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Abstract

Time series classification is a fundamental task in healthcare and industry, yet
the development of time series foundation models (TSFMs) remains limited by
the scarcity of publicly available time series datasets. In this work, we propose
Time Vision Transformer (TiViT), a framework that converts time series into
images to leverage the representational power of frozen Vision Transformers (ViTs)
pretrained on large-scale image datasets. First, we show that the 2D patching of
ViTs for time series can increase the number of label-relevant tokens and reduce
the sample complexity. Second, we demonstrate that TiViT achieves state-of-the-
art performance on time series classification benchmarks by utilizing the hidden
representations of large OpenCLIP models. We explore the structure of TiViT
representations and find that intermediate layers with high intrinsic dimension are
the most effective for time series classification. Finally, we assess the alignment
between TiViT and TSFM representations and identify a strong complementarity,
with further performance gains achieved by combining their features.

1 Introduction

Inspired by the success of foundation models in natural language processing (NLP) and computer
vision (CV), similar models have recently been developed for the analysis of time series following
two different approaches. The first one is to pretrain time series foundation models (TSFMs) in a
self-supervised way [Ansari et al., 2024, |Das et al., 2024, |[Feofanov et al.|[2025| Goswami et al., 2024|
Lin et al., 2023] using a large-scale real-world time series dataset. The second one is to repurpose
powerful foundation models from other domains, such as NLP [Jin et al.| 2024} Zhou et al., 2023]]
and CV [[Chen et al., [2024] L1 et al., [2023b]], for time series tasks. The idea behind these approaches
is to benefit from the vast amount of samples that large vision and language models are trained on.

Time series can be transformed into images in many ways, including line plots, heatmaps, or
spectrograms [Ni et al., 2025]]. Wu et al.|[2023]] trained TimesNet end-to-end on heatmaps generated
from time series. [Li et al.| [2023b]] finetuned SwinTransformer on line plots of irregularly sampled
time series. In contrast, we are the first to demonstrate that frozen vision foundation models such as
OpenCLIP [Cherti et al.| 2023] [Ilharco et al.| [2021]], SigLIP 2 [Tschannen et al., 2025]], and DINOv2
[Oquab et al., 2024], pretrained solely on natural images or image-text pairs, can be directly applied
to time series classification without any pretraining or fine-tuning on time series data.

Our main contributions are as follows: (1) We show that pretrained ViTs of foundation models can
be superior to TSFMs in time series classification. We achieve this by transforming time series
into images and by further using hidden layer representations of vision models. (2) We propose a
theoretical insight showing that image-based time series modeling can be efficient when used with
Transformers since it reduces sample complexity during training. (3) We show that representations
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Figure 1: Illustration of TiViT on a time series sample from ECG200 [Olszewski, |2001]. We split the
time series into segments and stack them to form a grayscale image. Then, we patch the image in
2D and feed it into a frozen ViT pretrained on large-scale image datasets. We average the hidden
representations from a specific layer and pass them to a learnable classification head. Combining the
representations of TiViT and TSFMs such as Mantis further improves classification accuracy.

from TSFMs and TiViT can be concatenated to provide an average improvement of +3% on 128
UCR [Dau et al., 2019] time series datasets, highlighting the complementarity of these models.

2 Modeling Time Series as Images

Although previous studies [Chen et al.| 2024} [Lin et al.l 2024, [Wu et al.,|2023]] have modeled time
series as 2D matrices, there is no theoretical understanding of why such an approach may be beneficial
in practice.

Theoretical Analysis We motivate the representation of time series as heatmap images by com-
paring the 1D and 2D patching of a periodic time series ¢ € R” (with T = k2, period p = k).
Our analysis focuses on the number of label-relevant tokens each method produces, which in turn
determines the sample complexity of a Transformer [Li et al.,2023a]]. The patching methods are:

* 1D patching: The series ¢ is split into k contiguous, non-overlapping tokens x; € R”.

* 2D patching: The series ¢ is reshaped into a £ X k matrix, then divided into k£ non-
overlapping vk x vk patches, which are flattened to form tokens w’(l i€ RE.

Following the data model from |Li et al.|[2023a] for binary classification, we assume tokens are noisy
versions of two class-specific patterns, 1 and po. A token is label-relevant if it is closer to the
pattern of the correct class. The sample complexity of a shallow Transformer scales as O(1/a2)
where «, denotes the fraction of label-relevant tokens. Our key insight is that 2D patching increases
this fraction, which we formalize in the following proposition. The full proof is postponed to
Appendix [B.2]and illustrated in Appendix [B.3]

Proposition 1. Let a time series t € RT be composed of k segments, where each segment is either
a non-discriminative pattern w1 or a label-relevant pattern py. Let |{i: @; = po}| = n' and
assume that 2’ - (w1 — pa) < ||1||? — ||p2l|? whenever |{i : x € po}| > Vk. Then, it holds:
a?P > alP = %/, and the inequality is strict if n’ mod \/k > 0.

Empirical Validation To verify our theoretical in- Tuple 1: Comparison of patching strategies
sight, we compare the two patching strategies on the ;) the UCR benchmark.
UCR benchmark using a fixed Transformer architecture

and pretraining paradigm. Details are provided in Ap- ) Non-overlap ~ Overlap
pendix[C] As shown in Table[T] 2D patching consistently Patching
outperforms 1D patching. Subsequently, we build on 1D 2D 1D 2D

this idea of modeling time series as images and further  Accuracy 764 768 76.6 77.4
leverage pretrained vision models for feature extraction.
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3 TiViT: Time series classification with pretrained Vision Transformers

We introduce TiViT leveraging pretrained frozen ViTs from the vision or vision-language domain
for time series classification. Figure[T]illustrates our approach. We are given a time series dataset
T = {t"|t" € RT*P}N_,| containing N samples, each of length 7" and dimensionality D. The
corresponding targets J = {y" }V_, are labels y" € {1,...,C} from C classes.

Time series-to-image transformation Following the channel independence assumption proposed
by Nie et al.| [2023]], we first split a multivariate time series t” € R”*P into D univariate time series
{t7 € RT}L_,. We then normalize each univariate time series 7} using robust scaling, defined as:
gd;:%zl , where @1, @2, Q3 are the first, second (median), and third quartiles, respectively. We apply
padding at the beginning of each time series by replicating its first value and subsequently segment
it into M patches {x,, %:1 of size P. Given a patch length P and stride .S, the total number of
patches is: M = LTEP J + 1. We stack the patches to generate a 2D representation X’ € RM*F,
which we then render into a grayscale image X' € RM*F*3 by replicating its signals across three
channels. To align with the square input resolution (R, R) expected by the ViT, we resize the image.

Time series classification We feed each grayscale image X' representing a univariate time series
into a pretrained and frozen ViT v with L hidden layers. The ViT inherent 2D patching yields
a sequence {x) € RUQ},Ile of flattened patches where (U, U) is the resolution per patch and
K = R?/U? is the resulting number of patches. ViTs generally prepend a classification token to
this sequence. The ViT consumes all input tokens and produces a sequence of features at every

L
layer: v(X') = {[ 61)7 hgl), e h(fl()]}z:o' To obtain a single embedding vector e per image, we

select a specific layer [ and average its K + 1 representations: e = hfli}g = KL—H ZkK:o hg). For

multivariate time series, we feed per-channel image representations { X/;}2_, separately into the ViT
and concatenate the resulting embeddings for a specified layer: Concat(e, ..., ep). We only train a
linear classifier on the ViT representations and their corresponding class labels.

4 Experimental evaluation

We evaluate TiViT with three different ViT backbones (CLIP [Radford et al., [2021] [Cherti et al.,
2023|, Iharco et al.,|2021]], SigLIP 2 [Tschannen et al., [2025]], DINOv2 [Oquab et al., [2024]) on the
UCR [Dau et al.,[2019] and UEA [Bagnall et al., 2018]] benchmarks for time series classification. We
compare the performance of TiViT to two state-of-the-art TSFMs: Mantis [Feofanov et al.|[2025]] and
Moment [Goswami et al.,[2024]]. Our experimental setup is detailed in Appendix D}

4.1 Transforming time series into images for ViT feature extraction

The performance of our time series-to-image transformation is sensitive to the patch size P, as
extreme values can create redundant visual tokens during resizing to the ViT input resolution. To
avoid a computationally expensive hyperparameter search for the optimal patch size P* per dataset,
we propose the heuristic P = /T for any series of length 7. This choice yields a square-shaped
matrix representation prior to resizing, which minimizes distortion and preserves patch diversity
(see Figure[5c). While an exhaustive search for P* offers a marginal accuracy improvement (see
Table [5a), our heuristic provides a strong baseline at a fraction of the computational cost. We further
observe that introducing overlap between patches consistently boosts performance (see Table [5b).

Consequently, the following experiments use a patch size of P = /T and a stride of S = P/10.

4.2 Hidden representations are most effective in time series classification

While the final representations of ViTs typically capture high level semantics, intermediate layers
encode lower level information [Dorszewski et al., 2025]]. Our study reveals that the intermediate
representations of ViTs are the most effective for downstream classification. In Figure [2a] we report
the classification performance of TiViT with pretrained ViTs from DINOv2, CLIP, and SigL.IP 2 on
the validation split of the UCR benchmark. For each dataset, we extract representations from the
hidden layers of ViTs, average them, and train a linear classifier. The intermediate representations of
ViTs, between 40% and 70% of the layer depth, achieve the highest classification accuracy.
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Figure 2: (a) Validation accuracy and (b) Intrinsic dimensionality using hidden representations at
different depth of ViTs (CLIP, and SiglLIP 2). Results are averaged over 128 datasets from
the UCR benchmark and three random seeds.

Intrinsic dimension To better understand the hidden representations of ViTs, we analyze their
intrinsic dimension (see Figure and principal components (see Appendix [E.4). [Valeriani et al.
[2023] have previously investigated the geometry of hidden representations of Transformers for
in-domain vision and language applications. We measure the intrinsic dimension of ViTs applied on
time series from the UCR archive using the DADApy [Glielmo et al., [2022]] implementation of the
TWO-NN estimator [Facco et al., 2017]. Figure [2b]displays for three different ViT backbones the
intrinsic dimensionality of their representations at varying layer depth. The best performing layers
often exhibit the highest intrinsic dimensionality.

Benchmark A full comparison of TiViT and TSFMs on Table 2: Classification accuracy of TSFMs

the UCR and UEA test set is reported in Table 2] The .4 TiviT per benchmark.
state-of-the-art TSFM Mantis achieves a linear classifi-

cation accuracy of 80.1% on the UCR benchmark. Our  pjodel UCR UEA
statistical analysis with a paired t-test and a significance

level of 0.05 confirms that TiViT significantly outper- Momgnt 79.0 699
forms (p = 0.03) Mantis across the 128 datasets of the ~Mantis 80.1  72.4
UCR benchmark, achieving 81.3% accuracy. We further  TyViT (Ours) 813  72.0

extend our analysis to the classification of multivariate —
time series. TiViT reaches a classification accuracy of L1 ViT +Moment (Ours)  82.5  72.6
72.0%, which is statistically on par with Mantis on the L1 ViT + Mantis (Ours) 83.0 737
UEA benchmark.

4.3 Alignment and fusion of TiViT and TSFM representations

We further explore the complementarity of TiViT and TSFM representations when concatenating
their features for joint classification. As depicted in Table 2} the combination of TiViT and TSFM
consistently improves the classification performance over any standalone model. While the com-
bination of two TSFMs yields 81.5% accuracy, fusing TiViT with Moment and Mantis leads to
even higher accuracies of 82.5% and 83.0%, respectively. These results underscore the potential of
multimodal time series analysis. To uncover the differences between representations learned by ViTs
and TSFMs, we additionally assess the alignment of their representation spaces using the mutual
k-nearest neighbor metric [Huh et al.,[2024] in Appendix [E.5]

5 Conclusion

In this paper, we showed that modeling time series in 2D rather than 1D benefits time series
classification with Transformers. Building on this insight, we introduced TiViT, leveraging large
pretrained ViTs for feature extraction on images generated from time series. Our analysis revealed
that the hidden representations of ViTs characterized by high intrinsic dimensionality are most
effective in time series classification. TiViT significantly outperformed state-of-the-art TSFMs in
time series classification on UCR, and reached comparable performance on UEA. Furthermore, we
investigated multimodal time series analysis by merging the representations of TiViT and TSFMs,
and achieved state-of-the-art results for foundation models in zero-shot and linear classification.
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Appendix

In Section|A] we outline related work on time series foundation models and on transforming time
series into images. In Section[B] we summarize the theoretical analysis of [Li et al.| [2023a]] on learning
and generalization for Vision Transformers and detail our proof of label relevance for 2D patching.
In Section[C] we describe the model and pretraining setup used in our comparison of 1D and 2D
patching for Transformers. In Section [D} we explain the setup of our experimental evaluation of
TiViT. In Section [E] we further analyze the size and type of TiViT backbones. In Section [} we
provide the benchmark results for each dataset from the UCR and UEA archive. Finally, we discuss
the broader impacts of our work in Section |G|

A Related work

Time series foundation models Recently, the research community has witnessed an impressive surge
in the number and variety of TSFMs. At first, such models were based on repurposing large language
models (LLMs) for time series tasks [[Cao et al.,[2024| |Chang et al., [2025| |Gruver et al., 2023 Jin
et al.| 2024, Xue and Salim, 2024, |Zhou et al.,2023|| by leveraging the ability of LLMs to efficiently
handle text sequences. A different approach that gained in popularity later was to train TSFMs from
the ground up on extensive and diverse datasets [[Ansari et al., 2024, Bhethanabhotla et al., 2024,
Das et al., 2024, [Feofanov et al.,[2025||Gao et al., [2024] |Goswami et al., 2024, |[Lin et al., [2023| [Liu
et al.,|2024abl Rasul et al.| 2024} Wang et al.| 2024]]. While most of the models were designed for
time series forecasting, several of them also specifically tackled time series classification [Feofanov
et al., 2025, |Gao et al., 2024} (Goswami et al., 2024, [Lin et al.,|2023} Zhou et al., 2023|]. These models
are on par with or exceed the performance of other popular deep learning models proposed for time
series classification, such as the famous TimesNet [Wu et al., 2023]] architecture.

Transforming time series into images Time series can be transformed into images in many ways,
either based on the 1D representation of the time series in the original (line plot) or transformed
(frequency) space, or by using a 2D modeling (heatmap, Gramian angular field, recurrence plot) that
stacks segments of the input time series based on a chosen periodicity. Vision models, often based
on CNNs and their variations, were used on such image-based representations of time series since
as early as 2013 (see Ni et al.|[2025] for a recent survey). Most of them, however, are trained in a
supervised way to fit a dataset at hand. This work explores how pretrained vision models can be used
as powerful feature extractors without training or fine-tuning. |Li et al.|[2023b|] showed that pretrained
ViTs can be efficient in the classification of irregular time series from their line plot representations
after full fine-tuning. In a similar vein, |Chen et al.[[2024] applied a masked auto-encoder with a
pretrained frozen ViT to 2D transformed time series to perform univariate time series forecasting.
Different from these works, we explain why vision models can be more efficient in time series
analysis compared to Vanilla Transformers. Moreover, our TiViT model surpasses the performance
of frontier TSFMs across a broad set of common classification benchmarks.

B Details on the theoretical analysis

We first review the shallow ViT and data model introduced by |Li et al.|[2023a] in their theoretical
analysis of training a ViT. Their Theorem B.T|shows that the sample complexity for ViTs to achieve a
zero generalization error is inversely correlated with the fraction of label-relevant tokens. Building
on this insight, we provide a detailed proof of our Proposition 1 from the main paper, showing
that 2D patching can increase the number of label-relevant tokens compared to 1D patching. We
further illustrate our Proposition 1 with various examples of time series and their corresponding 2D
representations.

B.1 Background

Model and setup Following the setup of |Li et al.| [2023a]], we study a binary classification problem
with N training samples {(X™,y")})_,. Each input X" € R%* contains L tokens {x7,...,x}}.

n=1-
Labels y™ € {41} are determined by majority vote over discriminative tokens. A simplified Vision
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Table 3: Key Notations

Notation Description

Ol Fraction of label-relevant tokens
0,0, T Initialization/token noise parameters
K Minimum pattern distance

M Total number of patterns

Transformer (ViT) [Dosovitskiy et al., 2021]] model is defined as:

1
| Z a(ReLU (WonX”softmax (XﬂT W]—(FWQ(E?)) ’

F(X") = —
X" e &

where o) = (A={aq}i, Wo, Wy, Wi, W) are trainable parameters. The empirical risk mini-
mization problem is:

N
min f () = 5 > max {1 —y" - F(X"),0}.
n=1
Training uses mini-batch SGD with fixed output layer weights A, following standard NTK initializa-
tion practices.

Data model Tokens x]' are noisy versions of M patterns {pt1, ..., pas}, where pq, po are dis-
criminative. Label y™ depends on majority vote over tokens closest to 1 /p2. Noise level 7 satisfies
T < k/4, with k — 47 = ©(1).

Generalization of ViT We now recap the main results from |Li et al.| [2023a] from which we derive

our result, along with the main notations in TableE}
Assumption (Initial Model Conditions, [Li et al, 2023a)). Initial weights W), W) W satisfy:

Wi —pill <o Wiy —qill <6, Wy —mill <,
for orthonormal bases P, Q,R and o = O(1/M),6 < 1/2.
Theorem (Generalization of ViT, [Li et al., 2023al]). Under Assumption 1, with sufficient model
width m 2> e 2M? log N, fraction
o > ag/(ese (1 = (0 +7)),

and sample size
N>Q((a.—d(1=¢) —"(c+71)7?),
SGD achieves zero generalization error after

1
T_@<ﬂ—e—w+ﬂMMMm)
iterations.

Proposition (Generalization without Self-Attention, [L1 et al.,|[2023al]). Without self-attention, achiev-
ing zero error requires N > Q ((ax(o. — 0 — 7))~ ?), demonstrating ViT’s sample complexity
reduction by 1/a?2.

B.2 Proof of label relevance in 2D patches

We remind Proposition 1 from the main paper and provide a detailed proof.
Proposition 1. For an arbitrary pi, po € R¥ lett =[x x5 --- 1] € RTwhere Vi € [k],x; €
R* and either ©; = 1 or T; = po with py being a label-relevant pattern. Let |{i : x; = ps}| = n'

and assume that 2’ - (p1 — p2) < ||p1]|? — || 2| |* whenever |{i : @ € po}| > Vk. Then, it holds
that

and the inequality is strict if n’ mod vk > 0.
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Figure 3: Benefits of 2D patching for time series. We consider a binary classification problem with
two distinct patterns: a sine function over [0, 7], either positive or negative. Here, the negative sine

function represents the label-relevant pattern. Tokens should cover at least 1/+/% of the label-relevant
pattern to be considered label-relevant, i.e., all tokens in 2D (red), only one third of tokens in 1D.

Proof. For a token '™ to be label-relevant (aligned with p5), it must satisfy:

[ = pa]| < "™ = pa ]

Expanding both sides, we have that:
" |[% + 22" - puy + [|poa||* < [l |2 = 22" - oo + |||
Regrouping the terms gives us the desired condition:

22" - (1 = p2) < lpa|]” = (|2 M
Recall that ’ denotes the number of segments of 5 in time series ¢. Each such segment spans vk
tokens, contributing at least v/k elements to each of them. Under the assumption of the proposition,
it implies (1) and makes each of these v/k tokens label-relevant.

We now need to carefully consider how the po segments can be placed within ¢ to understand how
many tokens become label-relevant thanks to each po. We consider two cases: 1) n’ = eV'k for
some ¢ € N satisfying n’ € (0,%], and 2) n’ = eVk + b for some a,b € N, vk > b > 0 such
that n’ € (0, k]. In the first case, a!P = vk /k. In the case of 2D patching, in the worst case, po
segments can be placed such that they will contribute to cv/k tokens. In this case, a2 > ¢/k/k and
alP < 2P If n’ is not a multiple of v/k, the same analysis applies for the cv/k segments of pto. To
account for the remainder b, we note that for any b > 0, in 2D case, it adds vk label-relevant tokens
to the fraction a2 so that a2 > M In the case of 1D patching, a!P = LZ“’ Given that

*

b < 'k, this concludes the proof. O

To better illustrate this proposition, we visualize it using a concrete example. We define 1 = sin(x)
for z € [0, n] and let pro = — 1. Figure (more examples are provided in Appendix(@b displays
the input time series ¢ with k¥ = 9 and n’ = 3. In this case, the assumption 22’ - (1 — p2) <
||[e1]? — ||p2]|? simplifies to 2’ - p; < 0 and is verified for all tokens in 2D case and only for n’
tokens in 1D case. On a higher level, this proposition formalizes the idea that having a discriminative
signal spread across more tokens (each po contributes to v/% tokens in 2D case) makes it easier for
a Transformer model to pick up this signal and to learn the classification task better. In the case of
1D patching, this signal is less spread, making it harder for the model to attend to important tokens

during training.

B.3 Additional illustrations of Proposition 1

To illustrate the benefits of 2D modeling and patching, we present several examples of time series in
Figure We define p1q using functions such as log, cosine, and sine. We then set gy = 13, n' = 3
and randomly shuffle p1; and po segments within the generated input time series.
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Figure 4: Illustration of Proposition 1 on more generated time series. In each example considered,
2D patching is more beneficial due the higher number of label-relevant tokens.
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Table 4: Data used to pretrain Transformers for comparison of 1D and 2D patching.

Dataset Number of examples  Prop. of taken examples
ECG 20835 45.7%
EMG 163 100%
Epilepsy 11480 100%
FD-A 10912 100%
FD-B 13619 100%
Gesture 1320 100%
HAR 20835 78.7%
SleepEEG 20836 4.5%

C Details on the comparison of 1D and 2D patching for Transformers

C.1 Architecture and pretraining

To evaluate the effect of 1D versus 2D patching on representations learned by Transformers, we
fix the Transformer architecture and pretraining strategy, and only change the patching approach
for generating input tokens. We adopt the setup of [Feofanov et al.|[2025] since their Transformer
block implementation (ViTUnit class here) for time series classification is similar to the classical
ViT. Specifically, the model comprises 6 Transformer layers, each with 8§ attention heads and an
embedding dimension of 256.

For pretraining, we employ contrastive learning following [Feofanov et al.| 2025| |He et al., 2020].
The augmentation technique to generate positive pairs is RandomCropResize with a crop rate varying
within [0%, 20%]. All time series are resized to a fixed length T = 512 using interpolation.

We examine both non-overlapping and overlapping patches following [Goswami et al.,[2024, Nie et al.}
2023||. For non-overlapping 1D patching, we generate 32 patches of size 16. For non-overlapping 2D
patching, we first arrange the 1D patches in a matrix of size 32 x 16 and then extract 32 patches of
size 2 x 8. After flattening, we obtain 32 patches of size 16, similar to the 1D setting, but semantically
different. For overlapping 1D patching, we apply a stride of 8, which yields 64 patches of size 16.
For overlapping 2D patching, we rearrange these 1D patches again in a matrix of size 64 x 16 and
then extract 32 patches of size 4 x 8. Flattening yields 32 patches of size 32.

C.2 Dataset

To pretrain the different models, we first generate a pretraining dataset from publicly available datasets
that are not part of the evaluation benchmark. In detail, we consider a concatenation of the following
datasets: ECG [Clifford et al., [2017]], EMG [Goldberger et al., |2000], Epilepsy [Andrzejak et al.,
2001]], FD-A and FD-B [Lessmeier et al.| 2016], Gesture [Liu et al.| 2009], HAR [Anguita et al.|
2013|], SleepEEG [Kemp et al., 2000]. To reduce computation time, we construct a subset of the full
dataset containing 100 000 samples, with a sufficiently balanced distribution across the individual
source datasets. We give more details in Table 4] on how many samples were taken from each dataset
to form the pretraining corpus.
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Table 5: Comparison of the effects on validation accuracy of (a) Patch size P and (b) Patch overlap.
Results are averaged across the 128 datasets of UCR benchmark for 3 random seeds.

(a) Selecting patch size P (b) Effect of patch overlap on validation accuracy
Patch size VT — P* Overlap 00 025 05 075 09 095
Val accuracy 782 79.5 Val accuracy 782 793 802 80.0 804 80.0

(a) ECG200 sample b P=1 (©) P =T @pP=1

Figure 5: Effect of patch size P on the time series-to-image transformation on a sample from
ECG200[[Olszewskil 2001]]. To match the ViT input resolution, a small patch size (P = 1) requires
horizontal stretching, while a large patch size (P = %) requires vertical stretching. Both scenarios
result in redundant tokens.

D Experimental setup

Datasets UCR comprises 128 univariate time series datasets of varying sample
size (16 < Nyain < 8926) and series length (15 < T < 2844). UEA [Bagnall et al.} 2018] consists
of 30 multivariate time series datasets. Following|Feofanov et al.| [2025], we exclude three datasets
(AtrialFibrillation, StandWalkJump, PenDigits) from UEA due to their short sequence length or small
test size.

Vision Transformers Our study examines three differently pretrained ViTs. CLIP
performs contrastive learning of image and text encoders on image-text pairs. We reuse the
ViT image encoders of OpenCLIP [Cherti et al .}, [2023] [TTharco et al.} 2021]] models trained with the
LAION-2B English subset of LAION-5B [Schuhmann et al., 2022]]. SigLIP 2
adopts contrastive learning on image-text pairs, but with a Sigmoid loss, complemented by
captioning-based pretraining, self-distillation, and masked prediction. In contrast, DINOv2
is solely pretrained on images through self-distillation with a student-teacher architecture
and masked modeling. For each pretraining approach, we consider multiple vision model sizes
(ViT-B, ViT-L, ViT-H) with varying layer depth (12, 24, and 32 layers).

Baselines We compare TiViT to two state-of-the-art TSFMs exclusively pretrained on time series.
Mantis [Feofanov et al [2025] is a Transformer model (8 M parameters) comprising 6 layers and 8
heads per layer, pretrained on 2 million time series with contrastive learning. Moment
2024] is a family of Transformers pretrained on 13 million time series with masked modeling.
In our study, we consider Moment-base with 12 layers and 125 M parameters.

Implementation To assess the effectiveness of TiViT and TSFM representations in time series
classification, we train a logistic regressor with the LBFGS solver per dataset. Our evaluation adheres
to the standard train-test splits provided by the UCR and UEA archive and reserves 20% of the train
split for validation. For the time series-to-image transformation, we resize the grayscale images to
the resolution expected by the ViT with nearest interpolation and adjust the contrast with a factor
of 0.8. All experiments can be performed on a single NVIDIA V100 GPU with 16 GB memory. Our
results are averaged over three random seeds.

13
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Figure 6: Effect of patch overlap on the classification accuracy of TiViT with different backbones.

Table 6: Linear classification with TiViT on UCR. For each model, we report the test accuracy
achieved with the best performing hidden layer representation.

Model Architecture Layer Parameters Data Accuracy
TiViT-DINOv2  ViT-L/14 15 178 M LVD-142M 80.0
TiViT-SigLIP 2 SoViT-400m/14 10 138 M WebLlI (10B) 80.6
TiViT-CLIP ViT-H/14 14 25T M LAION-2B 81.3

E Additional analysis on TiViT

E.1 Patch size and overlap

In Section we analyze the time series-to-image transformation for TiViT-CLIP and show that a
patch size P = /T and a stride S = % yields high classification accuracy for any time series of
length T'. Figure[6]displays the effect of patch overlap for TiViT with CLIP, DINOv2, and SigLIP 2
backbones while fixing the patch size at P = v/T'. All versions of TiViT achieve high classification

accuracy when utilizing an overlap of 0.9 (corresponding to stride S = 1%).

E.2 Different vision foundation models

Table 6] displays the best performing hidden layers for various vision foundation models. CLIP and
SigLIP 2, both optimized with a contrastive loss on image-text pairs, reach best performance in their
earlier layers: layer 14 of 33 for CLIP (ViT-H) and layer 10 of 28 for SigLIP 2 (SoViT-400m). In
contrast, DINOv2 (ViT-L) trained with contrastive learning and masked modeling on images only,
reaches the highest classification accuracy with representations from a later layer (15 of 25). Our
selection of architectures per pretraining paradigm ensures that TiViT exhibits a similar number of
layers and parameters up to the best performing hidden layer. For each ViT, we determine the optimal

Table 7: Linear classification accuracy of TiViT on the UCR dataset with different ways of aggregating
the hidden representations per layer. We report the total number of layers including the output layer
and the index of the best performing layer starting from 0.

Average of tokens  CLS token

Model # Layers

Layer Acc Layer Acc
TiViT-DINOv2 25 15 80.0 17 79.1
TiViT-SigLIP 2 28 10 80.6 14 71.7
TiViT-CLIP 33 14 81.3 18 78.6
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Table 8: Linear classification of TiViT-CLIP with varying size of the ViT backbone. For each model,
we report the test accuracy on the UCR dataset achieved with the best performing hidden layer
representation and the number of parameters up to this layer.

Architecture  Layer (total number) Parameters Accuracy

ViT-B/32 8(13) 52M 79.8
ViT-B/16 6 (13) 36 M 80.8
ViT-L/14 10 (24) 178 M 80.3
ViT-H/14 14 (32) 257TM 81.3
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(a) TiViT-CLIP (b) TiViT-DINOv2 (c) TiViT-SigLIP 2

Figure 7: Intrinsic dimension of hidden representations per layer from CLIP, DINOv2, and SigLIP
computed for subsamples of the dataset in { N, -, %, %}

hidden layer based on its highest validation accuracy across the 128 datasets of the UCR benchmark.
This best performing layer per ViT is consistently used in all subsequent experiments.

E.3 Aggregation of hidden token representations

As described in Section[3] we obtain a single embedding for each time series by averaging the ViT
hidden representations in a particular layer. We now evaluate the performance of TiViT when using
the CLS token from each layer instead. Table[7]compares the linear classification performance on the
UCR dataset using either the CLS token or the mean of all tokens. To ensure a fair comparison, we
determine the best performing layer for each approach based on the validation accuracy. Across all
backbones, the CLS token consistently results in lower test accuracy, confirming our choice to use the
mean hidden representation in TiViT. Interestingly, the best performing CLS tokens appear in later
layers compared to the best performing mean tokens. Therefore, utilizing the mean representations
does not only enhance classification accuracy, but also reduce computational cost.

140
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Number of principal components

T T T 1
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Relative layer depth

Figure 8: Number of principal components necessary to cover 95% of variance in the ViT representa-
tions per layer averaged across UCR datasets.
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Table 9: Joint linear classification with TiViT and TSFMs on the UCR benchmark. We measure the
alignment of the representation spaces using the mutual k-NN metric.

TiViT TSFM Joint Alignment
CLIP DINOv2 | Mantis Moment | Accuracy Score
- - 80.1 79.0 81.5 0.319
- 80.0 - 79.0 81.8 0.296
81.3 80.0 - - 82.0 0.484
- 80.0 80.1 - 82.2 0.323
81.3 - - 79.0 82.5 0.321
81.3 - 80.1 - 83.0 0.338

82.5 CLIp 1.000 0.484 0.338 0.321 0.9
82.0 08
815 DINOv2 0.484 1.000 0.323 0.296 0.7
81.0
0.6
: Mantis 0.338 0.323 1.000 0.319 0
.5
80.0
0.4
: Moment 0.296 0.319 1.000
0.3
79.0

(a) Pairwise joint classification accuracy. (b) Pairwise alignment score (mutual KNN).

Accuracy
Alignment Score

Figure 9: The representations of frozen ViTs and TSFMs are concatenated and used in linear
classification. Results are averaged over 128 datasets from the UCR benchmark.

E.4 Intrinsic dimension and principal components of hidden representations

The intrinsic dimension quantifies the minimum number of variables required to represent a local
neighborhood of samples in the representation space. To estimate the intrinsic dimension, the TWO-
NN estimator introduced by |[Facco et al.[[2017]] leverages the distance of each data point to its first
and second nearest neighbor. As noted by the authors, a larger number of data points reduces the
average distance to the second neighbor, and thus increases the intrinsic dimension. To mitigate
this effect, the)]/\]propose to subsample the dataset. Given a dataset of size /N, we report the intrinsic
dimension for 7 subsamples in the main paper, which is in line with |Valeriani et a1.| [2023|]. In Figure
we compare the intrinsic dimension of average representations from hidden layers using N, %, %,
and % samples for estimation. The layer with the highest intrinsic dimension, which is central to our
analysis, remains the same regardless of the subsampling ratio.

Since the intrinsic dimension only characterizes the local geometry of the representation space, we
further provide a global analysis using principal components. Specifically, in Figure 8] we determine
the number of principal components that are necessary to cover 95% of the variance in the data.
For DINOV2, we observe a peak in the number of principal components in the middle layers that
corresponds to the layers achieving the best classification accuracy. Interestingly, CLIP and SigLIP
2 exhibit two peaks in the number of principal components across the layers. The middle-layers
corresponding to the first peak yield the highest time series classification accuracy.

E.5 Alignment and fusion of TiViT and TSFM representations

For each sample in the dataset, we find the £ = 10 nearest neighbors in the embedding space of two
different models and measure the intersection between the two neighbor sets. The final alignment
score between two models is an average across all samples from the UCR benchmark. Table [9]
presents the alignment scores for CLIP, DINOv2, Mantis, and Moment. Interestingly, the alignment
score of the two TSFMs is relatively low. We hypothesize that this discrepancy arises from their
different pretraining paradigms: Mantis is trained contrastively while Moment is trained with masked
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Table 10: Linear classification accuracy of TiViT with varying MAE backbone size and aggregation
of hidden representations per layer. We report the total number of layers including the output layer
and the index of the best performing layer starting from 0.

Average of tokens  CLS token

Architecture  # Layers
Layer Acc Layer Acc

MAE Base 13 8 72.7 9 73.8
MAE Large 25 14 74.3 18 75.6
MAE Huge 33 20 75.9 20 76.7
20
18
S 16
é 14
£
© 12
£,
T g4 —— MAE Base
- MAE Large
6 - - MAE Huge
0.0 0.2 04 0.6 0.8 1.0

Relative layer depth

Figure 10: Intrinsic dimensionality of CLS tokens per MAE layer averaged across UCR datasets.

modeling. A similarly low alignment score is observed between any TiViT and TSFM, which we
attribute to their domain gap. TiViT and Mantis extract different representations for the same time
series, which is beneficial for joint classification. The highest alignment is measured between TiViT-
CLIP and TiViT-DINOV2, both of which are pretrained contrastively on image datasets. Figure[J]is
an additional visualization of the pairwise scores as heatmaps.

E.6 Size of ViT backbone

We report the performance of TiViT with CLIP ViT-H backbone in Section [4.2]of the main paper.
Table [§] provides a detailed analysis of how the performance of TiViT varies with the size of the
ViT backbone, including ViT-B (with two patch sizes), ViT-L, and ViT-H. Remarkably, with only 6
Transformer layers from ViT-B, TiViT achieves an accuracy of 80.8%. While matching the number
of Transformer layers in Mantis, TiViT surpasses Mantis (80.1%) in classification accuracy. However,
the hidden dimensionality is higher for the ViT-B backbone used in TiViT. By utilizing a larger
backbone, specifically 14 hidden layers of ViT-H/14, we achieve the highest accuracy of 81.3%,
significantly outperforming conventional TSFMs.

E.7 Masked autoencoder backbone

In the main paper, we analyze the reusability of ViT backbones from CLIP [Radford et al.l 2021}
Schuhmann et al.| 2022], DINOv2 [[Oquab et al., [2024]], and SigL.IP 2 [Tschannen et al., 2025[] in
time series classification. In contrast, /Chen et al.|[2024] repurpose Masked Autoencoders (MAEs)
[He et al.,2022] for time series forecasting. To enable a direct comparison, we now utilize the hidden
representations of MAE Base, Large, and Huge in time series classification.

Our analysis in Table [I0] shows that for MAEs using the CLS token yields better performance in time
series classification than averaging token representations. Moreover, Table [T0|presents a comparison
across MAE:s of different sizes, showing that larger backbones consistently achieve higher accuracy.
Different from contrastively pretrained models, summarized in Table[6]of the main paper, the best
representations for time series classification with MAE lie in later layers. We further observe that
the hidden representations of the later MAE layers up to the output layer perform similar in time
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Table 11: Linear classification accuracy on UCR subsets (left) and classifier comparison (right). We
consider logistic regression (LR), nearest centroid (NC), and random forest (RF).

UCR subsets Classifier comparison
Model Smallest Largest Shortest Longest LR NC RF
Moment 85.7 85.5 86.9 65.8 79.0 68.6 75.6
Mantis 86.6 82.8 88.1 70.5 80.1 71.2 77.5
TiViT (Ours) 89.8 85.3 87.5 75.0 81.3 71.6 77.4
TiViT + Moment (Ours) 89.9 87.1 88.8 74.9 82.5 73.3 79.4
TiViT + Mantis (Ours) 90.9 86.2 88.8 71.7 83.0 73.4 79.8

series classification, while there is a significant gap between hidden representations and output
representations for TiViT-CLIP (see Figure 2a)in the main paper). Figure [I0]illustrates the intrinsic
dimension of the CLS tokens per layer averaged across the UCR datasets. We observe that the
intrinsic dimension increases up to 60% of the layer depth, while the later layers mostly exhibit a
similar intrinsic dimension, explaining their similar classification performance.

It is worth noting that MAE has only been pretrained on ImageNet-1k [Deng et al., |2009] with
1.5 million samples, whereas CLIP has been pretrained on the significantly larger LAION-2B
[Schuhmann et al., 2022]] dataset with 2 billion samples. We hypothesize that being exposed to a
larger set of images during training enhances the capacity of a vision model to extract discriminative
patterns from 2D time series representations.

E.8 UCR subsets and classifier comparison

In Section .2} we report the performance of TiViT across all 128 UCR datasets. To further explore
its capabilities, we now select four UCR subsets: 10 datasets with the fewest training samples
(16 < Nirain < 20), the most training samples (1000 < Nipqin < 8926), the shortest time series
(15 < T < 80), and the longest time series (1500 < 7' < 2844). The results are displayed in Table@
TiViT significantly outperforms Mantis on subsets with a small training set (89.8% vs. 86.6%) and
long time series (75.0% vs. 70.5%). These findings demonstrate that TiViT excels in generalizing
from limited training data and in modeling long-range dependencies. On the remaining two subsets,
TiViT is on par with TSFMs. Combining the representations of TiViT and TSFMs achieves the
highest classification accuracy across all subsets, once again underscoring their complementarity.

While the previous experiments require to train a logistic regressor for classification, we finally
investigate the effectiveness of TiViT in zero-shot classification. Here, we employ a nearest centroid
classifier, where each class is represented by the centroid of its representations, and samples are
assigned to the class of their nearest centroid. On the UCR benchmark, TiViT achieves a zero-shot
classification accuracy of 71.6%. Our approach is on par with Mantis (71.2%) and outperforms
Moment (68.6%), highlighting the ability of TiViT to extract generalizable representations. We
further merge the representations of TiViT and Mantis, reaching a zero-shot accuracy of 73.4%.
Following Feofanov et al.| [2025]], we also adopt a random forest classifier. We observe that TiViT
performs on par with Mantis, and that once again combining the representation of both models
achieves state-of-the-art classification performance. |[Feofanov et al.|[2025]] have demonstrated that
Mantis surpasses other TSFMs such as NuTime [Lin et al.,|2023|]] when evaluated with a random
forest classifier. This conclusion can now be extended to TiViT.
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F Detailed results on UCR and UEA benchmarks

In the main paper, we report the average accuracy of TiViT and TSFM across 128 univariate datasets
from the UCR archive and 27 multivariate datasets from the UEA archive. Here, we report the
full linear classification benchmark with accuracy scores for Mantis, Moment, TiViT, and their
combinations on each dataset. Table[I2] presents the performance on the UCR dataset, while Table [I3]
reports the results on the UEA dataset. Additionally, Table[T4] provides the mean rank of all five
methods on both benchmarks. If multiple element share the same rank, we assign them the lowest
rank in the group.

Table 12: Classification accuracy for 128 univariate datasets from the UCR benchmark. We report
the mean and standard deviation across three random seeds.

Dataset Moment Mantis TiViT TiViT + Moment TiViT + Mantis
ACSFI1 0.673 + 0.012 0.667 £ 0.021 0.777 £ 0.015 0.777 £ 0.012 0.763 £ 0.021
Adiac 0.731 % 0.003 0.728 £ 0.010 0.695 £ 0.017 0.740 + 0.005 0.714 + 0.003
AllGestureWiimoteX 0.680 % 0.004 0.666 =+ 0.007 0.653 £ 0.016 0.702 + 0.002 0.673 £ 0.019
AllGestureWiimoteY 0.711 % 0.024 0.699 £ 0.007 0.715 £ 0.010 0.733 £ 0.013 0.740 + 0.010
AllGestureWiimoteZ 0.583 £+ 0.013 0.650 £ 0.004 0.649 £ 0.017 0.664 £ 0.011 0.667 + 0.019
ArrowHead 0.804 £ 0.012 0.745 &£ 0.007 0.806 £ 0.045 0.840 + 0.023 0.825 + 0.035
BME 0.900 + 0.075 0.987 £ 0.012 0.998 + 0.004 0.987 £ 0.018 0.996 + 0.008
Beef 0.756 + 0.038 0.700 + 0.033 0.733 + 0.033 0.756 + 0.038 0.733 4+ 0.033
BeetleFly 0.833 4 0.029 0.900 + 0.000 0.900 + 0.050 0.883 4+ 0.029 0.933 + 0.029
BirdChicken 0.850 + 0.087 0.933 + 0.076 0.850 + 0.087 0.850 + 0.087 0.850 + 0.087
CBF 0.943 4+ 0.012 0.994 + 0.010 0.999 + 0.001 0.998 + 0.003 0.999 + 0.001
Car 0.817 4 0.000 0.794 + 0.051 0.794 £ 0.010 0.806 + 0.025 0.822 + 0.025
Chinatown 0.966 + 0.009 0.962 + 0.003 0.965 + 0.009 0.976 + 0.012 0.970 %+ 0.007
ChlorineConcentration 0.723 4+ 0.001 0.643 + 0.004 0.721 £ 0.011 0.739 + 0.016 0.737 4 0.009
CinCECGTorso 0.733 4+ 0.031 0.737 &+ 0.004 0.895 + 0.013 0.863 + 0.019 0.895 + 0.012
Coffee 1.000 =+ 0.000 1.000 £ 0.000 1.000 =+ 0.000 1.000 =+ 0.000 1.000 =+ 0.000
Computers 0.712 4 0.036 0.735 £ 0.021 0.748 + 0.016 0.772 + 0.024 0.767 £ 0.012
CricketX 0.706 + 0.020 0.726 £ 0.015 0.763 £ 0.010 0.755 + 0.005 0.766 + 0.011
CricketY 0.693 + 0.018 0.732 £ 0.017 0.767 £ 0.011 0.779 + 0.007 0.777 £ 0.011
CricketZ 0.740 + 0.016 0.721 £ 0.009 0.773 £ 0.015 0.779 £ 0.012 0.797 £ 0.017
Crop 0.709 + 0.003 0.695 + 0.001 0.673 + 0.003 0.712 + 0.002 0.707 £+ 0.003
DiatomSizeReduction 0.900 =+ 0.030 0.881 + 0.032 0.938 + 0.048 0.932 + 0.049 0.938 + 0.048
DistalPhalanxOutlineAgeGroup 0.743 + 0.011 0.746 £ 0.017 0.715 £ 0.004 0.724 £ 0.011 0.700 £ 0.011
DistalPhalanxOutlineCorrect 0.762 + 0.017 0.728 £ 0.007 0.755 +£ 0.006 0.756 + 0.014 0.743 £+ 0.007
DistalPhalanxTW 0.643 + 0.004 0.698 + 0.007 0.652 + 0.027 0.688 + 0.011 0.640 + 0.007
DodgerLoopDay 0.467 + 0.031 0.504 £+ 0.014 0.475 £ 0.022 0.500 = 0.033 0.496 + 0.031
DodgerLoopGame 0.720 % 0.051 0.749 +£ 0.008 0.768 £ 0.045 0.756 =+ 0.053 0.783 + 0.040
DodgerLoopWeekend 0.971 + 0.000 0.964 + 0.000 0.957 = 0.000 0.969 + 0.004 0.971 + 0.000
ECG200 0.843 + 0.006 0.853 £ 0.012 0.837 £ 0.012 0.853 + 0.015 0.847 £ 0.012
ECG5000 0.933 % 0.005 0.924 + 0.003 0.936 £ 0.002 0.937 & 0.002 0.939 + 0.002
ECGFiveDays 0.957 % 0.007 0.977 &£ 0.004 0.983 £ 0.001 0.995 + 0.001 0.986 + 0.001
EOGHorizontalSignal 0.561 % 0.008 0.562 £ 0.018 0.603 £ 0.014 0.644 + 0.015 0.649 + 0.006
EOG VerticalSignal 0.463 £ 0.012 0.507 £ 0.007 0.465 £ 0.009 0.493 + 0.014 0.491 + 0.008
Earthquakes 0.722 4+ 0.034 0.719 % 0.007 0.707 £ 0.015 0.717 4+ 0.032 0.722 + 0.029
ElectricDevices 0.631 £ 0.008 0.701 £ 0.003 0.762 + 0.002 0.744 + 0.005 0.751 % 0.002
EthanolLevel 0.631 + 0.010 0.439 + 0.010 0.579 + 0.023 0.614 + 0.007 0.583 + 0.012
FaceAll 0.733 + 0.014 0.794 + 0.010 0.745 + 0.007 0.747 4+ 0.004 0.766 + 0.006
FaceFour 0.784 4+ 0.041 0.958 + 0.007 0.777 £ 0.093 0.811 4 0.046 0.879 + 0.046
FacesUCR 0.791 4 0.009 0.886 + 0.005 0.863 + 0.011 0.870 &+ 0.011 0.902 + 0.009
FiftyWords 0.727 4+ 0.021 0.740 + 0.013 0.747 £ 0.011 0.767 % 0.006 0.777 + 0.012
Fish 0.947 4+ 0.003 0.958 + 0.007 0.949 + 0.006 0.958 + 0.012 0.970 + 0.009
FordA 0.914 4+ 0.003 0.911 + 0.002 0.909 + 0.004 0.928 + 0.005 0.914 + 0.005
FordB 0.800 =+ 0.005 0.769 + 0.002 0.801 + 0.004 0.796 + 0.011 0.795 + 0.005
FreezerRegularTrain 0.973 4+ 0.012 0.976 £ 0.012 0.995 + 0.001 0.995 + 0.004 0.995 + 0.002
FreezerSmallTrain 0.840 4= 0.012 0.870 +£ 0.020 0.981 + 0.004 0.970 + 0.008 0.980 + 0.005
Fungi 0.753 + 0.033 0.810 + 0.025 0.794 + 0.020 0.810 + 0.020 0.815 + 0.025
GestureMidAirD1 0.656 + 0.012 0.669 + 0.023 0.726 + 0.025 0.721 £ 0.018 0.756 + 0.031
GestureMidAirD2 0.567 + 0.016 0.574 £ 0.032 0.646 + 0.043 0.628 + 0.019 0.669 + 0.028
GestureMidAirD3 0.359 + 0.019 0.385 £ 0.013 0.474 + 0.009 0.441 + 0.018 0.479 + 0.035
GesturePebbleZ1 0.893 + 0.015 0.911 + 0.003 0.891 + 0.003 0.924 + 0.010 0.932 + 0.007
GesturePebbleZ2 0.846 + 0.018 0.905 + 0.006 0.835 £ 0.011 0.876 + 0.032 0.892 + 0.011
GunPoint 0.984 + 0.027 0.987 £ 0.007 0.991 + 0.004 0.993 + 0.007 0.993 + 0.007
GunPointAgeSpan 0.980 % 0.008 0.998 + 0.002 0.997 +£ 0.000 0.995 + 0.002 0.997 + 0.000
GunPointMaleVersusFemale 1.000 + 0.000 0.999 + 0.002 1.000 £ 0.000 1.000 £ 0.000 1.000 £ 0.000
GunPointOldVersus Young 1.000 + 0.000 1.000 + 0.000 0.989 + 0.004 1.000 + 0.000 1.000 £ 0.000
Ham 0.752 &+ 0.025 0.667 £ 0.010 0.698 £ 0.049 0.730 = 0.048 0.740 & 0.044
HandOutlines 0.930 % 0.007 0.931 £ 0.006 0.936 £ 0.004 0.942 + 0.006 0.931 & 0.004
Haptics 0.491 % 0.026 0.462 + 0.002 0.487 £ 0.027 0.521 + 0.033 0.523 + 0.022
Herring 0.698 + 0.018 0.682 £ 0.024 0.615 £ 0.018 0.620 = 0.039 0.635 + 0.033
HouseTwenty 0.947 £ 0.010 0.961 £ 0.010 0.980 + 0.005 0.975 + 0.008 0.980 + 0.005
InlineSkate 0.364 £ 0.019 0.334 £ 0.021 0.393 +£ 0.008 0.403 + 0.005 0.396 + 0.008
InsectEPGRegularTrain 0.987 £ 0.014 1.000 =+ 0.000 0.997 +£ 0.005 1.000 £ 0.000 1.000 £ 0.000
InsectEPGSmallTrain 0.953 + 0.008 1.000 £ 0.000 0.985 + 0.008 0.981 + 0.014 1.000 £ 0.000
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Continuation of Table|

Dataset Moment Mantis TiViT TiViT + Moment TiViT + Mantis
InsectWingbeatSound 0.539 + 0.003 0469 £0.019  0.524 £0.016 0.553 £+ 0.010 0.531 £ 0.013
ItalyPowerDemand 0.938 + 0.005 0.911 + 0.007 0.928 £ 0.015 0.937 £ 0.013 0.928 + 0.014
LargeKitchenAppliances 0.859 + 0.005 0.820 + 0.010 0.880 + 0.012 0.884 + 0.014 0.874 4+ 0.009
Lightning2 0.760 £+ 0.041 0.781 & 0.025 0.820 =+ 0.000 0.836 + 0.016 0.836 + 0.033
Lightning7 0.836 4 0.036 0.749 + 0.021 0.836 £+ 0.014 0.868 + 0.008 0.845 + 0.008
Mallat 0.915 4+ 0.010 0.868 + 0.028 0.930 + 0.033 0.957 + 0.017 0.939 4+ 0.023
Meat 0.911 4 0.038 0.939 + 0.019 0.806 + 0.019 0.900 + 0.029 0.872 4+ 0.051
Medicallmages 0.731 4 0.003 0.705 + 0.024 0.741 £ 0.011 0.778 + 0.009 0.762 + 0.013
MelbournePedestrian 0.933 4+ 0.004 0.908 + 0.006 0.860 + 0.005 0.930 + 0.005 0.920 + 0.006
MiddlePhalanxOutlineAgeGroup 0.481 4+ 0.028 0.563 + 0.042 0.552 + 0.023 0.530 + 0.023 0.550 + 0.014
MiddlePhalanxOutlineCorrect 0.813 4 0.028 0.844 + 0.007 0.784 + 0.019 0.795 + 0.019 0.818 + 0.019
MiddlePhalanxTW 0.515 + 0.019 0.455 £ 0.019 0.517 + 0.004 0.498 + 0.004 0.509 + 0.014
MixedShapesRegularTrain 0.947 £+ 0.002 0.956 + 0.003 0.975 &+ 0.001 0.974 + 0.001 0.978 + 0.001
MixedShapesSmallTrain 0.876 + 0.011 0.897 £ 0.010 0.944 + 0.006 0.935 + 0.006 0.947 + 0.009
MoteStrain 0.879 + 0.011 0.887 £ 0.015 0.899 + 0.004 0.922 + 0.012 0.918 + 0.013
NonlnvasiveFetalECGThorax 1 0.918 + 0.001 0.799 + 0.004 0.890 + 0.008 0.921 + 0.005 0.887 + 0.002
NonlnvasiveFetalECGThorax2 0.927 %+ 0.002 0.817 &£ 0.004 0.915 + 0.003 0.933 + 0.002 0.918 + 0.003
OSULeaf 0.920 % 0.009 0.902 + 0.006 0.988 + 0.007 0.986 + 0.005 0.985 + 0.002
OliveOil 0.889 + 0.019 0.944 + 0.019 0.700 +£ 0.033 0.856 + 0.019 0.789 + 0.051
PLAID 0.741 % 0.005 0.819 =+ 0.005 0.911 +£ 0.005 0.901 + 0.007 0.929 + 0.007
PhalangesOutlinesCorrect 0.800 + 0.004 0.796 +£ 0.006 0.789 =+ 0.005 0.800 + 0.012 0.794 + 0.005
Phoneme 0.276 £ 0.014  0.294 £ 0.013 0.377 £ 0.008 0.377 +£ 0.009 0.386 + 0.011
PickupGestureWiimoteZ 0.760 £ 0.040  0.807 £0.012  0.853 £ 0.042 0.840 + 0.060 0.887 + 0.042
PigAirwayPressure 0.117 £ 0.017 0.579 £0.012  0.535 £ 0.011 0.474 £ 0.007 0.612 + 0.032
PigArtPressure 0.750 £ 0.019  0.811 £ 0.015 0.798 £ 0.024 0.808 £ 0.021 0.845 + 0.024
PigCVP 0.723 £ 0.018 0.777 £0.012  0.670 £ 0.028 0.734 £ 0.012 0.777 £ 0.007
Plane 1.000 + 0.000 1.000 + 0.000 1.000 £ 0.000 1.000 + 0.000 1.000 =+ 0.000
PowerCons 0.930 £0.012  0.941 £0.017  0.898 £ 0.006 0.952 + 0.014 0.915 £ 0.003
ProximalPhalanxOutlineAgeGroup 0.800 % 0.015 0.850 £ 0.014 0.837 &£ 0.007 0.833 £ 0.010 0.837 £ 0.012
ProximalPhalanxOutlineCorrect 0.875 4+ 0.010 0.885 + 0.005 0.861 + 0.008 0.877 4 0.002 0.875 &+ 0.005
ProximalPhalanxTW 0.751 + 0.013 0.727 + 0.013 0.740 + 0.007 0.738 + 0.010 0.740 &+ 0.010
RefrigerationDevices 0.520 4 0.023 0.517 + 0.014 0.568 + 0.019 0.552 4+ 0.023 0.564 + 0.029
Rock 0.640 + 0.087 0.607 + 0.110 0.833 + 0.099 0.807 & 0.095 0.840 + 0.106
ScreenType 0.477 + 0.018 0.465 + 0.013 0.523 + 0.012 0.542 + 0.019 0.548 + 0.006
SemgHandGenderCh2 0.742 4+ 0.010 0.877 + 0.010 0.877 + 0.008 0.866 + 0.013 0.916 + 0.010
SemgHandMovementCh2 0.414 4+ 0.019 0.657 + 0.012 0.547 + 0.005 0.533 4+ 0.007 0.692 + 0.009
SemgHandSubjectCh2 0.662 4 0.002 0.834 + 0.013 0.840 + 0.002 0.819 + 0.006 0.884 + 0.008
ShakeGestureWiimoteZ 0.907 4 0.031 0.907 £ 0.012 0.840 + 0.035 0.913 + 0.012 0.867 + 0.012
ShapeletSim 0.963 =+ 0.006 0.924 + 0.008 1.000 =+ 0.000 1.000 =+ 0.000 1.000 £ 0.000
ShapesAll 0.893 + 0.008 0.851 + 0.007 0.899 + 0.003 0.915 + 0.002 0.909 + 0.002
SmallKitchenAppliances 0.720 + 0.012 0.784 £ 0.012 0.815 + 0.015 0.815 + 0.019 0.808 + 0.017
SmoothSubspace 0.891 + 0.020 0.976 + 0.004 0.976 £ 0.014 0.967 £+ 0.007 0.976 + 0.010
SonyAIBORobotSurfacel 0.829 + 0.015 0.881 + 0.027 0.845 + 0.021 0.840 + 0.020 0.854 + 0.019
Sony AIBORobotSurface2 0.829 + 0.032 0.876 £ 0.032 0.901 + 0.028 0.904 + 0.044 0.910 + 0.024
StarLightCurves 0.969 + 0.001 0.969 + 0.000 0.974 £ 0.001 0.976 + 0.001 0.976 + 0.001
Strawberry 0.972 + 0.002 0.959 + 0.003 0.958 + 0.002 0.968 + 0.010 0.964 + 0.004
SwedishLeaf 0.919 + 0.011 0.939 + 0.004 0.953 £ 0.001 0.960 + 0.002 0.958 + 0.001
Symbols 0.965 + 0.006 0.984 + 0.002 0.987 + 0.000 0.986 = 0.000 0.986 + 0.001
SyntheticControl 0.967 % 0.006 0.989 + 0.004 0.999 + 0.002 0.996 + 0.004 1.000 £ 0.000
ToeSegmentation|1 0.953 £0.022  0.968 + 0.013 0.923 =+ 0.009 0.950 £ 0.015 0.952 + 0.008
ToeSegmentation2 0.897 £0.016  0.962 £+ 0.008  0.913 £ 0.016 0.913 + 0.009 0.923 + 0.008
Trace 1.000 + 0.000 1.000 £ 0.000 1.000 £ 0.000 1.000 + 0.000 1.000 + 0.000
TwoLeadECG 0.916 £0.020  0.997 £ 0.001 1.000 £ 0.000 0.999 + 0.001 1.000 + 0.000
TwoPatterns 0.989 + 0.001 0.949 + 0.003 0.998 + 0.001 0.998 + 0.000 0.997 £ 0.001
UMD 0.993 £ 0.000  0.988 £ 0.008  0.993 + 0.000 0.993 + 0.000 0.993 + 0.000
UWaveGestureLibraryAll 0.924 + 0.001 0.872 £ 0.004 0.937 &£ 0.002 0.948 + 0.003 0.944 + 0.001
UWaveGestureLibraryX 0.793 4 0.003 0.778 + 0.009 0.825 + 0.002 0.836 & 0.005 0.838 + 0.003
UWaveGestureLibraryY 0.708 4+ 0.010 0.677 &+ 0.009 0.755 + 0.002 0.765 + 0.002 0.764 £+ 0.002
UWaveGestureLibraryZ 0.729 + 0.005 0.737 & 0.005 0.761 + 0.006 0.773 + 0.010 0.788 + 0.005
‘Wafer 0.992 4+ 0.002 0.996 + 0.000 0.999 + 0.000 0.999 + 0.000 0.999 + 0.000
Wine 0.901 + 0.028 0.833 &+ 0.037 0.673 + 0.057 0.759 + 0.037 0.759 4+ 0.032
‘WordSynonyms 0.644 + 0.017 0.623 + 0.016 0.643 + 0.017 0.677 &+ 0.020 0.675 + 0.028
‘Worms 0.749 4+ 0.033 0.697 + 0.037 0.753 + 0.047 0.805 + 0.022 0.784 + 0.067
‘WormsTwoClass 0.775 4+ 0.037 0.740 + 0.000 0.775 + 0.033 0.784 + 0.040 0.805 + 0.022
Yoga 0.833 4 0.008 0.771 £ 0.014 0.819 + 0.005 0.841 + 0.006 0.838 + 0.006
End of Table
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Table 13: Classification accuracy for 27 multivariate datasets from the UEA benchmark. We report
the mean and standard deviation across three random seeds.

Dataset Moment Mantis TiViT TiViT + Moment  TiViT + Mantis
ArticularyWordRecognition ~ 0.988 + 0.002  0.991 4+ 0.002  0.977 £ 0.003 0.977 £ 0.003 0.974 £ 0.005
BasicMotions 1.000 + 0.000  1.000 4= 0.000  1.000 =+ 0.000 1.000 + 0.000 1.000 + 0.000
CharacterTrajectories 0.982 + 0.001 0.973 £ 0.001 0.964 £ 0.005 0.982 + 0.001 0.978 £ 0.005
Cricket 1.000 + 0.000  0.986 4= 0.000  1.000 £ 0.000 1.000 =+ 0.000 1.000 + 0.000
DuckDuckGeese 0.467 £ 0.081 0.433 £0.023  0.393 £ 0.081 0.413 £ 0.064 0.433 £ 0.050
ERing 0.895 +£0.022  0.905 £0.025  0.975 £ 0.014 0.977 £ 0.006 0.981 + 0.007
EigenWorms 0.746 £ 0.022  0.746 £ 0.016  0.911 £ 0.016 0.880 =+ 0.009 0.911 £ 0.012
Epilepsy 1.000 + 0.000  0.990 4 0.004  1.000 £ 0.000 1.000 + 0.000 1.000 + 0.000
EthanolConcentration 0.445 +£0.013 0269 £0.044  0.485 £ 0.012 0.473 £ 0.030 0.465 £ 0.019
FaceDetection 0.584 +0.007  0.592 £ 0.006  0.598 + 0.004 0.584 + 0.007 0.607 £ 0.005
FingerMovements 0.633 +0.045  0.593 £0.025  0.517 £ 0.040 0.620 £ 0.036 0.553 £ 0.050
HandMovementDirection 0.279 £ 0.051 0.212 £ 0.021 0.275 £ 0.016 0.257 £ 0.036 0.257 £ 0.027
Handwriting 0.296 +0.018  0.425 £0.013  0.307 £ 0.034 0.340 £ 0.002 0.385 £ 0.021
Heartbeat 0.735 £ 0.007  0.800 £ 0.017  0.732 &£ 0.008 0.717 £ 0.022 0.769 +£ 0.003
InsectWingbeat 0.231 £0.012  0.573 £0.017  0.355 £ 0.008 0.332 £ 0.018 0.443 £ 0.020
JapaneseVowels 0.918 £ 0.006  0.978 £ 0.003  0.940 £ 0.002 0.938 £ 0.012 0.933 £ 0.008
LSST 0.571 £0.005  0.607 £ 0.009  0.604 £ 0.005 0.610 £ 0.009 0.652 £ 0.003
Libras 0.861 £ 0.017  0.887 £0.026  0.907 &£ 0.006 0.922 + 0.022 0.920 £ 0.018
MotorImagery 0.530 £ 0.026  0.563 £ 0.012  0.563 + 0.049 0.560 + 0.044 0.553 £ 0.042
NATOPS 0.900 £+ 0.029  0.931 £0.014  0.869 + 0.006 0.889 + 0.006 0.878 £ 0.006
PEMS-SF 0.705 £ 0.029  0.788 £ 0.029  0.709 +£ 0.084 0.763 £ 0.044 0.742 £ 0.087
PhonemeSpectra 0.186 4+ 0.004  0.272 £0.006  0.245 £ 0.007 0.265 +£ 0.007 0.286 £ 0.008
RacketSports 0.829 +0.007  0.919 £ 0.004  0.846 £ 0.010 0.871 £ 0.008 0.879 £ 0.027
SelfRegulationSCP1 0.762 £ 0.010  0.825 £0.022  0.858 £ 0.008 0.840 £ 0.003 0.891 £ 0.010
SelfRegulationSCP2 0.509 £ 0.031 0.491 £0.018  0.526 £ 0.038 0.506 £ 0.017 0.517 £ 0.020
SpokenArabicDigits 0.981 £+ 0.003  0.907 £ 0.006  0.969 + 0.001 0.979 + 0.003 0.972 £ 0.002
UWaveGestureLibrary 0.846 +0.010  0.879 £0.015  0.910 &£ 0.005 0.902 + 0.004 0.919 + 0.009

Table 14: Mean rank of TiViT and TSFMs across datasets from the UCR and UEA archive.

Model UCR UEA
Moment 3.66 3.33
Mantis 344 2.85
TiViT (Ours) 297 2.85

TiViT + Moment (Ours) 2.16  2.63
TiViT + Mantis (Ours) 1.92 222

G Broader impacts

Since this paper presents foundational machine learning research, we do not see any direct societal
risks. The broader impact of our work will depend on its specific application.

We demonstrate that our method TiViT significantly improves classification accuracy. This advance-
ment can be beneficial in healthcare where the analysis of physiological signals is crucial for early
diagnosis and treatment or in industry where the accurate monitoring of sensor data enables predictive
maintenance and reduces downtime.

However, deep learning models including TiViT operate as black boxes with limited interpretability.
In safety-critical domains or applications directly impacting humans, such models necessitate careful
deployment and oversight. Further research into interpretability and human-in-the-loop frameworks
is essential to make deep learning models trustworthy for real-world settings.
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