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ABSTRACT

Deep learning models lack shift invariance, making them sensitive to input shifts
that cause changes in output. While recent techniques seek to address this for im-
ages, our findings show that these approaches fail to provide shift-invariance in time
series, where the data generation mechanism is more challenging due to the inter-
action of low and high frequencies. Worse, they also decrease performance across
several tasks. In this paper, we propose a novel differentiable bijective function that
maps samples from their high-dimensional data manifold to another manifold of
the same dimension, without any dimensional reduction. Our approach guarantees
that samples—when subjected to random shifts—are mapped to a unique point
in the manifold while preserving all task-relevant information without loss. We
theoretically and empirically demonstrate that the proposed transformation guaran-
tees shift-invariance in deep learning models without imposing any limits to the
shift. Our experiments on six time series tasks with state-of-the-art methods show
that our approach consistently improves the performance while enabling models to
achieve complete shift-invariance without modifying or imposing restrictions on
the model’s topology. The source code is available on GitHub.

1 INTRODUCTION

Inference on time series is essential for several important applications, such as heart rate (HR)
estimation (Koshy et al., 2018), activity recognition (Saint-Maurice et al., 2020), and cardiovascular
health monitoring (Hannun et al., 2019), which are generally performed using signals that are encoded
as a sequence of discrete values over time. Most of these signals contain features that characterize
the signal independently of their position in time (Waibel et al., 1989; Demirel & Holz, 2023).
In other words, the information content of signals generally remains unchanged under the action
of finite groups such as translations (Mallat, 2012). Therefore, ensuring the ability to accurately
capture these inherent patterns is crucial for the reliability of the deep learning models in such critical
human-involved health-related tasks (Akbar et al., 2019; Cutillo et al., 2020).

Deep learning networks perform downsampling by using strided-convolution and pooling (He et al.,
2015; Krizhevsky et al., 2012), which cause loss of information due to high-frequency components
of the input alias into lower frequencies, i.e., aliasing (Oppenheim et al., 1996). Previous works
have proposed to employ a low-pass filter to prevent the aliasing and mitigate information loss
during downsampling (Zhang, 2019; Mairal et al., 2014). While this additional filtering improved the
robustness, the effect of employed low-pass filters is quite poor compared to the ideal implementation
(see Figure 1 a and b), which still causes high-frequency components to alias into lower ones.

Despite the potential benefits of emphasizing low-frequency components for image recognition, as it
aligns with human perception (Subramanian et al., 2023), the imperfect preservation of frequency
components with each subsampling layer contributes to information loss, leads to performance
degradation, especially in tasks where the significance lies in both low and high-frequency components
with their interactions. A more recent approach to achieve shift-invariant neural networks involves
the use of adaptive subsampling grids (Chaman & Dokmanic, 2021). However, these methods still
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Figure 1: (a) The magnitude response of the ideal low-pass filter and binomial filter that is employed
in (Zhang, 2019) for preventing aliasing. (b) Time domain representations of the ideal and binomial
filters with interpolation for smoother waveforms. (c) An 8-second signal for blood volume changes
and its t′ shifted version, obtained through photoplethysmogram–—a widely utilized signal for heart
rate monitoring (Perez et al., 2019). (d) The heart rate prediction of a trained ResNet with binomial
filters to prevent aliasing. Different amounts of shifts (t′ ∈ [−4, 4]) change the trained model output
drastically from 140 to 60 beats per minute (bpm). (e) A 10-second electrocardiogram (ECG) signal
from a patient with atrial fibrillation (AFIB). (f) The model misclassifies the abnormal AFIB pattern
as a healthy sinus rhythm (SR), with shifts causing a complete change in output probability.

fail to guarantee shift-invariancy due to the change in content at the boundary (Rojas-Gomez et al.,
2022) and impose constraints on the shift range to maintain invariance.

Consequently, the evaluation of these methods is confined to a limited range of shifts while covering
a small subset of the space. Additionally, their reliance on a grid scheme introduces a dependence on
sampling rates, resulting in performance gaps across the entire shift space (Michaeli et al., 2023).

In this work, we propose a differentiable bijective function that maps samples from their high-
dimensional data manifold to another manifold of the same dimension, without any dimensional
reduction. Our method ensures that randomly shifted samples—representing variations of the same
signal—are mapped to the same point in the space, preserving all task-relevant information.

Since our method modifies the data space, it can be integrated into any deep learning architecture,
offering an adaptable and complementary solution for achieving shift-invariancy in time series.
Summarizing our contributions in this paper:

• We introduce a novel diffeomorphism to ensure shift-invariancy in neural networks. Addi-
tionally, we incorporate the proposed diffeomorphism into the network architecture using a
novel, tailored loss term to further enhance performance while ensuring invariance.

• We demonstrate both theoretically and empirically that the proposed transformation guaran-
tees shift-invariancy in models without imposing any limits to the range of shifts or changing
model topology, which enable previous methods to be used in conjuction.

• We conduct extensive experiments on six time series tasks with nine datasets. Our ex-
periments show that the proposed approach consistently improves the performance while
decreasing the variance and enabling models to achieve complete shift-invariance.

2 METHOD

2.1 NOTATIONS

We use bold lowercase symbols (x) for time series. The parametric mappings are represented as fθ(.)
where θ is the parameter. The discrete Fourier transformation of a time series is denoted as F(x),
yielding a complex variable |X(ejω)|ejϕ(ω) which contains magnitude and phase information of each
harmonic (sinusoidal). ϕ(ωk) and Tk represent the phase angle and period of the k-th harmonic with
frequency ωk. We mainly used the textbook notations (Oppenheim et al., 1996) throughout the script,
providing a comprehensive list of notations and detailed definitions in Appendix A.1.
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2.2 OBJECTIVE

Given a dataset D = {(x(t)i,yi)}Ki=1 where each x ∈ X consists of uniformly sampled real-valued
values and each y ∈ Y represents the corresponding labels, the objective is to have consistent and
accurate outputs for all variants of a sample that are subjected to shifts1 such that when a parametric
model fθ : X → Y is evaluated on the set Dtest = {(x(t)i,yi)}Li=1, the output will be the same and
true yi for all t′ to be shift-invariant, i.e., yi = fθ(x(t− t′)i),∀t′ ∈ R.

We propose a diffeomorphism that maps randomly shifted time series samples to the same point
in data space, preserving all relevant information to ensure shift-invariance. The motivation and
theoretical derivation of our method are presented in the following steps.
Proposition 2.1 (Time shift as a Group Operation). Shift operation in time domain defines an Abelian
Group of phase angles in the frequency domain for each harmonic with frequency ωk.

(Φk,+ mod 2π), where Φk = {ϕ | ϕ = (ϕ(ωk) + ωkt
′) mod 2π, t′ ∈ R} (1)

Proof. Using F(x(t+ t′)) = |X(ejω)|ejϕ(ω)ejωt′ , and the multiplication of complex numbers

∃t′ ∈ R, ∀ϕ ∈ (−π, π], ϕ = (ϕ(ωk) + ωkt
′) mod 2π (2)

See Appendix A for detailed proof with group axioms.

Time0
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1
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Figure 2: (a) Frequency domain representation of a harmonic
at frequency ω0 with different phase angles in unit circle. (b)
Time domain representation of a signal x(t) and its shifted
version x(t − t′). The phase angle of the harmonic can
cover all (i.e., surjective T (x, ϕ)) potential shifts. Moreover,
shifts in the time domain correspond to unique (i.e., injec-
tive T (x, ϕ)) angle rotations in the frequency domain for
the sinusoidal with periodicity T0. Therefore, the proposed
transformation function T (x, ϕ) is bijective.

Proposition 2.1 states that the shift
variants of a sequence define a group
of phase angles, known as circle
group (Fuchs, 1960) T. An impor-
tant observation from Equation 2 is
that different shift values (t′) can map
to the same phase angle (ϕ) due to
modulo operation with 2π.

However, a closer look reveals that
this mapping can be defined uniquely
for specific harmonics using the cir-
cular shift. Specifically, we can rep-
resent every point in the shift space
uniquely with the phase angle of a
harmonic whose period is equal to or
longer than the length of sample, i.e.,
T0 ≤ t. In the remainder of this sec-
tion, we explain how this observation
is framed as a novel diffeomorphism.
We denote the frequency, period, and
phase of this specific harmonic as ω0,
T0, and ϕ(ω0), respectively.

The proposed transformation function, T (x, ϕ), takes a sample x and an angle ϕ ∈ (−π, π]. It then
applies a linear phase shift to each harmonic, mapping the time series to a new variant where the phase
angle of the harmonic with frequency ω0 matches the desired angle ϕ. The proposed transformation,
which converts a time series to another shifted variant, is defined as in Equations 3 and 4.

x(t)
T (x,ϕ)−−−−→ F−1(|X(ejω)|ejϕ(ω)e−jω∆ϕ) where (3)

∆ϕ =

{
(θ−2π)∗T0

2π , if θ > π
θ∗T0

2π , else
and θ = [ϕ(ω0)− ϕ] % 2π (4)

Mainly, the transformation first decomposes a signal to its harmonics, then it calculates the phase
difference, denoted as ∆ϕ, between the harmonic with frequency ω0 and the desired angle ϕ. Finally,

1We represent a time shift (t′) for a sample x as x(t− t′), similar to Oppenheim et al. (1996). All the time
shifts throughout the paper imply circular shift, i.e., (t− t′) = (t− t′)%t where % is the modulus.
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It returns to the time domain by taking the inverse Fourier transform, F−1(.), while applying a
linear phase shift to all harmonics to preserve the waveform morphology. In the end, the transfor-
mation matches the phase angle of the harmonic at frequency ω0 with the desired angle ϕ. We first
demonstrate that the proposed transformation is a bijective function, as shown in Theorem 2.2.
Theorem 2.2 (Covering the Entire Time Space Injectively). Given a sample x, the defined function
T (x, ϕ) : Φ× Rd → Rd ×∆Φ is bijective such that all shift variants of a sample can be covered
with the unique phase angle of a harmonic whose period is longer or equal to the length of x.

∀ϕa, ϕb ∈ Φ, T (x, ϕa) = T (x, ϕb) =⇒ ϕa = ϕb

∀t′ ∈ R, ∃ϕ ∈ Φ, T (x, ϕ) = (x(t− t′), ∆ϕ) ,

where the first and second equations represent the injection and surjection, respectively.

We provide an intuitive demonstration in Figure 2, with a detailed mathematical proof in Appendix A.
Since each point in the shift space can be uniquely defined by the phase angle of a harmonic with
period T0, we use the angle of this harmonic to define manifolds 2, Mϕ, on which the samples
lie. Specifically, we apply the proposed transformation T (x, ϕ) for each sample to map it to a
manifold defined by the angle, i.e., T (x, ϕa) ∈ Mϕa , T (x, ϕb) ∈ Mϕb , and

⋂2π
i=0 Mϕi = ∅ (See

Appendices A.1.2 and A.2 for detailed definition of manifolds and notations). We, therefore, can
map a sample and its randomly shifted variants to the same point in the space, which is sufficient for
providing shift-invariancy as demonstrated in Theorem 2.3 with a detailed proof in Appendix A.
Theorem 2.3 (Guarantees for Shift-Invariancy). Given x and a randomly shifted variant of it x(t−t′),
if T (x, ϕ) is applied to both samples with the same angle ϕa, the resulting samples will be the same.

T (x(t), ϕa) =
(
x̃(t), ∆ϕx(t)

)
, T (x(t− t′), ϕa) =

(
x̃(t), ∆ϕx(t−t′)

)
Proof.

ϕx(t) = ϕ(ω), ϕx(t−t′) = ϕ(ω)− ωt′, ∆ϕx(t−t′) −∆ϕx(t) = −ω0
T0

2π
t′ (5)

ϕT (x(t−t′),ϕa) − ϕT (x,ϕa) =

[
T0

T
ω0 − ω

]
t′, ϕT (x,ϕa) = ϕT (x(t−t′),ϕa) (6)

Therefore, the output time series samples will be the same after applying the transformation.

The proof concludes by demonstrating that the harmonics retain the same phase and magnitude after
transformation, despite an unknown shift applied to the sample. Moreover, since the transformation
only contains exponentials with Fourier transform, it is fully differentiable, allowing optimization with

(a) (c) (d)(b)

C1
C2
C3

Cc

Figure 3: (a) An input signal in the time domain and complex plane representation of its decomposed
sinusoidal of frequency ω0 = 2π

T0
with the phase angle ϕ0. (b) Guiding the diffeomorphism to map

samples between manifolds. (c) The obtained waveform with a phase shift applied to all frequencies
linearly, calculated by the angle difference, as in Equation 4, without altering the waveform. (d) The
loss functions for optimizing networks with the cross-entropy and the variance of possible manifolds.

2The manifold is defined as a d -dimensional Euclidean space, matching the data’s dimension, to better explain
the abstract transformation. There is no manifold learning of low-dimensional space in our transformation.
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neural networks. Therefore, we use a guidance network fGθ
: Rd → Φ with a shift-invariant input,

absolute Fourier transform of samples, to generate an angle in radians for mapping. Simultaneously,
the main classifier fCθ

: X → Y maps the transformed samples to the label space. Both networks are
optimized with cross-entropy loss. The optimizer for the guidance network (LG) has an additional
loss term to reduce variations in a batch (B) of angles, as given in Equation 7.

LC = −
N∑
i=1

C∑
j=1

yij log fCj (T (xi, ϕi)) LG = LC +
√

Varx∼B (fθG (|F(x)|)) (7)

The guidance network, optimized by the proposed loss, works as an adaptive linear constraint that
limits the regions in the original data space where samples can be found. In other words, if we
conceptualize the data space of samples as expanding with shift variants, as illustrated in Figure 3,
the model learns to reduce the potential points where samples can be found in the data space.

Additionally, for real-world samples where optimal phase shift values are unavailable, applying trivial
phase shifting may lead to suboptimal data space representations. To address this, we transform the
data space using the proposed diffeomorphism for the downstream tasks using the guidance network
(see Appendix F for a detailed analysis of the guidance network). Moreover, unlike traditional
manifold learning methods (Lin & Zha, 2008; Wang et al., 2004), which project data into lower-
dimensional spaces, our approach operates directly within the original data space. In our ablation
studies, we thoroughly examine the impact of loss terms on the performance and present the findings.

3 EXPERIMENTS

3.1 DATASETS

We conducted experiments on nine datasets across six tasks, including heart rate (HR) estimation from
photoplethysmography (PPG), step counting and activity recognition using inertial measurements
(IMUs), cardiovascular disease classification from electrocardiogram (ECG), sleep stage classification
from electroencephalography (EEG) and lung sound classification from audio. We provide short
descriptions of each dataset below, and further details can be found in Appendix C.

Heart rate We used the IEEE Signal Processing Cup in 2015 (IEEE SPC) (Zhang et al., 2015), and
DaLia (Reiss et al., 2019) for PPG-based heart rate prediction. We used the leave-one-session-out
(LOSO) cross-validation, which evaluates models on subjects/sessions that were not used for training.

Activity recognition We used UCIHAR (Anguita et al., 2012), and HHAR (Stisen et al., 2015) for
activity recognition from inertial measurement units from smartphones. We evaluate the cross-person
generalization performance of the models, i.e., the model is evaluated on previously unseen subjects.

Cardiovascular disease (CVD) classification We used Chapman University, Shaoxing People’s
Hospital ECG (Zheng et al., 2020) and PhysioNet 2017 (Clifford et al., 2017; Goldberger et al., 2000)
datasets. We selected the same four leads for the Chapman as in (Alday et al., 2020). We split the
datasets into training, validation, and test sets according to the patient ID (each patient’s recordings
appear in only one set) using a 60, 20, 20 ratio as in Demirel & Holz (2023); Zheng et al. (2020).

Step counting We used the Clemson dataset (Mattfeld et al., 2017), which released for pedometer
evaluation. We conducted experiments using wrist IMUs where labels are available through videos.

Sleep stage classification We used the Sleep-EDF dataset, from PhysioBank (Goldberger et al.,
2000), which includes whole-night PSG sleep recordings, where we used a single EEG channel (i.e.,
Fpz-Cz) with a sampling rate of 100 Hz, following the same setup as in Eldele et al. (2021).

Lung sound classification We used the Respiratory@TR, which contains lung sounds recorded
with two digital stethoscopes (Altan et al., 2017). Two pulmonologists validated and labeled the
recordings based on X-rays, pulmonary function tests (PFTs), and auscultation. The labels correspond
to five COPD severity levels (COPD0–COPD4) as described in prior work (Zhang et al., 2024).
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3.2 BASELINES

We compared our method and existing approaches including low-pass filtering (LPF) (Zhang, 2019),
and adaptive subsampling grids (APS) (Chaman & Dokmanic, 2021). In addition to shift-invariance
techniques, we evaluated our method against shift-equivariant Wavelet Networks (Romero et al., 2024)
and canonical representation learning techniques for equivariance (Kaba et al., 2023; Mondal et al.,
2023). Moreover, since our method can be integrated with any existing approaches, we investigate
the performance of previous techniques for shift-invariancy when combined with our algorithm.

3.3 IMPLEMENTATION

We follow a similar implementation setup as previous work on shift-invariancy (Zhang, 2019) in
supervised learning, making architectural adjustments for time series. Specifically, we employed
ResNet (He et al., 2015) with eight blocks designed for time series (Hong et al., 2020), excluding
signals from inertial measurement units with a single dimension. For the latter, we observed a better
performance with fully connected networks (FCN). Therefore, we used a three-layer FCN for the
single dimensional IMU-based task, i.e., step counting. Similarly, for guiding the transformation
function, we used an FCN with a single output, which is the angle for the chosen sinusoidal. For each
dataset, we set the Fourier transform length equal to the signal length, as the Fourier transformation
of the same size inherently includes sinusoids with periods equal to or longer than the signal length.
We use categorical cross-entropy loss, which is optimized using Adam (Kingma & Ba, 2015). The
learning rate is determined through grid search for each dataset and set to the same value for all
baselines given in the Appendix. During training, it was halved when the validation loss stops
improving for 15 consecutive epochs. The training is terminated when 90 successive epochs show no
validation performance improvements. The best model is chosen as the lowest loss on the validation
set. Detailed hyperparameters and architecture specifications can be found in the Appendix C.4.

3.4 EVALUATION

We evaluate the performance of the models using the common evaluation metrics, i.e., accuracy, F1,
for each task. For shift-invariancy, we used the shift consistency (S-Cons.) metric which measures
how often the network outputs the same classification, given the same time series with two different
shifts, similar to (Zhang, 2019) as in Equation 8. We applied shifts across the entire space in contrast
to previous approaches where the range of shift is heavily limited (Rojas-Gomez et al., 2022).

EX,t1,t21

[
f̂C(x(t− t1)) = f̂C(x(t− t2))

]
, (8)

where f̂C represents the classifier’s output following the arg max operation. t1,2 are uniformly
sampled integers from the interval [1, t], with t denoting the length of the sample.

4 RESULTS AND DISCUSSION

We present the main results of our approach compared to state-of-the-art methods across the six
time series tasks on nine datasets. Overall, our method has demonstrated a substantial performance
improvement, reaching up to 10–15% in some tasks, while increasing the shift consistency up to
50–60% compared to previous techniques.

The experimental results from all the time series tasks are given in Tables 1, 2, 3 and 4. These tables
demonstrate that the previous techniques fail to provide shift-invariant models when applied to time
series without limiting shifts. Additionally, the models exhibit extremely low consistency (as low
as 32%) in HR prediction. More importantly, applying state-of-the-art methods to enhance shift
consistency in deep learning models for predicting the heart rate results in performance degradation.

We believe the main reason for the small improvements in the consistency of previous techniques
is that the research to date has tended to focus on limited shifts rather than considering the whole
shift space as literature is mostly concerned about images. While restricting shifts can be a valid
assumption in computer vision, where the main reasoning is that the object being classified should
not be near the boundary. This assumption does not apply to time series, where the whole signal
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Table 1: Performance comparison of our method and other techniques for HR estimation

Method IEEE SPC22 DaLiA
S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑ S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑

Baseline 61.99±1.19 18.39±2.96 10.28±1.41 62.64±5.74 32.08±0.22 9.86±0.23 4.40±0.03 86.01±0.51
Aug. 76.48±1.77 18.73±1.15 10.42±0.40 64.06±3.70 52.77±0.39 9.85±0.21 4.47±0.06 85.99±0.49
LPF 76.88±0.73 20.20±1.54 13.44±0.82 65.40±1.92 38.67±0.30 10.01±0.30 4.67±0.12 85.68±0.51
APS 73.99±1.06 19.42±0.60 12.98±0.29 65.27±1.32 44.33±0.16 10.45±0.40 5.01±0.17 84.69±0.85
WaveletNet 51.71±1.95 21.56±1.01 14.61±0.34 60.74±4.37 36.71±3.04 15.46±0.64 7.67±0.23 76.13±1.86
Canonicalize 63.52±1.20 19.02±0.62 10.40±0.69 61.27±1.07 32.01±0.33 9.77±0.12 4.39±0.05 86.02±0.30

Ours 100±0.00 16.25±0.72 9.45±0.03 70.12±2.10 100±0.00 9.75±0.15 4.39±0.03 86.06±0.19
Ours+LPF 100±0.00 20.34±1.62 13.77±0.84 65.60±2.31 100±0.00 10.72±0.11 5.30±0.03 84.12±0.23
Ours+APS 100±0.00 18.81±1.59 12.32±0.84 67.01±3.79 100±0.00 10.47±0.09 5.10±0.03 84.62±0.31

Table 2: Performance comparison of ours and other techniques in ECG datasets for CVD classification

Method Chapman PhysioNet 2017
S-Cons (%) ↑ Acc ↑ F1 ↑ AUC (%)↑ S-Cons (%) ↑ Acc ↑ F1 ↑ AUC ↑

Baseline 98.53±0.17 91.32±0.23 91.22±0.24 98.34±0.16 98.37±0.15 83.22±0.72 73.50±1.99 93.21±0.30
Aug. 99.00±0.16 91.96±0.19 91.89±0.22 98.45±0.18 98.96±0.17 82.28±1.18 72.32±2.20 93.20±0.42
LPF 98.69±0.14 92.01±0.23 91.94±0.58 98.50±0.24 98.94±0.39 84.40±0.16 75.68±0.76 93.80±0.32
APS 98.60±0.17 90.69±0.89 89.44±1.00 98.31±0.24 — — — —
WaveletNet 91.02±1.14 90.87±1.02 90.02±1.00 97.94±0.21 65.03±0.71 76.06±0.64 63.35±3.40 87.02±0.29
Canonicalize 98.80±0.24 91.93±0.13 90.87±0.18 98.42±0.15 98.26±0.31 83.34±0.46 73.97±0.67 93.68±0.31

Ours 100±0.00 92.10±0.25 91.93±0.85 98.47±0.15 100±0.00 83.15±0.65 74.12±1.80 93.28±0.31
Ours+LPF 100±0.00 92.05±0.52 91.96±0.54 98.51±0.10 100±0.00 85.20±0.40 77.50±1.21 94.20±0.19
Ours+APS 100±0.00 91.61±1.11 91.10±0.56 98.36±0.20 — — — —

carries the information (Demirel & Holz, 2023) additional to local waveform features, and as such,
there is no explicit boundary condition or input area to consider for limiting the range of shifts.

The empirical results support our motivation for proposing a differentiable bijective function that
maps samples with different shifts to the same point on the data manifold, avoiding the limited shift
assumption. Additionally, applying low-pass filtering to prevent aliasing can degrade performance for
certain tasks, where the interaction between frequencies plays a critical role (Canolty et al., 2006).

Time delay as adversary? An interesting finding from our experiments is the notable decline in
model consistency as the number of output classes increases. This behavior in the models is similar
to previous findings on adversarial examples, indicating that the robustness decreases with a higher
number of classes (Fawzi et al., 2018). During our experiments, we observed the same phenomenon
where the small shifts of the input change the output to another class, particularly when the task
complexity increased with a higher number of classes. For example, in the case of HR estimation
(Table 1), even short shifts (as low as 10–100 ms) can lead to a change in the prediction by over
80 bpm, despite no alteration in the periodicity of the signal, which is the main feature for this task.

Normally, it is expected that models learn the periodicities in these signals and infer the heart rate.
However, our results indicate that the models learn something else or in a different way, because as
the signal undergoes a slight shift, the model prediction jumps more than 100%, even though the
periodicity of the waveform remains unchanged with the shift operation.

We believe these drastic output changes arise from the model’s sensitivity to (shortcut) fea-
tures (Geirhos et al., 2020; Zhang et al., 2021), resulting in a performance decrease when evaluated
on samples different from those encountered during training. Since our proposed transformation

Table 3: Performance comparison of our method with other techniques on an EEG dataset for sleep
stage classification and an audio dataset for lung sound classification in respiratory health assessment

Method Sleep-EDF Respiratory
S-Cons (%) ↑ Acc ↑ W-F1 ↑ κ ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ W-F1 ↑

Baseline 95.06±0.61 75.41±2.01 74.87±1.92 67.12±2.96 99.10±0.43 25.21±5.60 57.01±3.62 21.21±5.98
Aug. 99.00±0.17 74.89±1.11 74.03±1.46 65.89±1.81 99.68±0.42 20.32±5.18 45.81±3.51 15.31±6.07
LPF 92.43±1.24 73.56±2.93 76.01±1.98 65.68±3.46 99.50±0.42 19.47±9.78 46.53±3.04 11.89±4.98
WaveletNet 84.40±5.90 73.54±4.78 72.74±3.45 64.66±4.12 91.38±2.40 28.57±10.81 44.23±7.12 17.10±7.81
Canonicalize 93.95±0.51 77.12±2.21 70.14±2.25 69.81±2.76 98.28±0.64 22.68±10.52 45.33±5.75 15.30±5.33

Ours 100±0.00 77.90±1.92 76.77±2.58 70.01±1.10 100±0.00 33.10±5.12 60.13±4.67 28.33±6.55
Ours+LPF 100±0.00 73.12±1.89 75.34±1.61 64.98±2.27 100±0.00 25.77±2.12 51.82±2.10 17.99±4.15
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Table 4: Performance comparison of our method with others in IMU datasets for Activity and Step

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 94.07±1.38 85.39±2.30 83.20±2.94 98.27±0.33 91.87±1.36 91.16±1.38 54.31±4.40 4.76±0.11 2.74±0.08
Aug. 96.55±0.80 85.42±4.50 83.69±6.74 98.38±0.28 91.97±0.44 91.31±0.49 61.01±4.88 4.08±0.14 2.29±0.07
LPF 95.05±0.21 83.96±3.44 81.08±4.21 98.10±0.10 92.10±0.80 91.43±0.94 59.77±4.40 4.16±0.16 2.35±0.11
APS 96.40±0.03 81.75±4.11 79.01±5.33 98.30±0.24 91.83±1.35 91.01±1.47 45.50±2.69 4.74±0.16 2.69±0.07
WaveletNet 94.56±1.31 82.78±4.62 80.73±5.59 96.76±0.15 90.72±0.38 90.71±0.39 59.14±3.10 5.20±0.66 2.95±0.41
Canonicalize 97.72±0.37 84.10±2.10 81.89±2.89 98.27±0.07 91.56±1.18 90.73±1.10 55.47±4.87 4.54±0.46 2.59±0.29

Ours 100±0.00 87.71±1.98 85.67±2.47 100±0.00 91.93±1.14 91.12±1.03 100±0.00 4.28±0.34 2.43±0.21
Ours+LPF 100±0.00 84.78±2.46 82.58±2.62 100±0.00 92.51±0.55 91.80±0.62 100±0.00 3.75±0.33 2.12±0.18
Ours+APS 100±0.00 82.96±1.79 81.10±1.73 100±0.00 91.38±0.32 90.64±0.32 100±0.00 3.87±0.19 2.19±0.11

function works as an adaptive linear constraint in the data space, it reduces the potential points where
samples can exist, thereby enhancing overall performance.

One distinct result from our experiments is that when previous shift-invariancy techniques are applied
to the heart rate prediction task, the average error rate of the models increases by 7–10%. This
performance decrease can be easily observed in the DaLiA (Table 1) for the adaptive sampling
technique. The performance discrepancy between tasks can be attributed to the dataset and signal
characteristics. Since DaLiA contains impulse random noise with multiple periodicities, the norm-
based subsampling can inadvertently emphasize the noisy waveforms instead of the desired pattern
during the subsampling of feature maps, leading to a decrease in prediction performance.

We conduct detailed ablation experiments to further investigate the impact of various components,
with a particular focus on the effect of the proposed mapping function under different modifications,
i.e., modified loss for optimization, on the overall model’s performance across time series tasks.

4.1 ABLATION STUDY

We present a comprehensive investigation of our method and the effect of its components on the
performance. Mainly, we investigate the effect of guiding the proposed transformation with different
loss functions and without any guidance. First, we map all samples to a single manifold Mϕ0 ,
i.e., T (x, ϕ) is applied with a constant ϕ = 0 instead of learning the angle for each sample. We
experimented with different values of ϕ ∼ (−π, π], but observed no significant change in the
performance when the mapped manifold is constant for samples. Second, we modify the loss for
training the guidance network to increase the variance of angles—increasing the possible manifolds
where data can be found—without changing the cross-entropy loss from the classification network as
in Equation 9, (L̂G). Finally, we train both networks only with the cross-entropy loss (L′

G = LC). We
compared these three variants of the learning techniques with the original proposed implementation as
each represents distinct approaches for manipulating the data space. For example, when all samples
are mapped to a single manifold, the variations in samples decrease significantly since there is only
one possible phase angle for the chosen harmonic with period T0. Additionally, the relationships
among all sinusoidal components remain invariant, given that the proposed transformation is a linear
function of the frequency. Conversely, optimizing the guidance network to increase the variance of
angles, thereby favoring a greater sample diversity, expands the possible variations for samples.

L̂G = LC −
√

Varx∼B (fθG (|F(x)|)) (9)

Tables 5 and 6 summarize the results where we exclude the consistency metric from the tables as the
models that include the proposed transformation are always completely shift-invariant. The first row
(T (x, ϕ)) in the tables shows the performance when all the samples are mapped to a single manifold

Table 5: Ablation experiments for HR (left) and IMU (right) tasks

Method IEEE SPC22 DaLiAPPG

MAE ↓ RMSE ↓ ρ ↑ MAE ↓ RMSE ↓ ρ ↑
T (x, ϕ) 11.15 19.18 62.07 4.77 10.13 85.35
L′
G 9.80 17.16 66.80 4.60 10.10 85.52

L̂G 9.45 17.00 69.10 4.41 9.63 86.35
Ours 9.45 16.25 70.12 4.39 9.75 86.06

Change +1.70 +2.97 +8.05 +0.38 +0.38 +0.71

Method UCIHAR HHAR Clemson

Acc ↑ F1 ↑ Acc ↑ F1 ↑ MAPE ↓ MAE ↓
T (x, ϕ) 84.67 82.65 92.33 91.56 4.64 2.67
L′
G 84.30 82.49 91.98 91.18 4.42 2.52

L̂G 84.82 81.99 91.51 90.83 4.31 2.45
Ours 85.81 83.81 91.83 91.12 4.28 2.43
Change (%) +1.14 +1.16 -0.50 -0.44 +0.36 +0.24
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Table 6: Ablation experiments for EEG (left) and ECG (right) tasks

Method Sleep-EDF
Acc ↑ F1 ↑ W-F1 ↑ κ ↑

T (x, ϕ) 75.54±2.39 66.96±1.78 75.53±2.29 67.08±0.03
L′
G 77.21±1.51 67.67±1.67 76.89±1.71 69.39±0.02

L̂G 77.75±1.23 68.04±1.16 77.01±1.07 69.94±0.01
Ours 77.80±1.95 67.01±2.65 76.77±2.58 70.01±1.10

Change +2.26 +0.05 +1.24 +2.93

Method Chapman PhysioNet

Acc ↑ F1 ↑ AUC ↑ Acc ↑ F1 ↑ AUC ↑
T (x, ϕ) 91.82 90.76 98.36 83.12 73.67 93.24
L′
G 91.27 90.10 98.38 82.81 73.75 93.45

L̂G 91.88 90.84 98.44 83.30 73.90 93.51
Ours 92.10 91.93 98.40 83.15 74.12 93.30
Change (%) +0.28 +1.17 +0.04 +0.03 +0.45 +0.06

i.e., without a guidance network for learning the mapping. The second row (L′
G) represents the

performance when the guidance network is only optimized using the categorical cross-entropy loss.
The third row (L̂G) presents the performance when the variance of angles is optimized to increase
during training. And, the last row (Ours) is the original implementation of the proposed method. We
also report the change when the mapping function is guided using the network fGθ

and optimized
using the loss defined in Equation 7, as opposed to being a fixed, non-learnable function.

As can be seen from the tables, when the models are trained by guiding the transformation function
(with fGθ

), the performance of the models increases significantly up to 8%, except for the HHAR
dataset with a marginal performance decrease of 0.5%. Importantly, adding the guidance network
does not bring any additional parameters that help the learning, meaning that the model achieves
improved generalization with the same capacity. Furthermore, the additional model parameters
introduced to the overall framework approximately amount to one percent of those in the classifier.

Table 7: Ablation experiments for Audio

Method Respiratory

Acc ↑ F1 ↑ W-F1 ↑
T (x, ϕ) 21.28±7.43 55.03±2.89 18.14±6.39
L′
G 27.17±6.71 55.58±9.18 21.46±4.07

L̂G 28.57±8.31 54.28±6.56 23.73±4.65
Ours 33.10±5.12 60.13±4.67 28.33±6.55

Change +11.82 +5.10 +10.19

While the performance increase can be associated
with the decreased possible variations in the signals,
our ablation experiments show that decreasing the
variations blindly using the transformation with the
same angle, decreases performance. Therefore, it is
important to guide the transformation function for
reducing the dimensionality, i.e., the space and time
variations of a signal, of the whole data space. Over-
all, the results obtained from the ablation study and
main experiments support the previous propositions
and our motivation for introducing a novel diffeo-
morphism for preventing the inconsistency of deep
learning models to the time shifts while increasing the generalization capability.

Additional results (i.e., the extended experiments and ablations) regarding the performance of the pro-
posed method can be found in Appendix D. Investigations regarding the performance improvements
of the proposed diffeomorphism with different model networks are given in Appendix E. Detailed
analysis of the guidance network with its effect is given in Appendix F. We provide an extended
discussion of related work in Appendix G and outline limitations and future directions in Appendix H.

5 RELATED WORK

Shift-invariant networks Modern deep learning architectures use strided convolution or pooling to
decrease the variance to a certain extent (Fukushima, 1980). However, Azulay and Weiss have demon-
strated that a shift of one pixel in an image can lead to a significant alteration in the output probability
of a trained classifier (Azulay & Weiss, 2018). Previous works showed that the downsampling caused
aliasing and used low-pass filtering before the downsampling to prevent information loss (Zhang,
2019; Mairal et al., 2014). However, the used filters have suboptimal frequency responses, and
realizing the ideal filter in practice is unfeasible. This leads to persistent aliasing, becoming a more
significant concern for time series where high-frequency components are crucial for classification.

Adaptive subsampling methods have been recently explored for shift-invariancy (Chaman & Dok-
manic, 2021; Xu et al., 2021). Mainly, these methods perform subsampling on a constant (Chaman &
Dokmanic, 2021) or input dependent (Rojas-Gomez et al., 2022) grid. This approach has a notable
limitation in time series, particularly when nonlinear activation functions are involved. The methods
tend to overlook variations in boundaries arising from the translation of samples, thereby imposing
additional constraints on invariance (Rojas-Gomez et al., 2022). Consequently, the evaluation of
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these methods is restricted to a narrow range of shifts, covering only a limited subset of the shift
space. Moreover, their reliance on a grid scheme for sampling introduces a sensitivity to sampling
rates, leading to performance gaps across the entire shift space (Michaeli et al., 2023). Therefore, we
shift the paradigm and present a bijective transformation to modify the data space. Moreover, unlike
existing methods that change network topology by modifying the pooling or adding extra filters
without achieving complete shift-invariancy, our method guarantees invariance in neural network
models without imposing any restrictions on the model topology or shift range.

Time-delay neural networks Efforts to design shift-invariant models for time series predate
modern deep learning methods (Hasegawa et al., 1996; Waibel et al., 1989). For example, a time-
delay neural network (TDNN) network is designed to have the ability to represent relationships
between events in time frames where the learned features by the network are aimed to be invariant
under translation in time (Waibel et al., 1989). TDNN is trained with all time-shifted copies of
samples and weights are updated by the average of all corresponding time-delayed error values.
This is similar to the supervised training of a network with randomly shifted versions of samples.
Although this strategy achieved shift-invariance for the first type of networks, as they do not include
a pooling layer, it was shown that this approach is ineffective for modern architectures where pooling
and derivatives are used (Scherer et al., 2010), and the network’s invariance is limited to patterns
seen during training and fails generalization (Azulay & Weiss, 2018). In this work, as we learn the
mapping for each sample, the proposed transformation ensures that all shifted variants of a sample are
mapped to a single point. Hence, a single data point effectively represents all the augmented variants.

6 CONCLUSION

The inadequacy of shift-invariance in deep learning models, particularly in the context of temporal
data, remains a significant challenge. Existing solutions designed for images not only prove inef-
fective for time series but also result in performance deterioration for some tasks. To address this,
we have introduced a novel differentiable bijective function. Our approach builds on the insight
from Proposition 2.1, which states that the shift operation forms an Abelian group for each harmonic
of a sample. Leveraging this property, we uniquely represent each point in the shift space using
the phase angle of a harmonic whose period is at least as long as the sample length. Our approach
ensures that samples, under various shifts, are mapped to a unique point in the data manifold without
reducing dimensions, preserving task-related information without any loss. We validated our method
theoretically and empirically, showing that it establishes shift-invariance in deep learning models
without constraints on the shift range. In extensive experiments across six tasks, our approach consis-
tently outperforms state-of-the-art methods, demonstrating its effectiveness in achieving complete
shift-invariance without limitations on the model topology.
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APPENDIX

A THEORETICAL ANALYSIS

Here, we present complete proofs of our theoretical study, starting with notations. We assume all the
samples (time series) are absolutely summable, and finite.

A.1 REPRESENTATIONS AND NOTATIONS

A.1.1 FREQUENCY DOMAIN

Fourier transform of a real-valued sample with a finite duration is obtained as in Equation 10.

F(x) = |X(ejω)|ejϕ(ω) =

∫ ∞

−∞
x(t)e−jωt, (10)

where ω = 2π
T , and ω and T are the frequency in radian and period for all sinusoidals 3 in the range

of Nyquist rate. |X(ejω)| and ϕ(ω) denote the amplitude and phase for all frequencies, respectively.
Thus, the amplitude and phase angle of a particular sinusoidal are represented as |X(ejω0)| and
ϕ(ω0). Similarly, the period for this sinusoidal is T0 = 2π/ω0. The phase difference between a
sinusoidal and an angle ϕ is shown in Equation 11.

∆ϕx(t) =

{
(θ−2π)∗T0

2π , if θ > π
θ∗T0

2π , else
, and θ = [ϕ(ω0)− ϕ] % 2π, (11)

where T0/2π = 1/ω0. The calculated phase difference between the sample and given angle
normalizes the phase change for the sinusoidal to exactly match the angle ϕ when shifted ∆ϕx(t) in
the complex domain as in equations below.

F(x) = |X(ejω)|ejϕ(ω)e−jω∆ϕ after shifting |X(ejω)|ejϕ(ω0)e−jω0(θ/ω0) (12)

|X(ejω0)|ejϕ(ω0)e−jω0(ϕ(ω0)−ϕ)/ω0) (13)

|X(ejω0)|ejϕ for the sinusoidal with frequency ω0 (14)

A.1.2 TRANSFORMATION AND DIFFEOMORPHISMS

The observed samples x(t) from the sets with the (shift) variants are considered elements of manifolds
Mϕ according to the phase angle ϕ(ω0) of the harmonic with a period equal to or longer than the
length of the segment t, i.e., the specific harmonic with period T0 and frequency ω0. In other words,
if the phase angle of the harmonic ω0 is ϕa for a sample x(t), the sample lies in manifold Mϕa . The
mapping function f : Mϕa → Mϕb between manifolds is defined as T (x(t), ϕb) = (x̃(t), ∆ϕb)
where x(t) lies in Mϕa , and x̃(t) lies in Mϕb . Similarly, the inverse mapping f−1 : Mϕb → Mϕa

is represented as T (x̃(t), ϕa) = (x(t), ∆ϕa).

x̃(t) and x(t) only differ by a random time shift t′ where this random time shift can be calculated
using the phase angles of harmonics with frequency ω0, which makes the presented transformation
a bijective function between time series manifolds. The differentiation of the mapping function at
sample x(t) is shown as Dfx : TxMϕa → TfxMϕb .

3Harmonics and sinusoids are used interchangeably throughout the paper.
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A.2 NOTATION LIST

Notation Description

x Time series represented as a bold lowercase symbol

F(x) Discrete Fourier transformation of time series x

∠ The complex argument for obtaining phase values

ω Variable that represents the frequencies in radian

|X(ejω)| Magnitude components of the Fourier transformation of a time series

ϕ(ω) Phase components of the Fourier transformation of a time series

ω0 Frequency of the specific harmonic whose period is equal or longer than the sample x

T0 = 2π
ω0

Period of the specific harmonic with frequency ω0

Φ Random variable for phase angles, i.e., ϕ ∼ Φ

ϕ(ω0) Phase angle of a specific harmonic with the frequency ω0

ϕx(t) Variable that represents phase angles of all harmonics for sample x(t)

ϕx(t−t′) Variable that represents phase angles for sample x(t− t′)

ϕx(t)(ω0) Phase angle of the specific harmonic with the frequency ω0 for sample x(t)

T (x, ϕ) The proposed transformation function

∆ϕ Phase difference between two angles

∆ϕx(t) Phase difference between the given angle ϕ in the transformation and the harmonic
with frequency ω0 when sample x(t) is decomposed using Fourier transformation

∆ϕx(t−t′) Phase difference between the given angle ϕ in the transformation and the harmonic
with frequency ω0 when sample x(t− t′) is decomposed using Fourier transformation

Mϕ Manifold notation with an angle ϕ

Mϕa A specific manifold with the angle ϕa

T (x, ϕa) The output of the transformation, i.e., a time series that lies on the manifold Mϕa

F(T (x, ϕ)) Fourier transformation of the output from the proposed transformation: Since the trans-
formation function produces a tuple, we specifically apply the Fourier transformation
to the first output, which corresponds to the time series.

fθ(.) Parametric mapping with parameter θ

fGθ
: Rd → Φ The guidance network that outputs an angle to map the sample to a specific manifold

fCθ
: X → Y The classifier neural network

Var(.) Variance function

% Modulo operation

Table 8: Detailed list of notations used in this work
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A.3 PROOFS

Lemma A.1 (Circular Shift). Given a sample x in the interval [0, tint] and its shifted version x(t−t′),
where the shift is a random value from the finite real numbers, i.e., t′ ∈ (−∞,∞). The shift is
periodic with the signal length tint, leading to the same vector representation when the shift is an
integer multiple of the signal length.

∞ > t > |t′| > −∞, 0 = t′ (mod tint) =⇒ x(t) = x(t− t′)

Proof. From circular shift, we know

x(t) = x(t (mod tint)) (15)

x(t− t′) = x((t− t′) (mod tint)) (16)

Therefore, 0 = t′ (mod tint) =⇒ x(t) = x(t− t′)

Throughout the proofs, the length of the samples and their intervals are denoted by the same variable
t. In other words, the samples are assumed to start at t = 0 and finish at tint = t.

A.4 PROOF FOR PROPOSITION 2.1

Proposition A.2 (Time shift as a Group Operation). Shift operation in time domain defines an Abelian
Group of phase angles in the frequency domain for each harmonic with frequency ωk.

(Φk,+ mod 2π), where Φk = ϕ | ϕ = (ϕ(ωk) + ωkt
′) mod 2π, t′ ∈ R (17)

Proof. Let x(t+ t′) be randomly shifted variant of sample x(t) where t′ ∈ R. We can decompose
these two sequences as in below using Fourier transformation.

x(t)
F(.)−−−→ |X(ejω)|ejϕ(ω) and x(t+ t′)

F(.)−−−→ |X(ejω)|ej(ϕ(ω)+ωt′) (18)

The phase values of these two time series for a harmonic at the given frequency can be expressed as
follows.

ϕx(t)(ωk) = ϕ(ωk) and ϕx(t−t′)(ωk) = ϕ(ωk) + ωkt
′ (19)

Then, we can define a set of phase angles Φk with shift values t′.

Φk = {ϕ | ϕ = (ϕ(ωk) + ωkt
′) mod 2π, t′ ∈ R} (20)

This set of phase angles with time shift operation defines the circle group T. The circle group is
Abelian (Fuchs, 1960), with time shifts corresponding to multiplication in the complex plane. For
completeness, we have shown all the group axioms.

GROUP AXIOMS

The set of phase angles with time shift, Φk = {ϕ | ϕ = (ϕ(ωk) + ωkt
′) mod 2π, t′ ∈ R}, satisfies

the five axioms of an Abelian group under modular addition.

Axiom 1: Closure
For any two phase angles ϕ1, ϕ2 ∈ Φk, their sum is also in Φk.

Let ϕ1 = (ϕ(ωk) + ωkt
′
1) mod 2π and ϕ2 = (ϕ(ωk) + ωkt

′
2) mod 2π. Then their sum is:

ϕ1 + ϕ2 = (ϕ(ωk) + ωkt
′
1 + ϕ(ωk) + ωkt

′
2) mod 2π

ϕ1 + ϕ2 = (ϕ(ωk) + ωk(t
′
1 + t′2)) mod 2π

Since t′1 + t′2 ∈ R, the sum is also in Φk, so closure holds.

Axiom 2: Associativity
For any three phase angles ϕ1, ϕ2, ϕ3 ∈ Φk, their sum is associative under addition modulo 2π.
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((ϕ1 + ϕ2) mod 2π) + ϕ3) mod 2π = (ϕ1 + (ϕ2 + ϕ3) mod 2π) mod 2π

Let ϕ1 = (ϕ(ωk) + ωkt
′
1) mod 2π, ϕ2 = (ϕ(ωk) + ωkt

′
2) mod 2π, and ϕ3 = (ϕ(ωk) + ωkt

′
3)

mod 2π. Then:

((ϕ1 + ϕ2) mod 2π) + ϕ3 = (ϕ(ωk) + ωkt
′
1 + ωkt

′
2) mod 2π + ϕ3

= (ϕ(ωk) + ωk(t
′
1 + t′2) mod 2π + ωkt

′
3) mod 2π

Similarly, for the right-hand side:

ϕ1 + ((ϕ2 + ϕ3) mod 2π) = ϕ1 + (ϕ(ωk) + ωk(t
′
2 + t′3) mod 2π)

= (ϕ(ωk) + ωkt
′
1 + ωk(t

′
2 + t′3)) mod 2π

Using (a+b) mod 2π = ((a mod 2π)+(b mod 2π)) mod 2π, both sides simplify to (ϕ(ωk)+
ωk(t

′
1 + t′2 + t′3)) mod 2π. Thus, associativity holds under addition modulo 2π.

Axiom 3: Identity Element
The identity element in this group is the phase angle when no time shift has occurred, i.e., t′ = 0.

ϕ0 = (ϕ(ωk) + ωk · 0) mod 2π = ϕ(ωk)

For any ϕ1 ∈ Φk, we have:
ϕ1 + ϕ0 = ϕ1

Thus, ϕ0 is the identity element.

Axiom 4: Inverse Element
For any phase angle ϕ1 = (ϕ(ωk) + ωkt

′) mod 2π, its inverse is:

ϕ−1
1 = (−ωkt

′) mod 2π

Then:
ϕ1 + ϕ−1

1 = (ϕ(ωk) + ωkt
′ − ωkt

′) mod 2π = ϕ(ωk)

Thus, each element has an inverse.

Axiom 5: Commutativity
For any two phase angles ϕ1, ϕ2 ∈ Φk, the sum is commutative:

ϕ1 + ϕ2 = ϕ2 + ϕ1

This follows from the commutativity of modular addition, so the group is Abelian.

Proposition 2.1 states that shift operation in time domain defines an Abelian group of phase angles
for each harmonic. Proposition 2.1 holds a key role in our algorithm, as it establishes an abstract
connection between the time-domain shift operation and its effects on samples in the frequency
domain.
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A.4.1 PROOF FOR THEOREM 2.2

Theorem A.3 (Covering the Entire Time Space Injectively). Given a sample x, the defined function
T (x, ϕ) : Φ× Rd → Rd ×∆Φ is bijective such that all shift variants of a sample can be covered
with the unique phase angle of a harmonic whose period is longer or equal to the length of x.

∀ϕa, ϕb ∈ Φ, T (x, ϕa) = T (x, ϕb) =⇒ ϕa = ϕb

∀t′ ∈ R, ∃ϕ ∈ Φ, T (x, ϕ) = (x(t− t′), ∆ϕ) ,

Proof.

x(t)
F(.)−−−→ |X(ejω)|ejϕ(ω) (21)

x(t− t′)
F(.)−−−→ |X(ejω)|ej(ϕ(ω)−ωt′) (22)

ϕx(t) = ϕ(ω), ϕx(t−t′) = ϕ(ω)− ωt′ (23)

ϕx(t) − ϕx(t−t′) = ωt′, (24)

Using Euler’s formula,

ϕx(t) − ϕx(t−t′) = (ωt′) (mod 2π) (25)

ϕx(t) − ϕx(t−t′) =

(
2π

T
t′
)

(mod 2π) (26)

∀T0 ∈ T, ∞ > T0 ≥ t =⇒ ϕx(t)(ω0)− ϕx(t−t′)(ω0) =
2π

T0
t′ (27)

Thus,

ϕx(t)(ω0)− ϕx(t−t′)(ω0) = ϕx(t)(ω0)− ϕx(t−t′)(ω0) =⇒ t′ = t′ (28)

Also,

∀T0 ∈ T, ∞ > t > T0 =⇒ ϕx(t)(ω0)− ϕx(t−t′)(ω0) =

(
2π

T0
t′
)

mod 2π, (29)

∵ ∃t′ ∈ R,
(
2π

T0
t′
)

> 2π (30)

∴ ∃t′, t′ ∈ R, ¬(ϕx(t)(ω0)− ϕx(t−t′)(ω0) = ϕx(t)(ω0)− ϕx(t−t′)(ω0) =⇒ t′ = t′), (31)

which proves injection. Similarly, for surjection using Lemma A.1,

∀t′ ∈ R, ∞ > T0 ≥ t > |t′| =⇒ ϕx(t)(ω0)− ϕx(t−t′)(ω0) =
2π

T0
t′ (32)

The final equation completes the proof by showing that the phase difference between the sample and
its shifted version can get unique values for any shift, i.e., covering the whole time space.
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A.4.2 PROOF FOR THEOREM 2.3

Theorem A.4 (Guarantees for Shift-Invariancy). Given a sample x and a randomly shifted variant of
it x(t− t′), if the transformation function T (x, ϕ) is applied to both samples with the same angle ϕa,
the resulting time series will be the same while carrying the same information.

T (x(t), ϕa) =
(
x̃(t), ∆ϕx(t)

)
, T (x(t− t′), ϕa) =

(
x̃(t), ∆ϕx(t−t′)

)
Proof.

x(t)
F(.)−−−→ |X(ejω)|ejϕ(ω), x(t− t′)

F(.)−−−→ |X(ejω)|ejϕ(ω)eωt′ (33)

ϕx(t) = ϕ(ω), ϕx(t−t′) = ϕ(ω)− ωt′ (34)

ϕx(t−t′) − ϕx(t) = −ωt′ (35)

Using Equation 11, the phase difference between samples (x(t),x(t− t′)) and ϕa can be obtained as,

∆ϕx(t) =
[ϕ(ω0)− ϕa]

2π
· T0, ∆ϕx(t−t′) =

[ϕ(ω0)− ω0t
′ − ϕa]

2π
· T0 (36)

∆ϕx(t−t′) −∆ϕx(t) = −ω0t
′ T0

2π
(37)

Using Fourier transform as in Equation 4,

F {T (x(t), ϕa)} = |X(ejω)|ejϕ(ω)e−jω∆ϕx(t) (38)

F {T (x(t− t′), ϕa)} = |X(ejω)|ejϕ(ω)e−jωt′e
−jω∆ϕx

(t−t′) (39)

Given that the amplitudes are identical, demonstrating equality in phase is sufficient, as shown below,

ϕT (x(t),ϕa) = ϕ(ω)− ω∆ϕx(t), ϕT (x(t−t′),ϕa) = ϕ(ω)− ωt′ − ω∆ϕx(t−t′) (40)

ϕT (x(t−t′),ϕa) − ϕT (x(t),ϕa) = −ωt′ − ω∆ϕx(t−t′) + ω∆ϕx(t) (41)

ϕT (x(t−t′),ϕa) − ϕT (x(t),ϕa) = −ωt′ − ω
[
∆ϕx(t−t′) −∆ϕx(t)

]
(42)

ϕT (x(t−t′),ϕa) − ϕT (x(t),ϕa) = −ωt′ − ω

[
−ω0t

′ T0

2π

]
(43)

ϕT (x(t−t′),ϕa) − ϕT (x(t),ϕa) = −ωt′ + ω

[
2π

T0
t′
T0

2π

]
(44)

ϕT (x(t−t′),ϕa) − ϕT (x(t),ϕa) = −ωt′ + ωt′ (45)

ϕT (x(t−t′),ϕa) = ϕT (x(t),ϕa) (46)

F {T (x(t), ϕa)} = |X(ejω)|ejϕT (x(t),ϕa) (47)

F {T (x(t− t′), ϕa)} = |X(ejω)|ejϕT (x(t−t′),ϕa) (48)

Therefore, the output time series samples will be the same after applying the transformation.

We complete the proof by showing the phase and magnitude of Fourier transformation of both samples
are the same after transformation even though a random unknown shift is applied to the sample. Thus,
the proposed transformation guarantees shift-invariancy without limiting the range of shifts.
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B ALGORITHM

In this section, we present the pseudocode and the PyTorch (Paszke et al, 2019) implementation for
the proposed transformation function. Algorithm 1 details each step of the transformation, which
takes a sample, x, and an angle, ϕ as inputs and outputs the transformed sample.

Algorithm 1 Algorithm for the proposed diffeomorphism.

1: Input: x, ϕa

2: Output: T (x, ϕa)

3: |X(ejω)|ejϕ(ω) =
∫∞
−∞ x(t)e−jωt ▷ Calculate the Fourier transformation to obtain harmonics

4: ϕ(ω0) = ∠
(
|X(ejω0)|ejϕ(ω0)

)
▷ Obtain the angle for the harmonic with period T0

5: θ = [ϕ(ω0)− ϕa] % 2π

6: ∆ϕ =

{
(θ−2π)∗T0

2π
, if θ > π

θ∗T0
2π

, else
▷ Calculate the phase difference between the harmonic and the angle ϕ

7: |X(ejω)|ej(ϕ(ω)−ω∆ϕ) = |X(ejω)|ejϕ(ω) ∗ e−jω∆ϕ ▷ Apply a linear phase shift to each harmonic

8: Return: F−1(|X(ejω)|ej(ϕ(ω)−ω∆ϕ))

Below, we provide the PyTorch implementation of our proposed transformation function, which
includes two functions. The first function, distanceCalculate, computes the phase differ-
ence between the harmonic with frequency ω0 and the desired input angles. The second function,
diffeomorphism, performs the main transformation: it takes as inputs the batch of samples x
and the angles ϕ, and outputs the transformed samples in the time domain.

def distanceCalculate(angleDiff):
theta = angleDiff % (2 * torch.pi)
# Calculate the angular distance on the unit circle
theta[theta > torch.pi] -= 2 * torch.pi
return theta

def diffeomorphism(sample, desiredAngles):
B, L, D = sample.shape
samplesFFT = torch.fft.rfft(sample, dim=1)
freq = torch.fft.rfftfreq(n=L)
phAngle = torch.angle(samplesFFT)
# Get the phase angle of the harmonic with frequency T_0
angles = phAngle[torch.arange(phAngle.size(0)), 1, 0].squeeze()
# Calculate the angle difference
theta = distanceCalculate(angles-desiredAngles)
# Normalize it to the sepecific harmonic with frequency w_0
dtheta = theta / (2*torch.pi*freq[1])
# Create complex exponentials with specific phase values
linShift = torch.exp(-1j*2*torch.pi*freq[None,:]*dtheta[:,None])
linShift = linShift.unsqueeze(dim=2).expand(-1, -1, D)
# Apply a linear phase shift to all harmonics
shiftedFFT = linShift*(samplesFFT)
# Return to the time domain
transformedSamples = torch.fft.irfft(shiftedFFT, n=L, dim=1)
return transformedSamples

Implementation 1: PyTorch implementation of the proposed transformation
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C EXPERIMENTS

Here, we give a detailed description of datasets, architectures, metrics, and training details for our
experiments. We performed our experiments on NVIDIA GeForce RTX 4090 GPUs, involving
training with three random seeds for all datasets, totaling approximately 480 GPU hours including
ablation. We reported the mean of three runs with the standard deviation.

C.1 DATASETS

In this section, we give details about the datasets that are used during our experiments. Overall,
we have used eight datasets with six different time series tasks including heart rate prediction,
cardiovascular disease classification, activity recognition, step counting, sleep stage classification,
and lung sound classification from six sensor modalities photoplethysmography, electrocardiogram,
inertial measurement units, electroencephalography, and audio. When selecting datasets for our
experiments, we prioritized signals that provide meaningful insights into individuals’ mental and
physical health, where robust inference is particularly critical. Therefore, we specifically choose
signals generated by humans. Additional to main experiments, in appendix, we also included lung
audio classification from audio signals.

C.1.1 HEART RATE PREDICTION

IEEE SPC The IEEE SPC dataset overall has 22 recordings of 22 subjects, ages ranging from 18
to 58 performing three different activities (Rocha et al., 2020). Each recording has sampled data from
three accelerometer signals and two PPG signals along with the ECG data with a sampling frequency
of 125 Hz. All these recordings were recorded from the wearable device placed on the wrist of each
individual. All recordings were captured with two 2-channel PPGs with green LEDs, a tri-axial
accelerometer, and a chest ECG for the ground-truth HR estimation. We averaged the two channels
of PPG for prediction. We choose the last five subjects of SPC22 to be used for source domains.
Throughout our experiments, we used PPG channels without integrating any inertial measurements.

Dalia The PPG dataset for motion compensation and heart rate estimation in Daily Life Activities
(DaLiA) was recorded from 15 subjects (8 females, 7 males, mean age of 30.6), where each recording
was approximately two hours long. PPG signals were recorded while subjects went through different
daily life activities, for instance sitting, walking, driving, cycling, working, and so on. PPG signals
were recorded at a sampling rate of 64 Hz. The first five subjects are used as source domains, similar
to Demirel & Holz (2023).

We standardize all PPG datasets as follows, same as the previous works (Biswas et al., 2019).
Initially, a fourth-order Butterworth bandpass filter with a frequency range of 0.5–4 Hz is applied
to PPG signals. Subsequently, a sliding window of 8 seconds with 2-second shifts is employed for
segmentation, followed by z-score normalization of each segment. Lastly, the signal is resampled
to a frequency of 25 Hz for each segment. We used an 8-block ResNet model with a stride of 2, a
learning rate of 5e−4, and a batch size of 32. Additional results with further experiments can be
found in Appendix D.

C.1.2 HUMAN ACTIVITY RECOGNITION

UCIHAR Human activity recognition using a smartphone’s dataset (UCIHAR) (Anguita et al.,
2012) is collected by 30 subjects within the age range of 16 to 48 performing six daily living activities
with a waist-mounted smartphone. Six activities include walking, sitting, lying, standing, walking
upstairs, and walking downstairs. Data is captured by 3-axial linear acceleration and 3-axial angular
velocity at a constant rate of 50 Hz. We used the pre-processing technique the same as in (Qian
et al., 2021) such that the input contains nine channels with 128 features (it is sampled in a sliding
window of 2.56 seconds and 50% overlap, resulting in 128 features for each window). Windows
are normalized to a mean of zero and unit standard deviation before feeding it to the models. The
experiments are conducted with a leave-one-domain-out strategy with the first five subjects, where
one of the domains is chosen to be the unseen target (Qian et al., 2022). We used an 8-block ResNet
model with a stride of 2, a learning rate of 3e−3, and a batch size of 32.
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HHAR Heterogeneity Dataset for Human Activity Recognition (HHAR) is collected by nine
subjects within an age range of 25 to 30 performing six daily living activities with eight differ-
ent smartphones—Although HHAR includes data from smartwatches as well, we use data from
smartphones—that were kept in a tight pouch and carried by the users around their waists (Stisen et al.,
2015). Subjects then perform six activities including cycling, sitting, descending stairs, ascending
stairs, standing, and walking. Considering the variable sampling frequencies of smart devices in the
HHAR dataset, we downsampled the readings to 50 Hz. We employed sliding windows with lengths
of 100 (two seconds) and 50, using a specified step size. These windows were then normalized to a
mean of zero with unit standard deviation. In our experiments, we utilized the data from the first four
subjects (i.e., a, b, c, d) as source domains, following a similar approach to previous papers (Qian
et al., 2022; Demirel & Holz, 2023). We used an 8-block ResNet model with a stride of 2, a learning
rate of 1e−3, and a batch size of 64. The learning rate 1e−3 for the guidance network, was the same
for the activity recognition task.

C.1.3 CARDIOVASCULAR DISEASE (CVD) CLASSIFICATION

Chapman Chapman University, Shaoxing People’s Hospital (Chapman) ECG dataset which pro-
vides 12-lead ECG with a 10-second sampling rate of 500 Hz. The recordings are downsampled to
100 Hz, resulting in each ECG frame consisting of 1000 samples. The labeling setup follows the same
approach as in Zheng et al. (2020) with four classes: atrial fibrillation, GSVT, sudden bradycardia,
and sinus rhythm. The ECG frames are normalized to have a mean of 0 and scaled to have a standard
deviation of 1. We split the dataset to 80–20% for training and testing as suggested in Zheng et al.
(2020). We chose leads I, II, III, and V2 during our experiments for both ECG datasets.

PhyioNet 2017 The 2017 PhysioNet/CinC Challenge aims to classify, from 8,528 single-lead ECG
recordings (between 30 s and 60 s in length), whether the recording shows normal sinus rhythm,
atrial fibrillation (AF), an alternative rhythm, or is too noisy to be classified, i.e., four classes. We
normalize the signals to have zero mean and unit standard deviation. Additionally, we zero-pad the
shorter recordings to ensure they have the same length. We split the dataset into training, validation,
and test sets according to the patients using a 60, 20, 20 configuration.

For both datasets in CVD task, we used an 8-block ResNet model with a stride of 2, a learning rate of
5e−4, and a batch size of 32. The learning rate for the guidance network was set same as the main
classifier architecture.

C.1.4 STEP COUNTING

The Clemson dataset has 30 participants (15 males, 15 females), Each participant wore three Shim-
mer3 sensors. We used the IMU sensor readings from non-dominant wrists to predict step count
where each sensor recorded accelerometer and gyroscope data at 15 Hz. We calculated the total
magnitude of the accelerometer and fed it to the model as a pre-processing without any filtering. We
used window lengths of 32 seconds without an overlap in the regular walking setting. We conducted
10-fold cross-validation, with each fold consisting of 3 subjects for testing and validation. And, six
randomly selected subjects were used for training in each fold. We used a 3 layer of FCN architecture,
a learning rate of 5e−4, and a batch size of 64. The learning rate for the guidance network was set
same as the main classifier architecture.

C.1.5 SLEEP STAGE CLASSIFICATION

We used the Sleep-EDF dataset which has five classes: wake (W), three different non-rapid eye
movements (N1, N2, N3), and rapid eye movement (REM). The dataset includes whole-night PSG
sleep recordings, where we used a single EEG channel (i.e., Fpz-Cz) with a sampling rate of 100 Hz.
We employed the identical data split as presented in the paper (Eldele et al., 2021), accessible online,
without applying any additional pre-processing steps. we used a 16-block ResNet model with a stride
of 2, a learning rate of 1e−3, and a batch size of 64. We ran three distinct seeds using the same split
and reported the mean and standard deviation on the test set.
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C.1.6 LUNG SOUND CLASSIFICATION

We used Respiratory@TR which contains lung sounds recorded from left and right sides of posterior
and anterior chest wall and back using two digital stethoscopes from 42 subjects collected in Antakya
State Hospital (Altan et al., 2017). The 12 channels of lung sounds are focused on upper lung,
middle lung, lower lung and costophrenic angle areas of posterior and anterior sides of the chest.
The recordings are validated and labeled by two pulmonologists evaluating the collected chest X-ray,
PFT and auscultation sounds of the subjects. Labels fall into 5 COPD severities (COPD0, COPD1,
COPD2, COPD3, COPD4). The patients aged 38 to 68 are selected from different occupational
groups, socio-economic status and genders. We performed 10-fold cross-validation on data from 42
subjects, with one fold reserved for validation in each iteration. All 12 channels, combining left and
right chest wall recordings from six channels each, were used.

The audio was segmented into 8-second windows with a 2-second overlap to capture temporal
patterns. We used an 8-block ResNet model with a stride of 3, a learning rate of 1e−5, and a batch
size of 15. Although audio models typically use Mel-frequency spectrograms with different networks,
we did not observe a significant performance difference between these models and our initial model.
Therefore, we used the original model with temporal data, consistent with our main experiments.

C.2 METRICS

We used the common evaluation metrics in the literature for each task. Specifically, we used mean
absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient (ρ)
for heart rate prediction. We used accuracy (Acc), macro-F1 score (F1) for activity recognition,
and an additional area under the receiver operating characteristic curve (AUC) for cardiovascular
disease classification (Kiyasseh et al., 2020). We used the mean absolute percentage error (MAPE)
for step counting (Yang et al., 2020; Femiano et al., 2022). For lung audio classification, we
evaluated performance using accuracy, macro F1, and weighted F1 scores (F1, W-F1). For sleep
stage classification, we used the same metrics—accuracy, macro F1, and weighted F1 scores (F1,
W-F1)—along with Cohen’s Kappa coefficient (κ) (Cohen, 1960).

C.3 BASELINES

C.3.1 LPF (BLURRING)

In convolutional neural networks, pooling layers or convolutions with strides greater than 2 would
conduct downsampling on the feature maps to reduce their size. However, since features are averaged
or discarded in the downsampling, information may be lost, i.e., aliasing. Traditional pooling
aggregates all values within the window to a single value. In contrast, Zhang (2019) aims to minimize
information loss caused by pooling via replacing the traditional kernel with a Gaussian kernel as an
low-pass filtering (LPF). Specifically, LPF applies a Gaussian-weighted function to the neighborhood
values around each feature for convolution, and obtains a weighted average result.

Compared to the pooling operations of simply selecting the maximum/average value within the
window, LPF uses Gaussian-weighted averages to preserve the relative positions and spatial rela-
tionships between features. In our implementations, we used 1D version of LPF with a length of
5. We evaluated filter lengths of 3, 5, 7 to determine the optimum size for each task. During our
experiments, we observed the best performance with a filter length of 5, except for HR prediction,
where a length of 3 was optimal.

C.3.2 APS

To make the sampling layer invariant to shifts, Chaman & Dokmanic (2021) proposed to subsample by
partitioning feature maps into polyphase components and select the component with the highest norm.
This approach has a significant limitation when applied to time series, especially with the nonlinear
activation functions. It tends to overlook variations in boundaries arising from the translation of
samples, thereby imposing additional shift constraints (Rojas-Gomez et al., 2022). Consequently, the
evaluation of these methods is restricted to a narrow range of shifts, covering only a limited subset of
the shift space. Moreover, as this approach selects the component with the highest norm, it requires
feature maps to have unique values.
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C.3.3 WAVELET NETWORKS

Wavelet networks (Romero et al., 2024) consist of several stacked layers that respect scale and
translation. At the beginning, the network consists of a lifting group convolution layer that lifts
input time-series to the scale-translation group, followed by arbitrarily many group convolutional
layers. At the end of the network, a global pooling layer is used to produce scale-translation invariant
representations. Wavelet Networks are proposed for equivariant mappings between input and output.
However, to turn an equivariant network into an invariant network, an extra layer that is equivariant
in this degenerate sense (in practice, this often means either averaging or creating a histogram of
the activations of the last layer) should be applied (Kondor & Trivedi, 2018). For example, the
well-known wavelet scattering network achieves invariance by stacking equivariant layers followed
by a final invariant one in that of scattering networks (Mallat, 2012). However, our proposed method
does not require an additional layer as it operates on data manifolds directly.

We used the original GitHub (https://github.com/dwromero/wavelet_networks) im-
plementation, leaving the dropout and base parameters unchanged. We searched over the learning
rate (e.g., {10−3, 10−4, 10−5}) using the validation set for each time series task.

C.3.4 CANONICALIZATION

We also compared our method with a canonicalization approach which is based on
learning mappings to canonical samples. Specifically, we used the equiadapt library
(https://github.com/arnab39/equiadapt) (Mondal et al., 2023; Kaba et al., 2023)
while adding translation equivarant architectures for shift operations. For translation equivariant
canonicalization architecture, we implemented a convolutional neural network with a kernel size of
five and three layers. The network avoids pooling layers to prevent aliasing and instead employs
global average pooling at the final stage to aggregate information across the signal length. The
output is reshaped to separate the channels corresponding to each discrete translation, followed by
aggregation over the fiber channels to produce translation-equivariant activations.

We used a discrete Group representation with number of translations set to 16. The canonicalization
network and classifier were trained jointly, incorporating a prior regularization loss to guide the
learning process. For optimization, we employed the Adam optimizer with a learning rate of 1×10−3

and no weight decay. We also performed a grid search to identify the optimal learning rate for the
canonicalization network; however, no significant performance improvements were observed across
different learning rates.

C.4 IMPLEMENTATION DETAILS

Here, we have provided the details of the architectures, and hyperparameters. Primarily, we used the
1D ResNet (Hong et al., 2020) implementation in the supervised settings. While some alternative
deep learning models can perform better in time series such as the combination of convolutional
and LSTM layers, similar to previous works in shift consistency (Zhang, 2019), we focused on deep
learning models which are mainly composed of convolutional layers.

C.4.1 ARCHITECTURES

Here, we present the details of architectures that are investigated for the performance of shift-invariant
techniques. Some details that are not given in the tables are as follows. Batch normalization (Ioffe &
Szegedy, 2015) is applied after each convolutional block. ReLU activation is employed following
batch normalization, in line with (He et al., 2015). We also applied a Dropout (Srivastava et al.,
2014) with 0.5 after each activation and before the convolutions. Finally, a global average pooling is
implemented before the linear layers.

Tables 9, 10a, and 10b give an overall for the architectures with the number of parameters for each
dataset. From these tables, it can be observed that the number of parameters for the guidance network
is much less than the main classifier, where the ratio is close to ≈2–4%.

The parameter count of the guidance network could be further reduced by selectively inputting only
the important frequencies or the frequency band for each time series task, which can be determined
using prior knowledge, rather than the entire spectrum. Nevertheless, for the sake of consistency, we
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Table 9: ResNet architecture

Repetition Layer Kernel Size Output Size Stride

1 Input (C,T) - (C, T) -
1 Conv (5, 1) (64, T/2) 1

R
Residual Block
Conv (5, 1) (128, T/4) S
Conv (5, 1) (128, T/4) 1

1 Linear - (n_classes,) -
# Parameters for dataset (C,T, R, S)
IEEE SPC (C=1, T=200, R=8, S=2) ≈210k
DaLiA (C=1, T=200, R=8, S=2) ≈210k
Chapman (C=4, T=1000, R=8, S=2) ≈197k
PhysioNet (C=1, T=6000, R=8, S=2) ≈197k
UCIHAR (C=9, T=65, R=8, S=2) ≈200k
HHAR (C=6, T=51, R=8, S=2) ≈200k
Respiratory (C=12, T=6000, R=8, S=3) ≈200k
Sleep (C=1, T=3000, R=16, S=2) ≈3.2M

Table 10: The model topologies of the classifier fC and guidance network fG

(a) FCN architecture

Layer Kernel
Size

Output
Size

Input (C,T) - (C, T)
Conv (32 kernels) (8, 1) (32, T-4)
Max Pooling (2,1) (32, (T-4)/2)
Conv (64 kernels) (8, 1) (64, (T-4)/2-4)
Max Pooling (2,1) (64, (T-4)/4-2)
Conv (128 kernels) (8, 1) (128, (T-4)/4-6)
Max Pooling (2,1) (128, (T-4)/8-3)
Linear - (n_classes,)

# Parameters for dataset (C,T)
Clemson (C=1, T=240) ≈432k

(b) Guidance architecture

Layer Kernel
Size

Output
Size

Input (C,T) — (C, T)
Conv (4 kernels) (8, 1) (4, T-5)
Max Pooling (2,1) (4, (T-5)/2+1)
Conv (16 kernels) (5, 1) (16, (T-5)/2-1)
Max Pooling (2,1) (16, (T-5)/4+1)
Conv (32 kernels) (3, 1) (32, (T-5)/4+1)
Max Pooling (2,1) (32, (T-5)/8+1)
Linear - (n_classes,)

# Parameters for dataset (C,T)
UCIHAR (C=9, T=65) ≈2.5k
HHAR (C=6, T=51) ≈2k
Clemson (C=1, T=240) ≈3k

IEEE SPC (C=1, T=200) ≈2.4k
DaLiA (C=1, T=200) ≈2.4k
Chapman (C=4, T=500) ≈6k
PhysioNet (C=1, T=3000) ≈13k
Respiratory (C=1, T=1500) ≈66k
Sleep (C=12, T=6000) ≈8k

perform the Fourier transform with the number of harmonics same as the length of time series and
provide the entire spectrum to the guidance network as the input.

One advantage of this input modeling is that the ratio between the number of parameters for the
guidance network and the main classifier decreases more when the main classifier has more blocks
as they are independent. For example, the guidance network has 1000× fewer parameters than the
main classifier for the sleep stage classification task where we have used 16 ResNet blocks for the
classifier model for all techniques. At the same time, this addition increases the performance metrics
up to 3%. Furthermore, increasing the number of parameters can decrease the performance of the
models as it can cause overfitting of the training data (Cao et al., 2022; Wen et al., 2023), which is
observed in our case as well (see Table 11 in Appendix D for additional results).
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D ADDITONAL RESULTS

D.1 SLEEP STAGE CLASSIFICATION

Here, we present extended results for the sleep stage classification in Table 11. Specifically, we
include the F1 score as an additional metric and employ a larger network to observe its impact.
Although our method ranked second in F1 metric, it is important to highlight that F1 scores are a

Table 11: Performance comparison of ours with other methods in EEG for sleep stage classification

Method Sleep-EDF
S-Cons ↑ Acc ↑ F1 ↑ W-F1 ↑ κ ↑

Baseline 95.06±0.61 75.41±2.01 65.40±1.33 74.87±1.92 67.12±2.96
Baseline (2×) 91.09±1.26 73.88±2.10 65.84±3.29 74.32±2.86 65.14±2.94
Aug. 99.00±0.17 74.89±1.11 64.71±1.55 74.03±1.46 65.89±1.81
LPF 92.43±1.24 73.56±2.93 68.08±1.97 76.01±1.98 65.68±3.46
APS — — — — —
Ours 100±0.00 77.90±1.92 67.01±2.65 76.77±2.58 70.01±1.10
Ours+LPF 100±0.00 73.12±1.89 67.42±1.99 75.34±1.61 64.98±2.27

biased measure of classification quality (Christen et al., 2023; Powers, 2015), which is a problem
when comparing recordings with a different prevalence of the classes as in sleep staging (Malafeev
et al., 2018). Therefore, we reported additional metrics for measuring the performance. In particular,
we included the kappa score, a metric widely used for evaluating algorithms in this task (Malafeev
et al., 2018; Biswal et al., 2018). Additionally, sleep stage classification and certain other tasks have
empty APS values as the authors’ original implementation encountered overflow issues with matrix
repetition, particularly for longer arrays.

Overall, our proposed method demonstrates a significant performance improvement in three of
the metrics, with high kappa and accuracy—both of which are commonly used in the medical
domain (Biswal et al., 2018) while ranking second in the F1 metric, following the LPF approach. We
also performed the same ablation experiments for investigating the behavior of the loss function on
the performance of the model for the sleep stage classification and reported the results in Table 12
while excluding the consistency metric as the model that include the proposed transformation are
always completely shift-invariant.

Table 12: Ablation experiments for sleep stage classification

Method Sleep-EDF
Acc ↑ F1 ↑ W-F1 ↑ κ ↑

T (x, ϕ) 75.54±2.39 66.96±1.78 75.53±2.29 67.08±0.03
L′
G 77.21±1.51 67.67±1.67 76.89±1.71 69.39±0.02

L̂G 77.75±1.23 68.04±1.16 77.01±1.07 69.94±0.01
Ours 77.80±1.95 67.01±2.65 76.77±2.58 70.01±2.50

Change +2.26 +0.05 +1.24 +2.93

Table 12 also supports the previous experiments and claims regarding the advantages of guiding
the proposed diffeomorphism with a neural network. When the models are trained by guiding the
mapping function, the performance of the models increases up to 3% in Kappa (κ) score.

D.2 HEART RATE PREDICTION

Here, we conducted additional experiments to evaluate the models’ performance using varied amounts
of training and testing data. Initially, we reduced the training data while increasing the testing data
by dividing the datasets in half based on subjects to investigate the performance with less training
data. Table 13 presents the results, where our proposed method also increases performance by
3–4% compared to the baseline architecture while reducing the variance between different runs and
improving shift consistency by 40–60%, even in the low data regime.
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Table 13: Performance comparison of ours and other methods in PPG datasets for HR estimation

Method IEEE SPC22 DaLiA
S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑ S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑

Baseline 55.70±2.61 25.93±0.07 11.55±0.08 48.85±0.85 31.48±0.41 12.51±0.05 5.59±0.05 85.37±0.20
Aug. 70.35±0.47 26.21±0.48 12.06±0.33 48.50±1.22 53.38±0.29 12.31±0.09 5.60±0.05 85.90±0.13
LPF 67.43±0.56 25.87±1.02 14.03±0.69 47.76±2.49 39.82±1.33 12.65±0.09 5.81±0.01 84.87±0.23
APS 60.43±1.08 24.83±1.26 11.14±0.83 52.10±2.90 38.99±0.85 12.49±0.11 5.61±0.04 85.68±0.17

Ours 100±0.00 24.67±0.06 11.10±0.16 52.26±0.27 100±0.00 12.30±0.11 5.57±0.03 85.95±0.25
Ours+LPF 100±0.00 26.01±0.27 14.04±0.24 47.20±0.86 100±0.00 12.78±0.09 6.18±0.01 84.48±0.26
Ours+APS 100±0.00 24.67±0.32 11.38±0.13 51.64±0.73 100±0.00 12.40±0.08 5.67±0.02 85.63±0.30

We also performed the same ablation studies for heart rate prediction task in the low data regime and
presented the results in Table 14.

Table 14: Ablation experiments for HR task with less training data

Method IEEE SPC22 DaLiAPPG

MAE ↓ RMSE ↓ ρ ↑ MAE ↓ RMSE ↓ ρ ↑
T (x, ϕ) 12.04 25.49 50.72 6.10 12.94 85.03
L′
G 11.29 25.10 51.10 5.63 12.80 85.10

L̂G 11.32 25.08 51.18 5.60 12.71 85.12
Ours 11.10 24.67 52.26 5.57 12.30 85.95
Change +0.94 +0.82 +1.54 +0.53 +0.64 +0.92

The ablation study results with a smaller training set align with our main findings, where reducing
variations uniformly using the same angle negatively impacts performance. Likewise, expanding the
potential solution space with L̂G leads to a performance decline compared to our method.
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D.3 DIFFEOMORPHISMS IN DEEP LEARNING

In this section, we review previous transformation functions and diffeomorphisms used in deep
learning models. Invariant classification of input samples with neural networks has a long-standing
history, with the Spatial Transformer Network (STN) being introduced to learn transformation
functions for invariant image classification (Jaderberg et al., 2015). Similarly, Temporal Transformer
Networks (TTN), an adaptation of STNs for time series applications, were introduced to predict the
parameter of warp functions and align time series (Lohit et al., 2019; Shapira Weber & Freifeld,
2023). Recent methods have focused on optimizing a known family of diffeomorphism, known as
diffeomorphic warping functions (Martinez et al., 2022) for time series alignment, through deep
learning (Detlefsen et al., 2018; Shapira Weber et al., 2019). Thus, a significant distinction between
our approach and previous techniques lies in the fact that we introduce a novel tailored diffeomorphism
that is capable of mapping samples subjected to shifts to the same point in the high-dimensional data
manifold, to ensure shift-invariancy.

Although previous techniques were designed for different purposes, such as time-warping (Lohit et al.,
2019), we also evaluated and compared the performance and shift consistency of their transformation
functions. Specifically, we implemented sequence temporal transformations (STN) for clinical time
series from Oh et al. (2018) and TTN (Lohit et al., 2019) where the transformation and the classifier
are trained together to maximize classification performance by minimizing the cross-entropy loss
for both methods. In our implementation of STN, we followed the original design, using a neural
network with two convolutional layers and two pooling layers, where pooling is applied between and
after the convolutions. After the pooling operations, two fully connected layers are applied to the
resulting feature maps to obtain the transformation parameter. The overall results in time series tasks
are presented in the tables below.

Table 15: Performance comparison of our method with different transformations in HR estimation

Method IEEE SPC22 DaLiA
S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑ S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑

Baseline 61.99±1.19 18.39±2.96 10.28±1.41 62.64±5.74 32.08±0.22 9.86±0.23 4.40±0.03 86.01±0.51
Aug. 76.48±1.77 18.73±1.15 10.42±0.40 64.06±3.70 52.77±0.39 9.85±0.21 4.47±0.06 85.99±0.49

Baseline+STN 67.13±1.53 18.45±2.73 10.35±0.73 63.49±4.10 44.81±0.25 9.90±0.17 4.43±0.04 85.96±0.47
Baseline+TTN 60.12±1.10 20.57±1.23 11.55±1.87 60.17±3.64 39.13±0.30 10.23±0.30 4.45±0.05 84.31±0.67
Ours 100±0.00 16.25±0.72 9.45±0.03 70.12±2.10 100±0.00 9.75±0.15 4.39±0.03 86.06±0.19

Table 16: Performance comparison of our method with different transformations in ECG datasets

Method Chapman PhysioNet 2017
S-Cons (%) ↑ Acc ↑ F1 ↑ AUC (%)↑ S-Cons (%) ↑ Acc ↑ F1 ↑ AUC ↑

Baseline 98.53±0.17 91.32±0.23 91.22±0.24 98.34±0.16 98.37±0.15 83.22±0.72 73.50±1.99 93.21±0.30
Aug. 99.00±0.16 91.96±0.19 91.89±0.22 98.45±0.18 98.96±0.17 82.28±1.18 72.32±2.20 93.20±0.42

Baseline+STN 98.31±0.13 91.45±0.20 91.33±0.19 98.31±0.14 98.55±0.14 83.12±0.50 73.27±1.54 93.23±0.28
Baseline+TTN 97.69±0.15 91.27±0.17 90.54±0.38 98.23±0.21 97.12±0.23 82.51±0.63 71.43±1.43 93.07±0.35
Ours 100±0.00 92.10±0.25 91.93±0.85 98.47±0.15 100±0.00 83.15±0.65 74.12±1.80 93.28±0.31

Table 17: Performance comparison of our method with different transformations in IMU datasets

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 94.07±1.38 85.39±2.30 83.20±2.94 98.27±0.33 91.87±1.36 91.16±1.38 54.31±4.40 4.76±0.11 2.74±0.08
Aug. 96.55±0.80 85.42±4.50 83.69±6.74 98.38±0.28 91.97±0.44 91.31±0.49 61.01±4.88 4.08±0.14 2.29±0.07

Baseline+STN 93.96±1.22 83.22±1.23 83.57±2.14 98.30±0.24 88.92±1.10 89.10±1.20 58.56±4.78 4.94±0.13 2.53±0.10
Baseline+TTN 93.32±1.95 83.27±1.57 82.78±3.12 97.10±0.78 90.03±1.74 90.18±1.10 45.89±3.02 5.43±0.20 2.89±0.18
Ours 100±0.00 87.71±1.98 85.67±2.47 100±0.00 91.93±1.14 91.12±1.03 100±0.00 4.28±0.34 2.43±0.21

As shown in the tables, other transformation functions fail to achieve true shift-invariance. While the
STN method shows some improvements on certain datasets, it still lacks full shift-invariance. This
limitation arises because STN relies on a neural network to estimate transformation parameters from
time series data. However, this temporal transformation has no information about the position of the
time series. Thus, when the input is shifted, the output changes.
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D.4 EXPANDED COMPARISON

Here, we compared the performance of techniques when random data augmentation (Aug.) is applied
during training. In other words, the samples are randomly shifted and fed to the models during
training. During inference, the performance of methods with original samples is evaluated without
applying any shifts. We present the results in the tables below.

Table 18: Performance comparison of our method and other techniques with data augmentation for
HR estimation

Method IEEE SPC22 DaLiA
S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑ S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑

Baseline 61.99±1.19 18.39±2.96 10.28±1.41 62.64±5.74 32.08±0.22 9.86±0.23 4.40±0.03 86.01±0.51
Aug. 76.48±1.77 18.73±1.15 10.42±0.40 64.06±3.70 52.77±0.39 9.85±0.21 4.47±0.06 85.99±0.49
LPF 76.88±0.73 20.20±1.54 13.44±0.82 65.40±1.92 38.67±0.30 10.01±0.30 4.67±0.12 85.68±0.51
APS 73.99±1.06 19.42±0.60 12.98±0.29 65.27±1.32 44.33±0.16 10.45±0.40 5.01±0.17 84.69±0.85
WaveletNet 51.71±1.95 21.56±1.01 14.61±0.34 60.74±4.37 36.71±3.04 15.46±0.64 7.67±0.23 76.13±1.86

LPF + Aug. 76.17±1.15 20.39±1.15 13.22±0.36 61.72±2.87 55.62±0.21 12.57±0.19 6.02±0.11 84.94±0.40
APS + Aug. 74.88±0.61 18.01±0.15 10.57±0.15 66.40±2.21 53.70±0.08 12.84±0.10 6.08±0.02 85.62±0.65
WaveletNet + Aug. 50.14±0.14 20.10±1.15 13.41±0.57 61.90±3.50 36.71±3.04 15.46±0.64 7.67±0.23 76.13±1.86

Ours 100±0.00 16.25±0.72 9.45±0.03 70.12±2.10 100±0.00 9.75±0.15 4.39±0.03 86.06±0.19
Ours+LPF 100±0.00 20.34±1.62 13.77±0.84 65.60±2.31 100±0.00 10.72±0.11 5.30±0.03 84.12±0.23
Ours+APS 100±0.00 18.81±1.59 12.32±0.84 67.01±3.79 100±0.00 10.47±0.09 5.10±0.03 84.62±0.31

Table 19: Performance comparison of ours and other techniques with data augmentation in ECG
datasets for CVD classification

Method Chapman PhysioNet 2017
S-Cons (%) ↑ Acc ↑ F1 ↑ AUC (%)↑ S-Cons (%) ↑ Acc ↑ F1 ↑ AUC ↑

Baseline 98.53±0.17 91.32±0.23 91.22±0.24 98.34±0.16 98.37±0.15 83.22±0.72 73.50±1.99 93.21±0.30
Aug. 99.00±0.16 91.96±0.19 91.89±0.22 98.45±0.18 98.96±0.17 82.28±1.18 72.32±2.20 93.20±0.42
LPF 98.69±0.14 92.01±0.23 91.94±0.58 98.50±0.24 98.94±0.39 84.40±0.16 75.68±0.76 93.80±0.32
APS 98.60±0.17 90.69±0.89 89.44±1.00 98.31±0.24 — — — —
WaveletNet 91.02±1.14 90.87±1.02 90.02±1.00 97.94±0.21 65.03±0.71 76.06±0.64 63.35±3.40 87.02±0.29

LPF + Aug. 98.85±0.20 92.05±0.13 91.94±0.40 98.53±0.20 99.00±0.50 83.27±0.61 74.03±1.56 93.20±0.31
APS + Aug. 98.60±0.17 90.69±0.89 89.44±1.00 98.31±0.24 — — — —
WaveletNet + Aug. 91.02±1.14 90.87±1.02 90.02±1.00 97.94±0.21 65.03±0.71 78.90±0.57 65.88±1.44 88.67±0.22/

Ours 100±0.00 92.10±0.25 91.93±0.85 98.47±0.15 100±0.00 83.15±0.65 74.12±1.80 93.28±0.31
Ours+LPF 100±0.00 92.05±0.52 91.96±0.54 98.51±0.10 100±0.00 85.20±0.40 77.50±1.21 94.20±0.19
Ours+APS 100±0.00 91.61±1.11 91.10±0.56 98.36±0.20 — — — —

Table 20: Performance comparison of our method and others with data augmentation in IMU datasets
for Activity and Step

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 94.07±1.38 85.39±2.30 83.20±2.94 98.27±0.33 91.87±1.36 91.16±1.38 54.31±4.40 4.76±0.11 2.74±0.08
Aug. 96.55±0.80 85.42±4.50 83.69±6.74 98.38±0.28 91.97±0.44 91.31±0.49 61.01±4.88 4.08±0.14 2.29±0.07
LPF 95.05±0.21 83.96±3.44 81.08±4.21 98.10±0.10 92.10±0.80 91.43±0.94 59.77±4.40 4.16±0.16 2.35±0.11
APS 96.40±0.03 81.75±4.11 79.01±5.33 98.30±0.24 91.83±1.35 91.01±1.47 45.50±2.69 4.74±0.16 2.69±0.07
WaveletNet 94.56±1.31 82.78±4.62 80.73±5.59 96.76±0.15 90.72±0.38 90.71±0.39 59.14±3.10 5.20±0.66 2.95±0.41

LPF + Aug. 97.65±1.30 84.67±3.45 83.32±3.50 98.65±0.12 92.45±0.78 91.70±0.62 59.77±4.40 3.81±0.13 2.23±0.10
APS + Aug. 96.40±0.03 78.40±3.75 75.43±4.33 98.87±0.34 92.40±0.40 91.49±0.73 45.50±2.69 3.94±0.10 2.50±0.07
WaveletNet + Aug. 94.56±1.31 82.78±4.62 80.73±5.59 96.76±0.15 90.72±0.38 91.71±0.39 60.23±2.54 5.18±1.02 3.02±0.48

Ours 100±0.00 87.71±1.98 85.67±2.47 100±0.00 91.93±1.14 91.12±1.03 100±0.00 4.28±0.34 2.43±0.21
Ours+LPF 100±0.00 84.78±2.46 82.58±2.62 100±0.00 92.51±0.55 91.80±0.62 100±0.00 3.75±0.33 2.12±0.18
Ours+APS 100±0.00 82.96±1.79 81.10±1.73 100±0.00 91.38±0.32 90.64±0.32 100±0.00 3.87±0.19 2.19±0.11

From the results, we can see that applying shift data augmentation during training did not consistently
improve performance, and in some cases, it led to a decrease. For instance, in the HR prediction task,
training the low-pass filtering method with randomly shifted samples resulted in lower performance.
We believe that random shifts may reduce the inter-class separation between samples, causing
them to overlap in the feature space (Wang et al., 2022). As a result, even though the number of
training samples increases with augmentation, this reduced separation can lead to a decline in model
performance.
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D.5 PERFORMANCE IN DIFFERENT HYPERPARAMETERS

In this section, we vary the training batch size to evaluate the performance of the proposed method.
Given that the guidance network includes an additional loss function to reduce angle variance within
a batch, we examined its performance under different batch sizes. The results are presented in
Tables 21, 22, and 23.

Table 21: Performance comparison of our method and other techniques with a different batch size for
HR estimation

Method IEEE SPC22 DaLiA
S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑ S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑

Baseline 64.85±1.87 19.28±0.41 11.51±0.21 65.15±1.43 36.34±0.39 12.47±0.17 5.53±0.06 85.65±0.20
Aug. 78.90±1.12 19.51±0.93 11.82±0.49 63.62±1.55 52.77±0.39 12.36±0.09 5.61±0.06 85.84±0.16
LPF 72.16±1.13 20.66±1.26 13.86±1.06 65.22±3.06 42.08±0.18 12.82±0.26 5.88±0.07 84.50±0.47
APS 71.25±1.19 19.79±0.92 12.59±0.68 67.05±0.85 42.01±0.26 12.37±0.18 5.50±0.04 85.75±0.39

Ours 100±0.00 18.29±0.71 11.30±0.57 69.10±1.20 100±0.00 12.49±0.16 5.55±0.07 85.60±0.23
Ours+LPF 100±0.00 20.49±0.77 14.18±0.42 67.28±3.20 100±0.00 13.17±0.23 6.43±0.11 83.63±0.57
Ours+APS 100±0.00 20.03±0.95 13.23±0.69 66.40±4.03 100±0.00 12.59±0.17 5.76±0.05 85.22±0.27

Table 22: Performance comparison of ours and other techniques with a different batch size in ECG
datasets for CVD classification

Method Chapman PhysioNet 2017
S-Cons (%) ↑ Acc ↑ F1 ↑ AUC (%)↑ S-Cons (%) ↑ Acc ↑ F1 ↑ AUC ↑

Baseline 99.00±0.13 92.56±0.25 91.58±0.26 98.59±0.12 98.41±0.26 82.71±1.55 73.16±3.39 93.00±0.30
Aug. 99.08±0.16 92.46±0.18 91.45±0.16 98.57±0.20 98.73±0.07 82.03±1.60 72.61±4.10 92.63±0.51
LPF 98.88±0.17 92.32±0.15 91.31±0.17 98.58±0.14 98.92±0.40 83.07±1.30 73.98±3.85 93.60±0.70

Ours 100±0.00 92.58±0.26 91.50±0.30 98.59±0.10 100±0.00 83.14±0.82 74.40±2.28 93.60±0.20
Ours+LPF 100±0.00 92.28±0.25 91.34±0.27 98.54±0.20 100±0.00 83.01±1.01 72.94±2.74 93.05±0.50

Table 23: Performance comparison of our method and others with a different batch size in IMU
datasets for Activity and Step

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 95.13±1.21 89.89±1.76 89.37±1.82 98.25±0.14 91.99±0.86 91.20±0.91 43.61±1.53 4.27±0.26 2.41±0.14
Aug. 96.55±0.80 91.46±1.10 90.69±1.58 98.13±0.27 91.70±1.55 90.94±1.61 63.74±4.83 3.81±0.21 2.13±0.11
LPF 96.88±0.76 92.13±0.56 92.23±0.76 98.14±0.09 90.29±0.86 89.45±0.94 52.60±3.71 4.24±0.24 2.38±0.15
APS 97.12±0.75 92.43±1.40 92.07±1.21 98.30±0.24 91.83±1.35 91.01±1.47 42.16±0.98 5.00±0.03 2.84±0.02

Ours 100±0.00 92.78±0.51 92.94±0.33 100±0.00 91.77±0.56 91.10±0.60 100±0.00 4.06±0.16 2.24±0.10
Ours+LPF 100±0.00 89.78±1.25 90.04±1.11 100±0.00 91.40±1.20 90.60±1.32 100±0.00 4.14±0.09 2.32±0.06
Ours+APS 100±0.00 90.64±1.46 90.40±1.62 100±0.00 91.19±0.60 90.36±0.55 100±0.00 4.41±0.16 2.48±0.10

When we doubled the batch size during training, we observed a performance decrease in some
datasets for our method, such as Clemson and DaLiA. We believe this could be due to the need to
adjust the guidance network’s learning rate when changing the batch size. Additionally, since the
introduced loss function aims to reduce overall angle variance for a batch of samples, larger batches
may pose optimization challenges for the guidance network. It is important to note that despite
performance decreases in some cases, our method consistently outperformed baseline models with
the original batch size used in the main experiments.
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E IMPROVEMENTS IN PERFORMANCE ACROSS DIFFERENT NETWORKS

In this section, we conduct experiments to observe the performance of our proposed method when it is
integrated into different network architectures. First, we employed the same 1D ResNet architecture
for IMU related tasks as we used the fully convolutional network without residual connections in
the main results because of better performance. Second, we applied a transformer with positional
encoding, which is designed for time series tasks (Qian et al., 2022), to all tasks. Specifically, we
used linear layers with a stack of four identical blocks. The linear layer converts the input data to
embedding vectors of 128. Each block is made up of a multi-head self-attention layer and a fully
connected feed-forward layer. We use residual connections around each layer.

We have not included blurring (LPF) and adaptive sampling in the transformer network analysis, as
these methods are primarily tailored for convolutional architectures. Additionally, due to lack of
convergence in the heart rate prediction task, we have omitted reporting results from the transformers.
We reported the results in the tables below.

Table 24: Performance comparison of our method with others in IMU with ResNet

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 97.40±0.86 85.02±3.92 83.35±3.90 99.29±0.02 91.78±1.07 91.70±1.08 84.80±4.15 6.83±1.60 3.97±0.96
Aug. 98.40±0.37 86.66±1.26 85.12±1.53 99.31±0.04 92.82±0.35 92.84±0.35 95.88±1.10 6.62±1.10 3.83±0.66
LPF 97.91±0.60 84.03±2.67 82.49±2.93 93.01±1.92 91.33±1.43 91.38±1.40 94.59±0.71 4.46±0.04 2.50±0.26
APS 98.02±0.46 81.98±3.36 79.23±4.20 93.01±1.92 92.13±0.22 92.14±0.22 93.01±1.92 6.61±1.44 3.84±0.84

Ours 100±0.00 87.12±2.21 85.21±3.10 100±0.00 91.90±0.10 92.02±0.07 100±0.00 6.55±0.75 3.93±0.61
Ours+LPF 100±0.00 83.05±3.86 80.14±3.62 100±0.00 92.45±0.45 92.50±0.44 100±0.00 4.45±0.22 2.45±0.13
Ours+APS 100±0.00 84.33±2.93 83.01±3.13 100±0.00 92.25±0.17 92.30±0.16 100±0.00 6.07±0.47 3.50±0.28

Table 25: Performance comparison of our method with others in IMU with Transformer

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 90.44±0.48 69.15±4.79 65.64±4.59 96.98±0.20 91.10±1.83 91.04±1.92 93.87±2.12 6.55±0.83 3.77±0.48
Aug. 93.68±0.64 73.23±2.75 69.79±3.63 98.35±0.06 89.21±0.07 89.16±0.11 95.46±2.65 6.54±0.34 3.76±0.17
Ours 100±0.00 74.02±3.01 70.42±3.47 100±0.00 91.55±1.20 91.19±1.19 100±0.00 6.50±0.55 3.77±0.31

Table 26: Performance comparison of ours and others in ECG with Transformer

Method Chapman PhysioNet 2017
S-Cons (%) ↑ Acc ↑ F1 ↑ AUC (%)↑ S-Cons (%) ↑ Acc ↑ F1 ↑ AUC ↑

Baseline 98.53±0.17 91.32±0.23 91.22±0.24 98.34±0.16 98.37±0.15 83.22±0.72 73.50±1.99 93.21±0.30
Aug. 99.00±0.16 91.96±0.19 91.89±0.22 98.45±0.18 98.96±0.17 82.28±1.18 72.32±2.20 93.20±0.42
Ours 100±0.00 92.10±0.25 91.93±0.85 98.40±0.15 100±0.00 83.35±0.65 74.12±1.80 93.28±0.31
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We also integrated our proposed transformation into some recent neural networks and investigated the
performance. Mainly, we employed ModernTCN (donghao & wang xue, 2024) and T-WaveNet (LIU
et al., 2022) architectures. When we implemented ModernTCN, we follow the original implementa-
tion from We set the patch size and stride to 5 and 2, respectively, while keeping the backbone and
dropout rate the same as in the original implementation. The stem, downsampling, and FFN ratios
were set to 1.

Table 27: Performance comparison of our method for HR estimation using ModernTCN

Method IEEE SPC22 DaLiA
S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑ S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑

Baseline 38.62±0.23 34.67±0.45 29.26±0.41 3.45±0.54 10.24±0.46 20.52±0.46 11.90±0.24 60.16±1.27
Aug. 50.15±0.07 34.36±2.14 28.29±3.04 01.95±2.23 39.10±1.27 15.36±1.16 7.25±0.64 79.97±2.53
Ours 100±0.00 33.45±1.07 29.33±1.09 08.96±3.73 100±0.00 15.20±1.22 7.13±0.10 80.05±1.08

Table 28: Performance comparison of our method for ECG datasets using ModernTCN

Method Chapman PhysioNet 2017
S-Cons (%) ↑ Acc ↑ F1 ↑ AUC (%)↑ S-Cons (%) ↑ Acc ↑ F1 ↑ AUC ↑

Baseline 98.53±0.17 55.48±1.34 46.07±1.03 73.35±0.34 87.77±1.20 51.84±4.80 22.41±2.30 60.34±1.64
Aug. 95.51±3.38 81.93±3.60 79.15±4.63 94.88±1.11 98.96±0.17 60.13±2.57 28.86±5.23 70.57±6.10
Ours 100±0.00 83.80±2.06 80.73±2.70 95.41±0.33 100±0.00 60.58±1.50 30.73±1.08 72.58±3.76

Table 29: Performance comparison of our method for IMU datasets using ModernTCN

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 95.89±2.10 86.68±1.53 85.45±2.35 97.23±0.18 92.21±0.76 92.09±1.10 73.96±2.18 4.03±0.11 2.32±0.09
Aug. 96.55±0.80 85.42±4.50 83.69±6.74 98.38±0.28 91.97±0.44 91.31±0.49 61.01±4.88 4.08±0.14 2.29±0.07
Ours 100±0.00 88.73±1.47 87.19±1.94 100±0.00 94.12±0.87 93.43±1.10 100±0.00 3.88±0.26 2.15±0.16

Table 30: Performance comparison of our method using ModernTCN for sleep stage classification

Method Sleep-EDF
S-Cons ↑ Acc ↑ F1 ↑ W-F1 ↑ κ ↑

Baseline 71.84±1.78 69.50±1.81 62.84±1.39 71.21±1.66 60.39±2.20
Aug. 95.47±5.75 72.96±4.72 64.50±4.14 73.61±5.12 64.90±6.13
Ours 100±0.00 73.36±3.10 65.37±2.88 74.10±1.97 65.42±3.51

From these results, we can see that ModernTCN architecture performs relatively poor compared to
1D ResNet architecture in most tasks. However, for the IMU related tasks, ModernTCN outperforms
other architectures. Similarly, when we integrate our method into the ModernTCN, the performance
increases by 5–10% while decreasing the variation between runs.
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We also performed experiments with T-WaveNet, a tree-structured wavelet deep neural network.
The model decomposes input signals into multiple subbands and builds a tree structure with data-
driven wavelet transforms the bases of which are learned using invertible neural networks. We use
the original implementation from https://openreview.net/forum?id=U4uFaLyg7PV.
Following the original implementation, the wavelet functions are learned together with the neural
network instead of using stationary wavelet transforms like Haar.

Table 31: Performance comparison of our method for HR estimation using T-WaveNet

Method IEEE SPC22 DaLiA
S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑ S-Cons (%) ↑ RMSE ↓ MAE ↓ ρ (%) ↑

Baseline 49.73±1.61 21.78±1.87 15.77±1.59 60.30±4.16 39.69±0.17 13.38±0.19 6.15±0.08 83.10±0.47
Aug. 71.11±1.24 19.29±2.31 12.16±1.51 66.50±6.30 53.95±0.28 12.82±0.30 5.89±0.11 83.63±0.76
Ours 100±0.00 19.03±2.41 12.10±2.10 67.76±6.55 100±0.00 12.65±0.25 5.59±0.10 84.05±0.57

Table 32: Performance comparison of our method for ECG datasets using T-WaveNet

Method Chapman PhysioNet 2017
S-Cons (%) ↑ Acc ↑ F1 ↑ AUC (%)↑ S-Cons (%) ↑ Acc ↑ F1 ↑ AUC ↑

Baseline 97.23±0.19 93.17±0.80 92.40±0.78 98.87±0.18 94.72±1.91 78.94±1.60 71.43±2.24 92.44±1.03
Aug. 98.19±0.68 93.63±0.36 92.89±0.32 98.96±0.10 95.43±0.89 79.77±0.99 70.72±1.42 92.33±0.63
Ours 100±0.00 93.45±0.40 92.92±0.50 99.00±0.15 100±0.00 79.89±1.10 71.61±2.10 92.50±0.89

Table 33: Performance comparison of our method for IMU datasets using T-WaveNet

Method UCIHAR HHAR Clemson

S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ Acc ↑ F1 ↑ S-Cons (%) ↑ MAPE ↓ MAE ↓
Baseline 97.63±1.45 72.77±2.36 70.48±4.16 98.37±0.96 92.37±0.89 91.53±1.03 89.50±0.50 6.69±0.54 3.90±0.31
Aug. 98.30±2.43 72.82±3.34 68.78±3.53 98.68±0.65 92.88±1.15 92.05±1.28 89.29±0.72 6.62±0.59 3.83±0.31
Ours 100±0.00 74.04±2.10 71.04±3.25 100±0.00 92.95±1.14 91.60±0.93 100±0.00 6.03±0.50 3.54±0.35

Table 34: Performance comparison of our method using T-WaveNet for sleep stage classification

Method Sleep-EDF
S-Cons ↑ Acc ↑ F1 ↑ W-F1 ↑ κ ↑

Baseline 71.84±1.78 69.50±1.81 62.84±1.39 71.21±1.66 60.39±2.20
Aug. 95.47±5.75 72.96±4.72 64.10±1.23 73.61±5.12 64.90±6.13
Ours 100±0.00 73.36±5.10 65.90±1.07 74.10±3.97 65.42±3.51

As shown in tables, the proposed transformation also increases the performance of the different neural
networks. One important result from the comparison of these tables is that there is a correlation
between the model’s ability to remain invariant to shifts and its performance, up to a certain threshold
where the model performs adequately. However, beyond that point, as the model’s performance
declines, the consistency in shift increases, resulting in the model consistently outputting the wrong
class. For instance, in the case of step counting, the transformer architecture performs quite worse
and fails to distinguish between samples. As a result, the consistency of the transformer is higher
compared to ResNet and fully convolutional networks while the performance is lower. We believe
that investigating the invariance of different neural architectures alongside their performance on time
series tasks can shed light on model networks and the fundamental reasons behind abrupt output
changes with small changes in the input signal, i.e., ≈ 10–15 ms shift.
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F VISUAL EXAMPLES FOR THE GUIDANCE NETWORK

In this section, we provide some visual examples to show how the proposed transformation function
works. First, we show the t-SNE (van der Maaten & Hinton, 2008) representations of the embeddings
obtained from a trained model with and without applying our transformation in Figure 4.
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Figure 4: (a) Comparison of pairwise Euclidian distances of randomly shifted embeddings with and
without applying our method. (b) t-SNE visualizations of embeddings without our method show
some shifted samples clustering with opposite class embeddings. (c) With our transformation, all
shifted variants of the same signal cluster correctly within their true class label.

For visualization, we selected 50 different ECG (healthy) signals from the test set. We then took a
single arrhythmia ECG sample from the test set, applied 49 shifts to it (50 samples with the original),
and created variants shown in blue. Finally, we compared the embeddings with and without applying
our proposed transformation function. As seen in Figure 4, applying our transformation function
maps the shifted samples to a single point in the embedding space, with the maximum Euclidean
distance between embeddings being close to 10−6.

Second, we conducted a simple experiment to investigate how the guidance network works with the
proposed transformation. Specifically, we created a two-label classification task where the model
classifies sinusoids by frequency. The dataset includes two waveforms: x1(t) = cos (ω1t+ ϕ1) +
cos (ω2t+ ϕ2) and x2(t) = cos (ω1t+ ϕ1) + cos (ω3t+ ϕ3), with the model identifying whether
the input contains frequency ω2 or ω3. Frequencies were set at 5, 24, and 25 Hz for ω1, ω2, and ω3,
respectively, with ω1 included in both waveforms to increase task difficulty. We set the sampling rate
of the signals to 300 Hz.
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Figure 5: Input waveforms to the classifier in the third epoch (a) without applying our transformation
function. (b) with our guidance network (fθG). Another experiment with a different seed. Input
waveforms (c) without applying our transformation function. (d) with our guidance network (fθG ).
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To add diversity, we randomly shifted x1(t) and x2(t) by angles sampled from [0, π) and added
Gaussian noise (ϵ) with variance of 0.1. We used the FCN similar to that specified in Appendix C.4 as
the architecture. This experimental setup is inspired by similar experiments exploring neural network
behaviors (Rahaman et al., 2019).

Figure 5 illustrates an interesting result: after a few weight updates, the guidance network assigns
angles ϕ that maximize the Euclidean distance between inter-class samples. For instance, before
applying the guidance network, the distance between a pair of samples is 9.12 (Figure 5 (a)). After
applying the guidance network, this distance increases by four to 43.6 (Figure 5 (b)). Interestingly,
running the same experiment with a different seed (i.e., a new random initialization of the guidance
network) shows that the assigned angles differ, but the Euclidean distances between the samples
remain almost unchanged, shifting only slightly from 43.6 to 42.8 (See Figure 5 (d)).

This experiment can also explain the occasional performance increase when the angle variance
increases with a loss term as there is no single solution for minimizing the distance, but there can be
infinitely many depending on the frequency distribution of the dataset and classes.
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Figure 6: (a) Angle assignments across different seeds. (b) Euclidean distances between intra-class
samples, compared with and without the proposed transformation (W/o T (x, ϕ)). The results show
that the Euclidean distances are highly consistent across different seeds, with the curves nearly
overlapping. Additionally, when the transformation is not applied, the distances between intra-class
samples are noticeably higher.

We conducted an additional experiment to analyze the angle assignments across runs using the IEEE
SPC22 dataset. The experiment was performed with three random seeds, and the results are presented
in Figure 6. In Figure 6 (a), we reported the assigned angles in cos (ϕ) as the angle −π and π are
the same due to the circular property of the angles. While the assigned angles vary slightly between
runs, the Euclidean distances between samples consistently converge to similar values. Specifically,
the intra-class samples are closer in the transformed space compared to the case when the proposed
transformation is not applied.
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G EXPANDED REVIEW OF RELATED WORK

Transformation Applying phase shifts to time series is commonly used in signal process-
ing (Haykin & Veen, 2002; Oppenheim et al., 1996). Recently, shifting phase values of harmonics have
also been applied in the machine learning community for data augmentation of time series (Demirel
& Holz, 2023; Qian et al., 2022). However, our proposed transformation differs from these in two
key aspects. First, our work is the first to represent every point in the shift space uniquely with
the phase angle of a harmonic whose period is equal to or longer than the length of the sample,
i.e., T0 ≤ t. This observation enables us to design a bijective transformation that ensures shift
invariance. Additionally, we integrated this observation into deep learning frameworks using a novel
loss function, demonstrating that our proposed method enhances model performance while ensuring
shift invariance.

Second, we apply linear phase shifts to keep waveform features intact. Since if an input signal is
subjected to a phase shift that is a nonlinear function of ω similar to Qian et al. (2022); Demirel &
Holz (2023), then the complex exponential components of the input at different frequencies will be
shifted in a manner that results in a change in their relative phases. Superimposing these exponentials
can result in a signal that significantly differs from the input if special precautions are not taken. Thus,
this alteration in the waveform (Oppenheim et al., 1996) can potentially affect downstream labels or
generate unrealistic signals.

However, our transformation applies the tailored shift linearly to all harmonics while keeping the
information content unchanged (Mallat, 2012) as the transformation operates as a group action.

Shift-invariant Kernels Learning shift invariant representations from data has a long history in
machine learning (Grosse et al., 2007; Rahimi & Recht, 2007). The initial effort focused on designing
shift-invariant kernels for feature extraction (Rahimi & Recht, 2007), which were applied to support
vector machines. A different approach introduced shift-invariant sparse coding technique, which
reconstructs an input using all basis functions across all possible shifts (Grosse et al., 2007). However,
the classification performance of these techniques were significantly outperformed by the modern
networks. Thus, recent approaches have focused on integrating shift-invariant kernels into modern
convolutional neural networks in a stacked manner while using Gaussian low-pass filters to prevent
aliasing (Mairal et al., 2014).

However, applying low-pass filters to prevent anti-aliasing completely is not possible (Oppenheim
et al., 1996). Thus, high-frequency components will always (partially) alias. This is more problematic
for time series as the interaction of high and low frequencies are more common (Demirel & Holz,
2023; Canolty & Knight, 2010). Therefore, applying a low-pass filter can reduce the performance
of neural networks in certain time series tasks, as shown by our experiments. The filtering may
inadvertently attenuate important high-frequency components, which are essential for distinguishing
patterns, leading to suboptimal model outcomes.

Learning based Transformations Methods to standardize inputs have been around for a long
time (Yüceer & Oflazer, 1993). An important recent work along this direction is the Spatial Trans-
former Network (STN) being introduced to learn transformation functions for invariant image classi-
fication (Jaderberg et al., 2015). Similarly, Temporal Transformer Networks (TTN), an adaptation of
STNs for time series applications, were introduced to predict the parameter of warp functions and
align time series (Lohit et al., 2019; Shapira Weber & Freifeld, 2023). Recent studies have utilized
canonical equivarant networks to obtain mapping points for inputs (Kaba et al., 2023). However,
these methods face significant limitations as the operation order increases. Specifically, higher-order
transformations in group equivarant networks require additional filter copies in the lifting layer
and an increased number of parameters in the subsequent group convolution layers. While this
can improve performance, it comes at the cost of significantly higher computational and model
complexity. Furthermore, prior works restrict mappings to a finite number of group elements defined
by the canonicalization network. In contrast, our proposed transformation eliminates this limitation
entirely, enabling each sample to map to any point in the input space—infinitely many—without
relying on a neural network. This is achieved by uniquely representing each point in the shift space
using a specific harmonic.
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H DISCUSSION, LIMITATIONS AND FUTURE WORK

In this work, we propose a new diffeomorphism to achieve shift invariant deep learning models for
time series in real-world tasks. While existing techniques show promise for images, they fall short
in time series, where the interaction of low and high frequencies are an important part of the data
generation. The proposed transformation offers a novel solution, ensuring that samples will map the
same point in the high dimensional data manifold despite a random shift. Theoretical and empirical
analysis demonstrates its effectiveness across several time series tasks, enhancing model robustness
while improving the performance.

While our approach consistently improves the performance of deep learning models for time series
data, it is worth noting the potential areas for future investigation and improvement. First, we
conducted our experiments on health-related time series tasks from humans since the robustness of
models is crucial in those domains. Therefore, extending the proposed transformation to images for
shift or rotation invariancy presents an intriguing direction for future investigations. Thus, we believe
that future research could benefit on adapting our approach to diverse domains, including images, to
explore shift or rotation invariance further. Second, our approach requires samples to be expanded
into the sum of periodic sinusoidals with Fourier expansion followed by using the phase angle of the
one whose period equals or exceeds the length of the signal. Input samples should be decomposed
the sinusoidals while considering this requirement. Therefore, we believe future work can benefit
by detecting the phase of a specific sinusoidal which satisfies the condition and apply a linear phase
all-pass filter without performing the operation in the frequency domain. Lastly, we observed notable
performance improvements from the additional guidance network when it is used with the proposed
diffeomorphism while applying a proper loss function. Thus, we believe that further performance
improvements can be achieved through a refined design incorporating alternative inputs.
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