-D.

Context Data Name # Training set # Dev Set # Test set
Easy Hard Easy Hard Easy Hard

Temporal Flight 1087 950 100 100 100 100
Coffee 804 1167 100 100 100 130

Spatial Yelp 1097 793 100 100 100 100
Airbnb 1000 818 100 100 100 100

Social Dblp 1000 963 100 100 100 100

Science Scirex 248 393 100 100 100 100

Personal Agenda 998 800 100 100 100 100

Table 6 provides detailed statistics for ToolQA-D. We use the dataset processed by Zhuang et al.
(2023b) as our test set, and reprocess a batch of data according to the settings established by Zhuang
et al. (2023b) as our training set and development set. We ensure that there is no overlap between the
training, development, and test sets. Different datasets cater to different contexts and require various
tools, making ToolQA-D particularly suitable for exploring tool variability in initial research6. For
more API settings, please refer to Appendix B.

As discussed in Section 4, we have constructed ToolQA-D, the first benchmark designed to investi-
gate tool variability based on ToolQA (Zhuang et al., 2023b). We denote the original API usage of
ToolQA as Pc and employ the GPT-4 to randomly modify Pc in terms of API names, parameters,
and response formats, resulting in two new sets of API usage: Psin and PsOOD . Note that the prompt
is constrained solely to the collected API usage Pc, which may be outdated, while Psin and PsOOD

are deployed on the server that is agnostic to LLMs. Furthermore, the prompts do not contain any
information about tool variability unless the model autonomously interacts with the external envi-
ronment. In other words, we deliberately refrain from indicating in the prompts that the API may
become deprecated. Moreover, in our ToolQA-D, we ensure that the modified APIs retain similar
meanings and adhere to CamelCase conventions, aligning with real-world scenarios.

Specifically, we will maintain the system tools in a static condition (e.g., "Finish", which re-
lies solely on the LLM and is independent on the external environment). We enable GPT-4 to
randomly alter the names or parameters of the APIs, including textual variations and the random
insertion of special characters. Here, we primarily focus on the underscore (“ ”), as it is the most
commonly encountered case. We will further investigate the impact of other special characters

6The ToolQA-D benchmark is provided in the supplementary materials.
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in Section 5.3. Additionally, we will slightly alter the functionality and the invocation patterns
of the APIs. For instance, for "RetrieveAgenda", we will introduce the "return num"
parameter in Psin and PsOOD to control the number of returned results. For "FilterDB",
we will modify the original string format ("NAME=Chao Zhang, Date<=2004-01-16")
for filtering conditions to a dictionary format, which requires the model to explicitly enumer-
ate each filtering condition ({"condition1": "NAME=Chao Zhang", "condition2":
"Date<=2004-01-16"}). Similarly, we will change the dictionary format back to a string for-
mat for cases like "EdgeCheck". Additionally, we will impose formatting requirements on API
parameters. For example, we will require the Python code begins with the phrase "The Python
code is as follows:"; otherwise, it will be deemed a failed invocation. Through this ap-
proach, we aim for the LLM not to rigidly replicate the API usage as provided in the prompt, but
rather to genuinely possess effective tool-using capabilities. The specific API changes are illustrated
below, with red text indicating changes compared to Pc.

Pc

1. RetrieveAgenda:
Action: RetrieveAgenda
Action Input: {"keyword": "Amelia Breakfast Meeting 2022/01/16"}
----------
2. RetrieveScirex:
Action: RetrieveScirex
Action Input: {"keyword": "F-Measure score of the EAST method on IC15
dataset for Scene Text Detection task"}
----------
3. LoadDB:
Action: LoadDB
Action Input: {"DBName": "airbnb"}
----------
4. FilterDB:
Action: FilterDB
Action Input: {"condition": "NAME=Chao Zhang, Date<=2004-01-16"}
----------
5. GetValue:
Action: GetValue
Action Input: {"column name":"price,service fee"}
----------
6. LoadGraph:
Action: LoadGraph
Action Input: {"GraphName": "dblp"}
----------
7. NeighbourCheck:
Action: NeighbourCheck
Action Input: {"GraphName": "PaperNet", "Node": "Blockchain Simulators:
A Systematic Mapping Study"}
----------
8. NodeCheck:
Action: NodeCheck
Action Input: {"GraphName": "AuthorNet", "Node": "Nicola Ferrier"}
----------
9. EdgeCheck:
Action: EdgeCheck
Action Input: {"GraphName": "AuthorNet", "Node1": "Domingo Biel",
"Node2": "Arnau Doria-Cerezo"}
----------
10. SQLInterpreter:
Action: SQLInterpreter
Action Input: {"SQL": "SELECT Volume FROM coffee.coffee data WHERE Date
= ’2000-01-14’;"}
----------
11. PythonInterpreter:
Action: PythonInterpreter
Action Input: {"Python": "page start, page end = 1, 6
num pages = page end - page start + 1
print(num pages)"}
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----------
12. Finish:
Action: Finish
Action Input: {"answer": "6"}

Psin

1. RetrieveAgenda:
Action: Fetch Agenda Data
Action Input: {"Query": "Stephen’s Opera performance", "return num": 3}
----------
2. RetrieveScirex:
Action: FetchScirexData
Action Input: {"QueryText": "Mean IoU score of the FRRN method"}
----------
3. LoadDB:
Action: InitializeDatabase
Action Input: {"DatabaseName": "airbnb"}
----------
4. FilterDB:
Action: Apply Database Filters
Action Input: {"condition1": "NAME=Chao Zhang", "condition2":
"Date<=2004-01-16"}
----------
5. GetValue:
Action: FetchValue ByKey
Action Input: {"column1": "price", "column2": "service fee",
"ReturnResult": "True"}
----------
6. LoadGraph:
Action: InitializeGraphData
Action Input: {"Graph Name": "dblp"}
----------
7. NeighbourCheck:
Action: Verify NeighbourNodes
Action Input: {"Graph Name": "AuthorNet", "graphNode": "Chao Zhang",
"ReturnResult": "True"}
----------
8. NodeCheck:
Action: ValidateGraphNode
Action Input: {"Graph Name": "AuthorNet", "graphNode": "Chao Zhang"}
----------
9. EdgeCheck:
Action: ValidateGraphEdge
Action Input: {"Graph Name": "AuthorNet",
"NodeInfos": "FirstNode[Chao Zhang], SecondNode[Weihong Lin]"}
----------
10. SQLInterpreter:
Action: ExecuteSQLQuery
Action Input: {"SQLCommand": "The SQL code is as follows:
SELECT Volume FROM coffee.coffee data WHERE Date = ’2000-01-14’;"}
----------
11. PythonInterpreter:
Action: Execute Python Script
Action Input: {"PythonCode": "The Python code is as follows:
import numpy as np
print(np.mean([247.0, 253.0, 230.0]))"}
----------
12. Finish:
Action: Finish
Action Input: {"answer": "6"}

PsOOD

1. RetrieveAgenda:
Action: Call Retrieve On Agenda
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Action Input: {"searchTerm": "Amelia Breakfast Meeting 2022/01/16",
"passage num": 3}
----------
2. RetrieveScirex:
Action: CallRetrieveOnScirex
Action Input: {"queryKeyword": "F-Measure score of the EAST method"}
----------
3. LoadDB:
Action: Init_DB
Action Input: {"DatabaseName": "airbnb"}
----------
4. FilterDB:
Action: DoFilter OnDatabase
Action Input: {"filterCriteria1": "NAME=K. John", "filterCriteria2":
"Date<=2008-02-16"}
----------
5. GetValue:
Action: Extract Value
Action Input: {"fieldName1": "price", "fieldName2": "service fee",
"ReturnValue": "True"}
----------
6. LoadGraph:
Action: Import_Graph
Action Input: {"Graph": "dblp"}
----------
7. NeighbourCheck:
Action: Get NeighbourList
Action Input: {"Graph": "AuthorNet", "Vertex": "K. John",
"ReturnValue": "True"}
----------
8. NodeCheck:
Action: Inspect TheNodes
Action Input: {"Graph": "AuthorNet", "Vertex": "K. John"}
----------
9. EdgeCheck:
Action: Inspect TheEdges
Action Input: {"CheckInfos": "Graph[AuthorNet], Vertex1[K. John],
Vertex2[Peter]"}
----------
10. SQLInterpreter:
Action: ProcessSQLQuery
Action Input: {"SQL Query": "This is the SQL code:
SELECT Volume FROM coffee.coffee data WHERE Date = ’2000-01-14’;"}
----------
11. PythonInterpreter:
Action: Process Python Code
Action Input: {"python execute Code": "This is the Python code:
import numpy as np
print(np.mean([247.0, 253.0, 230.0]))"}
----------
12. Finish:
Action: Finish
Action Input: {"answer": "6"}

B.2 DETAILS OF ANALYSIS ON TOOL VARIABILITY

As discussed in Section 5.3, we re-prompt GPT-4 to randomly generate modifications to the original
API for a specific change. We do not modify the system tools, such as Finish and UpdateTool,
since they are system-level tools that do not rely on external servers. Here is the example:

Changes on API Name

Original API -> Changed API
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1. Textual Variations:

RetrieveAgenda -> FetchAgenda; RetrieveScirex -> FetchScirex
LoadDB -> LoadDatabase; FilterDB -> FilterDatabase
GetValue -> RetrieveValue; LoadGraph -> ImportGraph
NeighbourCheck -> NeighborVerification; NodeCheck -> NodeVerification
EdgeCheck -> EdgeVerification; SQLInterpreter -> SQLProcessor
PythonInterpreter -> PythonProcessor;

2. Random Insertion of SpecialCharacter:

RetrieveAgenda -> Retrieve Agenda; RetrieveScirex -> Retrieve-Scirex
LoadDB -> Load@DB; FilterDB -> Filter DB
GetValue -> Get@Value; LoadGraph -> Load#Graph
NeighbourCheck -> Neighbour Check; NodeCheck -> Node%Check
EdgeCheck -> Edge#Check; SQLInterpreter -> SQL Interpreter
PythonInterpreter -> Python-Interpreter;

Changes on API Parameters

Original Parameters -> Changed Parameters

1. Textual Variations:

keyword -> SearchQuery; DBName -> TheDBName
condition -> FilterCondition; column name -> SelectedColumn
GraphName -> GraphIdentifier; Node -> NodeIdentifier
ReturnResult -> OutputResult; return num -> numberOfResults;
NodeInfos -> NodeDetails; SQL -> DatabaseQuery
Python -> ScriptCode;

2. Random Insertion of SpecialCharacter:

keyword -> keyword?; DBName -> DB@Name
condition -> #condition; column name -> column&name
GraphName -> Graph@Name; Node -> Node
ReturnResult -> Return%Result; return num -> return#num;
NodeInfos -> Node#Infos; SQL -> SQL%
Python -> %Python;

Changes on API Response Formats

Original Response Format:
"<INFORMATION HERE>"

Changed Response Format:
{"State": "Success" (or "Failed"), "Message": <INFORMATION HERE>}

C CASE STUDY

C.1 CASES OF SELF-REFLECTION

In our TOOLEVO, we require the model to engage in self-reflection upon encountering errors, rather
than backtracking or stopping reasoning as in previous work (Schick et al., 2023; Qin et al., 2023b).
Self-reflection is reflected in the subsequent steps of thought and action, as shown in Equation 5.
Here is an example of self-reflection:

An example of Self-Reflection

<SOME PREVIOUS STEPS HERE ...>
Thought: The observation indicates that there was a type error when attempting to subtract the integer
(1245) from the float (1240.0). This means that one of the values is not being properly converted to an
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integer before subtraction. I need to adjust my code accordingly. (There was a type error
in the previous step, and the model starts to reflect on the cause
of this error.)

Action: Execute Python Script

Action Input: {“PythonCode”: “The Python code is as follows:

crs time = ’1245’
dep time = ’1240.0’
time diff = abs(int(crs time) - int(dep time))
print(time diff)

”}

Observation: ValueError: invalid literal for int() with base 10: ’1240.0’ (The model
successfully resolved the TypeError through self-reflection, but
triggered a new ValueError.)

Thought: The observation indicates that the value ‘1240.0’ cannot be converted into an integer using
‘int()’. This is because it contains a decimal point, which is not compatible with integer conversion.
If the values are stored as strings, I need to ensure they are properly formatted before performing
arithmetic operations. (The model once again engages in self-reflection
based on environmental feedback, analyzes the cause of the error,
and provides potential solutions.)

Action: Execute Python Script

Action Input: {“PythonCode”: “The Python code is as follows:

crs time = ’1245’
dep time = ’1240.0’
time diff = abs(int(crs time) - int(dep time.split(’.’)[0]))
print(time diff)

”}

Observation: 5

Thought: The Python code has successfully calculated the difference between the CRS recorded
departure time and actual departure time, which is 5 minutes. Now, I can provide this answer.

Action: Finish

Action Input: {“answer”: “5”}

Observation: Answer is CORRECT

In this example, we observe that based on environmental feedback, the model effectively identifies
the causes of errors through self-reflection and corrects its actions, which is crucial for tool variabil-
ity. It is worth noting that our approach does not rely on more powerful models, such as GPT-4, but
fully leverages the model’s capabilities to learn from interactions and feedback from the dynamic
environment.

C.2 CASES OF TOOL UPDATE

As discussed in Appendix A.5, we have transformed the tool update module into a system tool:
UpdateTool. Here is an example of tool update module:

An example of Tool Update

<SOME PREVIOUS STEPS HERE ...>
Thought: With the opening and closing prices for 2012-03-08, I can calculate the percentage change
in coffee price. The formula to calculate percentage change is ((Closing Price - Opening Price) /
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Opening Price) * 100.

Action: PythonInterpreter (The model attempts to invoke the outdated API.)

Action Input: {“Python”: “

((float(189.35) - float(189.7)) / float(189.7)) * 100

”}

Observation: Error: PythonInterpreter[Python] is deprecated and will be removed in future releases.
Use Execute Python Script[PythonCode], param example: {“PythonCode”: “The Python code is as
follows: \nimport numpy as np\nprint(np.mean([247.0, 253.0, 230.0]))”} instead. (Deprecation
errors.)

Thought: The PythonInterpreter tool has been deprecated. I should use the Execute Python Script
function to execute the Python code for calculating percentage change. (Self-Reflection
base on deprecation errors.)

Action: Execute Python Script

Action Input: {“PythonCode”: “The Python code is as follows:

percentage_change = ((float(189.35) - float(189.7)) /
float(189.7)) * 100
print(round(percentage_change, 2))

”}

Observation: -0.18

Thought: The Execute Python Script API works as intended, and we have successfully calculated
the result. Now, we need to Finish the task using the calculated result. First, let’s update the tool
description for the new API.

Action: UpdateTool (Tool Update)

Action Input: {“newtool desc”: “Execute Python Script[PythonCode], which is an updated version
of PythonInterpreter and return the execution result according to the python code. For example,
{‘PythonCode’: ‘The Python code is as follows:\npercentage change = ((float(189.35) - float(189.7))
/ float(189.7)) * 100\nprint(round(percentage change, 2))’}. ”} (Successfully updated Pc

in the prompt.)

Observation: The description for the new tool has been updated successfully.
<SOME NEXT STEPS HERE ...>

Through the tool updating module, the LLM can update the usage of tools based on environmental
feedback, allowing it to gradually adapt to dynamic environments. The tool updating module also
serves as a memory mechanism, summarizing environmental feedback and its exploration results to
update API usage in the prompt, thereby facilitating subsequent invocations.

C.3 ERROR ANALYSIS

To facilitate future research, we conducted a comprehensive error analysis of performance in the
PsOOD environment. We investigate gpt-4o-mini and the Llama3 series, such as Llama3-72B-
Instruct, Static-SFT (Llama3-8B) and our TOOLEVO (Llama3-8B), by randomly selecting 50 error
samples for analysis, as detailed in Table 7. We have identified three main types of errors:

• Invocation Error in New Tools: refers to the challenges that the model encounters when explor-
ing the usage of new tools. Since only outdated API usage is provided in the prompt, the model is
more prone to make mistakes when using new tools in a dynamic environment. There are mainly
two reasons:

– Invalid Invocation: refers to instances where the model encounters invocation errors while
invoking new tools, such as incorrect API names or parameters, leading to failed tasks.
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– Repeated Use of Deprecated Tools: indicates the repeated invocation of deprecated APIs
as provided within the prompt. In this error, the model fails to realize from the environmental
feedback that the API has been deprecated.

• Planning Error: refers to the failure to complete the task due to planning errors. In this error,
the model can successfully invoke new tools based on environmental feedback.

– Invocation Looping: The model believes that the API does not return key information and
keeps invoking new tools to complete the task. However, the model has missed the key
information or did not return the key information due to improper parameter settings.

– Incorrect Output: The model employs a series of tool invocations but ultimately arrives at
an incorrect result.

• Other Error: refers to error causes aside from invocation errors of new tools and planning errors:

– Instructions Not Followed: This means that the model does not follow the REACT format
we specified (see Appendix A.1 for details), resulting in task failure.

– Tool Misuse: After encountering a deprecation error, the model hallucinates nonexistent
tools and keeps invoking them, which ultimately leads to task failure.

Table 7: Error Analysis

Error Type Invocation Error in New Tools Planning Error Other Error
Invalid

Invocation
Repeated Use of
Deprecated Tools

Invocation
Looping

Incorrect
Output

Instructions
Not Followed

Tool
Misuse

GPT-4o-mini 36.0% 6.0% 16.0% 16.0% 14.0% 12.0%
Llama3-72B-Instruct 68.0% 6.0% 12.0% 4.0% 6.0% 4.0%
Static-SFT 18.0% 78.0% 4.0% 0.0% 0.0% 0.0%
TOOLEVO 30.0% 2.0% 42.0% 26.0% 0.0% 0.0%

From Table 7, we have the following observations: (1) GPT-4o-mini is able to recognize deprecation
errors and attempts to invoke new tools accordingly. However, it may still overlook some details,
leading to invocation errors, and GPT-4o-mini might not adhere to the specified format (Instructions
Not Followed), resulting in task failure. (2) Llama3-72B-Instruct is able to recognize deprecation
errors. However, it tends to exhibit more errors when invoking new tools. (3) Static-SFT focuses on
mastering tool usage in a static environment, making it easier to repeatedly invoke deprecated APIs
(Repeated Use of Deprecated Tools). (4) From Table 4, our method demonstrates a strong ability to
adapt to tool variability, significantly surpassing the baselines. However, our method still encounters
issues such as invocation errors with new tools and inaccuracies in assessing key information from
the API responses. As a preliminary exploration of tool variability, we aim to leverage error analysis
to inform future work, ultimately making tool learning applicable to real-world scenarios.

D PROMPTS

D.1 PROMPT FOR API MODIFICATION

To simulate tool variability scenarios effectively, we leverage the capabilities of GPT-4 to system-
atically generate diverse and realistic API modifications. This approach ensures a comprehensive
representation of potential API variability.

You are tasked with modifying API and parameter names while adhering to
the following guidelines:
- Semantic Preservation: Maintain the original semantic meaning of
the API and parameter names.
- Naming Convention: Adhere to camelCase naming convention for both API
and parameter names.
- Special Character Insertion: Randomly insert special characters (e.g.,
, -, @, %, #) between words in the names. Do not insert special
characters within individual words.
- Word Modification: Randomly replace words with synonyms or related
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terms. You may add or remove words, ensuring the overall meaning is
preserved.
- Consistency: Ensure that the modified names remain consistent with
common programming practices.
- Logical Structure: Ensure that each modification is unique and that
the overall structure of the API remains logical and intuitive to
developers.

<EXAMPLES HERE>

Please apply these modifications to the following list of API and
parameter names:

<ORIGINAL API AND PARAMETER>

<model’s output here>

D.2 PROMPT FOR TOOLEVO

Following Zhuang et al. (2023b), we employ few-shot learning to guide the pretrained model in
executing tool invocation, ensuring that the outputs adhere to the format of thought/action/action
input/observation (Yao et al., 2023), as illustrated in the following example.

You are a powerful agent with excellent capabilities in using tools.
Answer the questions as best you can. You have access to the following
tool:

(1) RetrieveAgenda[keyword], which retrieves the agenda related to
keyword.
(2) RetrieveScirex[keyword], which retrieves machine learning papers’
paragraphs related to keyword.
(3) LoadDB[DBName], which loads the database DBName and returns the
database. The DBName can be one of the following: flights/coffee/airbnb
/yelp/agenda.
(4) FilterDB[condition], which filters the database DBName by the column
column name the relation (e.g., =, >, etc.) and the value, and returns
the filtered database.
(5) GetValue[column name], which returns the value of the column
column name in the database DBName.
(6) LoadGraph[GraphName], which loads the graph GraphName and returns
the graph. The GraphName can be one of the following: PaperNet/AuthorNet.
(7) NeighbourCheck[GraphName, Node], which lists the neighbours of the
node Node in the graph GraphName and returns the neighbours.
(8) NodeCheck[GraphName, Node], which returns the detailed attribute
information of Node.
(9) EdgeCheck[GraphName, Node1, Node2], which returns the detailed
attribute information of the edge between Node1 and Node2.
(10) SQLInterpreter[SQL], which interprets the SQL query SQL and
returns the result.
(11) PythonInterpreter[Python], which interprets the Python code Python
and returns the result.
(12) Finish[answer], which returns the answer and finishes the task.
(13) UpdateTool[newtool desc], which updates the description of the tool.

Please adhere to the guidelines as follows:
1. When solving problem, you should think step by step, where each step
includes 3 mini-steps Thought/Action/Action Input/Observation.
2. If some steps require the use of tools, you should accurately specify
the tool names as well as the settings of the parameters.
3. If some step requires accurate calculation, you should write Python
code and execute for accurate result.
4. When you discover that a tool has been deprecated and successfully
invoke the corresponding new tool for the first time, please use
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UpdateTool to add a description of the new tool.
5. Upon completing the task, you should call Finish[answer] to return
the answer.
6. Please use the following template.

Question: the input question

Thought: the text analysis

Action: the action to take, should be tool names

Action Input: the parameters of tools, should be in JSON format

Observation: the result of the tool invocation.

... (this Thought/Action/Action Input/Observation can repeat N times)

Here are some examples:

<few-shot examples here>

Now! It’s your turn.

Question: <QUESTION HERE>

<model’s output here>
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