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Abstract

Time series classification is a fundamental task in healthcare and industry, yet1

the development of time series foundation models (TSFMs) remains limited by2

the scarcity of publicly available time series datasets. In this work, we propose3

Time Vision Transformer (TiViT), a framework that converts time series into4

images to leverage the representational power of frozen Vision Transformers (ViTs)5

pretrained on large-scale image datasets. First, we show that the 2D patching of6

ViTs for time series can increase the number of label-relevant tokens and reduce7

the sample complexity. Second, we demonstrate that TiViT achieves state-of-the-8

art performance on time series classification benchmarks by utilizing the hidden9

representations of large OpenCLIP models. We explore the structure of TiViT10

representations and find that intermediate layers with high intrinsic dimension are11

the most effective for time series classification. Finally, we assess the alignment12

between TiViT and TSFM representations and identify a strong complementarity,13

with further performance gains achieved by combining their features.14

1 Introduction15

Inspired by the success of foundation models in natural language processing (NLP) and computer16

vision (CV), similar models have recently been developed for the analysis of time series following17

two different approaches. The first one is to pretrain time series foundation models (TSFMs) in a18

self-supervised way [Ansari et al., 2024, Das et al., 2024, Feofanov et al., 2025, Goswami et al., 2024,19

Lin et al., 2023] using a large-scale real-world time series dataset. The second one is to repurpose20

powerful foundation models from other domains, such as NLP [Jin et al., 2024, Zhou et al., 2023]21

and CV [Chen et al., 2024, Li et al., 2023b], for time series tasks. The idea behind these approaches22

is to benefit from the vast amount of samples that large vision and language models are trained on.23

Time series can be transformed into images in many ways, including line plots, heatmaps, or24

spectrograms [Ni et al., 2025]. Wu et al. [2023] trained TimesNet end-to-end on heatmaps generated25

from time series. Li et al. [2023b] finetuned SwinTransformer on line plots of irregularly sampled26

time series. In contrast, we are the first to demonstrate that frozen vision foundation models such as27

OpenCLIP [Cherti et al., 2023, Ilharco et al., 2021], SigLIP 2 [Tschannen et al., 2025], and DINOv228

[Oquab et al., 2024], pretrained solely on natural images or image-text pairs, can be directly applied29

to time series classification without any pretraining or fine-tuning on time series data.30

Our main contributions are as follows: (1) We show that pretrained ViTs of foundation models can31

be superior to TSFMs in time series classification. We achieve this by transforming time series32

into images and by further using hidden layer representations of vision models. (2) We propose a33

theoretical insight showing that image-based time series modeling can be efficient when used with34

Transformers since it reduces sample complexity during training. (3) We show that representations35
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Figure 1: Illustration of TiViT on a time series sample from ECG200 [Olszewski, 2001]. We split the
time series into segments and stack them to form a grayscale image. Then, we patch the image in
2D and feed it into a frozen ViT pretrained on large-scale image datasets. We average the hidden
representations from a specific layer and pass them to a learnable classification head. Combining the
representations of TiViT and TSFMs such as Mantis further improves classification accuracy.

from TSFMs and TiViT can be concatenated to provide an average improvement of +3% on 12836

UCR [Dau et al., 2019] time series datasets, highlighting the complementarity of these models.37

2 Modeling Time Series as Images38

Although previous studies [Chen et al., 2024, Lin et al., 2024, Wu et al., 2023] have modeled time39

series as 2D matrices, there is no theoretical understanding of why such an approach may be beneficial40

in practice.41

Theoretical Analysis We motivate the representation of time series as heatmap images by com-42

paring the 1D and 2D patching of a periodic time series t ∈ RT (with T = k2, period p = k).43

Our analysis focuses on the number of label-relevant tokens each method produces, which in turn44

determines the sample complexity of a Transformer [Li et al., 2023a]. The patching methods are:45

• 1D patching: The series t is split into k contiguous, non-overlapping tokens xl ∈ Rk.46

• 2D patching: The series t is reshaped into a k × k matrix, then divided into k non-47

overlapping
√
k ×

√
k patches, which are flattened to form tokens x′

(i,j) ∈ Rk.48

Following the data model from Li et al. [2023a] for binary classification, we assume tokens are noisy49

versions of two class-specific patterns, µ1 and µ2. A token is label-relevant if it is closer to the50

pattern of the correct class. The sample complexity of a shallow Transformer scales as O(1/α2
∗)51

where α∗ denotes the fraction of label-relevant tokens. Our key insight is that 2D patching increases52

this fraction, which we formalize in the following proposition. The full proof is postponed to53

Appendix B.2 and illustrated in Appendix B.3.54

Proposition 1. Let a time series t ∈ RT be composed of k segments, where each segment is either55

a non-discriminative pattern µ1 or a label-relevant pattern µ2. Let |{i : xi = µ2}| = n′ and56

assume that 2x′ · (µ1 − µ2) ≤ ||µ1||2 − ||µ2||2 whenever |{i : x′i ∈ µ2}| ≥
√
k. Then, it holds:57

α2D
∗ ≥ α1D

∗ = n′

k , and the inequality is strict if n′ mod
√
k > 0.58

Table 1: Comparison of patching strategies
on the UCR benchmark.

Patching Non-overlap Overlap

1D 2D 1D 2D

Accuracy 76.4 76.8 76.6 77.4

Empirical Validation To verify our theoretical in-59

sight, we compare the two patching strategies on the60

UCR benchmark using a fixed Transformer architecture61

and pretraining paradigm. Details are provided in Ap-62

pendix C. As shown in Table 1, 2D patching consistently63

outperforms 1D patching. Subsequently, we build on64

this idea of modeling time series as images and further65

leverage pretrained vision models for feature extraction.66
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3 TiViT: Time series classification with pretrained Vision Transformers67

We introduce TiViT leveraging pretrained frozen ViTs from the vision or vision-language domain68

for time series classification. Figure 1 illustrates our approach. We are given a time series dataset69

T = {tn|tn ∈ RT×D}Nn=1 containing N samples, each of length T and dimensionality D. The70

corresponding targets Y = {yn}Nn=1 are labels yn ∈ {1, ..., C} from C classes.71

Time series-to-image transformation Following the channel independence assumption proposed72

by Nie et al. [2023], we first split a multivariate time series tn ∈ RT×D into D univariate time series73

{tnd ∈ RT }Dd=1. We then normalize each univariate time series tnd using robust scaling, defined as:74
tnd−Q2

Q3−Q1
, where Q1, Q2, Q3 are the first, second (median), and third quartiles, respectively. We apply75

padding at the beginning of each time series by replicating its first value and subsequently segment76

it into M patches {xm}Mm=1 of size P . Given a patch length P and stride S, the total number of77

patches is: M =
⌊
T−P
S

⌋
+ 1. We stack the patches to generate a 2D representation X ′ ∈ RM×P ,78

which we then render into a grayscale image X ′ ∈ RM×P×3 by replicating its signals across three79

channels. To align with the square input resolution (R,R) expected by the ViT, we resize the image.80

Time series classification We feed each grayscale image X ′ representing a univariate time series81

into a pretrained and frozen ViT v with L hidden layers. The ViT inherent 2D patching yields82

a sequence {x′
k ∈ RU2}Kk=1 of flattened patches where (U,U) is the resolution per patch and83

K = R2/U2 is the resulting number of patches. ViTs generally prepend a classification token to84

this sequence. The ViT consumes all input tokens and produces a sequence of features at every85

layer: v(X ′) =
{
[h

(l)
0 ,h

(l)
1 , ...,h

(l)
K ]

}L
l=0

. To obtain a single embedding vector e per image, we86

select a specific layer l and average its K + 1 representations: e = h
(l)
avg = 1

K+1

∑K
k=0 h

(l)
k . For87

multivariate time series, we feed per-channel image representations {X ′
d}Dd=1 separately into the ViT88

and concatenate the resulting embeddings for a specified layer: Concat(e1, ..., eD). We only train a89

linear classifier on the ViT representations and their corresponding class labels.90

4 Experimental evaluation91

We evaluate TiViT with three different ViT backbones (CLIP [Radford et al., 2021, Cherti et al.,92

2023, Ilharco et al., 2021], SigLIP 2 [Tschannen et al., 2025], DINOv2 [Oquab et al., 2024]) on the93

UCR [Dau et al., 2019] and UEA [Bagnall et al., 2018] benchmarks for time series classification. We94

compare the performance of TiViT to two state-of-the-art TSFMs: Mantis [Feofanov et al., 2025] and95

Moment [Goswami et al., 2024]. Our experimental setup is detailed in Appendix D.96

4.1 Transforming time series into images for ViT feature extraction97

The performance of our time series-to-image transformation is sensitive to the patch size P , as98

extreme values can create redundant visual tokens during resizing to the ViT input resolution. To99

avoid a computationally expensive hyperparameter search for the optimal patch size P ∗ per dataset,100

we propose the heuristic P =
√
T for any series of length T . This choice yields a square-shaped101

matrix representation prior to resizing, which minimizes distortion and preserves patch diversity102

(see Figure 5c). While an exhaustive search for P ∗ offers a marginal accuracy improvement (see103

Table 5a), our heuristic provides a strong baseline at a fraction of the computational cost. We further104

observe that introducing overlap between patches consistently boosts performance (see Table 5b).105

Consequently, the following experiments use a patch size of P =
√
T and a stride of S = P/10.106

4.2 Hidden representations are most effective in time series classification107

While the final representations of ViTs typically capture high level semantics, intermediate layers108

encode lower level information [Dorszewski et al., 2025]. Our study reveals that the intermediate109

representations of ViTs are the most effective for downstream classification. In Figure 2a we report110

the classification performance of TiViT with pretrained ViTs from DINOv2, CLIP, and SigLIP 2 on111

the validation split of the UCR benchmark. For each dataset, we extract representations from the112

hidden layers of ViTs, average them, and train a linear classifier. The intermediate representations of113

ViTs, between 40% and 70% of the layer depth, achieve the highest classification accuracy.114
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Figure 2: (a) Validation accuracy and (b) Intrinsic dimensionality using hidden representations at
different depth of ViTs (CLIP, DINOv2 and SigLIP 2). Results are averaged over 128 datasets from
the UCR benchmark and three random seeds.

Intrinsic dimension To better understand the hidden representations of ViTs, we analyze their115

intrinsic dimension (see Figure 2b) and principal components (see Appendix E.4). Valeriani et al.116

[2023] have previously investigated the geometry of hidden representations of Transformers for117

in-domain vision and language applications. We measure the intrinsic dimension of ViTs applied on118

time series from the UCR archive using the DADApy [Glielmo et al., 2022] implementation of the119

TWO-NN estimator [Facco et al., 2017]. Figure 2b displays for three different ViT backbones the120

intrinsic dimensionality of their representations at varying layer depth. The best performing layers121

often exhibit the highest intrinsic dimensionality.122

Table 2: Classification accuracy of TSFMs
and TiViT per benchmark.

Model UCR UEA

Moment 79.0 69.9
Mantis 80.1 72.4

TiViT (Ours) 81.3 72.0

TiViT + Moment (Ours) 82.5 72.6
TiViT + Mantis (Ours) 83.0 73.7

Benchmark A full comparison of TiViT and TSFMs on123

the UCR and UEA test set is reported in Table 2. The124

state-of-the-art TSFM Mantis achieves a linear classifi-125

cation accuracy of 80.1% on the UCR benchmark. Our126

statistical analysis with a paired t-test and a significance127

level of 0.05 confirms that TiViT significantly outper-128

forms (p = 0.03) Mantis across the 128 datasets of the129

UCR benchmark, achieving 81.3% accuracy. We further130

extend our analysis to the classification of multivariate131

time series. TiViT reaches a classification accuracy of132

72.0%, which is statistically on par with Mantis on the133

UEA benchmark.134

4.3 Alignment and fusion of TiViT and TSFM representations135

We further explore the complementarity of TiViT and TSFM representations when concatenating136

their features for joint classification. As depicted in Table 2, the combination of TiViT and TSFM137

consistently improves the classification performance over any standalone model. While the com-138

bination of two TSFMs yields 81.5% accuracy, fusing TiViT with Moment and Mantis leads to139

even higher accuracies of 82.5% and 83.0%, respectively. These results underscore the potential of140

multimodal time series analysis. To uncover the differences between representations learned by ViTs141

and TSFMs, we additionally assess the alignment of their representation spaces using the mutual142

k-nearest neighbor metric [Huh et al., 2024] in Appendix E.5.143

5 Conclusion144

In this paper, we showed that modeling time series in 2D rather than 1D benefits time series145

classification with Transformers. Building on this insight, we introduced TiViT, leveraging large146

pretrained ViTs for feature extraction on images generated from time series. Our analysis revealed147

that the hidden representations of ViTs characterized by high intrinsic dimensionality are most148

effective in time series classification. TiViT significantly outperformed state-of-the-art TSFMs in149

time series classification on UCR, and reached comparable performance on UEA. Furthermore, we150

investigated multimodal time series analysis by merging the representations of TiViT and TSFMs,151

and achieved state-of-the-art results for foundation models in zero-shot and linear classification.152
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Teresa Dorszewski, Lenka Tětková, Robert Jenssen, Lars Kai Hansen, and Kristoffer Knutsen Wickstrøm. From193

colors to classes: Emergence of concepts in vision transformers. arXiv preprint arXiv:2503.24071, 2025.194

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,195

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An196

image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on197

Learning Representations, 2021.198

Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic dimension of199

datasets by a minimal neighborhood information. Scientific Reports, 7:12140, 2017.200

Vasilii Feofanov, Songkang Wen, Marius Alonso, Romain Ilbert, Hongbo Guo, Malik Tiomoko, Lujia Pan,201

Jianfeng Zhang, and Ievgen Redko. Mantis: Lightweight calibrated foundation model for user-friendly time202

series classification. arXiv preprint arXiv:2502.15637, 2025.203

5



Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and Marinka Zitnik.204

UniTS: A unified multi-task time series model. In Advances in Neural Information Processing Systems, pages205

140589–140631, 2024.206

Aldo Glielmo, Iuri Macocco, Diego Doimo, Matteo Carli, Claudio Zeni, Romina Wild, Maria d’Errico, Alex207

Rodriguez, and Alessandro Laio. DADApy: Distance-based analysis of data-manifolds in python. Patterns, 3208

(10):100589, 2022.209

Ary L. Goldberger, Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch. Ivanov, Roger G. Mark,210

Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene Stanley. PhysioBank, PhysioToolkit,211

and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101212

(23):e215–e220, 2000.213

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski. MOMENT:214

A family of open time-series foundation models. In Proceedings of the 41st International Conference on215

Machine Learning, pages 16115–16152, 2024.216

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are zero shot time217

series forecasters. In Advances in Neural Information Processing Systems, 2023.218

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised219

visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern220

Recognition, pages 9729–9738, 2020.221

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders222

are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern223

Recognitio, pages 16000–16009, 2022.224

Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. Position: The platonic representation225

hypothesis. In Proceedings of the 41st International Conference on Machine Learning, pages 20617–20642,226

2024.227

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori, Achal Dave,228

Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt.229

OpenCLIP, 2021. Version 0.1. URL: https://doi.org/10.5281/zenodo.5143773.230

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan Liang,231

Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting by reprogramming large232

language models. In International Conference on Learning Representations, 2024.233

Bastiaan Kemp, Aeilko H. Zwinderman, Bert Tuk, Hilbert A. C. Kamphuisen, and Josefien J. L. Oberye. Analysis234

of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Transactions235

on Biomedical Engineering, 47(9):1185–1194, 2000.236

Christian Lessmeier, James K. Kimotho, Detmar Zimmer, and Walter Sextro. Condition monitoring of bearing237

damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark238

data set for data-driven classification. PHM Society European Conference, 3(1), 2016.239

Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow vision transform-240

ers: Learning, generalization, and sample complexity. In International Conference on Learning Representa-241

tions, 2023a.242

Zekun Li, Shiyang Li, and Xifeng Yan. Time series as images: Vision transformer for irregularly sampled time243

series. In Advances in Neural Information Processing Systems, pages 49187–49204, 2023b.244

Chenguo Lin, Xumeng Wen, Wei Cao, Congrui Huang, Jiang Bian, Stephen Lin, and Zhirong Wu. NuTime:245

Numerically multi-scaled embedding for large-scale time-series pretraining. arXiv preprint arXiv:2310.07402,246

2023.247

Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and Junjie Yang. SparseTSF: Modeling long-term248

time series forecasting with 1k parameters. In Proceedings of the 41st International Conference on Machine249

Learning, pages 30211–30226, 2024.250

Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uWave: Accelerometer-based personalized251

gesture recognition and its applications. In 2009 IEEE International Conference on Pervasive Computing and252

Communications, 2009.253

6

https://doi.org/10.5281/zenodo.5143773


Xu Liu, Juncheng Liu, Gerald Woo, Taha Aksu, Yuxuan Liang, Roger Zimmermann, Chenghao Liu, Silvio254

Savarese, Caiming Xiong, and Doyen Sahoo. Moirai-MoE: Empowering time series foundation models with255

sparse mixture of experts. arXiv preprint arXiv:2410.10469, 2024a.256

Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Timer:257

Generative pre-trained transformers are large time series models. In Proceedings of the 41st International258

Conference on Machine Learning, pages 32369–32399, 2024b.259

Jingchao Ni, Ziming Zhao, ChengAo Shen, Hanghang Tong, Dongjin Song, Wei Cheng, Dongsheng Luo, and260

Haifeng Chen. Harnessing vision models for time series analysis: A survey. arXiv preprint arXiv:2502.08869,261

2025.262

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words:263

Long-term forecasting with transformers. In International Conference on Learning Representations, 2023.264

Robert Thomas Olszewski. Generalized feature extraction for structural pattern recognition in time-series data.265

PhD thesis, Carnegie Mellon University, 2001.266

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov, Pierre267

Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas Ballas, Wojciech268

Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel269

Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski.270

DINOv2: Learning robust visual features without supervision. Transactions on Machine Learning Research,271

2024.272

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,273

Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable274

visual models from natural language supervision. In Proceedings of the 38th International Conference on275

Machine Learning, pages 8748–8763, 2021.276

Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian Khorasani,277

Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir Hassen, Marin Biloš, Sahil278

Garg, Anderson Schneider, Nicolas Chapados, Alexandre Drouin, Valentina Zantedeschi, Yuriy Nevmyvaka,279

and Irina Rish. Lag-Llama: Towards foundation models for probabilistic time series forecasting. arXiv280

preprint arXiv:2310.08278, 2024.281

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman, Mehdi Cherti, Theo282

Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa R Kundurthy,283

Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. LAION-5B: An open large-scale284

dataset for training next generation image-text models. Advances in Neural Information Processing Systems,285

pages 25278–25294, 2022.286

Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdulmohsin, Nikhil287

Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff, Jeremiah Harmsen, Andreas288

Steiner, and Xiaohua Zhai. SigLIP 2: Multilingual vision-language encoders with improved semantic289

understanding, localization, and dense features. arXiv preprint arXiv:2502.14786, 2025.290

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and Alberto Cazzaniga.291

The geometry of hidden representations of large transformer models. In Advances in Neural Information292

Processing Systems, pages 51234–51252, 2023.293

Yihang Wang, Yuying Qiu, Peng Chen, Kai Zhao, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, and Chenjuan294

Guo. ROSE: Register assisted general time series forecasting with decomposed frequency learning. arXiv295

preprint arXiv:2405.17478, 2024.296

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. TimesNet: Temporal 2d-297

variation modeling for general time series analysis. In International Conference on Learning Representations,298

2023.299

Hao Xue and Flora D. Salim. PromptCast: A new prompt-based learning paradigm for time series forecasting.300

IEEE Transactions on Knowledge and Data Engineering, 36(11):6851–6864, 2024.301

Tian Zhou, Peisong Niu, Liang Sun, and Rong Jin. One fits all: Power general time series analysis by pretrained302

lm. In Advances in Neural Information Processing Systems, volume 36, pages 43322–43355, 2023.303

7



Appendix304

In Section A, we outline related work on time series foundation models and on transforming time305

series into images. In Section B, we summarize the theoretical analysis of Li et al. [2023a] on learning306

and generalization for Vision Transformers and detail our proof of label relevance for 2D patching.307

In Section C, we describe the model and pretraining setup used in our comparison of 1D and 2D308

patching for Transformers. In Section D, we explain the setup of our experimental evaluation of309

TiViT. In Section E, we further analyze the size and type of TiViT backbones. In Section F, we310

provide the benchmark results for each dataset from the UCR and UEA archive. Finally, we discuss311

the broader impacts of our work in Section G.312

A Related work313

Time series foundation models Recently, the research community has witnessed an impressive surge314

in the number and variety of TSFMs. At first, such models were based on repurposing large language315

models (LLMs) for time series tasks [Cao et al., 2024, Chang et al., 2025, Gruver et al., 2023, Jin316

et al., 2024, Xue and Salim, 2024, Zhou et al., 2023] by leveraging the ability of LLMs to efficiently317

handle text sequences. A different approach that gained in popularity later was to train TSFMs from318

the ground up on extensive and diverse datasets [Ansari et al., 2024, Bhethanabhotla et al., 2024,319

Das et al., 2024, Feofanov et al., 2025, Gao et al., 2024, Goswami et al., 2024, Lin et al., 2023, Liu320

et al., 2024a,b, Rasul et al., 2024, Wang et al., 2024]. While most of the models were designed for321

time series forecasting, several of them also specifically tackled time series classification [Feofanov322

et al., 2025, Gao et al., 2024, Goswami et al., 2024, Lin et al., 2023, Zhou et al., 2023]. These models323

are on par with or exceed the performance of other popular deep learning models proposed for time324

series classification, such as the famous TimesNet [Wu et al., 2023] architecture.325

Transforming time series into images Time series can be transformed into images in many ways,326

either based on the 1D representation of the time series in the original (line plot) or transformed327

(frequency) space, or by using a 2D modeling (heatmap, Gramian angular field, recurrence plot) that328

stacks segments of the input time series based on a chosen periodicity. Vision models, often based329

on CNNs and their variations, were used on such image-based representations of time series since330

as early as 2013 (see Ni et al. [2025] for a recent survey). Most of them, however, are trained in a331

supervised way to fit a dataset at hand. This work explores how pretrained vision models can be used332

as powerful feature extractors without training or fine-tuning. Li et al. [2023b] showed that pretrained333

ViTs can be efficient in the classification of irregular time series from their line plot representations334

after full fine-tuning. In a similar vein, Chen et al. [2024] applied a masked auto-encoder with a335

pretrained frozen ViT to 2D transformed time series to perform univariate time series forecasting.336

Different from these works, we explain why vision models can be more efficient in time series337

analysis compared to Vanilla Transformers. Moreover, our TiViT model surpasses the performance338

of frontier TSFMs across a broad set of common classification benchmarks.339

B Details on the theoretical analysis340

We first review the shallow ViT and data model introduced by Li et al. [2023a] in their theoretical341

analysis of training a ViT. Their Theorem B.1 shows that the sample complexity for ViTs to achieve a342

zero generalization error is inversely correlated with the fraction of label-relevant tokens. Building343

on this insight, we provide a detailed proof of our Proposition 1 from the main paper, showing344

that 2D patching can increase the number of label-relevant tokens compared to 1D patching. We345

further illustrate our Proposition 1 with various examples of time series and their corresponding 2D346

representations.347

B.1 Background348

Model and setup Following the setup of Li et al. [2023a], we study a binary classification problem349

with N training samples {(Xn, yn)}Nn=1. Each input Xn ∈ Rd×L contains L tokens {xn1 , . . . ,xnL}.350

Labels yn ∈ {±1} are determined by majority vote over discriminative tokens. A simplified Vision351
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Table 3: Key Notations
Notation Description

α∗ Fraction of label-relevant tokens
σ, δ, τ Initialization/token noise parameters
κ Minimum pattern distance
M Total number of patterns

Transformer (ViT) [Dosovitskiy et al., 2021] model is defined as:352

F (Xn) =
1

|Sn|
∑
l∈Sn

a⊤
(l)ReLU

(
WOWVX

nsoftmax
(
Xn⊤

W⊤
KWQx

n
l

))
,

where ψ = (A={a(l)}l,WO,WV ,WK ,WQ) are trainable parameters. The empirical risk mini-353

mization problem is:354

min
ψ
fN (ψ) =

1

N

N∑
n=1

max {1− yn · F (Xn), 0} .

Training uses mini-batch SGD with fixed output layer weights A, following standard NTK initializa-355

tion practices.356

Data model Tokens xnl are noisy versions of M patterns {µ1, . . . ,µM}, where µ1,µ2 are dis-357

criminative. Label yn depends on majority vote over tokens closest to µ1/µ2. Noise level τ satisfies358

τ < κ/4, with κ− 4τ = Θ(1).359

Generalization of ViT We now recap the main results from Li et al. [2023a] from which we derive360

our result, along with the main notations in Table 3.361

Assumption (Initial Model Conditions, [Li et al., 2023a]). Initial weights W (0)
V ,W

(0)
K ,W

(0)
Q satisfy:362

∥W (0)
V µj − pj∥ ≤ σ, ∥W (0)

K µj − qj∥ ≤ δ, ∥W (0)
Q µj − rj∥ ≤ δ,

for orthonormal bases P,Q,R and σ = O(1/M), δ < 1/2.363

Theorem (Generalization of ViT, [Li et al., 2023a]). Under Assumption 1, with sufficient model
width m ≳ ϵ−2M2 logN , fraction

α∗ ≥ α#/(ϵSe
−(δ+τ)(1− (σ + τ)),

and sample size
N ≥ Ω

(
(α∗ − c′(1− ζ)− c′′(σ + τ))−2

)
,

SGD achieves zero generalization error after

T = Θ

(
1

(1− ϵ− (σ + τ)M/π)ηα∗

)
iterations.364

Proposition (Generalization without Self-Attention, [Li et al., 2023a]). Without self-attention, achiev-365

ing zero error requires N ≥ Ω
(
(α∗(α∗ − σ − τ))−2

)
, demonstrating ViT’s sample complexity366

reduction by 1/α2
∗.367

B.2 Proof of label relevance in 2D patches368

We remind Proposition 1 from the main paper and provide a detailed proof.369

Proposition 1. For an arbitrary µ1,µ2 ∈ Rk, let t = [x1 x2 · · · xk]
⊤ ∈ RTwhere ∀i ∈ [k],xi ∈

Rk and either xi = µ1 or xi = µ2 with µ2 being a label-relevant pattern. Let |{i : xi = µ2}| = n′

and assume that 2x′ · (µ1 −µ2) ≤ ||µ1||2 − ||µ2||2 whenever |{i : x′i ∈ µ2}| ≥
√
k. Then, it holds

that

α2D
∗ ≥ α1D

∗ =
n′

k
,

and the inequality is strict if n′ mod
√
k > 0.370
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Figure 3: Benefits of 2D patching for time series. We consider a binary classification problem with
two distinct patterns: a sine function over [0, π], either positive or negative. Here, the negative sine
function represents the label-relevant pattern. Tokens should cover at least 1/

√
k of the label-relevant

pattern to be considered label-relevant, i.e., all tokens in 2D (red), only one third of tokens in 1D.

Proof. For a token x′n to be label-relevant (aligned with µ2), it must satisfy:371

∥x′n − µ2∥ ≤ ∥x′n − µ1∥.

Expanding both sides, we have that:372

∥x′n∥2 + 2x′n · µ1 + ∥µ1∥2 ≤ ∥x′n∥2 − 2x′n · µ2 + ∥µ2∥2.

Regrouping the terms gives us the desired condition:373

2x′n · (µ1 − µ2) ≤ ||µ1||2 − ||µ2||2. (1)

Recall that n′ denotes the number of segments of µ2 in time series t. Each such segment spans
√
k374

tokens, contributing at least
√
k elements to each of them. Under the assumption of the proposition,375

it implies (1) and makes each of these
√
k tokens label-relevant.376

We now need to carefully consider how the µ2 segments can be placed within t to understand how377

many tokens become label-relevant thanks to each µ2. We consider two cases: 1) n′ = c
√
k for378

some c ∈ N satisfying n′ ∈ (0, k], and 2) n′ = c
√
k + b for some a, b ∈ N,

√
k > b > 0 such379

that n′ ∈ (0, k]. In the first case, α1D
∗ = c

√
k/k. In the case of 2D patching, in the worst case, µ2380

segments can be placed such that they will contribute to c
√
k tokens. In this case, α2D

∗ ≥ c
√
k/k and381

α1D
∗ ≤ α2D

∗ . If n′ is not a multiple of
√
k, the same analysis applies for the c

√
k segments of µ2. To382

account for the remainder b, we note that for any b > 0, in 2D case, it adds
√
k label-relevant tokens383

to the fraction α2D
∗ so that α2D

∗ ≥ c
√
k+

√
k

k . In the case of 1D patching, α1D
∗ = c

√
k+b
k . Given that384

b <
√
k, this concludes the proof.385

To better illustrate this proposition, we visualize it using a concrete example. We define µ1 = sin(x)386

for x ∈ [0, π] and let µ2 = −µ1. Figure 3 (more examples are provided in Appendix B.3) displays387

the input time series t with k = 9 and n′ = 3. In this case, the assumption 2x′ · (µ1 − µ2) ≤388

||µ1||2 − ||µ2||2 simplifies to x′ · µ1 ≤ 0 and is verified for all tokens in 2D case and only for n′389

tokens in 1D case. On a higher level, this proposition formalizes the idea that having a discriminative390

signal spread across more tokens (each µ2 contributes to
√
k tokens in 2D case) makes it easier for391

a Transformer model to pick up this signal and to learn the classification task better. In the case of392

1D patching, this signal is less spread, making it harder for the model to attend to important tokens393

during training.394

B.3 Additional illustrations of Proposition 1395

To illustrate the benefits of 2D modeling and patching, we present several examples of time series in396

Figure 4. We define µ1 using functions such as log, cosine, and sine. We then set µ2 = 1k, n′ = 3397

and randomly shuffle µ1 and µ2 segments within the generated input time series.398
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Figure 4: Illustration of Proposition 1 on more generated time series. In each example considered,
2D patching is more beneficial due the higher number of label-relevant tokens.

11



Table 4: Data used to pretrain Transformers for comparison of 1D and 2D patching.
Dataset Number of examples Prop. of taken examples

ECG 20835 45.7%
EMG 163 100%
Epilepsy 11480 100%
FD-A 10912 100%
FD-B 13619 100%
Gesture 1320 100%
HAR 20835 78.7%
SleepEEG 20836 4.5%

C Details on the comparison of 1D and 2D patching for Transformers399

C.1 Architecture and pretraining400

To evaluate the effect of 1D versus 2D patching on representations learned by Transformers, we401

fix the Transformer architecture and pretraining strategy, and only change the patching approach402

for generating input tokens. We adopt the setup of Feofanov et al. [2025] since their Transformer403

block implementation (ViTUnit class here) for time series classification is similar to the classical404

ViT. Specifically, the model comprises 6 Transformer layers, each with 8 attention heads and an405

embedding dimension of 256.406

For pretraining, we employ contrastive learning following [Feofanov et al., 2025, He et al., 2020].407

The augmentation technique to generate positive pairs is RandomCropResize with a crop rate varying408

within [0%, 20%]. All time series are resized to a fixed length T = 512 using interpolation.409

We examine both non-overlapping and overlapping patches following [Goswami et al., 2024, Nie et al.,410

2023]. For non-overlapping 1D patching, we generate 32 patches of size 16. For non-overlapping 2D411

patching, we first arrange the 1D patches in a matrix of size 32× 16 and then extract 32 patches of412

size 2×8. After flattening, we obtain 32 patches of size 16, similar to the 1D setting, but semantically413

different. For overlapping 1D patching, we apply a stride of 8, which yields 64 patches of size 16.414

For overlapping 2D patching, we rearrange these 1D patches again in a matrix of size 64× 16 and415

then extract 32 patches of size 4× 8. Flattening yields 32 patches of size 32.416

C.2 Dataset417

To pretrain the different models, we first generate a pretraining dataset from publicly available datasets418

that are not part of the evaluation benchmark. In detail, we consider a concatenation of the following419

datasets: ECG [Clifford et al., 2017], EMG [Goldberger et al., 2000], Epilepsy [Andrzejak et al.,420

2001], FD-A and FD-B [Lessmeier et al., 2016], Gesture [Liu et al., 2009], HAR [Anguita et al.,421

2013], SleepEEG [Kemp et al., 2000]. To reduce computation time, we construct a subset of the full422

dataset containing 100 000 samples, with a sufficiently balanced distribution across the individual423

source datasets. We give more details in Table 4 on how many samples were taken from each dataset424

to form the pretraining corpus.425
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Table 5: Comparison of the effects on validation accuracy of (a) Patch size P and (b) Patch overlap.
Results are averaged across the 128 datasets of UCR benchmark for 3 random seeds.

(a) Selecting patch size P

Patch size
√
T P ∗

Val accuracy 78.2 79.5

(b) Effect of patch overlap on validation accuracy

Overlap 0.0 0.25 0.5 0.75 0.9 0.95

Val accuracy 78.2 79.3 80.2 80.0 80.4 80.0

(a) ECG200 sample (b) P = 1 (c) P =
√
T (d) P = T

2

Figure 5: Effect of patch size P on the time series-to-image transformation on a sample from
ECG200[Olszewski, 2001]. To match the ViT input resolution, a small patch size (P = 1) requires
horizontal stretching, while a large patch size (P = T

2 ) requires vertical stretching. Both scenarios
result in redundant tokens.

D Experimental setup426

Datasets UCR [Dau et al., 2019] comprises 128 univariate time series datasets of varying sample427

size (16 ≤ Ntrain ≤ 8926) and series length (15 ≤ T ≤ 2844). UEA [Bagnall et al., 2018] consists428

of 30 multivariate time series datasets. Following Feofanov et al. [2025], we exclude three datasets429

(AtrialFibrillation, StandWalkJump, PenDigits) from UEA due to their short sequence length or small430

test size.431

Vision Transformers Our study examines three differently pretrained ViTs. CLIP [Radford et al.,432

2021] performs contrastive learning of image and text encoders on image-text pairs. We reuse the433

ViT image encoders of OpenCLIP [Cherti et al., 2023, Ilharco et al., 2021] models trained with the434

LAION-2B English subset of LAION-5B [Schuhmann et al., 2022]. SigLIP 2 [Tschannen et al.,435

2025] adopts contrastive learning on image-text pairs, but with a Sigmoid loss, complemented by436

captioning-based pretraining, self-distillation, and masked prediction. In contrast, DINOv2 [Oquab437

et al., 2024] is solely pretrained on images through self-distillation with a student-teacher architecture438

and masked modeling. For each pretraining approach, we consider multiple vision model sizes439

(ViT-B, ViT-L, ViT-H) with varying layer depth (12, 24, and 32 layers).440

Baselines We compare TiViT to two state-of-the-art TSFMs exclusively pretrained on time series.441

Mantis [Feofanov et al., 2025] is a Transformer model (8 M parameters) comprising 6 layers and 8442

heads per layer, pretrained on 2 million time series with contrastive learning. Moment [Goswami443

et al., 2024] is a family of Transformers pretrained on 13 million time series with masked modeling.444

In our study, we consider Moment-base with 12 layers and 125 M parameters.445

Implementation To assess the effectiveness of TiViT and TSFM representations in time series446

classification, we train a logistic regressor with the LBFGS solver per dataset. Our evaluation adheres447

to the standard train-test splits provided by the UCR and UEA archive and reserves 20% of the train448

split for validation. For the time series-to-image transformation, we resize the grayscale images to449

the resolution expected by the ViT with nearest interpolation and adjust the contrast with a factor450

of 0.8. All experiments can be performed on a single NVIDIA V100 GPU with 16 GB memory. Our451

results are averaged over three random seeds.452
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Figure 6: Effect of patch overlap on the classification accuracy of TiViT with different backbones.

Table 6: Linear classification with TiViT on UCR. For each model, we report the test accuracy
achieved with the best performing hidden layer representation.

Model Architecture Layer Parameters Data Accuracy

TiViT-DINOv2 ViT-L/14 15 178 M LVD-142M 80.0
TiViT-SigLIP 2 SoViT-400m/14 10 138 M WebLI (10B) 80.6
TiViT-CLIP ViT-H/14 14 257 M LAION-2B 81.3

E Additional analysis on TiViT453

E.1 Patch size and overlap454

In Section 4.1, we analyze the time series-to-image transformation for TiViT-CLIP and show that a455

patch size P =
√
T and a stride S = P

10 yields high classification accuracy for any time series of456

length T . Figure 6 displays the effect of patch overlap for TiViT with CLIP, DINOv2, and SigLIP 2457

backbones while fixing the patch size at P =
√
T . All versions of TiViT achieve high classification458

accuracy when utilizing an overlap of 0.9 (corresponding to stride S = P
10 ).459

E.2 Different vision foundation models460

Table 6 displays the best performing hidden layers for various vision foundation models. CLIP and461

SigLIP 2, both optimized with a contrastive loss on image-text pairs, reach best performance in their462

earlier layers: layer 14 of 33 for CLIP (ViT-H) and layer 10 of 28 for SigLIP 2 (SoViT-400m). In463

contrast, DINOv2 (ViT-L) trained with contrastive learning and masked modeling on images only,464

reaches the highest classification accuracy with representations from a later layer (15 of 25). Our465

selection of architectures per pretraining paradigm ensures that TiViT exhibits a similar number of466

layers and parameters up to the best performing hidden layer. For each ViT, we determine the optimal467

Table 7: Linear classification accuracy of TiViT on the UCR dataset with different ways of aggregating
the hidden representations per layer. We report the total number of layers including the output layer
and the index of the best performing layer starting from 0.

Model # Layers Average of tokens CLS token

Layer Acc Layer Acc

TiViT-DINOv2 25 15 80.0 17 79.1
TiViT-SigLIP 2 28 10 80.6 14 71.7
TiViT-CLIP 33 14 81.3 18 78.6
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Table 8: Linear classification of TiViT-CLIP with varying size of the ViT backbone. For each model,
we report the test accuracy on the UCR dataset achieved with the best performing hidden layer
representation and the number of parameters up to this layer.

Architecture Layer (total number) Parameters Accuracy

ViT-B/32 8 (13) 52 M 79.8
ViT-B/16 6 (13) 36 M 80.8
ViT-L/14 10 (24) 178 M 80.3
ViT-H/14 14 (32) 257 M 81.3
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(c) TiViT-SigLIP 2

Figure 7: Intrinsic dimension of hidden representations per layer from CLIP, DINOv2, and SigLIP
computed for subsamples of the dataset in {N, N2 ,

N
4 ,

N
8 }.

hidden layer based on its highest validation accuracy across the 128 datasets of the UCR benchmark.468

This best performing layer per ViT is consistently used in all subsequent experiments.469

E.3 Aggregation of hidden token representations470

As described in Section 3, we obtain a single embedding for each time series by averaging the ViT471

hidden representations in a particular layer. We now evaluate the performance of TiViT when using472

the CLS token from each layer instead. Table 7 compares the linear classification performance on the473

UCR dataset using either the CLS token or the mean of all tokens. To ensure a fair comparison, we474

determine the best performing layer for each approach based on the validation accuracy. Across all475

backbones, the CLS token consistently results in lower test accuracy, confirming our choice to use the476

mean hidden representation in TiViT. Interestingly, the best performing CLS tokens appear in later477

layers compared to the best performing mean tokens. Therefore, utilizing the mean representations478

does not only enhance classification accuracy, but also reduce computational cost.479
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Figure 8: Number of principal components necessary to cover 95% of variance in the ViT representa-
tions per layer averaged across UCR datasets.
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Table 9: Joint linear classification with TiViT and TSFMs on the UCR benchmark. We measure the
alignment of the representation spaces using the mutual k-NN metric.

TiViT TSFM Joint Alignment
CLIP DINOv2 Mantis Moment Accuracy Score

– – 80.1 79.0 81.5 0.319
– 80.0 – 79.0 81.8 0.296

81.3 80.0 – – 82.0 0.484
– 80.0 80.1 – 82.2 0.323

81.3 – – 79.0 82.5 0.321
81.3 – 80.1 – 83.0 0.338
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Figure 9: The representations of frozen ViTs and TSFMs are concatenated and used in linear
classification. Results are averaged over 128 datasets from the UCR benchmark.

E.4 Intrinsic dimension and principal components of hidden representations480

The intrinsic dimension quantifies the minimum number of variables required to represent a local481

neighborhood of samples in the representation space. To estimate the intrinsic dimension, the TWO-482

NN estimator introduced by Facco et al. [2017] leverages the distance of each data point to its first483

and second nearest neighbor. As noted by the authors, a larger number of data points reduces the484

average distance to the second neighbor, and thus increases the intrinsic dimension. To mitigate485

this effect, they propose to subsample the dataset. Given a dataset of size N , we report the intrinsic486

dimension for N4 subsamples in the main paper, which is in line with Valeriani et al. [2023]. In Figure487

7, we compare the intrinsic dimension of average representations from hidden layers using N , N2 , N4 ,488

and N
8 samples for estimation. The layer with the highest intrinsic dimension, which is central to our489

analysis, remains the same regardless of the subsampling ratio.490

Since the intrinsic dimension only characterizes the local geometry of the representation space, we491

further provide a global analysis using principal components. Specifically, in Figure 8, we determine492

the number of principal components that are necessary to cover 95% of the variance in the data.493

For DINOv2, we observe a peak in the number of principal components in the middle layers that494

corresponds to the layers achieving the best classification accuracy. Interestingly, CLIP and SigLIP495

2 exhibit two peaks in the number of principal components across the layers. The middle-layers496

corresponding to the first peak yield the highest time series classification accuracy.497

E.5 Alignment and fusion of TiViT and TSFM representations498

For each sample in the dataset, we find the k = 10 nearest neighbors in the embedding space of two499

different models and measure the intersection between the two neighbor sets. The final alignment500

score between two models is an average across all samples from the UCR benchmark. Table 9501

presents the alignment scores for CLIP, DINOv2, Mantis, and Moment. Interestingly, the alignment502

score of the two TSFMs is relatively low. We hypothesize that this discrepancy arises from their503

different pretraining paradigms: Mantis is trained contrastively while Moment is trained with masked504
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Table 10: Linear classification accuracy of TiViT with varying MAE backbone size and aggregation
of hidden representations per layer. We report the total number of layers including the output layer
and the index of the best performing layer starting from 0.

Architecture # Layers Average of tokens CLS token

Layer Acc Layer Acc

MAE Base 13 8 72.7 9 73.8
MAE Large 25 14 74.3 18 75.6
MAE Huge 33 20 75.9 20 76.7
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Figure 10: Intrinsic dimensionality of CLS tokens per MAE layer averaged across UCR datasets.

modeling. A similarly low alignment score is observed between any TiViT and TSFM, which we505

attribute to their domain gap. TiViT and Mantis extract different representations for the same time506

series, which is beneficial for joint classification. The highest alignment is measured between TiViT-507

CLIP and TiViT-DINOv2, both of which are pretrained contrastively on image datasets. Figure 9 is508

an additional visualization of the pairwise scores as heatmaps.509

E.6 Size of ViT backbone510

We report the performance of TiViT with CLIP ViT-H backbone in Section 4.2 of the main paper.511

Table 8 provides a detailed analysis of how the performance of TiViT varies with the size of the512

ViT backbone, including ViT-B (with two patch sizes), ViT-L, and ViT-H. Remarkably, with only 6513

Transformer layers from ViT-B, TiViT achieves an accuracy of 80.8%. While matching the number514

of Transformer layers in Mantis, TiViT surpasses Mantis (80.1%) in classification accuracy. However,515

the hidden dimensionality is higher for the ViT-B backbone used in TiViT. By utilizing a larger516

backbone, specifically 14 hidden layers of ViT-H/14, we achieve the highest accuracy of 81.3%,517

significantly outperforming conventional TSFMs.518

E.7 Masked autoencoder backbone519

In the main paper, we analyze the reusability of ViT backbones from CLIP [Radford et al., 2021,520

Schuhmann et al., 2022], DINOv2 [Oquab et al., 2024], and SigLIP 2 [Tschannen et al., 2025] in521

time series classification. In contrast, Chen et al. [2024] repurpose Masked Autoencoders (MAEs)522

[He et al., 2022] for time series forecasting. To enable a direct comparison, we now utilize the hidden523

representations of MAE Base, Large, and Huge in time series classification.524

Our analysis in Table 10 shows that for MAEs using the CLS token yields better performance in time525

series classification than averaging token representations. Moreover, Table 10 presents a comparison526

across MAEs of different sizes, showing that larger backbones consistently achieve higher accuracy.527

Different from contrastively pretrained models, summarized in Table 6 of the main paper, the best528

representations for time series classification with MAE lie in later layers. We further observe that529

the hidden representations of the later MAE layers up to the output layer perform similar in time530
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Table 11: Linear classification accuracy on UCR subsets (left) and classifier comparison (right). We
consider logistic regression (LR), nearest centroid (NC), and random forest (RF).

UCR subsets Classifier comparison

Model Smallest Largest Shortest Longest LR NC RF

Moment 85.7 85.5 86.9 65.8 79.0 68.6 75.6
Mantis 86.6 82.8 88.1 70.5 80.1 71.2 77.5

TiViT (Ours) 89.8 85.3 87.5 75.0 81.3 71.6 77.4

TiViT + Moment (Ours) 89.9 87.1 88.8 74.9 82.5 73.3 79.4
TiViT + Mantis (Ours) 90.9 86.2 88.8 77.7 83.0 73.4 79.8

series classification, while there is a significant gap between hidden representations and output531

representations for TiViT-CLIP (see Figure 2a in the main paper). Figure 10 illustrates the intrinsic532

dimension of the CLS tokens per layer averaged across the UCR datasets. We observe that the533

intrinsic dimension increases up to 60% of the layer depth, while the later layers mostly exhibit a534

similar intrinsic dimension, explaining their similar classification performance.535

It is worth noting that MAE has only been pretrained on ImageNet-1k [Deng et al., 2009] with536

1.5 million samples, whereas CLIP has been pretrained on the significantly larger LAION-2B537

[Schuhmann et al., 2022] dataset with 2 billion samples. We hypothesize that being exposed to a538

larger set of images during training enhances the capacity of a vision model to extract discriminative539

patterns from 2D time series representations.540

E.8 UCR subsets and classifier comparison541

In Section 4.2, we report the performance of TiViT across all 128 UCR datasets. To further explore542

its capabilities, we now select four UCR subsets: 10 datasets with the fewest training samples543

(16 ≤ Ntrain ≤ 20), the most training samples (1000 ≤ Ntrain ≤ 8926), the shortest time series544

(15 ≤ T ≤ 80), and the longest time series (1500 ≤ T ≤ 2844). The results are displayed in Table 11.545

TiViT significantly outperforms Mantis on subsets with a small training set (89.8% vs. 86.6%) and546

long time series (75.0% vs. 70.5%). These findings demonstrate that TiViT excels in generalizing547

from limited training data and in modeling long-range dependencies. On the remaining two subsets,548

TiViT is on par with TSFMs. Combining the representations of TiViT and TSFMs achieves the549

highest classification accuracy across all subsets, once again underscoring their complementarity.550

While the previous experiments require to train a logistic regressor for classification, we finally551

investigate the effectiveness of TiViT in zero-shot classification. Here, we employ a nearest centroid552

classifier, where each class is represented by the centroid of its representations, and samples are553

assigned to the class of their nearest centroid. On the UCR benchmark, TiViT achieves a zero-shot554

classification accuracy of 71.6%. Our approach is on par with Mantis (71.2%) and outperforms555

Moment (68.6%), highlighting the ability of TiViT to extract generalizable representations. We556

further merge the representations of TiViT and Mantis, reaching a zero-shot accuracy of 73.4%.557

Following Feofanov et al. [2025], we also adopt a random forest classifier. We observe that TiViT558

performs on par with Mantis, and that once again combining the representation of both models559

achieves state-of-the-art classification performance. Feofanov et al. [2025] have demonstrated that560

Mantis surpasses other TSFMs such as NuTime [Lin et al., 2023] when evaluated with a random561

forest classifier. This conclusion can now be extended to TiViT.562
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F Detailed results on UCR and UEA benchmarks563

In the main paper, we report the average accuracy of TiViT and TSFM across 128 univariate datasets564

from the UCR archive and 27 multivariate datasets from the UEA archive. Here, we report the565

full linear classification benchmark with accuracy scores for Mantis, Moment, TiViT, and their566

combinations on each dataset. Table 12 presents the performance on the UCR dataset, while Table 13567

reports the results on the UEA dataset. Additionally, Table 14 provides the mean rank of all five568

methods on both benchmarks. If multiple element share the same rank, we assign them the lowest569

rank in the group.570

Table 12: Classification accuracy for 128 univariate datasets from the UCR benchmark. We report
the mean and standard deviation across three random seeds.

Dataset Moment Mantis TiViT TiViT + Moment TiViT + Mantis

ACSF1 0.673 ± 0.012 0.667 ± 0.021 0.777 ± 0.015 0.777 ± 0.012 0.763 ± 0.021
Adiac 0.731 ± 0.003 0.728 ± 0.010 0.695 ± 0.017 0.740 ± 0.005 0.714 ± 0.003
AllGestureWiimoteX 0.680 ± 0.004 0.666 ± 0.007 0.653 ± 0.016 0.702 ± 0.002 0.673 ± 0.019
AllGestureWiimoteY 0.711 ± 0.024 0.699 ± 0.007 0.715 ± 0.010 0.733 ± 0.013 0.740 ± 0.010
AllGestureWiimoteZ 0.583 ± 0.013 0.650 ± 0.004 0.649 ± 0.017 0.664 ± 0.011 0.667 ± 0.019
ArrowHead 0.804 ± 0.012 0.745 ± 0.007 0.806 ± 0.045 0.840 ± 0.023 0.825 ± 0.035
BME 0.900 ± 0.075 0.987 ± 0.012 0.998 ± 0.004 0.987 ± 0.018 0.996 ± 0.008
Beef 0.756 ± 0.038 0.700 ± 0.033 0.733 ± 0.033 0.756 ± 0.038 0.733 ± 0.033
BeetleFly 0.833 ± 0.029 0.900 ± 0.000 0.900 ± 0.050 0.883 ± 0.029 0.933 ± 0.029
BirdChicken 0.850 ± 0.087 0.933 ± 0.076 0.850 ± 0.087 0.850 ± 0.087 0.850 ± 0.087
CBF 0.943 ± 0.012 0.994 ± 0.010 0.999 ± 0.001 0.998 ± 0.003 0.999 ± 0.001
Car 0.817 ± 0.000 0.794 ± 0.051 0.794 ± 0.010 0.806 ± 0.025 0.822 ± 0.025
Chinatown 0.966 ± 0.009 0.962 ± 0.003 0.965 ± 0.009 0.976 ± 0.012 0.970 ± 0.007
ChlorineConcentration 0.723 ± 0.001 0.643 ± 0.004 0.721 ± 0.011 0.739 ± 0.016 0.737 ± 0.009
CinCECGTorso 0.733 ± 0.031 0.737 ± 0.004 0.895 ± 0.013 0.863 ± 0.019 0.895 ± 0.012
Coffee 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Computers 0.712 ± 0.036 0.735 ± 0.021 0.748 ± 0.016 0.772 ± 0.024 0.767 ± 0.012
CricketX 0.706 ± 0.020 0.726 ± 0.015 0.763 ± 0.010 0.755 ± 0.005 0.766 ± 0.011
CricketY 0.693 ± 0.018 0.732 ± 0.017 0.767 ± 0.011 0.779 ± 0.007 0.777 ± 0.011
CricketZ 0.740 ± 0.016 0.721 ± 0.009 0.773 ± 0.015 0.779 ± 0.012 0.797 ± 0.017
Crop 0.709 ± 0.003 0.695 ± 0.001 0.673 ± 0.003 0.712 ± 0.002 0.707 ± 0.003
DiatomSizeReduction 0.900 ± 0.030 0.881 ± 0.032 0.938 ± 0.048 0.932 ± 0.049 0.938 ± 0.048
DistalPhalanxOutlineAgeGroup 0.743 ± 0.011 0.746 ± 0.017 0.715 ± 0.004 0.724 ± 0.011 0.700 ± 0.011
DistalPhalanxOutlineCorrect 0.762 ± 0.017 0.728 ± 0.007 0.755 ± 0.006 0.756 ± 0.014 0.743 ± 0.007
DistalPhalanxTW 0.643 ± 0.004 0.698 ± 0.007 0.652 ± 0.027 0.688 ± 0.011 0.640 ± 0.007
DodgerLoopDay 0.467 ± 0.031 0.504 ± 0.014 0.475 ± 0.022 0.500 ± 0.033 0.496 ± 0.031
DodgerLoopGame 0.720 ± 0.051 0.749 ± 0.008 0.768 ± 0.045 0.756 ± 0.053 0.783 ± 0.040
DodgerLoopWeekend 0.971 ± 0.000 0.964 ± 0.000 0.957 ± 0.000 0.969 ± 0.004 0.971 ± 0.000
ECG200 0.843 ± 0.006 0.853 ± 0.012 0.837 ± 0.012 0.853 ± 0.015 0.847 ± 0.012
ECG5000 0.933 ± 0.005 0.924 ± 0.003 0.936 ± 0.002 0.937 ± 0.002 0.939 ± 0.002
ECGFiveDays 0.957 ± 0.007 0.977 ± 0.004 0.983 ± 0.001 0.995 ± 0.001 0.986 ± 0.001
EOGHorizontalSignal 0.561 ± 0.008 0.562 ± 0.018 0.603 ± 0.014 0.644 ± 0.015 0.649 ± 0.006
EOGVerticalSignal 0.463 ± 0.012 0.507 ± 0.007 0.465 ± 0.009 0.493 ± 0.014 0.491 ± 0.008
Earthquakes 0.722 ± 0.034 0.719 ± 0.007 0.707 ± 0.015 0.717 ± 0.032 0.722 ± 0.029
ElectricDevices 0.631 ± 0.008 0.701 ± 0.003 0.762 ± 0.002 0.744 ± 0.005 0.751 ± 0.002
EthanolLevel 0.631 ± 0.010 0.439 ± 0.010 0.579 ± 0.023 0.614 ± 0.007 0.583 ± 0.012
FaceAll 0.733 ± 0.014 0.794 ± 0.010 0.745 ± 0.007 0.747 ± 0.004 0.766 ± 0.006
FaceFour 0.784 ± 0.041 0.958 ± 0.007 0.777 ± 0.093 0.811 ± 0.046 0.879 ± 0.046
FacesUCR 0.791 ± 0.009 0.886 ± 0.005 0.863 ± 0.011 0.870 ± 0.011 0.902 ± 0.009
FiftyWords 0.727 ± 0.021 0.740 ± 0.013 0.747 ± 0.011 0.767 ± 0.006 0.777 ± 0.012
Fish 0.947 ± 0.003 0.958 ± 0.007 0.949 ± 0.006 0.958 ± 0.012 0.970 ± 0.009
FordA 0.914 ± 0.003 0.911 ± 0.002 0.909 ± 0.004 0.928 ± 0.005 0.914 ± 0.005
FordB 0.800 ± 0.005 0.769 ± 0.002 0.801 ± 0.004 0.796 ± 0.011 0.795 ± 0.005
FreezerRegularTrain 0.973 ± 0.012 0.976 ± 0.012 0.995 ± 0.001 0.995 ± 0.004 0.995 ± 0.002
FreezerSmallTrain 0.840 ± 0.012 0.870 ± 0.020 0.981 ± 0.004 0.970 ± 0.008 0.980 ± 0.005
Fungi 0.753 ± 0.033 0.810 ± 0.025 0.794 ± 0.020 0.810 ± 0.020 0.815 ± 0.025
GestureMidAirD1 0.656 ± 0.012 0.669 ± 0.023 0.726 ± 0.025 0.721 ± 0.018 0.756 ± 0.031
GestureMidAirD2 0.567 ± 0.016 0.574 ± 0.032 0.646 ± 0.043 0.628 ± 0.019 0.669 ± 0.028
GestureMidAirD3 0.359 ± 0.019 0.385 ± 0.013 0.474 ± 0.009 0.441 ± 0.018 0.479 ± 0.035
GesturePebbleZ1 0.893 ± 0.015 0.911 ± 0.003 0.891 ± 0.003 0.924 ± 0.010 0.932 ± 0.007
GesturePebbleZ2 0.846 ± 0.018 0.905 ± 0.006 0.835 ± 0.011 0.876 ± 0.032 0.892 ± 0.011
GunPoint 0.984 ± 0.027 0.987 ± 0.007 0.991 ± 0.004 0.993 ± 0.007 0.993 ± 0.007
GunPointAgeSpan 0.980 ± 0.008 0.998 ± 0.002 0.997 ± 0.000 0.995 ± 0.002 0.997 ± 0.000
GunPointMaleVersusFemale 1.000 ± 0.000 0.999 ± 0.002 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
GunPointOldVersusYoung 1.000 ± 0.000 1.000 ± 0.000 0.989 ± 0.004 1.000 ± 0.000 1.000 ± 0.000
Ham 0.752 ± 0.025 0.667 ± 0.010 0.698 ± 0.049 0.730 ± 0.048 0.740 ± 0.044
HandOutlines 0.930 ± 0.007 0.931 ± 0.006 0.936 ± 0.004 0.942 ± 0.006 0.931 ± 0.004
Haptics 0.491 ± 0.026 0.462 ± 0.002 0.487 ± 0.027 0.521 ± 0.033 0.523 ± 0.022
Herring 0.698 ± 0.018 0.682 ± 0.024 0.615 ± 0.018 0.620 ± 0.039 0.635 ± 0.033
HouseTwenty 0.947 ± 0.010 0.961 ± 0.010 0.980 ± 0.005 0.975 ± 0.008 0.980 ± 0.005
InlineSkate 0.364 ± 0.019 0.334 ± 0.021 0.393 ± 0.008 0.403 ± 0.005 0.396 ± 0.008
InsectEPGRegularTrain 0.987 ± 0.014 1.000 ± 0.000 0.997 ± 0.005 1.000 ± 0.000 1.000 ± 0.000
InsectEPGSmallTrain 0.953 ± 0.008 1.000 ± 0.000 0.985 ± 0.008 0.981 ± 0.014 1.000 ± 0.000
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Continuation of Table 12

Dataset Moment Mantis TiViT TiViT + Moment TiViT + Mantis

InsectWingbeatSound 0.539 ± 0.003 0.469 ± 0.019 0.524 ± 0.016 0.553 ± 0.010 0.531 ± 0.013
ItalyPowerDemand 0.938 ± 0.005 0.911 ± 0.007 0.928 ± 0.015 0.937 ± 0.013 0.928 ± 0.014
LargeKitchenAppliances 0.859 ± 0.005 0.820 ± 0.010 0.880 ± 0.012 0.884 ± 0.014 0.874 ± 0.009
Lightning2 0.760 ± 0.041 0.781 ± 0.025 0.820 ± 0.000 0.836 ± 0.016 0.836 ± 0.033
Lightning7 0.836 ± 0.036 0.749 ± 0.021 0.836 ± 0.014 0.868 ± 0.008 0.845 ± 0.008
Mallat 0.915 ± 0.010 0.868 ± 0.028 0.930 ± 0.033 0.957 ± 0.017 0.939 ± 0.023
Meat 0.911 ± 0.038 0.939 ± 0.019 0.806 ± 0.019 0.900 ± 0.029 0.872 ± 0.051
MedicalImages 0.731 ± 0.003 0.705 ± 0.024 0.741 ± 0.011 0.778 ± 0.009 0.762 ± 0.013
MelbournePedestrian 0.933 ± 0.004 0.908 ± 0.006 0.860 ± 0.005 0.930 ± 0.005 0.920 ± 0.006
MiddlePhalanxOutlineAgeGroup 0.481 ± 0.028 0.563 ± 0.042 0.552 ± 0.023 0.530 ± 0.023 0.550 ± 0.014
MiddlePhalanxOutlineCorrect 0.813 ± 0.028 0.844 ± 0.007 0.784 ± 0.019 0.795 ± 0.019 0.818 ± 0.019
MiddlePhalanxTW 0.515 ± 0.019 0.455 ± 0.019 0.517 ± 0.004 0.498 ± 0.004 0.509 ± 0.014
MixedShapesRegularTrain 0.947 ± 0.002 0.956 ± 0.003 0.975 ± 0.001 0.974 ± 0.001 0.978 ± 0.001
MixedShapesSmallTrain 0.876 ± 0.011 0.897 ± 0.010 0.944 ± 0.006 0.935 ± 0.006 0.947 ± 0.009
MoteStrain 0.879 ± 0.011 0.887 ± 0.015 0.899 ± 0.004 0.922 ± 0.012 0.918 ± 0.013
NonInvasiveFetalECGThorax1 0.918 ± 0.001 0.799 ± 0.004 0.890 ± 0.008 0.921 ± 0.005 0.887 ± 0.002
NonInvasiveFetalECGThorax2 0.927 ± 0.002 0.817 ± 0.004 0.915 ± 0.003 0.933 ± 0.002 0.918 ± 0.003
OSULeaf 0.920 ± 0.009 0.902 ± 0.006 0.988 ± 0.007 0.986 ± 0.005 0.985 ± 0.002
OliveOil 0.889 ± 0.019 0.944 ± 0.019 0.700 ± 0.033 0.856 ± 0.019 0.789 ± 0.051
PLAID 0.741 ± 0.005 0.819 ± 0.005 0.911 ± 0.005 0.901 ± 0.007 0.929 ± 0.007
PhalangesOutlinesCorrect 0.800 ± 0.004 0.796 ± 0.006 0.789 ± 0.005 0.800 ± 0.012 0.794 ± 0.005
Phoneme 0.276 ± 0.014 0.294 ± 0.013 0.377 ± 0.008 0.377 ± 0.009 0.386 ± 0.011
PickupGestureWiimoteZ 0.760 ± 0.040 0.807 ± 0.012 0.853 ± 0.042 0.840 ± 0.060 0.887 ± 0.042
PigAirwayPressure 0.117 ± 0.017 0.579 ± 0.012 0.535 ± 0.011 0.474 ± 0.007 0.612 ± 0.032
PigArtPressure 0.750 ± 0.019 0.811 ± 0.015 0.798 ± 0.024 0.808 ± 0.021 0.845 ± 0.024
PigCVP 0.723 ± 0.018 0.777 ± 0.012 0.670 ± 0.028 0.734 ± 0.012 0.777 ± 0.007
Plane 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
PowerCons 0.930 ± 0.012 0.941 ± 0.017 0.898 ± 0.006 0.952 ± 0.014 0.915 ± 0.003
ProximalPhalanxOutlineAgeGroup 0.800 ± 0.015 0.850 ± 0.014 0.837 ± 0.007 0.833 ± 0.010 0.837 ± 0.012
ProximalPhalanxOutlineCorrect 0.875 ± 0.010 0.885 ± 0.005 0.861 ± 0.008 0.877 ± 0.002 0.875 ± 0.005
ProximalPhalanxTW 0.751 ± 0.013 0.727 ± 0.013 0.740 ± 0.007 0.738 ± 0.010 0.740 ± 0.010
RefrigerationDevices 0.520 ± 0.023 0.517 ± 0.014 0.568 ± 0.019 0.552 ± 0.023 0.564 ± 0.029
Rock 0.640 ± 0.087 0.607 ± 0.110 0.833 ± 0.099 0.807 ± 0.095 0.840 ± 0.106
ScreenType 0.477 ± 0.018 0.465 ± 0.013 0.523 ± 0.012 0.542 ± 0.019 0.548 ± 0.006
SemgHandGenderCh2 0.742 ± 0.010 0.877 ± 0.010 0.877 ± 0.008 0.866 ± 0.013 0.916 ± 0.010
SemgHandMovementCh2 0.414 ± 0.019 0.657 ± 0.012 0.547 ± 0.005 0.533 ± 0.007 0.692 ± 0.009
SemgHandSubjectCh2 0.662 ± 0.002 0.834 ± 0.013 0.840 ± 0.002 0.819 ± 0.006 0.884 ± 0.008
ShakeGestureWiimoteZ 0.907 ± 0.031 0.907 ± 0.012 0.840 ± 0.035 0.913 ± 0.012 0.867 ± 0.012
ShapeletSim 0.963 ± 0.006 0.924 ± 0.008 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
ShapesAll 0.893 ± 0.008 0.851 ± 0.007 0.899 ± 0.003 0.915 ± 0.002 0.909 ± 0.002
SmallKitchenAppliances 0.720 ± 0.012 0.784 ± 0.012 0.815 ± 0.015 0.815 ± 0.019 0.808 ± 0.017
SmoothSubspace 0.891 ± 0.020 0.976 ± 0.004 0.976 ± 0.014 0.967 ± 0.007 0.976 ± 0.010
SonyAIBORobotSurface1 0.829 ± 0.015 0.881 ± 0.027 0.845 ± 0.021 0.840 ± 0.020 0.854 ± 0.019
SonyAIBORobotSurface2 0.829 ± 0.032 0.876 ± 0.032 0.901 ± 0.028 0.904 ± 0.044 0.910 ± 0.024
StarLightCurves 0.969 ± 0.001 0.969 ± 0.000 0.974 ± 0.001 0.976 ± 0.001 0.976 ± 0.001
Strawberry 0.972 ± 0.002 0.959 ± 0.003 0.958 ± 0.002 0.968 ± 0.010 0.964 ± 0.004
SwedishLeaf 0.919 ± 0.011 0.939 ± 0.004 0.953 ± 0.001 0.960 ± 0.002 0.958 ± 0.001
Symbols 0.965 ± 0.006 0.984 ± 0.002 0.987 ± 0.000 0.986 ± 0.000 0.986 ± 0.001
SyntheticControl 0.967 ± 0.006 0.989 ± 0.004 0.999 ± 0.002 0.996 ± 0.004 1.000 ± 0.000
ToeSegmentation1 0.953 ± 0.022 0.968 ± 0.013 0.923 ± 0.009 0.950 ± 0.015 0.952 ± 0.008
ToeSegmentation2 0.897 ± 0.016 0.962 ± 0.008 0.913 ± 0.016 0.913 ± 0.009 0.923 ± 0.008
Trace 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
TwoLeadECG 0.916 ± 0.020 0.997 ± 0.001 1.000 ± 0.000 0.999 ± 0.001 1.000 ± 0.000
TwoPatterns 0.989 ± 0.001 0.949 ± 0.003 0.998 ± 0.001 0.998 ± 0.000 0.997 ± 0.001
UMD 0.993 ± 0.000 0.988 ± 0.008 0.993 ± 0.000 0.993 ± 0.000 0.993 ± 0.000
UWaveGestureLibraryAll 0.924 ± 0.001 0.872 ± 0.004 0.937 ± 0.002 0.948 ± 0.003 0.944 ± 0.001
UWaveGestureLibraryX 0.793 ± 0.003 0.778 ± 0.009 0.825 ± 0.002 0.836 ± 0.005 0.838 ± 0.003
UWaveGestureLibraryY 0.708 ± 0.010 0.677 ± 0.009 0.755 ± 0.002 0.765 ± 0.002 0.764 ± 0.002
UWaveGestureLibraryZ 0.729 ± 0.005 0.737 ± 0.005 0.761 ± 0.006 0.773 ± 0.010 0.788 ± 0.005
Wafer 0.992 ± 0.002 0.996 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000
Wine 0.901 ± 0.028 0.833 ± 0.037 0.673 ± 0.057 0.759 ± 0.037 0.759 ± 0.032
WordSynonyms 0.644 ± 0.017 0.623 ± 0.016 0.643 ± 0.017 0.677 ± 0.020 0.675 ± 0.028
Worms 0.749 ± 0.033 0.697 ± 0.037 0.753 ± 0.047 0.805 ± 0.022 0.784 ± 0.067
WormsTwoClass 0.775 ± 0.037 0.740 ± 0.000 0.775 ± 0.033 0.784 ± 0.040 0.805 ± 0.022
Yoga 0.833 ± 0.008 0.771 ± 0.014 0.819 ± 0.005 0.841 ± 0.006 0.838 ± 0.006

End of Table
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Table 13: Classification accuracy for 27 multivariate datasets from the UEA benchmark. We report
the mean and standard deviation across three random seeds.

Dataset Moment Mantis TiViT TiViT + Moment TiViT + Mantis

ArticularyWordRecognition 0.988 ± 0.002 0.991 ± 0.002 0.977 ± 0.003 0.977 ± 0.003 0.974 ± 0.005
BasicMotions 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
CharacterTrajectories 0.982 ± 0.001 0.973 ± 0.001 0.964 ± 0.005 0.982 ± 0.001 0.978 ± 0.005
Cricket 1.000 ± 0.000 0.986 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
DuckDuckGeese 0.467 ± 0.081 0.433 ± 0.023 0.393 ± 0.081 0.413 ± 0.064 0.433 ± 0.050
ERing 0.895 ± 0.022 0.905 ± 0.025 0.975 ± 0.014 0.977 ± 0.006 0.981 ± 0.007
EigenWorms 0.746 ± 0.022 0.746 ± 0.016 0.911 ± 0.016 0.880 ± 0.009 0.911 ± 0.012
Epilepsy 1.000 ± 0.000 0.990 ± 0.004 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
EthanolConcentration 0.445 ± 0.013 0.269 ± 0.044 0.485 ± 0.012 0.473 ± 0.030 0.465 ± 0.019
FaceDetection 0.584 ± 0.007 0.592 ± 0.006 0.598 ± 0.004 0.584 ± 0.007 0.607 ± 0.005
FingerMovements 0.633 ± 0.045 0.593 ± 0.025 0.517 ± 0.040 0.620 ± 0.036 0.553 ± 0.050
HandMovementDirection 0.279 ± 0.051 0.212 ± 0.021 0.275 ± 0.016 0.257 ± 0.036 0.257 ± 0.027
Handwriting 0.296 ± 0.018 0.425 ± 0.013 0.307 ± 0.034 0.340 ± 0.002 0.385 ± 0.021
Heartbeat 0.735 ± 0.007 0.800 ± 0.017 0.732 ± 0.008 0.717 ± 0.022 0.769 ± 0.003
InsectWingbeat 0.231 ± 0.012 0.573 ± 0.017 0.355 ± 0.008 0.332 ± 0.018 0.443 ± 0.020
JapaneseVowels 0.918 ± 0.006 0.978 ± 0.003 0.940 ± 0.002 0.938 ± 0.012 0.933 ± 0.008
LSST 0.571 ± 0.005 0.607 ± 0.009 0.604 ± 0.005 0.610 ± 0.009 0.652 ± 0.003
Libras 0.861 ± 0.017 0.887 ± 0.026 0.907 ± 0.006 0.922 ± 0.022 0.920 ± 0.018
MotorImagery 0.530 ± 0.026 0.563 ± 0.012 0.563 ± 0.049 0.560 ± 0.044 0.553 ± 0.042
NATOPS 0.900 ± 0.029 0.931 ± 0.014 0.869 ± 0.006 0.889 ± 0.006 0.878 ± 0.006
PEMS-SF 0.705 ± 0.029 0.788 ± 0.029 0.709 ± 0.084 0.763 ± 0.044 0.742 ± 0.087
PhonemeSpectra 0.186 ± 0.004 0.272 ± 0.006 0.245 ± 0.007 0.265 ± 0.007 0.286 ± 0.008
RacketSports 0.829 ± 0.007 0.919 ± 0.004 0.846 ± 0.010 0.871 ± 0.008 0.879 ± 0.027
SelfRegulationSCP1 0.762 ± 0.010 0.825 ± 0.022 0.858 ± 0.008 0.840 ± 0.003 0.891 ± 0.010
SelfRegulationSCP2 0.509 ± 0.031 0.491 ± 0.018 0.526 ± 0.038 0.506 ± 0.017 0.517 ± 0.020
SpokenArabicDigits 0.981 ± 0.003 0.907 ± 0.006 0.969 ± 0.001 0.979 ± 0.003 0.972 ± 0.002
UWaveGestureLibrary 0.846 ± 0.010 0.879 ± 0.015 0.910 ± 0.005 0.902 ± 0.004 0.919 ± 0.009

Table 14: Mean rank of TiViT and TSFMs across datasets from the UCR and UEA archive.

Model UCR UEA

Moment 3.66 3.33
Mantis 3.44 2.85

TiViT (Ours) 2.97 2.85

TiViT + Moment (Ours) 2.16 2.63
TiViT + Mantis (Ours) 1.92 2.22

G Broader impacts571

Since this paper presents foundational machine learning research, we do not see any direct societal572

risks. The broader impact of our work will depend on its specific application.573

We demonstrate that our method TiViT significantly improves classification accuracy. This advance-574

ment can be beneficial in healthcare where the analysis of physiological signals is crucial for early575

diagnosis and treatment or in industry where the accurate monitoring of sensor data enables predictive576

maintenance and reduces downtime.577

However, deep learning models including TiViT operate as black boxes with limited interpretability.578

In safety-critical domains or applications directly impacting humans, such models necessitate careful579

deployment and oversight. Further research into interpretability and human-in-the-loop frameworks580

is essential to make deep learning models trustworthy for real-world settings.581
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