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Abstract

Sharpness-Aware Minimization (SAM) is an optimizer that takes a descent step
based on the gradient at a perturbation yt = xt+ρ ∇f(xt)

∥∇f(xt)∥ of the current point xt.
Existing studies prove convergence of SAM for smooth functions, but they do
so by assuming decaying perturbation size ρ and/or no gradient normalization in
yt, which is detached from practice. To address this gap, we study determinis-
tic/stochastic versions of SAM with practical configurations (i.e., constant ρ and
gradient normalization in yt) and explore their convergence properties on smooth
functions with (non)convexity assumptions. Perhaps surprisingly, in many scenar-
ios, we find out that SAM has limited capability to converge to global minima or
stationary points. For smooth strongly convex functions, we show that while de-
terministic SAM enjoys tight global convergence rates of Θ̃( 1

T 2 ), the convergence
bound of stochastic SAM suffers an inevitable additive term O(ρ2), indicating
convergence only up to neighborhoods of optima. In fact, such O(ρ2) factors
arise for stochastic SAM in all the settings we consider, and also for deterministic
SAM in nonconvex cases; importantly, we prove by examples that such terms are
unavoidable. Our results highlight vastly different characteristics of SAM with vs.
without decaying perturbation size or gradient normalization, and suggest that the
intuitions gained from one version may not apply to the other.

1 Introduction

Modern neural networks are armed with a large number of layers and parameters, having a risk
to overfit to training data. In order to make accurate predictions on unseen data, generalization
performance has been considered as the most important factor in deep learning models. Based on the
widely accepted belief that geometric properties of loss landscape are correlated with generalization
performance, studies have proved theoretical and empirical results regarding the relation between
sharpness measures and generalization [14, 17, 19, 21, 29]. Here, sharpness of a loss at a point
generally refers to the degree to which the loss varies in the small neighborhood of the point.

Motivated by prior studies that show flat minima have better generalization performance [19, 21],
Foret et al. [16] propose an optimization method referred to as Sharpness-Aware Minimization (SAM).
A single iteration of SAM consists of one ascent step (perturbation) and one descent step. Starting
from the current iterate xt, SAM first takes an ascent step yt = xt + ρ ∇f(xt)

∥∇f(xt)∥ to (approximately)
maximize the loss value in the ρ-neighborhood of xt, and then uses the gradient at yt to update xt

to xt+1. This two-step procedure gives SAM a special characteristic: the tendency to search for
a flat minimum, i.e., a minimum whose neighboring points also return low loss value. Empirical
results [3, 9, 16, 20, 25] show that SAM demonstrates an exceptional ability to perform well on
different models and tasks with high generalization performance. Following the success of SAM,
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Table 1: Convergence of SAM with constant perturbation size ρ after T steps. C1, C2, C3, and C4
indicate β-smoothness, µ-strong convexity, convexity, and Lipschitzness, respectively. C5 indicates
the bounded variance of the gradient oracle. See Section 2.3 for definitions of C1–C5.

Optimizer Function Class Convergence Upper/Lower Bounds Reference

Deterministic SAM C1,C2 mint∈{0,...,T} f(xt) − f∗ = Õ
(
exp(−T ) + 1

T2

)
Theorem 3.1

Deterministic SAM C1,C2 mint∈{0,...,T} f(xt) − f∗ = Ω
(

1
T2

)
Theorem 3.2

Deterministic SAM C1,C3 1
T

∑T−1
t=0 ∥∇f(xt)∥2 = O

(
1
T + 1√

T

)
Theorem 3.3

Deterministic SAM C1 1
T

∑T−1
t=0 ∥∇f(xt)∥2 ≤ O

(
1
T

)
+ β2ρ2 Theorem 3.4

Stochastic SAM C1,C2,C5 Ef(xT ) − f∗ ≤ Õ
(
exp (−T ) +

[σ2−β2ρ2]+
T

)
+ 2β2ρ2

µ Theorem 4.1

Stochastic SAM C1,C3,C5 1
T

∑T−1
t=0 E∥∇f(xt)∥2 ≤ O

(
1
T +

√
[σ2−β2ρ2]+√

T

)
+ 4β2ρ2 Theorem 4.3

Stochastic n-SAM C1,C5 1
T

∑T−1
t=0 E∥∇f(xt)∥2 ≤ O

(
1
T + 1√

T

)
+ β2ρ2 Theorem 4.5

Stochastic m-SAM C1,C4,C5 1
T

∑T−1
t=0 E[(∥∇f(xt)∥ − βρ)2] ≤ O

(
1√
T

)
+ 5β2ρ2 Theorem 4.6

numerous extensions of SAM have been proposed in the literature [6, 15, 18, 23, 24, 26–28, 30–
32, 34, 35].

On the theoretical side, various studies have demonstrated different characteristics of SAM [1, 2, 4, 5,
12, 13, 22, 33]. However, comprehending the global convergence properties of practical SAM on
a theoretical level still remains elusive. In fact, several recent results [2, 18, 27, 31, 35] attempt to
prove the convergence guarantees for SAM and its variants. While these results provide convergence
guarantees of SAM on smooth functions, they are somewhat detached to the practical implementations
of SAM and its variants. They either (1) assume decaying or sufficiently small perturbation size
ρ [18, 27, 31, 35], whereas ρ is set to constant in practice; or (2) assume ascent steps without gradient
normalization [2], whereas practical implementations of SAM use normalization when calculating
the ascent step yt.

1.1 Summary of Our Contributions
To address the aforementioned limitations of existing results, we investigate convergence properties
of SAM using gradient normalization in ascent steps and arbitrary constant perturbation size ρ. We
note that to the best of our knowledge, the convergence analysis of SAM have not been carried out
under the two practical implementation choices. Our analyses mainly focus on smooth functions,
with different levels of convexity assumptions ranging from strong convexity to nonconvexity. We
summarize our contributions below; a summary of our convergence results (upper and lower bounds)
can also be found in Table 1.

• For deterministic SAM, we prove convergence to global minima of smooth strongly convex
functions, and show the tightness of convergence rate in terms of T . Furthermore, we establish
the convergence of SAM to stationary points of smooth convex functions. For smooth nonconvex
functions, we prove that SAM guarantees convergence to stationary points up to an additive factor
O(ρ2). We provide a worst-case example that always suffers a matching squared gradient norm
Ω(ρ2), showing that the additive factor is unavoidable and tight in terms of ρ.

• For stochastic settings, we analyze two versions of stochastic SAM (n-SAM and m-SAM) on
smooth strongly convex, smooth convex, and smooth (Lipschitz) nonconvex functions. We
provide convergence guarantees to global minima or stationary points up to additive factors
O(ρ2). In case of m-SAM, we demonstrate that these factors are inevitable and tight in terms of
ρ, by providing worst-case examples where SAM fails to converge properly.

1.2 Related Works: Convergence Analysis of SAM
Recent results [18, 27, 31, 35] prove convergence of stochastic SAM and its variants to stationary
points for smooth nonconvex functions. However, these convergence analyses are limited to only
smooth nonconvex functions and do not address convex functions. Also, as already pointed out,
all the proofs require one crucial assumption detached from practice: decaying (or sufficiently
small) perturbation size ρ. If ρ becomes sufficiently small, then the difference between fSAM(x) =
max∥ϵ∥≤ρ f(x+ ϵ) and f(x) becomes negligible, which means that they undergo approximately the
same updates. Due to this reason, especially in later iterates, SAM with negligible perturbation size
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would become almost identical to gradient descent (GD), resulting in a significant difference in the
convergence behavior compared to constant ρ.

Figure 1: Trajectory plot for a function
f(x, y) = (xy − 1)2. The green line indi-
cates global minima of f . SAM and USAM
indicates SAM with and without gradient
normalization, respectively, and GD indi-
cates gradient descent. When USAM ap-
proaches the green line, it converges to a
nearby global minimum, which is similar
to GD. In contrast, SAM travels along the
green line, towards the flattest minimum
(1, 1).

As for existing proofs that do not require decaying
ρ, Andriushchenko and Flammarion [2] prove conver-
gence guarantees for deterministic SAM with constant
ρ on smooth nonconvex, smooth Polyak-Łojasiewicz,
smooth convex, and smooth strongly convex functions.
Moreover, the authors prove convergence guarantees of
stochastic SAM, this time with decaying ρ, on smooth
nonconvex and smooth Polyak-Łojasiewicz functions.
However, their analyses are also crucially different from
the practical implementations of SAM because their
proofs are for a variant of SAM without gradient nor-
malization in ascent steps, with updates in the form of
xt+1 = xt − η∇f(xt + ρ∇f(xt)). This form can be
considered as vanilla SAM with an “effective” pertur-
bation size ρ∥∇f(xt)∥, which indicates that even with
constant ρ, the effective perturbation size will become
smaller and smaller as the algorithm converges towards
a stationary point. As in the case of decaying ρ dis-
cussed above, this can make a huge difference in the
convergence behavior.

Figure 1 illustrates a comparison between SAM with
and without gradient normalization, highlighting the
disparity between their convergence points. As we
predicted above, it is evident that they indeed reach
entirely distinct global minima, exhibiting different convergence characteristics.

Discussions on the related works on the relationship between sharpness and generalization, as well as
other theoretical properties of SAM, are provided in Appendix A.

1.3 Notation
The euclidean norm of a vector v is denoted as ∥v∥. We let R∗

+ ≜ {x ∈ R | x > 0}, and use
[·]+ to define max{·, 0}. We use O(·) and Ω(·) to hide numerical constants in our upper and lower
bounds, respectively. We use Õ(·) to additionally hide logarithmic factors. When discussing rates,
we sometimes use these symbols to hide everything except T , the number of SAM iterations. When
discussing additive factors that arise in our convergence bounds, we use these symbols to hide all
other variables except the perturbation size ρ. For an objective function f and initialization x0 of
SAM, we define f∗ ≜ infx f(x) and ∆ ≜ f(x0)− f∗.

2 Sharpness-Aware Minimization: Preliminaries and Intuitions
Before presenting the main results, we first introduce deterministic and stochastic SAM, and present
definitions of function classes considered in this paper. We next introduce virtual gradient map and
virtual loss that shed light on our intuitive understanding of SAM’s convergence behavior.

2.1 Sharpness-Aware Minimization (SAM)
We focus on minimizing a function f : Rd → R, where the optimization variable is represented
by x ∈ Rd, using the Sharpness-Aware Minimization (SAM) optimizer. Instead of minimizing the
vanilla objective function f(x), SAM [16] aims to minimize the SAM objective fSAM(x), where

min
x

fSAM(x) = min
x

max
∥ϵ∥≤ρ

f(x+ ϵ). (1)

For ρ ∈ R∗
+, the SAM loss fSAM(x) outputs the worst function value in a ρ-ball {w ∈ Rd |

∥x −w∥ ≤ ρ} around x. Assuming “sufficiently small” ρ, the inner maximization of (1) can be
solved by Taylor-approximating the objective:

arg max
∥ϵ∥≤ρ

f(x+ ϵ) ≈ arg max
∥ϵ∥≤ρ

f(x) + ⟨ϵ,∇f(x)⟩ = ρ ∇f(x)
∥∇f(x)∥ ≜ ϵ̂(x).
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Using this approximate solution ϵ̂(x), we can define the approximate SAM objective f̂SAM as
f̂SAM(x) ≜ f(x+ ϵ̂(x)). In order to run gradient descent (GD) on f̂SAM(x), one needs to calculate
its gradient; however, from the definition of ϵ̂(x), we can realize that ∇f̂SAM(x) has terms that
involve the Hessian of f . Here, SAM makes another approximation, by ignoring the Hessian term:

∇f̂SAM(x) ≈ ∇f(x)|x+ϵ̂(x).

From these approximations, one iteration of SAM is defined as a set of two-step update equations:{
yt = xt + ρ ∇f(xt)

∥∇f(xt)∥ ,

xt+1 = xt − η∇f(yt).
(2)

As seen in (2), we use xt to denote the iterate of SAM at the t-th step. We use T to denote the number
of SAM iterations. We refer to the hyperparameter ρ ∈ R∗

+ as the perturbation size and η ∈ R∗
+ as

the step size. Note that in (2), the perturbation size ρ is a time-invariant constant; in practice, it is
common to fix ρ as a constant throughout training [3, 9, 16].

According to the SAM update in (2), the update cannot be defined when ∥∇f(x)∥ = 0. In practice,
we add a small numerical constant (e.g., 10−12) to the denominator in order to prevent numerical
instability. In this paper, we ignore this constant and treat ∇f(xt)

∥∇f(xt)∥ as 0 whenever ∥∇f(xt)∥ = 0.

2.2 SAM under Stochastic Settings
To analyze stochastic SAM, we suppose that the objective is given as f(x) = Eξ[l(x; ξ)], where ξ
is a stochastic parameter (e.g., data sample) and l(x; ξ) indicates the loss at point x with a random
sample ξ. Based on the SAM update in (2), we can define stochastic SAM under this setting:{

yt = xt + ρ g(xt)
∥g(xt)∥ ,

xt+1 = xt − ηg̃(yt).
(3)

We define g(x) = ∇xl(x; ξ) and g̃(x) = ∇xl(x; ξ̃). Here, ξ and ξ̃ are stochastic parameters, queried
from any distribution(s) which satisfies Eξ̃l(x; ξ̃) = Eξl(x; ξ) = f(x).

There are two popular variants of stochastic SAM, introduced in Andriushchenko and Flammarion
[2]. Stochastic n-SAM algorithm refers to the update equation (3) when ξ and ξ̃ are independent. In
contrast, practical SAM algorithm in Foret et al. [16] employs stochastic m-SAM algorithm, which
follows the update equation (3) where ξ is equal to ξ̃. We will consider both versions in our theorems.

2.3 Function Classes
We state definitions and assumptions of function classes of interest, which are fairly standard.
Definition 2.1 (Convexity). A function f : Rd → R is convex if, for any x,y ∈ Rd and λ ∈ [0, 1], it
satisfies f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Definition 2.2 (µ-Strong Convexity). A differentiable function f : Rd → R is µ-strongly convex if
there exists µ > 0 such that f(x)≥f(y)+⟨∇f(y),x− y⟩+ µ

2 ∥x− y∥2, for all x,y ∈ Rd.

Definition 2.3 (L-Lipschitz Continuity). A function f : Rd → R is L-Lipschitz continuous if there
exists L ≥ 0 such that ∥f(x)− f(y)∥ ≤ L∥x− y∥, for all x,y ∈ Rd.

Definition 2.4 (β-Smoothness). A differentiable function f : Rd → R is β-smooth if there exists
β ≥ 0 such that ∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥, for all x,y ∈ Rd.

Next we define an assumption considered in the analysis of stochastic SAM (3).
Assumption 2.5 (Bounded Variance). The gradient oracle of a differentiable function f : Rd → R
has bounded variance if there exists σ ≥ 0 such that

Eξ∥∇f(x)−∇l(x; ξ)∥2 ≤ σ2, Eξ̃∥∇f(x)−∇l(x; ξ̃)∥2 ≤ σ2, ∀x ∈ Rd.

2.4 SAM as GD on Virtual Loss
Convergence analysis of SAM is challenging due to the presence of normalized ascent steps. In order
to provide intuitive explanations of SAM’s convergence properties, we develop tools referred to as
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virtual gradient map and virtual loss in this section. These tools can provide useful intuitions when
we discuss our main results.

In order to define the new tools, we first need to define Clarke subdifferential [10], whose definition
below is from Theorem 6.2.5 of Borwein and Lewis [7].
Definition 2.6 (Clarke Subdifferential). Suppose that a function f : Rd → R is locally Lipschitz
around a point x and differentiable on Rd \W where W is a set of measure zero. Then, the Clarke
subdifferential of f at x is ∂f(x) ≜ cvxhull {limt→∞ ∇f(xt) | xt → x,xt /∈ W}, where cvxhull
denotes the convex hull of a set.

Clarke subdifferential ∂f(x) is a convex hull of all possible limits of ∇f(xt) as xt approaches x. It
can be thought of as an extension of gradient to a nonsmooth function. It is also known that for a
convex function f , the Clarke subdifferential of f is equal to the subgradient of f .

Using the definition of Clarke differential, we now define virtual gradient map and virtual loss of f ,
which can be employed for understanding the convergence of SAM.
Definition 2.7 (Virtual Gradient Map/Loss). For a differentiable function f : Rd → R, we define the
virtual gradient map Gf : Rd → Rd of f to be Gf (x) ≜ ∇f

(
x+ ρ ∇f(x)

∥∇f(x)∥
)
. Additionally, if there

exists a function Jf : Rd → R whose Clarke subdifferential is well-defined and ∂Jf (x) ∋ Gf (x)
for all x, then we call Jf a virtual loss of f .

If a virtual loss Jf is well-defined for f , the update of SAM (2) on f is equivalent to a (sub)gradient
descent update on the virtual loss Jf (x), which means, xt+1 = xt − ηGf (xt). The reason why we
have to use Clarke subdifferential to define the virtual loss is because even for a differentiable and
smooth function f , there are cases where the virtual gradient map Gf is discontinuous and the virtual
loss Jf (if exists) is nonsmooth; see the discussion below Theorem 3.1.

Note that if the differentiable function f is one-dimensional (d = 1), the virtual loss Jf (x) is always
well-defined because it can be obtained by simply (Lebesgue) integrating Gf (x). However, in case of
multi-dimensional functions (d > 1), there is no such guarantee, although Gf is always well-defined.
We emphasize that the virtual gradient map Gf and virtual loss Jf are mainly used for a better
intuitive understanding of our (non-)convergence results. In formal proofs, we use them for analysis
only if Jf is well-defined.

Lastly, we note that Bartlett et al. [4] also employ a similar idea of virtual loss. In case of convex
quadratic objective function f(x), the authors define ut = (−1)txt and formulate a (different)
virtual loss J̃f (u) such that a SAM update on f(xt) is equivalent to a GD update on J̃f (ut).

3 Convergence Analysis Under Deterministic Settings
In this section, we present the main results on the (non-)convergence of deterministic SAM with
constant perturbation size ρ and gradient normalization. We study four function classes: smooth
strongly convex, smooth convex, smooth nonconvex, and nonsmooth Lipschitz convex functions.

3.1 Smooth and Strongly Convex Functions
For smooth strongly convex functions, we prove a global convergence guarantee for the best iterate.
Theorem 3.1. Consider a β-smooth and µ-strongly convex function f . If we run de-
terministic SAM starting at x0 with any perturbation size ρ > 0 and step size η =

min
{

1
µT max

{
1, log

(
µ5∆T 2

β6ρ2

)}
, 1
2β

}
to minimize f , we have

min
t∈{0,...,T}

f(xt)− f∗ = Õ
(
exp

(
−µT

2β

)
∆+

β6ρ2

µ5T 2

)
.

The proof of Theorem 3.1 can be found in Appendix B.2. As for relevent existing studies, Theorem 1
of Dai et al. [13] can be adapted to establish the convergence guarantee f(xT )− f∗ = Õ

(
1
T

)
, by

selecting the step size η = min
{

1
µT max

{
1, log

(
µ2∆T
β3ρ2

)}
, 1
β

}
and employing a similar proof

technique as ours. We highlight that Theorem 3.1 achieves a faster convergence rate compared to the
concurrent bound by Dai et al. [13]. Moreover, Theorem 11 of Andriushchenko and Flammarion [2]
proves the convergence guarantee for this function class: ∥xT −x∗∥2 = O (exp(−T )), but assuming
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SAM without gradient normalization, and the boundedness of ρ. Here, we get a slower convergence
rate of Õ

(
exp(−T ) + 1

T 2

)
, but with any ρ > 0 and with normalization.

By viewing SAM as GD on virtual loss, we can get an intuition why SAM cannot achieve exponential
convergence. Consider a smooth and strongly convex function: f(x) = 1

2x
2. One possible virtual

loss of f is Jf (x) = 1
2 (x + ρsign(x))2, which is a nonsmooth and strongly convex function, for

which the exponential convergence of GD is impossible [8].

Indeed, we can show that the sublinear convergence rate in Theorem 3.1 is not an artifact of our
analysis. Interestingly, the Õ

(
exp(−T ) + 1

T 2

)
rate given in Theorem 3.1 is tight in terms of T , up to

logarithmic factors. Our next theorem provides a lower bound for smooth strongly convex functions.

Theorem 3.2. Suppose β
µ ≥ 2. For any choice of perturbation size ρ, step size η, and initialization

x0, there exists a differentiable, β-smooth, and µ-strongly convex function f such that

min
t∈{0,...,T}

f(xt)− f∗ = Ω

(
β3ρ2

µ2T 2

)
holds for deterministic SAM iterates.

For the proof of Theorem 3.2, refer to Appendix B.3. By comparing the rates in Theorems 3.1 and
3.2, we can see that the two bounds are tight in terms of T and ρ. The bounds are a bit loose in
terms of β and µ, but we believe that this may be partly due to our construction; in proving lower
bounds, we used one-dimensional quadratic functions as worst-case examples. A more sophisticated
construction may improve the tightness of the lower bound, which is left for future work.

3.2 Smooth and Convex Functions
For smooth and convex functions, proving convergence of the function value to global optimum
becomes more challenging, due to the absence of strong convexity. In fact, we can instead prove that
the gradient norm converges to zero.
Theorem 3.3. Consider a β-smooth and convex function f . If we run deterministic SAM starting at
x0 with any perturbation size ρ > 0 and step size η = min

{ √
2∆√

β3ρ2T
, 1
2β

}
to minimize f , we have

1

T

∑T−1

t=0
∥∇f(xt)∥2 = O

(
β∆

T
+

√
∆β3ρ2√
T

)
.

The proof of Theorem 3.3 is given in Appendix B.4. As for relevant existing studies, Theorem 11
of Andriushchenko and Flammarion [2] proves the convergence guarantee for this function class:
f(x̄)−f∗ = O

(
1
T

)
, where x̄ indicates the averaged x over T iterates, while assuming SAM without

gradient normalization and bounded ρ. Here, we prove a weaker result: a convergence rate of O( 1√
T
)

to stationary points, albeit for any ρ > 0 and with normalization.

One might expect that a reasonably good optimizer should converge to global minima of smooth
convex functions. However, it turns out that both showing convergence to global minima and finding
a non-convergence example are quite challenging in this function class.

Indeed, we later show non-convergence examples for other relevant settings. For stochastic SAM, we
provide a non-convergence example (Theorem 4.4) in the same smooth and convex function class,
showing that the suboptimality gap in terms of function values cannot have an upper bound, and
therefore rendering convergence to global minima impossible. For deterministic SAM in nonsmooth
Lipschitz convex functions, we show an example (Theorem 3.6) where convergence to the global
minimum is possible only up to a certain distance proportional to ρ.

Given these examples, we suspect that there may also exist a non-convergence example for the
determinstic SAM in this smooth convex setting. We leave settling this puzzle to future work.

3.3 Smooth and Nonconvex Functions
Existing studies prove that SAM (and its variants) with decaying or sufficiently small perturbation size
ρ converges to stationary points for smooth nonconvex functions [2, 18, 27, 31, 35]. Unfortunately,
with constant perturbation size ρ, SAM exhibits a different convergence behavior: it does not converge
all the way to stationary points.

6



Theorem 3.4. Consider a β-smooth function f satisfying f∗ = infx f(x) > −∞. If we run
deterministic SAM starting at x0 with any perturbation size ρ > 0 and step size η = 1

β to minimize f ,
we have

1

T

∑T−1

t=0
∥∇f(xt)∥2 ≤ O

(
β∆

T

)
+ β2ρ2.

Refer to the Appendix B.5 for the proof of Theorem 3.4. For a comparison, Theo-
rem 9 of Andriushchenko and Flammarion [2] proves the convergence for this function class:
1
T

∑T
t=0 ∥∇f(xt)∥2 = O

(
1
T

)
, but again assuming SAM without gradient normalization, and

boundedness of ρ. Our Theorem 3.4 guarantees O( 1
T ) convergence up to an additive factor β2ρ2.

One might speculate that the undesirable additive factor β2ρ2 is an artifact of our analysis. The next
theorem presents an example which proves that this extra term is in fact unavoidable.
Theorem 3.5. For any ρ > 0 and η ≤ 1

β , there exists a β-smooth and Θ(βρ)-Lipschitz continuous
function such that, if deterministic SAM is initialized at a point x0 sampled from a continuous
probability distribution, then deterministic SAM converges to a nonstationary point, located at a
distance of Ω(ρ) from a stationary point, with probability 1.

Here we present a brief outline for the proof of Theorem 3.5. For a given ρ, consider a one-dimensional
function f(x) = 9βρ2

25π2 sin
(

5π
3ρx
)

. Figure 2(a) demonstrates the virtual loss for this example. By
examining the virtual loss Jf and its stationary points, we observe that SAM iterates xt converge to a
non-stationary point, located at a distance of Ω(ρ) from the stationary point. This means that the limit
point of SAM will have gradient norm of order Ω(βρ), thereby proving that the additive factor in
Theorem 3.4 is tight in terms of ρ. A detailed analysis of Theorem 3.5 is provided in Appendix B.6.

Remark: why do we ignore η = Ω( 1β )? As the reader may have noticed, Theorem 3.5 only
considers the case η = O( 1β ), and hence does not show that the additive factor is inevitable for any
choice of η > 0. However, one can notice that if η = Ω( 1β ), then we can consider a one-dimensional
Ω(β)-strongly convex quadratic function and show that the SAM iterates blow up to infinity. For
the same reason, in our other non-convergence results (Theorems 4.2 and 4.4), we only focus on
η = O( 1β ).

3.4 Nonsmooth Lipschitz Convex Functions
Previous theorems study convergence of SAM assuming smoothness. The next theorem shows an
example where SAM on a nonsmooth convex function converges only up to Ω(ρ) distance from the
global minimum x∗. This means that for constant perturbation size ρ, there exist convex functions
that prevent SAM from converging to global minima. In Appendix B.7, we prove the following:

Theorem 3.6. For any ρ > 0 and η < 7ρ
4 , there exists a nonsmooth Lipschitz convex function f such

that for some initialization, deterministic SAM converges to suboptimal points located at a distance
of Ω(ρ) from the global minimum.

4 Convergence Analysis Under Stochastic Settings
In this section, we present the main results on the convergence analysis of stochastic SAM, again with
time-invariant (constant) perturbation size ρ and gradient normalization. We consider both types
of stochastic SAM: n-SAM and m-SAM, defined in Section 2.2. We study four types of function
classes: smooth strongly convex, smooth convex, smooth nonconvex, and smooth Lipschitz nonconvex
functions, under the assumption that the gradient oracle has bounded variance of σ2 (Assumption 2.5).
Our results in this section reveal that stochastic SAM exhibits different convergence properties
compared to deterministic SAM.

4.1 Smooth and Strongly Convex Functions
Theorem 3.1 shows the convergence of deterministic SAM to global optima, for smooth strongly
convex functions. Unlike this result, we find that under stochasticity and constant perturbation size ρ,
both n-SAM and m-SAM ensure convergence only up to an additive factor O(ρ2).
Theorem 4.1. Consider a β-smooth, µ-strongly convex function f , and assume Assump-
tion 2.5. Under n-SAM, starting at x0 with any perturbation size ρ > 0 and step size η =
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(a) (b) (c)

(d) (e)

Figure 2: Examples of virtual loss plot for deterministic and stochastic SAM. The graph drawn
in green indicates f , and the graph drawn in blue indicates Jf (or EJf ). Red arrows indicate the
(expected) directions of SAM update. The (expected) updates are directed to red stars. (a) f and
Jf in Theorem 3.5. (b) f and its component functions f (1), f (2) in Theorem 4.2. (c) EJf and its
component functions Jf(1) , Jf(2) in Theorem 4.2. (d) f and its component functions f (1), f (2) in
Theorem 4.4. (e) EJf and its component functions Jf(1) , Jf(2) in Theorem 4.4. For the simulation
results of SAM trajectories on these functions, refer to Appendix D.

min
{

1
µT ·max

{
1, log

(
µ2∆T

β[σ2−β2ρ2]+

)}
, 1
2β

}
to minimize f , we have

Ef(xT )− f∗ ≤ Õ
(
exp

(
−µT

2β

)
∆+

β[σ2 − β2ρ2]+
µ2T

)
+

2β2ρ2

µ
.

Under m-SAM, additionally assuming l(·, ξ) is β-smooth for any ξ, the inequality continues to hold.

For the proof, please refer to Appendix C.2. Theorem 4.1 provides a convergence rate of Õ( 1
T ) to

global minima, but only up to suboptimality gap 2β2ρ2

µ . If σ ≤ βρ, then Theorem 4.1 becomes:

Ef(xT )− f∗ ≤ Õ
(
exp

(
−µT

2β

)
∆

)
+

2β2ρ2

µ
,

thereby showing a convergence rate of O (exp(−T )) modulo the additive factor.

For relevant existing studies, Theorem 2 of Andriushchenko and Flammarion [2] proves the conver-
gence guarantee for smooth Polyak-Łojasiewicz functions: Ef(xT )− f∗ = O

(
1
T

)
, but assuming

stochastic SAM without gradient normalization, and perturbation size ρ decaying with t. In contrast,
our analysis shows that the convergence property can be different with normalization and constant ρ.

The reader might be curious if the additional O(ρ2) term can be removed. Our next theorem proves
that in the case of high gradient noise (σ > βρ), m-SAM with constant perturbation size ρ cannot
converge to global optima beyond a suboptimality gap Ω(ρ2), when the component function l(x; ξ)
is smooth for any ξ. Hence, the additional term in Theorem 4.1 is unavoidable, at least for the more
practical version m-SAM.

Theorem 4.2. For any ρ > 0, β > 0, σ > βρ and η ≤ 3
10β , there exists a β-smooth and β

5 -strongly
convex function f satisfying the following. (1) The function f satisfies Assumption 2.5. (2) The
component functions l(·; ξ) of f are β-smooth for any ξ. (3) If we run m-SAM on f initialized inside
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a certain interval, then any arbitrary weighted average x̄ of the iterates x0,x1, . . . must satisfy
E[f(x̄)− f∗] ≥ Ω(ρ2).

Here we provide a brief outline for Theorem 4.2. The in-depth analysis is provided in Appendix C.3.
Given ρ > 0, β > 0, σ > βρ, we consider a one-dimensional quadratic function f(x) whose
component function l(x; ξ) is carefully chosen to satisfy the following for x ∈

[
ρ
6 ,

13ρ
6

]
:

f(x) = E[l(x; ξ)] =
β

10
x2, l(x; ξ) =

{
− β

10

(
x− 7ρ

6

)2
, with probability 2

3
3β
10x

2 + β
5

(
x− 7ρ

6

)2
, otherwise.

For values of x outside this interval
[
ρ
6 ,

13ρ
6

]
, each component function l(x; ξ) takes the form of

a strongly convex quadratic function. Figures 2(b) and 2(c) illustrate the original and virtual loss
function plots of l(x; ξ). The local concavity of component function plays a crucial role in making
an attracting basin in the virtual loss, and this leads to an interval

[
ρ
6 ,

13ρ
6

]
bounded away from the

global minimum 0, from which m-SAM iterates cannot escape.

For this scenario, we obtain f(xt) − f∗ = Ω(ρ2) and ∥∇f(xt)∥2 = Ω(ρ2) for all iterates. From
this, we can realize that the additive factor in Theorem 4.1 for m-SAM is unavoidable in the σ > βρ
regime, and tight in terms of ρ. Moreover, the proof of Theorem 4.2 in Appendix C.3 reveals that
even in the σ ≤ βρ case, an analogous example gives ∥xt − x∗∥ = Ω(ρ) for all iterates; hence,
m-SAM fails to converge all the way to the global minimum in the small σ regime as well.

4.2 Smooth and Convex Functions
We now move on to smooth convex functions and investigate the convergence guarantees of stochastic
SAM for this function class. As can be guessed from Theorem 3.3, our convergence analysis in this
section focuses on finding stationary points. Below, we provide a bound that ensures convergence to
stationary points up to an additive factor.
Theorem 4.3. Consider a β-smooth, convex function f , and assume Assumption 2.5. Under n-SAM,
starting at x0 with any perturbation size ρ > 0 and step size η = min

{ √
∆√

β[σ2−β2ρ2]+T
, 1
2β

}
to

minimize f , we have

1

T

∑T−1

t=0
E∥∇f(xt)∥2 = O

(
β∆

T
+

√
β[σ2 − β2ρ2]+∆√

T

)
+ 4β2ρ2.

Under m-SAM, additionally assuming l(·, ξ) is β-smooth for any ξ, the inequality continues to hold.

The proof of Theorem 4.3 can be found in Appendix C.4. Theorem 4.3 obtains a bound of O( 1√
T
)

modulo an additive factor 4β2ρ2. Similar to Theorem 4.1, if σ ≤ βρ, then Theorem 4.3 reads

1

T

∑T−1

t=0
E∥∇f(xt)∥2 = O

(
β∆

T

)
+ 4β2ρ2,

hence showing a convergence rate of O( 1
T ) modulo the additive factor. Since the non-convergence

example in Theorem 4.2 provides a scenario that E∥∇f(xt)∥2 = Ω(ρ2) for all t, we can see that the
extra term is inevitable and also tight in terms of ρ.

Theorem 4.3 sounds quite weak, as it only proves convergence to a stationary point only up to an
extra term. One could anticipate that stochastic SAM may actually converge to global minima of
smooth convex functions modulo the unavoidable additive factor. However, as briefly mentioned in
Section 3.2, the next theorem presents a counterexample illustrating that ensuring convergence to
global minima, even up to an additive factor, is impossible for m-SAM.
Theorem 4.4. For any ρ > 0, β > 0, σ > 0, and η ≤ 1

β , there exists a β-smooth and convex function
f satisfying the following. (1) The function f satisfies Assumption 2.5. (2) The component functions
l(·; ξ) of f are β-smooth for any ξ. (3) If we run m-SAM on f initialized inside a certain interval,
then any arbitrary weighted average x̄ of the iterates x0,x1, . . . must satisfy E[f(x̄) − f∗] ≥ C,
and the suboptimality gap C can be made arbitrarily large and independent of the parameter ρ.

Here, we present the intuitions of the proof for Theorem 4.4. As demonstrated in Figures 2(d) and 2(e),
the local concavity of the component function significantly influences the formation of attracting
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basins in its virtual loss, thereby creating a region from which the m-SAM updates get stuck inside
the basin forever.

Also note that we can construct the function to form the basin at any point with arbitrary large
function value (and hence large suboptimality gap). Therefore, establishing an upper bound on the
convergence of function value becomes impossible in smooth convex functions. A detailed analysis
for the non-convergence example is presented in Appendix C.5.

4.3 Smooth and Nonconvex Functions
We now study smooth nonconvex functions. Extending Theorem 3.4, we can show the following
bound for stochastic n-SAM.
Theorem 4.5. Consider a β-smooth function f satisfying f∗ = infx f(x) > −∞, and assume
Assumption 2.5. Under n-SAM, starting at x0 with any perturbation size ρ > 0 and step size

η = min

{
1
2β ,

√
∆√

βσ2T

}
to minimize f , we have

1

T

∑T−1

t=0
E∥∇f(xt)∥2 ≤ O

(
β∆

T
+

√
βσ2∆√
T

)
+ β2ρ2.

The proof of Theorem 4.5 is provided in Appendix C.6. Notice that the non-convergence example
presented in Theorem 3.5 (already) illustrates a scenario where E∥∇f(xt)∥2 = Ω(ρ2), thereby
confirming the tightness of additive factor in terms of ρ.

The scope of applicability for Theorem 4.5 is limited to n-SAM. Compared to n-SAM, m-SAM
employs a stronger assumption where ξ = ξ̃. By imposing an additional Lipschitzness condition on
the function f , m-SAM leads to a similar but different convergence result.
Theorem 4.6. Consider a β-smooth, L-Lipschitz continuous function f satisfying f∗ = infx f(x) >
−∞, and assume Assumption 2.5. Additionally assume l(·, ξ) is β-smooth for any ξ. Under m-SAM,
starting at x0 with any perturbation size ρ > 0 and step size η =

√
∆√

β(σ2+L2)T
to minimize f , we

have
1

T

∑T−1

t=0
E
[
(∥∇f(xt)∥ − βρ)2

]
≤ O

(√
β∆(σ2 + L2)√

T

)
+ 5β2ρ2.

Corollary 4.7. Under the setting of Theorem 4.6, we get

min
t∈{0,...,T}

{E∥∇f(xt)∥} ≤ O

((
β∆(σ2 + L2)

)1/4
T 1/4

)
+
(
1 +

√
5
)
βρ.

The proofs for Theorem 4.6 and Corollary 4.7 are given in Appendix C.7. Since Theorem 3.5 presents
an example where E∥∇f(xt)∥ = Ω(ρ) and E(∥∇f(xt)∥ − βρ)2 = Ω(ρ2), we can verify that the
additive factors in Theorem 4.6 and Corollary 4.7 are tight in terms of ρ.

As for previous studies, Theorems 2, 12, and 18 of Andriushchenko and Flammarion [2] prove the
convergence of n,m-SAM for smooth nonconvex functions: 1

T

∑T
t=0 E∥∇f(xt)∥2 = O( 1√

T
), but

assuming SAM without gradient normalization, and sufficiently small ρ. For m-SAM on smooth
Lipschitz nonconvex functions, Theorem 1 of Mi et al. [27] proves 1

T

∑T
t=0 E∥∇f(xt)∥2 = Õ( 1√

T
),

while assuming decaying ρ. From our results, we demonstrate that such full convergence results are
impossible for practical versions of stochastic SAM.

5 Conclusions
This paper studies the convergence properties of SAM, under constant ρ and with gradient normaliza-
tion. We establish convergence guarantees of deterministic SAM for smooth and (strongly) convex
functions. To our surprise, we discover scenarios in which deterministic SAM (for smooth nonconvex
functions) and stochastic m-SAM (for all function class considered) converge only up to unavoidable
additive factors proportional to ρ2. Our findings emphasize the drastically different characteristics of
SAM with vs. without decaying perturbation size. Establishing tighter bounds in terms of β and µ, or
searching for a non-convergence example that applies to n-SAM might be interesting future research
directions.
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A More Details on the Related Works of SAM

Sharpness and Generalization Hochreiter and Schmidhuber [17] propose an algorithm for finding
low-complexity models with high generalization performance by finding flat minima. Keskar et al.
[21] show that the poor generalization performance of large-batch training is due to the fact that
large-batch training tends to converge to sharp minima. Jiang et al. [19] empirically show correlation
between sharpness and generalization performance.

Motivated by prior studies, Foret et al. [16] propose Sharpness-Aware Minimization (SAM) that
focuses on finding flat minima by aiming to (approximately) minimize fSAM(x) = max∥ϵ∥≤ρ f(x+
ϵ) instead of f . Empirical results [3, 9, 16, 20, 25] show outstanding generalization performance of
SAM on various tasks and models, including recent state-of-the-art models such as ViTs, MLP-Mixers,
and T5.

Other Theoretical Properties of SAM. Bartlett et al. [4] prove that for quadratic functions, SAM
dynamics oscillate and align to the eigenvector corresponding to the largest eigenvalue of Hessian,
and show interpretation of SAM dynamics as GD on a “virtual loss”. Wen et al. [33] prove that
for sufficiently small perturbation size ρ of SAM, its trajectory follows a sharpness reduction flow
which minimizes the maximum eigenvalue of Hessian. Dai et al. [13] examine the properties of
SAM with and without normalization. They specifically focus on the stabilization and “drift-along-
minima” effects observed in SAM with normalization, which are not present in SAM without
normalization. Compagnoni et al. [12] derive a continuous time SDE model for SAM with and
without normalization, and employ the model to explain why SAM has a preference for flat minima.
Furthermore, they demonstrate that SAM with and without normalization exhibit distinct implicit
regularization properties, especially for ρ = O(

√
η).

Agarwala and Dauphin [1] prove that SAM produces an Edge Of Stability [11] stabilization effect,
at a lower eigenvalue than gradient descent, under quadratic function settings. Kim et al. [22] show
that saddle point acts as an attractor in SAM dynamics, and stochastic SAM takes more time to
escape saddle point than stochastic gradient descent. Behdin and Mazumder [5] study the implicit
regularization perspective of SAM, and provide a theoretical explanation of high generalization
performance of SAM.

While Agarwala and Dauphin [1], Behdin and Mazumder [5], Kim et al. [22] provide useful insights
on theoretical aspects of SAM, we point out that all proofs are restricted to SAM without gradient
normalization in ascent steps. Considering the vastly different behaviors of SAM with and without
normalization (Figure 1), it is not immediately clear whether these insights carry over to the practical
version.
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B Proofs for (Non-)Convergence of full-batch SAM

In this section, we show detailed proofs and explanations regarding convergence of SAM with
constant ρ. The SAM algorithm we consider is defined as a two-step method:{

yt = xt + ρ ∇f(xt)
∥∇f(xt)∥ ,

xt+1 = xt − η∇f(yt).

B.1 Additional Function Class and Important Lemmas

In this section, we define an additional function class to use in convergence proofs. We also state and
prove a few lemmas that are used in our theorem proofs.
Definition B.1 (Polyak-Lojasiewicz). A function f : Rd → R satisfies µ-PL condition if there exists
µ > 0 such that,

1

2
∥∇f(x)∥2 ≥ µ(f(x)− f∗) (4)

for all x ∈ Rd.

It is well-known that µ-strongly convex functions are µ-PL, but not vice versa.
Lemma B.2. For a differentiable and µ-strongly convex function f , we have

⟨∇f(xt),∇f(yt)−∇f(xt)⟩ ≥ µρ∥∇f(xt)∥.

For a differentiable and convex function f , the inequality continues to hold with µ = 0.

Proof. If a differentiable function f is µ-strongly convex, then its gradient map x 7→ ∇f(x) is
µ-strongly monotone, i.e.,

⟨y − x,∇f(y)−∇f(x)⟩ ≥ µ∥y − x∥2, ∀x,y ∈ Rd.

Using this fact, we have

⟨∇f(xt),∇f(yt)−∇f(xt)⟩ =
∥∇f(xt)∥

ρ

〈
ρ

∇f(xt)

∥∇f(xt)∥
,∇f(yt)−∇f(xt)

〉
=

∥∇f(xt)∥
ρ

⟨yt − xt,∇f(yt)−∇f(xt)⟩

≥ µ∥∇f(xt)∥
ρ

∥yt − xt∥2 = µρ∥∇f(xt)∥,

and this finishes the proof.

Lemma B.3. For a β-smooth and µ-strongly convex function, with step size η ≤ 1
2β , we have

f(xt+1) ≤ f(xt)−
η

2
∥∇f(xt)∥2 −

ηµρ

2
∥∇f(xt)∥+

η2β3ρ2

2
.

For a β-smooth and convex function, the inequality continues to hold with µ = 0.

Proof. Starting from the definition of β-smoothness, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt),xt+1 − xt⟩+
β

2
∥xt+1 − xt∥2

= f(xt)− η⟨∇f(xt),∇f(yt)⟩+
η2β

2
∥∇f(yt)∥2

= f(xt)− η⟨∇f(xt),∇f(yt)−∇f(xt) +∇f(xt)⟩

+
η2β

2
∥∇f(yt)−∇f(xt) +∇f(xt)∥2

= f(xt)− η⟨∇f(xt),∇f(yt)−∇f(xt)⟩ − η∥∇f(xt)∥2 +
η2β

2
∥∇f(yt)−∇f(xt)∥2
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+
η2β

2
∥∇f(xt)∥2 + η2β⟨∇f(xt),∇f(yt)−∇f(xt)⟩

= f(xt)− η

(
1− ηβ

2

)
∥∇f(xt)∥2 − η(1− ηβ)⟨∇f(xt),∇f(yt)−∇f(xt)⟩

+
η2β

2
∥∇f(yt)−∇f(xt)∥2.

Since we assumed η ≤ 1
2β , both η

(
1− ηβ

2

)
≥ η

2 and η(1− ηβ) ≥ η
2 hold. Applying Lemma B.2

to the above, we get

f(xt+1) ≤ f(xt)−
η

2
∥∇f(xt)∥2 −

ηµρ

2
∥∇f(xt)∥+

η2β

2
∥∇f(yt)−∇f(xt)∥2

≤ f(xt)−
η

2
∥∇f(xt)∥2 −

ηµρ

2
∥∇f(xt)∥+

η2β

2
(β∥yt − xt∥)2

= f(xt)−
η

2
∥∇f(xt)∥2 −

ηµρ

2
∥∇f(xt)∥+

η2β3ρ2

2
,

and this finishes the proof.

B.2 Convergence Proof for Smooth and Strongly Convex Functions (Proof of Theorem 3.1)

In this section, we prove Theorem 3.1, restated below for the sake of convenience.
Theorem 3.1. Consider a β-smooth and µ-strongly convex function f . If we run de-
terministic SAM starting at x0 with any perturbation size ρ > 0 and step size η =

min
{

1
µT max

{
1, log

(
µ5∆T 2

β6ρ2

)}
, 1
2β

}
to minimize f , we have

min
t∈{0,...,T}

f(xt)− f∗ = Õ
(
exp

(
−µT

2β

)
∆+

β6ρ2

µ5T 2

)
.

Proof. The proof is divided into two cases, based on the ∥∇f(xt)∥ observed throughout the entire
optimization process. In the first case, the gradient norm ∥∇f(xt)∥ at xt is sufficiently large for
all t = 0, . . . , T − 1; in this case, we show that the SAM algorithm converges linearly. The other
scenario corresponds to the case where there exists an iteration index t ∈ {0, . . . , T − 1} such that
∥∇f(xt)∥ is smaller than a certain threshold. In this case, we can show from the PL inequality (4)
that we are already close to global optimality.

From Lemma B.3, we have

f(xt+1) ≤ f(xt)−
η

2
∥∇f(xt)∥2 −

ηµρ

2
∥∇f(xt)∥+

η2β3ρ2

2
.

Now, recall from Definition B.1 that µ-strongly convex functions satisfy µ-PL inequaltiy (4). From
this, we get

f(xt+1)− f∗ ≤ (1− ηµ)(f(xt)− f∗)− ηµρ

2
∥∇f(xt)∥+

η2β3ρ2

2
. (5)

Case 1: when ∥∇f(xt)∥ remains large. Let us now consider the first case, where ∥∇f(xt)∥ ≥
ηβ3ρ
µ holds for all t = 0, . . . , T − 1. In this case, (5) becomes

f(xt+1)− f∗ ≤ (1− ηµ)(f(xt)− f∗),

which holds for all t = 0, . . . , T − 1. Unrolling the inequality, we obtain

f(xT )− f∗ ≤ (1− ηµ)T (f(x0)− f∗).

Case 2: when some ∥∇f(xt)∥ is small. In the other case where there exists t such that
∥∇f(xt)∥ ≤ ηβ3ρ

µ , notice from µ-PL inequality (4) that

f(xt)− f∗ ≤ 1

2µ
∥∇f(xt)∥2 ≤ η2β6ρ2

2µ3
.
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Therefore, combining the two cases, it is guaranteed that

min
t∈{0,...,T}

f(xt)− f∗ ≤ (1− ηµ)T∆+
η2β6ρ2

2µ3
. (6)

We now elaborate how the choice of step size η = min
{

1
µT max

{
1, log

(
µ5∆T 2

β6ρ2

)}
, 1
2β

}
results

in the convergence rate in the theorem statement. Naturally, there are four cases, depending on the
outcomes of the min and max operations.

Case A: log
(

µ5∆T 2

β6ρ2

)
≥ 1 and 1

µT log
(

µ5∆T 2

β6ρ2

)
≤ 1

2β . Putting η = 1
µT log

(
µ5∆T 2

β6ρ2

)
into (6),

min
t∈{0,...,T}

f(xt)− f∗ ≤ β6ρ2

µ5T 2
+

β6ρ2

2µ5T 2
log2

(
µ5∆T 2

β6ρ2

)
.

Case B: log
(

µ5∆T 2

β6ρ2

)
≥ 1 and 1

µT log
(

µ5∆T 2

β6ρ2

)
≥ 1

2β . Substituting η = 1
2β ≤ 1

µT log
(

µ5∆T 2

β6ρ2

)
to (6),

min
t∈{0,...,T}

f(xt)− f∗ ≤
(
1− µ

2β

)T

∆+
β6ρ2

2µ3
·
(

1

2β

)2

≤ exp

(
−µT

2β

)
∆+

β6ρ2

2µ5T 2
log2

(
µ5∆T 2

β6ρ2

)
.

Case C: log
(

µ5∆T 2

β6ρ2

)
≤ 1 and 1

µT ≤ 1
2β . Putting η = 1

µT ≥ 1
µT log

(
µ5∆T 2

β6ρ2

)
into (6),

min
t∈{0,...,T}

f(xt)− f∗ ≤
(
1− 1

T

)T

∆+
β6ρ2

2µ5T 2

≤
(
1− 1

T
log

(
µ5∆T 2

β6ρ2

))T

∆+
β6ρ2

2µ5T 2
≤ β6ρ2

µ5T 2
+

β6ρ2

2µ5T 2
.

Case D: log
(

µ5∆T 2

β6ρ2

)
≤ 1 and 1

µT ≥ 1
2β . By substituting η = 1

2β ≤ 1
µT to (6) we obtain

min
t∈{0,...,T}

f(xt)− f∗ ≤
(
1− µ

2β

)T

∆+
β6ρ2

2µ3
·
(

1

2β

)2

≤ exp

(
−µT

2β

)
∆+

β6ρ2

2µ5T 2
.

Combining the four cases, we conclude

min
t∈{0,...,T}

f(xt)− f∗ = Õ
(
exp

(
−µT

2β

)
∆+

β6ρ2

µ5T 2

)
,

thereby completing the proof.

B.3 Lower Bound Proof for Smooth and Strongly Convex Functions (Proof of Theorem 3.2)

In this section, we prove Theorem 3.2, restated below for the sake of convenience.

Theorem 3.2. Suppose β
µ ≥ 2. For any choice of perturbation size ρ, step size η, and initialization

x0, there exists a differentiable, β-smooth, and µ-strongly convex function f such that

min
t∈{0,...,T}

f(xt)− f∗ = Ω

(
β3ρ2

µ2T 2

)
holds for deterministic SAM iterates.
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The proof is divided into three cases, depending on the step size. For each case, we will define and
analyze a one-dimensional function to show the lower bound. In doing so, without loss of generality
we will fix an initialization x0 because we can appropriately shift the function for different choices of
x0.

1. For η ≤ 1
2µT , we show that there exists a function f such that

min
t∈{0,...,T}

f(xt)− f∗ = Ω

(
β4ρ2

µ3

)
.

2. For 1
2µT ≤ η ≤ 2

β , we show existence of a function f that satisfies

min
t∈{0,...,T}

f(xt)− f∗ = Ω

(
β3ρ2

µ2T 2

)
.

3. For η ≥ 2
β , we show that there exists a function f such that

min
t∈{0,...,T}

f(xt)− f∗ = Ω

(
β3ρ2

µ2

)
.

Combining the three results, we can see that the suboptimality gap of the best iterate is at least
Ω
(

β3ρ2

µ2T 2

)
, hence proving the theorem. Below, we prove the statements for the three intervals.

Case 1: η ≤ 1
2µT . Consider a function

f(x) =
1

2
µx2 − µρx, ∇f(x) = µ(x− ρ).

Suppose we start at initialization x0 = 2β2ρ
µ2 ≥ 8ρ. Note from the definition of ∇f that for any

xt ≥ ρ, we have yt = xt + ρ ∇f(xt)
|∇f(xt)| = xt + ρ and ∇f(yt) = µ(xt + ρ− ρ) = µxt. Therefore, the

first SAM update can be written as

x1 = x0 − η∇f(y0) = (1− ηµ)x0.

Since 1− ηµ ≥ 1− 1
2T ≥ 1

2 , the inequality x1 ≥ ρ still holds and the same argument can be repeated
for the second update, yielding

x2 = x1 − η∇f(y1) = (1− ηµ)x1 = (1− ηµ)
2
x0.

In fact, (1− ηµ)t ≥ (1− 1
2T )

T ≥ 1
2 for all t ≤ T , so all the iterates up to xT stay above ρ. Thus, for

any t = 0, . . . , T , the iterate xt can be written and bounded from below as

xt = (1− ηµ)
t
x0 ≥ x0

2
=

β2ρ

µ2
.

Therefore, in this case, the suboptimality gap of the best iterate is at least

min
t∈{0,...,T}

f(xt)− f∗ ≥ f

(
β2ρ

µ2

)
− f(ρ) =

β4ρ2

2µ3
− β2ρ2

µ
+

µρ2

2
= Ω

(
β4ρ2

µ3

)
.

Case 2: 1
2µT ≤ η ≤ 2

β . Consider a function

f(x) =
1

4
βx2, ∇f(x) =

1

2
βx.

Suppose we start at initialization x0 = ηβρ
4−ηβ . We are going to show that the SAM iterates oscillate

between ± ηβρ
4−ηβ . Indeed, if xt =

ηβρ
4−ηβ , then ∇f(xt) > 0 and

yt =
ηβρ

4− ηβ
+ ρ =

4ρ

4− ηβ
, and ∇f(yt) =

2βρ

4− ηβ
.
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Then, after SAM update, we get

xt+1 = xt − η∇f(yt) =
ηβρ

4− ηβ
− η

2βρ

4− ηβ
= − ηβρ

4− ηβ
.

The same argument can be repeated to show that xt+2 = −xt+1 = xt. As a result, the iterates
oscillate between ± ηβρ

4−ηβ forever. In this case, the suboptimality gap is bounded from below by

min
t∈{0,...,T}

f(xt)− f∗ ≥ β

4

(
ηβρ

4− ηβ

)2

≥ η2β3ρ2

64
.

Applying η ≥ 1
2µT yields

min
t∈{0,...,T}

f(xt)− f∗ = Ω

(
β3ρ2

µ2T 2

)
.

Case 3: η ≥ 2
β . Consider a function

f(x) =
1

2
βx2, ∇f(x) = βx.

Let the initialization be x0 = βρ
µ . For any xt ≥ 0, we have yt = xt + ρ and ∇f(yt) = β(xt + ρ).

Then, the resulting SAM update becomes

xt+1 = xt − η∇f(yt) = (1− ηβ)xt − ηρ ≤ (1− ηβ)xt.

Since we have η ≥ 2
β , we have 1− ηβ ≤ −1 and xt+1 has the opposite sign as xt and its absolute

value is at least as large as |xt|. We can similarly check that any further SAM update changes the
sign and does not decrease the absolute value. Therefore, for all t = 0, . . . , T , we have |xt| ≥ |x0|.
Consequently, the suboptimality gap of the best iterate is at least

min
t∈{0,...,T}

f(xt)− f∗ ≥ f(x0)− f(0) = Ω

(
β3ρ2

µ2

)
.

Remarks on validity of lower bound. Lastly, we comment on why we choose different functions
and initialization for different choices of η and why it suffices to provide a matching lower bound for
Theorem 3.1. In convergence upper bounds in the form of Theorem 3.1, we aim to prove an upper
bound on the following minimax risk:

inf
A∈A

sup
f∈F

ζ(A(f)), (7)

where A denotes the class of algorithms, F denotes the class of functions, and ζ(A(f)) is the
suboptimality measure for algorithm’s output A(f) for function f . In the context of Theorem 3.1, our
algorithm class A corresponds to the choices of the “hyperparameters” η, ρ, and x0 of SAM, and the
function class F here is the class analyzed by the theorem: the collection of β-smooth and µ-strongly
convex functions. From this viewpoint, Theorem 3.1 can be thought of as an upper bound on (7),
with the choice of ζ(A(f)) ≜ mint∈{0,...,T} f(xt)− f∗.

Hence, showing a matching lower bound for Theorem 3.1 amounts to showing a matching lower
bound for the minimax risk (7). For this purpose, it suffices to show that for each A ∈ A, there
exists a choice of f ∈ F such that a certain lower bound holds. Therefore, we are allowed to choose
different choices of f for each different choice of hyperparameters η, ρ, and x0. In fact, in our proof,
we choose different choices of f and x0 for each different choice of η; however, this is without loss
of generality once we notice here that starting an algorithm at x0 to minimize f(x) is equivalent
to starting at 0 to minimize f(x − x0). Hence, even though we choose different f ’s and x0’s for
different choices of η in our proof of Theorem 3.2, this is sufficient for providing a matching upper
bound for Theorem 3.1.

Admittedly, some authors show stronger versions than what we show, where a single func-
tion takes care of all possible hyperparameters. Indeed, such results provide lower bounds for
supf∈F infA∈A ζ(A(f)). Recalling that sup inf ≤ inf sup, one can notice that these sup inf lower
bounds are in fact much stronger than what suffices.
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B.4 Convergence Proof for Smooth and Convex Functions (Proof of Theorem 3.3)

For smooth and convex function, we prove the convergence of gradient norm to zero. The theorem is
restated for convenience.

Theorem 3.3. Consider a β-smooth and convex function f . If we run deterministic SAM starting at
x0 with any perturbation size ρ > 0 and step size η = min

{ √
2∆√

β3ρ2T
, 1
2β

}
to minimize f , we have

1

T

∑T−1

t=0
∥∇f(xt)∥2 = O

(
β∆

T
+

√
∆β3ρ2√
T

)
.

Proof. Using Lemma B.3, for smooth and convex function f , we have

f(xt+1) ≤ f(xt)−
η

2
∥∇f(xt)∥2 +

η2β3ρ2

2
,

which can be rewritten as

∥∇f(xt)∥2 ≤ 2

η
(f(xt)− f(xt+1)) + ηβ3ρ2.

Adding up the inequality for t = 0, . . . , T − 1, and the dividing both sides by T , we get

1

T

T−1∑
t=0

∥∇f(xt)∥2 ≤ 2

ηT
(f(x0)− f(xT )) + ηβ3ρ2 ≤ 2

ηT
∆+ ηβ3ρ2. (8)

We now spell out how the choice of step size η = min
{√

2∆
β3ρ2T ,

1
2β

}
results in the convergence

rate in the theorem statement. There are two cases to be considered, depending on the outcome of the
min operation.

Case A:
√

2∆
β3ρ2T ≤ 1

2β . Putting η =
√

2∆
β3ρ2T into (8), we get

1

T

T−1∑
t=0

∥∇f(xt)∥2 ≤
√

2∆β3ρ2√
T

+

√
2∆β3ρ2√

T
=

2
√
2∆β3ρ2√
T

.

Case B:
√

2∆
β3ρ2T ≥ 1

2β . Substituting η = 1
2β ≤

√
2∆

β3ρ2T to (8) yields

1

T

T−1∑
t=0

∥∇f(xt)∥2 ≤ 4β∆

T
+ β3ρ2 · 1

2β
≤ 4β∆

T
+

√
2∆β3ρ2√

T
.

Merging the two cases, we conclude

1

T

T−1∑
t=0

∥∇f(xt)∥2 = O

(
β∆

T
+

√
∆β3ρ2√
T

)
,

completing the proof.

B.5 Convergence Proof for Smooth and Nonconvex Functions (Proof of Theorem 3.4)

In this section, we prove the convergence up to an additive factor β2ρ2 for smooth and nonconvex
functions. The theorem is restated for convenience.

Theorem 3.4. Consider a β-smooth function f satisfying f∗ = infx f(x) > −∞. If we run
deterministic SAM starting at x0 with any perturbation size ρ > 0 and step size η = 1

β to minimize f ,
we have

1

T

∑T−1

t=0
∥∇f(xt)∥2 ≤ O

(
β∆

T

)
+ β2ρ2.
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Proof. Starting from the definition of β-smoothness, we have

f(xt+1) ≤ f(xt)− η⟨∇f(xt),∇f(yt)⟩+
η2β

2
∥∇f(yt)∥2

= f(xt)−
η

2
∥∇f(xt)∥2 −

η

2
∥∇f(yt)∥2 +

η

2
∥∇f(xt)−∇f(yt)∥2 +

η2β

2
∥∇f(yt)∥2

≤ f(xt)−
η

2
∥∇f(xt)∥2 +

ηβ2

2
∥xt − yt∥2

= f(xt)−
η

2
∥∇f(xt)∥2 +

ηβ2ρ2

2
.

The inequality can be rearranged as

∥∇f(xt)∥2 ≤ 2

η
(f(xt)− f(xt+1)) + β2ρ2.

Adding up the inequality for t = 0, . . . , T − 1, and the dividing both sides by T , we get

1

T

T−1∑
t=0

∥∇f(xt)∥2 ≤ 2

ηT
(f(x0)− f(xT )) + β2ρ2 ≤ 2∆

ηT
+ β2ρ2. (9)

Substituting η = 1
β to (9) yields

1

T

T−1∑
t=0

∥∇f(xt)∥2 ≤ 2β∆

T
+ β2ρ2.

B.6 Non-convergence for a Smooth and Nonconvex Function (Proof of Theorem 3.5)

In this section, we spell out the proof of our counterexample that SAM with constant perturbation
size ρ provably fails to converge to a stationary point. Here we restate the theorem.
Theorem 3.5. For any ρ > 0 and η ≤ 1

β , there exists a β-smooth and Θ(βρ)-Lipschitz continuous
function such that, if deterministic SAM is initialized at a point x0 sampled from a continuous
probability distribution, then deterministic SAM converges to a nonstationary point, located at a
distance of Ω(ρ) from a stationary point, with probability 1.

Proof. For x ∈ R, consider the following one-dimensional function: given ρ and β,

f(x) =
9βρ2

25π2
sin

(
5π

3ρ
x

)
.

It is easy to check that this function is β-smooth and 3βρ
5π -Lipschitz continuous. Also, let

X = {x | x = (0.3 + 0.6k)ρ, k ∈ Z},
which is the set of points x where ∇f(x) = 0. For SAM with perturbation size ρ, given the current
iterate xt, the corresponding yt = xt + ρ ∇f(xt)

|∇f(xt)| is given by

yt = xt +


ρ if (−0.3 + 1.2k)ρ < xt < (0.3 + 1.2k)ρ for some k ∈ Z,
−ρ if (0.3 + 1.2k)ρ < xt < (0.9 + 1.2k)ρ for some k ∈ Z,
0 if xt ∈ X.

This leads to the following a virtual gradient map Gf :

Gf (xt) = ∇f(yt) =


3βρ
5π cos

(
5π
3ρxt +

5π
3

)
if (−0.3 + 1.2k)ρ < xt < (0.3 + 1.2k)ρ for some k ∈ Z,

3βρ
5π cos

(
5π
3ρxt − 5π

3

)
if (0.3 + 1.2k)ρ < xt < (0.9 + 1.2k)ρ for some k ∈ Z,

0 if xt ∈ X.
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From this virtual gradient map, we can define

Y = {x | x = (0.7 + 1.2k)ρ, k ∈ Z} ∪ {x | x = (−0.1 + 1.2k)ρ, k ∈ Z}

and Y is the set of all points x where Gf (x) = 0 and ∇f(x) ̸= 0.

Since f is a one-dimensional function, a virtual loss Jf can be obtained by integrating Gf . One
possible example is

Jf (x) =


9βρ2

25π2 sin
(

5π
3ρx+ 5π

3

)
if (−0.3 + 1.2k)ρ ≤ x ≤ (0.3 + 1.2k)ρ for some k ∈ Z,

9βρ2

25π2 sin
(

5π
3ρx− 5π

3

)
if (0.3 + 1.2k)ρ ≤ x ≤ (0.9 + 1.2k)ρ for some k ∈ Z,

which is a piecewise β-smooth function that is minimized at points in Y and locally maximized at
(non-differentiable) points in X. Since Jf is well-defined, we can view SAM as GD on Jf .

For sufficiently small η ≤ 1
β and any initialization x0 ∈ R \ X, the initialization belongs to one of

the intervals ((−0.3 + 0.6k)ρ, (0.3 + 0.6k)ρ). For such small enough η, we can guarantee that the
SAM iterates xt will stay in the interval ((−0.3 + 0.6k)ρ, (0.3 + 0.6k)ρ) for all t ≥ 0. For example,
suppose that xt ∈ (−0.3ρ, 0.3ρ). Then, the next iterate will stay in the same interval if and only if
the image of the interval (−0.3ρ, 0.3ρ) under a map x 7→ x− 3ηβρ

5π cos
(

5π
3ρx+ 5π

3

)
is a subset of

(−0.3ρ, 0.3ρ). {
x− 3ηβρ

5π
cos

(
5π

3ρ
x+

5π

3

)
| x ∈ (−0.3ρ, 0.3ρ)

}
⊂ (−0.3ρ, 0.3ρ)

⇐⇒
{
z − ηβ cos

(
z +

5π

3

)
| z ∈

(
−π

2
,
π

2

)}
⊂
(
−π

2
,
π

2

)
,

and the containment is true if ηβ ≤ 1. By symmetry, the same argument can be applied to any
intervals of the form ((−0.3 + 0.6k)ρ, (0.3 + 0.6k)ρ).

Thus, for any initialization x0 ∈ R \ X, all SAM iterates stay inside the interval which x0 belongs to.
Inside the interval, by β-smoothness of Jf , the following descent lemma always holds:

Jf (xt+1) ≤ Jf (xt) + ⟨∇Jf (xt), xt+1 − xt⟩+
β

2
∥xt+1 − xt∥2

= Jf (xt)− η

(
1− ηβ

2

)
∥Gf (xt)∥2

≤ Jf (xt)−
η

2
∥Gf (xt)∥2.

Therefore, if we add the inequalities up for t = 0, . . . , T − 1, we get

T−1∑
t=0

∥Gf (xt)∥2 ≤ 2

η
(Jf (x0)− Jf (xT )) ≤

2

η
(Jf (x0)− J∗

f ) < ∞,

where J∗
f ≜ infx Jf (x) > −∞. Since the inequality holds for all T , the series is summable, which

in turn implies that ∥Gf (xt)∥ → 0 as t → ∞. However, the only point in the interval ((−0.3 +
0.6k)ρ, (0.3 + 0.6k)ρ) satisfying ∥Gf (x)∥ = 0 is the one in Y ∩ ((−0.3 + 0.6k)ρ, (0.3 + 0.6k)ρ).
Hence, if x0 ∈ R \ X and η ≤ 1

β , SAM must converge to a point in Y. Since x0 is drawn from a
continuous probability distribution, x0 ∈ R \ X holds almost surely. This finishes the proof.

B.7 Non-convergence for a Nonsmooth and Convex Functions (Proof of Theorem 3.6)

For nonsmooth convex function, depending on the initialization, SAM can converge to a suboptimal
point with distance Ω(ρ) from the global minimum. The theorem is restated for convenience.

Theorem 3.6. For any ρ > 0 and η < 7ρ
4 , there exists a nonsmooth Lipschitz convex function f such

that for some initialization, deterministic SAM converges to suboptimal points located at a distance
of Ω(ρ) from the global minimum.
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(a) (b)

Figure 3: (a) The demonstration of four seperate regions, and basis vectors of example function. (b)
The trajectory of SAM for example function. As SAM enters region A, the update cannot get any
closer to the global minima.

Proof. For x = (x(1), x(2)) ∈ R2, consider a 2-dimensional function,

f(x) = max{|x(1)|, |2x(1) + x(2)|}.

A set {v1,v2} can be established as a basis for R2, with v1 = e1, and v2 = 2√
5
e1 +

1√
5
e2. Any

vector x ∈ R2 can be uniquely expressed by v1 and v2. Consider the region: {x = b(1)v1 + b(2)v2 |
b(1) < 0}.

This area can be partitioned into four separate regions.

A :
{
x = b(1)v1 + b(2)v2 | − 7ρ

2 < b(1) < 0
}
,

B :
{
x = b(1)v1 + b(2)v2 | b(1) < − 7ρ

2

}
∩
{
x = b(1)v1 + b(2)v2 | b(1) +

√
5b(2) > 0

}
,

C :
{
x = b(1)v1 + b(2)v2 | b(1) +

√
5b(2) < 0

}
∩
{
x = b(1)v1 + b(2)v2 | −b(1) +

√
5b(2) > 0

}
∩
{
x = b(1)v1 + b(2)v2 | −2b(1) +

√
5b(2) > 3

2ρ
}
,

D :
{
x = b(1)v1 + b(2)v2 | b(1) < 0

}
− (A ∪ B ∪ C) .

Figure 3(a) demonstrates the regions A,B,C,D, as well as the vectors v1 and v2. When x belongs
to the set x = b(1)v1 + b(2)v2 | b(1) < 0, we can examine four different scenarios.

Case A: x = b(1)v1 + b(2)v2 ∈ A. x ∈ A, so y = x+ ρ ∇f(x)
∥∇f(x)∥ and −∇f(y) are as follows.

y =


x+ ρv2, −b(1) <

√
5b(2)

x− ρv1, b(1) <
√
5b(2) < −b(1)

x− ρv2,
√
5b(2) < b(1).

−∇f(y) =


−
√
5v2, −b(1) <

√
5b(2)√

5v2, b(1) <
√
5b(2) < −b(1)√

5v2,
√
5b(2) < b(1).

As a result, the SAM updates ∇f(y) only affect v2, and does not affect on v1. Thus, if xt ∈ A, the
next SAM iterate xt+1 remains in A.

Case B: x = b(1)v1 + b(2)v2 ∈ B. We can verify that y = x+ ρ ∇f(x)
∥∇f(x)∥ = x+ ρv2. Therefore,

−∇f(y) = −
√
5v2. Therefore, the SAM update shifts in the direction of −v2. Hence, if xt ∈ B,

the next SAM iterate will be xt+1 ∈ (B ∪ C ∪ D).
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Case C: x = b(1)v1 + b(2)v2 ∈ C. y = x+ ρ ∇f(x)
∥∇f(x)∥ = x− ρv1, so

−∇f(yt) =

{√
5v2, b(1) <

√
5b(2) < b(1) + ρ

v1, b(1) + ρ <
√
5b(2) < −b(1).

For xt = b
(1)
t v1 + b

(2)
t v2 ∈ C, if b(1)t <

√
5b

(2)
t < b

(1)
t + ρ, then SAM update shifts in the direction

of v2, resulting in xt+1 ∈ (B ∪ C ∪ D). Otherwise, the next SAM iterate xt+1 shifts in the direction
of +v1. Consequently, xt+1 can either remain in B ∪ C ∪ D, or move to A.

Assume that xt+1 moves to A. Given that b(1)t < − 7ρ
2 for xt ∈ C, we can verify that b(1)t+1 <

− 7ρ
2 + η.Based on our previous observation in Case A where SAM updates only affect v2 when

x ∈ A, we can conclude that for all subsequent iterates xi with i > t+1, the condition b
(1)
i < − 7ρ

2 +η
continues to hold.

Case D: x = b(1)v1 + b(2)v2 ∈ D. y = x+ ρ ∇f(x)
∥∇f(x)∥ becomes

y =

{
x− ρv2,

√
5b(2) < b(1)

x− ρv1, otherwise.

We can check that −∇f(y) =
√
5v2 for all cases. So the SAM update shifts in the direction of +v2.

As a result, if xt ∈ D, the next SAM iterate xt+1 will fall into xt+1 ∈ (B ∪ C ∪ D).

Furthermore, we can verify that for x ∈ (B ∪ C ∪ D), b(1) < − 7ρ
2 holds. Therefore, summing up

all the cases, we can conclude that if the initial iterate x0 is chosen from x0 ∈ (B ∪ C ∪ D), then
all subsequent SAM iterates xt will satisfy b

(1)
t < − 7ρ

2 + η. Since the global minimum is located
at x∗ = (0, 0), it follows that ∥xt − x∗∥ > |7ρ/2−η|√

5
for every t > 0. Thus, for η < 7ρ

4 , we can

ascertain that in this particular function, ∥xt − x∗∥ > 7ρ

4
√
5

for every t > 0, thereby proving that
the distance from the global minimum is at least Ω(ρ). The trajectory plot of SAM on this example
function is illustrated in Figure 3(b).
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C Proofs for (Non-)Convergence of Stochastic SAM

In this section, we provide in-depth demonstrations and proofs regarding convergence of stochastic
SAM with constant perturbation size ρ. The objective is defined as f(x) = Eξ[l(x; ξ)], where ξ
represents a stochastic parameter (e.g., data sample) and l(x; ξ) represents the loss at point x with a
random sample ξ. The update iteration for stochastic SAM is specified as follows:{

yt = xt + ρ g(xt)
∥g(xt)∥ ,

xt+1 = xt − ηg̃(yt).

We define g(x) = ∇xl(x; ξ) and g̃(x) = ∇xl(x; ξ̃), where ξ and ξ̃ are stochastic parameters.
Stochastic SAM comes in two variations: n-SAM, where ξ and ξ̃ are independent, and m-SAM,
where ξ is equal to ξ̃.

C.1 Important Lemmas Regarding Stochastic SAM

In this section, we present a number of lemmas that are utilized in our theorem proofs regarding
stochastic SAM. In order to do this, we also introduce extra notation, ŷt = xt + ρ ∇f(xt)

∥∇f(xt)∥ , as a
deterministically ascended parameter.

Lemma C.1. For a differentiable and µ-strongly convex function f , we have

E⟨∇f(xt), g̃(yt)−∇f(xt)⟩ ≥ E⟨∇f(xt), g̃(yt)− g̃(ŷt)⟩+ µρE∥∇f(xt)∥.

For a differentiable and convex function f , the inequality continues to hold with µ = 0.

Proof.

E⟨∇f(xt), g̃(yt)−∇f(xt)⟩ = E⟨∇f(xt), g̃(yt)− g̃(ŷt)⟩+ E⟨∇f(xt), g̃(ŷt)−∇f(xt)⟩
= E⟨∇f(xt), g̃(yt)− g̃(ŷt)⟩+ E⟨∇f(xt),∇f(ŷt)−∇f(xt)⟩
≥ E⟨∇f(xt), g̃(yt)− g̃(ŷt)⟩+ µρE∥∇f(xt)∥,

where we use Lemma B.2 in the last inequality, thereby completing the proof.

Lemma C.2. Under n-SAM, for a β-smooth and µ-strongly convex function f , we have

E⟨∇f(xt), g̃(yt)−∇f(xt)⟩ ≥ −1

2
E∥∇f(xt)∥2 + µρE∥∇f(xt)∥ − 2β2ρ2.

Under m-SAM, additionally assuming l(·, ξ) is β-smooth for any ξ, the inequality continues to hold.

Proof. First we consider n-SAM. Starting from Lemma C.1, we have

E⟨∇f(xt), g̃(yt)−∇f(xt)⟩ ≥ E⟨∇f(xt), g̃(yt)− g̃(ŷt)⟩+ µρE∥∇f(xt)∥
= E⟨∇f(xt),∇f(yt)−∇f(ŷt)⟩+ µρE∥∇f(xt)∥

≥ −1

2
E∥∇f(xt)∥2 −

1

2
E∥∇f(yt)−∇f(ŷt)∥2 + µρE∥∇f(xt)∥

≥ −1

2
E∥∇f(xt)∥2 −

β2

2
E∥yt − ŷt∥2 + µρE∥∇f(xt)∥

= −1

2
E∥∇f(xt)∥2 −

β2

2
E
∥∥∥∥ρ g(xt)

∥g(xt)∥
− ρ

∇f(xt)

∥∇f(xt)∥

∥∥∥∥2
+ µρE∥∇f(xt)∥

≥ −1

2
E∥∇f(xt)∥2 + µρE∥∇f(xt)∥ − 2β2ρ2.

Next we consider m-SAM. additionally assuming l(·, ξ) is β-smooth for any ξ, starting from
Lemma C.1, we have

E⟨∇f(xt), g̃(yt)−∇f(xt)⟩ ≥ E⟨∇f(xt), g̃(yt)− g̃(ŷt)⟩+ µρ∥∇f(xt)∥
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≥ −1

2
E∥∇f(xt)∥2 −

1

2
E∥g̃(yt)− g̃(ŷt)∥2 + µρE∥∇f(xt)∥

≥ −1

2
E∥∇f(xt)∥2 −

β2

2
E∥yt − ŷt∥2 + µρE∥∇f(xt)∥

= −1

2
E∥∇f(xt)∥2 −

β2

2
E
∥∥∥∥ρ g(xt)

∥g(xt)∥
− ρ

∇f(xt)

∥∇f(xt)∥

∥∥∥∥2
+ µρE∥∇f(xt)∥

≥ −1

2
E∥∇f(xt)∥2 + µρE∥∇f(xt)∥ − 2β2ρ2,

completing the proof.

Lemma C.3. Consider a β-smooth, µ-strongly convex function f , and assume Assumption 2.5.
Under n-SAM, with step size η ≤ 1

2β , we have

Ef(xt+1) ≤ Ef(xt)−
η

2
E∥∇f(xt)∥2 −

ηµρ

2
E∥∇f(xt)∥+ 2ηβ2ρ2 − η2β(β2ρ2 − σ2).

Under m-SAM, additionally assuming l(·, ξ) is β-smooth for any ξ, the inequality continues to hold.

Proof. Starting from the definition of β-smoothness, we have

Ef(xt+1) ≤ Ef(xt)− ηE⟨∇f(xt), g̃(yt)⟩+
η2β

2
E∥g̃(yt)∥2

= Ef(xt)− ηE⟨∇f(xt), g̃(yt)⟩+
η2β

2
E∥g̃(yt)−∇f(xt)∥2 +

η2β

2
E∥∇f(xt)∥2

+ η2βE⟨∇f(xt), g̃(yt)−∇f(xt)⟩
= Ef(xt)− ηE⟨∇f(xt), g̃(yt)−∇f(xt)⟩ − ηE∥∇f(xt)∥2

+
η2β

2
E∥g̃(yt)−∇f(xt)∥2 +

η2β

2
E∥∇f(xt)∥2

+ η2βE⟨∇f(xt), g̃(yt)−∇f(xt)⟩

≤ Ef(xt)− η(1− ηβ)E⟨∇f(xt), g̃(yt)−∇f(xt)⟩ − η

(
1− ηβ

2

)
E∥∇f(xt)∥2

+ η2βE∥g̃(yt)−∇f(yt)∥2 + η2βE∥∇f(yt)−∇f(xt)∥2

≤ Ef(xt)− η(1− ηβ)E⟨∇f(xt), g̃(yt)−∇f(xt)⟩ − η

(
1− ηβ

2

)
E∥∇f(xt)∥2

+ η2β(σ2 + β2ρ2).

Since we assumed η ≤ 1
2β , η(1− ηβ) ≥ η

2 hold. Applying Lemma C.2, we get

Ef(xt+1) ≤ Ef(xt)− η(1− ηβ)

(
−1

2
E∥∇f(xt)∥2 + µρE∥∇f(xt)∥ − 2β2ρ2

)
− η

(
1− ηβ

2

)
E∥∇f(xt)∥2 + η2β(σ2 + β2ρ2)

= Ef(xt)−
η

2
E∥∇f(xt)∥2 − η(1− ηβ)µρE∥∇f(xt)∥+ 2ηβ2ρ2 − η2β(β2ρ2 − σ2)

≤ Ef(xt)−
η

2
E∥∇f(xt)∥2 −

ηµρ

2
E∥∇f(xt)∥+ 2ηβ2ρ2 − η2β(β2ρ2 − σ2),

completing the proof.

C.2 Convergence Proof for Smooth and Strongly Convex Functions (Proof of Theorem 4.1)

In this section, we demonstrate the convergence result of stochastic SAM for smooth and strongly
convex functions. For convenience, we restate the theorem here.
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Theorem 4.1. Consider a β-smooth, µ-strongly convex function f , and assume Assump-
tion 2.5. Under n-SAM, starting at x0 with any perturbation size ρ > 0 and step size η =

min
{

1
µT ·max

{
1, log

(
µ2∆T

β[σ2−β2ρ2]+

)}
, 1
2β

}
to minimize f , we have

Ef(xT )− f∗ ≤ Õ
(
exp

(
−µT

2β

)
∆+

β[σ2 − β2ρ2]+
µ2T

)
+

2β2ρ2

µ
.

Under m-SAM, additionally assuming l(·, ξ) is β-smooth for any ξ, the inequality continues to hold.

Proof. We start the proof from Lemma C.3; in order to apply the lemma, additionally assuming
β-smoothness for component functions l(·, ξ) is necessary for m-SAM.

Ef(xt+1) ≤ Ef(xt)−
η

2
E∥∇f(xt)∥2 −

ηµρ

2
E∥∇f(xt)∥+ 2ηβ2ρ2 − η2β(β2ρ2 − σ2).

Since µ-strongly convex functions satisfy µ-PL inequality (B.1), we get

Ef(xt+1)− f∗ ≤ (1− ηµ)(Ef(xt)− f∗)− ηµρ

2
E∥∇f(xt)∥+ 2ηβ2ρ2 − η2β(β2ρ2 − σ2).

Depending on the value of σ, there are two cases in which the convergence rate varies.

Case A: σ ≤ βρ. In this case, we have

Ef(xt+1)− f∗ ≤ (1− ηµ)(Ef(xt)− f∗)− ηµρ

2
E∥∇f(xt)∥+ 2ηβ2ρ2

≤ (1− ηµ)(Ef(xt)− f∗) + 2ηβ2ρ2,

and our choice of η must be 1
2β . Unrolling the inequality and substituting η = 1

2β draws out

Ef(xT )− f∗ ≤ (1− ηµ)T (Ef(x0)− f∗) +
2β2ρ2

µ

=

(
1− µ

2β

)T

∆+
2β2ρ2

µ

≤ exp

(
−µT

2β

)
∆+

2β2ρ2

µ
.

Case B: σ > βρ. In this case, we have

Ef(xt+1)− f∗ ≤ (1− ηµ)(Ef(xt)− f∗)− ηµρ

2
E∥∇f(xt)∥+ 2ηβ2ρ2 + η2β(σ2 − β2ρ2)

≤ (1− ηµ)(Ef(xt)− f∗) + 2ηβ2ρ2 + η2β(σ2 − β2ρ2).

Again, unrolling the inequality draws out

Ef(xT )− f∗ ≤ (1− ηµ)T∆+
2β2ρ2

µ
+

ηβ(σ2 − β2ρ2)

µ
. (10)

Similar to Section B.2, substituting η = min
{

1
µT ·max

{
1, log

(
µ2∆T

β(σ2−β2ρ2)

)}
, 1
2β

}
can result in

four cases.

Case B-1: log
(

µ2∆T
β(σ2−β2ρ2)

)
≥ 1, and 1

2β ≥ 1
µT log

(
µ2∆T

β(σ2−β2ρ2)

)
. Setting η =

1
µT log

(
µ2∆T

β(σ2−β2ρ2)

)
,

Ef(xT )− f∗ ≤ β(σ2 − β2ρ2)

µ2T
+

β(σ2 − β2ρ2)

µ2T
· log

(
µ2∆T

β(σ2 − β2ρ2)

)
+

2β2ρ2

µ
.

Case B-2: log
(

µ2∆T
β(σ2−β2ρ2)

)
≥ 1, and 1

2β ≤ 1
µT log

(
µ2∆T

β(σ2−β2ρ2)

)
. Setting η = 1

2β ,

Ef(xT )− f∗ ≤ exp

(
−µT

2β

)
∆+

β(σ2 − β2ρ2)

µ
· 1

2β
+

2β2ρ2

µ

≤ exp

(
−µT

2β

)
∆+

β(σ2 − β2ρ2)

µ2T
· log

(
µ2∆T

β(σ2 − β2ρ2)

)
+

2β2ρ2

µ
.
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Case B-3: log
(

µ2∆T
β(σ2−β2ρ2)

)
≤ 1, and 1

2β ≥ 1
µT . Setting η = 1

µT ,

Ef(xT )− f∗ ≤
(
1− 1

T

)T

∆+
β(σ2 − β2ρ2)

µ2T
+

2β2ρ2

µ

≤
(
1− 1

T
log

(
µ2∆T

β(σ2 − β2ρ2)

))T

∆+
β(σ2 − β2ρ2)

µ2T
+

2β2ρ2

µ

≤ β(σ2 − β2ρ2)

µ2T
+

β(σ2 − β2ρ2)

µ2T
+

2β2ρ2

µ
.

Case B-4: log
(

µ2∆T
β(σ2−β2ρ2)

)
≤ 1, and 1

2β ≤ 1
µT . Setting η = 1

2β ,

Ef(xT )− f∗ ≤ exp

(
−µT

2β

)
∆+

β(σ2 − β2ρ2)

µ
· 1

2β
+

2β2ρ2

µ

≤ exp

(
−µT

2β

)
∆+

β(σ2 − β2ρ2)

µ2T
+

2β2ρ2

µ
.

Merging all four cases, we get

Ef(xT )− f∗ = Õ
(
exp

(
−µT

2β

)
∆+

β(σ2 − β2ρ2)

µ2T

)
+

2β2ρ2

µ
,

thereby finishing the proof.

C.3 Non-Convergence of m-SAM for a Smooth and Strongly Convex Function (Proof of
Theorem 4.2)

In this section, we present a formal analysis of our counterexample, which shows that stochastic
m-SAM with constant perturbation size ρ may fail to fully converge to a global minimum, and can
get close to the global minimum by only Ω(ρ). This counterexample indicates that the O(ρ2) term in
Theorem 4.1 is unavoidable. For readers’ convenience, we restate the theorem.
Theorem 4.2. For any ρ > 0, β > 0, σ > βρ and η ≤ 3

10β , there exists a β-smooth and β
5 -strongly

convex function f satisfying the following. (1) The function f satisfies Assumption 2.5. (2) The
component functions l(·; ξ) of f are β-smooth for any ξ. (3) If we run m-SAM on f initialized inside
a certain interval, then any arbitrary weighted average x̄ of the iterates x0,x1, . . . must satisfy
E[f(x̄)− f∗] ≥ Ω(ρ2).

Proof. Given ρ > 0, β > 0, σ ≥ 0, and η ≤ 3
10β , we choose p ≜ 2

3 , c ≜
(
1 + p

4

)
ρ. For x ∈ R, and

a constant a > 0 which will be chosen later. Using these p, c, and a, we construct the counterexample.
We consider a one-dimensional smooth strongly convex function

f(x) =
a

2
x2,

and the stochastic function l(x; ξ) can be given as

l(x; ξ) =

{
f (1)(x), with probability p

f (2)(x), otherwise,

where each component functions are as described below:

f (1)(x) =


a
2 (x− c+ 2ρ)2 − aρ2, x ≤ c− ρ

−a
2 (x− c)2, c− ρ ≤ x ≤ c+ ρ

a
2 (x− c− 2ρ)2 − aρ2, c+ ρ ≤ x.

f (2)(x) =


1

1−p

(
a
2x

2 − pa
2 (x− c+ 2ρ)2 + paρ2

)
, x ≤ c− ρ

1
1−p

(
a
2x

2 + pa
2 (x− c)2

)
, c− ρ ≤ x ≤ c+ ρ

1
1−p

(
a
2x

2 − pa
2 (x− c− 2ρ)2 + paρ2

)
, c+ ρ ≤ x.
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First, it is easy to verify that El(x; ξ) = f(x). We can also confirm that f , f (1) are a-smooth, and
f (2) is

(
1+p
1−pa

)
-smooth. Furthermore, ∥∇f(x) − ∇f (1)(x)∥2 ≤ a2(2ρ + c)2 holds, along with

∥∇f(x) − ∇f (2)(x)∥2 ≤
(

pa
1−p

)2
(2ρ + c)2. Consequently, we have E∥∇f(x) − ∇l(x; ξ)∥2 ≤

pa2

1−p (2ρ+ c)2 = 2a2 ·
(
19ρ
6

)2
, where we used p = 2

3 and c = (1 + p
4 )ρ.

Now choose a = min
{

β
5 ,

σ
5ρ

}
≤ β

5 . This choice ensures that f , f (1), and f (2) are all β-smooth, as

desired. Also notice that 2a2 ·
(
19ρ
6

)2 ≤ 2 ·
(
19
5·6
)2

σ2 < σ2, so the function satisfies Assumption 2.5.

For the remaining of the proof, we investigate the virtual gradient maps Gf(1) and Gf(2) within the
specified region of interest: c−ρ ≤ x ≤ c+ρ. We will then demonstrate that if we initialize m-SAM
in this interval, all subsequent iterations of m-SAM will remain inside [c − ρ, c + ρ], as required
above.

Within this interval, the perturbed iterate y = ρ ∇f(1)(x)
∥∇f(1)(x)∥ and the virtual gradient map Gf(1) of f (1)

can be described as follows.

y =


x+ ρ, x < c

x, x = c

x− ρ, x > c,

Gf(1)(x) =


−a(x+ ρ− c), x < c

0, x = c

−a(x− ρ− c), x > c.

Additionally defining c′ ≜ p
1+pc, we now calculate y = ρ ∇f(2)(x)

∥∇f(2)(x)∥ and the virtual gradient map

Gf(2) of f (2).

y =


x− ρ, x < c′,

x, x = c′,

x+ ρ, x > c′
Gf(2)(x) =


a

1−p (x− ρ+ p(x− ρ− c)) , x < c′

0, x = c′

a
1−p (x+ ρ+ p(x+ ρ− c)) , x > c′

Here, given c =
(
1 + p

4

)
ρ, we can verify that

0 < c− ρ ≤ c′ ≤ c ≤ c+ ρ,

where 0, c′, and c are the global minimum (or maximum) of f , f (2), and f (1), respectively.

Recall that a ≤ β
5 . Since η ≤ 3

10β , we have ηa ≤ 3
50 , which will be useful for the rest of the proof.

Now, we analyze xt+1, the next iterate of m-SAM. For c− ρ ≤ xt ≤ c+ ρ, the next iterate xt+1 of
m-SAM using Gf(1)(xt) is

xt+1 =


xt + ηa(xt + ρ− c), xt < c

xt, xt = c

xt + ηa(xt − ρ− c), xt > c.

We will show that xt+1 must stay within the interval [c− ρ, c+ ρ]. For the case xt = c, the inclusion
is trivial. To analyze the rest, we divide into two cases.

Case A-1: c− ρ ≤ xt < c. Since ηa ≤ 3
50 , we have

c− ρ ≤ xt ≤ xt+1 = xt + ηa(xt + ρ− c) ≤ c+ ηa(c+ ρ− c)

= c+ ηaρ ≤ c+
3ρ

50
.

Case A-2: c < xt ≤ c+ ρ. Since ηa ≤ 3
50 , we have

c+ ρ ≥ xt ≥ xt+1 = xt + ηa(xt − ρ− c) ≥ c+ ηa(c− ρ− c)

= c− ηaρ ≥ c− 3ρ

50
.

Cases A-1 and A-2 show that xt+1 also remains in [c − ρ, c + ρ], when we update m-SAM using
Gf(1)(xt).
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(a) (b)

Figure 4: The original and virtual loss plot for the example function in Theorem 4.2. The graph
drawn in purple and red are the original/virtual loss of component functions. The graph drawn in
green indicates f , and the graph drawn in blue indicates EJf . (a) f and its component functions f (1),
f (2). (b)EJf and its component functions Jf(1) , Jf(2) .

We next examine the case involving Gf(2) . The next iterate xt+1 of m-SAM using Gf(2)(xt) is

xt+1 =


xt − η a

1−p (xt − ρ+ p(xt − ρ− c)) , xt < c′

xt, xt = c′

xt − η a
1−p (xt + ρ+ p(xt + ρ− c)) , xt > c′.

Again, we divide it into two cases, since the xt = c′ case is obvious.

Case B-1: c− ρ ≤ xt < c′. Since (1 + p)xt − (1 + p)ρ− pc < 0 for xt ∈ [c− ρ, c′), we have

c− ρ ≤ xt ≤ xt+1 = xt − η
a

1− p
((1 + p)xt − (1 + p)ρ− pc)

=

(
1− η

a(1 + p)

1− p

)
xt + η

a(1 + p)

1− p
ρ+ η

ap

1− p
c.

Since ηa ≤ 3
50 , we have 1− η a(1+p)

1−p = 1− 5ηa ≥ 0, so(
1− η

a(1 + p)

1− p

)
xt + η

a(1 + p)

1− p
ρ+ η

ap

1− p
c

≤
(
1− η

a(1 + p)

1− p

)
c′ + η

a(1 + p)

1− p
ρ+ η

ap

1− p
c

= c′ + η
a(1 + p)

1− p
ρ = c′ + 5ηaρ ≤ c′ + ρ ≤ c+ ρ.

Case B-2: c′ < xt ≤ c+ ρ. Since (1 + p)xt + (1 + p)ρ− pc > 0 for xt ∈ (c′, c+ ρ], we have

c+ ρ ≥ xt ≥ xt+1 = xt − η
a

1− p
((1 + p)xt + (1 + p)ρ− pc)

≥ c′ − η
a

1− p
((1 + p)c′ + (1 + p)ρ− pc)

=
p

1 + p
c− η

a(1 + p)

1− p
ρ = c− 1

1 + p
c− 5ηaρ

= c− 1

1 + p
·
(
1 +

p

4

)
ρ− 5ηaρ

≥ c− 3

5
·
(
7

6

)
ρ− 3

10
ρ = c− ρ,
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where the last inequality used ηa ≤ 3
50 .

Cases B-1 and B-2 demonstrate that xt+1 also remains within the interval [c − ρ, c + ρ] when we
update m-SAM using Gf(2)(xt).

To gain a better intuitive understanding, we provide Figures 4(a), 4(b), demonstrating the original and
virtual loss functions of f (1) and f (2). In Figure 4(b), we can examine that m-SAM updates generate
an attraction basin in Jf(1) , thereby making a region that m-SAM cannot escape.

The aforementioned case analyses indicate that when the initial point x0 falls within the interval
[c− ρ, c+ ρ], all subsequent iterations of m-SAM will also remain within this interval, regardless
of the selected component function for updating. Given c =

(
1 + p

4

)
ρ = 7

6ρ, we can conclude that
all subsequent iterations of m-SAM are points located at a distance of at least 1

6ρ from the global
optimum, for any β > 0, ρ > 0, and σ > 0.

Moreover, in case of σ > βρ, it follows that f(x) = a
2x

2 = β
10x

2. Consequently, the suboptimality
gap at any timestep is at least

f(xt)− f∗ = f(xt) ≥ f
(ρ
6

)
= Ω(βρ2),

thereby finishing the proof.

C.4 Convergence Proof for Smooth and Convex Functions (Proof of Theorem 4.3)

In this section, we establish the convergence of stochastic SAM for smooth and convex functions to
near-stationary points. For ease of understanding, we provide the theorem statement here.
Theorem 4.3. Consider a β-smooth, convex function f , and assume Assumption 2.5. Under n-SAM,
starting at x0 with any perturbation size ρ > 0 and step size η = min

{ √
∆√

β[σ2−β2ρ2]+T
, 1
2β

}
to

minimize f , we have

1

T

∑T−1

t=0
E∥∇f(xt)∥2 = O

(
β∆

T
+

√
β[σ2 − β2ρ2]+∆√

T

)
+ 4β2ρ2.

Under m-SAM, additionally assuming l(·, ξ) is β-smooth for any ξ, the inequality continues to hold.

Proof. We start from Lemma C.3 with µ = 0. In order to do this, additionally assuming β-smoothness
of component functions l(·, ξ) is necessary for m-SAM.

Ef(xt+1) ≤ Ef(xt)−
η

2
E∥∇f(xt)∥2 + 2β2ρ2η + βη2(σ2 − β2ρ2),

which can be rewritten as

E∥∇f(xt)∥2 ≤ 2

η
(Ef(xt)− Ef(xt+1)) + 4β2ρ2 + 2βη(σ2 − β2ρ2).

Adding up the inequality for t = 0, · · · , T − 1, and dividing both sides by T , we get

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤ 2

ηT
(Ef(x0)− Ef(xT )) + 4β2ρ2 + 2βη(σ2 − β2ρ2)

≤ 2

ηT
∆+ 4β2ρ2 + 2ηβ(σ2 − β2ρ2). (11)

The convergence rate varies depending on two different cases determined by the value of σ.

Case A: σ ≤ βρ. In this case, it must hold that η = 1
2β . By this choice of η, we have

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤ 2∆

ηT
+ 4β2ρ2

=
4β∆

T
+ 4β2ρ2.
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Case B: σ > βρ. Setting η = min
{√

∆
β(σ2−β2ρ2)T ,

1
2β

}
, we consider two cases.

Case B-1:
√

∆
β(σ2−β2ρ2)T ≤ 1

2β . Putting η =
√

∆
β(σ2−β2ρ2)T into (11), we get

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤ 4

√
β(σ2 − β2ρ2)∆

T
+ 4β2ρ2.

Case B-2:
√

∆
β(σ2−β2ρ2)T ≥ 1

2β . Placing η = 1
2β into (11), we get

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤ 4β∆

T
+ 4β2ρ2 + 2 · 1

2β
· β(σ2 − β2ρ2)

≤ 4β∆

T
+ 4β2ρ2 + 2 ·

√
∆

β(σ2 − β2ρ2)T
· β(σ2 − β2ρ2)

=
4β∆

T
+ 2

√
β(σ2 − β2ρ2)∆

T
+ 4β2ρ2.

Merging the two cases, we conclude

1

T

T−1∑
t=0

E∥∇f(xt)∥2 = O

(
β∆

T
+

√
β(σ2 − β2ρ2)∆√

T

)
+ 4β2ρ2,

thereby completing the proof.

C.5 Non-Convergence of m-SAM for a Smooth and Convex Function (Proof of Theorem 4.4)

In this section, we provide an in-depth analysis of our counterexample, which demonstrates that
stochastic m-SAM with constant perturbation size ρ can provably converge to a point that is not a
global minimum. Furthermore, the suboptimality gap in terms of the function value can be made
arbitrarily large, hence indicating that proving convergence of m-SAM to global minima (modulo
some additive factors O(ρ2)) is impossible. The theorem is restated for convenience.
Theorem 4.4. For any ρ > 0, β > 0, σ > 0, and η ≤ 1

β , there exists a β-smooth and convex function
f satisfying the following. (1) The function f satisfies Assumption 2.5. (2) The component functions
l(·; ξ) of f are β-smooth for any ξ. (3) If we run m-SAM on f initialized inside a certain interval,
then any arbitrary weighted average x̄ of the iterates x0,x1, . . . must satisfy E[f(x̄) − f∗] ≥ C,
and the suboptimality gap C can be made arbitrarily large and independent of the parameter ρ.

Proof. Given ρ > 0, β > 0, σ > 0, we set an arbitrary constant c > 5ρ
4 , and a parameter a > 0

which will be chosen later. For x ∈ R, consider a one-dimensional smooth convex function,

f(x) =

{
ax+ β

2x
2, x ≤ 0

ax, x ≥ 0,

and l(x; ξ) can be given as

l(x; ξ) =

{
f (1)(x), with probability p

f (2)(x), otherwise,

where the functions f (1) and f (2) are given by the following definitions.

f (1)(x) =


2a
(
x− c+ ρ

8

)
+ β

2x
2, x ≤ 0

2a
(
x− c+ ρ

8

)
, 0 ≤ x ≤ c− ρ

4

− 4a
ρ (x− c)

2
, c− ρ

4 ≤ x ≤ c+ ρ
4

−2a
(
x− c− ρ

8

)
, c+ ρ

4 ≤ x,
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f (2)(x) =


1

1−p

(
ax− 2pa

(
x− c+ ρ

8

))
+ β

2x
2, x ≤ 0

1
1−p

(
ax− 2pa

(
x− c+ ρ

8

))
, 0 ≤ x ≤ c− ρ

4

1
1−p

(
ax+ 4pa

ρ (x− c)2
)
, c− ρ

4 ≤ x ≤ c+ ρ
4

1
1−p

(
ax+ 2pa

(
x− c− ρ

8

))
, c+ ρ

4 ≤ x.

It can be verified that f (1) is
(
max

{
8a
ρ , β

})
-smooth, and f (2) is

(
max

{
8a
ρ · p

1−p , β
})

-smooth.

Moreover, ∥∇f(x) −∇f (1)(x)∥2 ≤ 9a2 holds, as well as ∥∇f(x) −∇f (2)(x)∥2 ≤ 9a2 · p2

(1−p)2 .
Consequently, E∥∇f(x)− g(x)∥2 ≤ 9a2 · p

1−p .

By selecting p > 1
2 , and setting a = min

{
βρ(1−p)

8p , σ
√
1−p

3
√
p

}
, we can check that El(x; ξ) = f(x),

and the component functions are β-smooth. Additionally, f satisfies Assumption 2.5.

In the following analysis, we examine the virtual gradient maps Gf(1) and Gf(2) in the specified
region of interest: c− ρ ≤ x ≤ c+ ρ. For this specific interval, we are going to show that if we start
m-SAM inside this interval, then all the subsequent iterates of m-SAM must stay inside the same
interval [c− ρ, c+ ρ].

In this region, y = x+ ρ ∇f(1)(x)
∥∇f(1)(x)∥ and Gf(1) are as follows.

y =


x+ ρ, c− ρ ≤ x < c

x, x = c

x− ρ, c < x ≤ c+ ρ.

Gf(1)(x) =



− 8a
ρ (x+ ρ− c), c− ρ ≤ x ≤ c− 3ρ

4

−2a, c− 3ρ
4 ≤ x < c

0, x = c

2a, c < x ≤ c+ 3ρ
4

− 8a
ρ (x− ρ− c), c+ 3ρ

4 ≤ x ≤ c+ ρ.

Additionally defining c′ ≜ c− ρ
8p , we can compute y = x+ ρ ∇f(2)(x)

∥∇f(2)(x)∥ and Gf(2) as follows.

y =


x− ρ, c− ρ ≤ x < c′

x, x = c′

x+ ρ, c′ < x ≤ c+ ρ.

Gf(2)(x) =


a−2ap
1−p , c− ρ ≤ x < c′

0, x = c′
a+2ap
1−p , c′ < x ≤ c+ ρ.

Now recall that η ≤ 1
β . Given that a ≤ βρ(1−p)

8p , we can derive η ≤ 1
β ≤ ρ

a · 1−p
8p . Furthermore, the

next iterate xt+1 of m-SAM using Gf(1)(xt) for c− ρ ≤ xt ≤ c+ ρ is

xt+1 = xt − ηGf(1)(xt) =



xt + η · 8a
ρ (x+ ρ− c), c− ρ ≤ xt ≤ c− 3ρ

4

xt + 2ηa, c− 3ρ
4 ≤ xt < c

xt, xt = c

xt − 2ηa, c < xt ≤ c+ 3ρ
4

xt + η · 8a
ρ (x− ρ− c), c+ 3ρ

4 ≤ xt ≤ c+ ρ.

We will now show that xt+1 must remain in the interval [c − ρ, c + ρ]. For the case xt = c, it is
obvious. Dividing the rest into three cases,

Case A-1: c− ρ ≤ xt ≤ c− 3ρ
4 . Since 0 ≤ η · 8a

ρ (xt + ρ− c) ≤ 2ηa ≤ ρ · 1−p
4p ≤ ρ

4 , we have

c− ρ ≤ xt ≤ xt+1 ≤ xt +
ρ

4
≤ c+ ρ,

which proves that xt+1 also remains in [c− ρ, c+ ρ].
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(a) (b)

Figure 5: The original and virtual loss plot for the example function in Theorem 4.4. The graph
drawn in purple and red are the original/virtual loss of component functions. The graph drawn in
green indicates f , and the graph drawn in blue indicates EJf . (a) f and its component functions f (1),
f (2). (b)EJf and its component functions Jf(1) , Jf(2) .

Case A-2: c− 3ρ
4 ≤ xt < c, c < xt ≤ c+ 3ρ

4 . Since 0 ≤ 2ηa ≤ ρ · 1−p
4p ≤ ρ

4 , we have

c− ρ ≤ xt −
ρ

4
≤ xt+1 ≤ xt +

ρ

4
≤ c+ ρ,

thereby proving that xt+1 also remains in [c− ρ, c+ ρ].

Case A-3: c+ 3ρ
4 ≤ xt ≤ c+ ρ. Since 0 ≥ η · 8a

ρ (xt − ρ− c) ≥ −2ηa ≥ −ρ · 1−p
4p ≥ −ρ

4 , we
have

c− ρ ≤ xt −
ρ

4
≤ xt+1 ≤ xt ≤ c+ ρ,

which shows that xt+1 also remains in [c− ρ, c+ ρ].

We next consider the case of Gf(2) . The next iterate xt+1 of m-SAM using Gf(2)(xt) for c− ρ ≤
xt ≤ c+ ρ is given by

xt+1 = xt − ηGf(2)(xt) =


xt − ηa · 1−2p

1−p , c− ρ ≤ xt < c′

xt, xt = c′

xt − ηa · 1+2p
1−p , c′ < xt ≤ c+ ρ.

Again, the xt = c′ case is trivial. Considering the remaining two cases,

Case B-1: c− ρ ≤ xt < c′. Since 0 ≥ ηa · 1−2p
1−p ≥ ρ · 1−2p

8p ≥ −(c+ ρ− c′), we get

c− ρ ≤ xt ≤ xt+1 ≤ xt + (c+ ρ− c′) ≤ c+ ρ,

which indicates that xt+1 also remains in [c− ρ, c+ ρ].

Case B-2: c′ < xt ≤ c+ ρ. Since 0 ≤ ηa · 1+2p
1−p ≤ ρ · 1+2p

8p ≤ c′ − (c− ρ), we have

c− ρ ≤ xt − c′ + (c− ρ) ≤ xt+1 ≤ xt ≤ c+ ρ,

which shows that xt+1 also remains in [c− ρ, c+ ρ].

The case analyses above indicate that if x0 is initialized in [c − ρ, c + ρ], the subsequent iterates
of m-SAM also remain in [c− ρ, c+ ρ], regardless of the component function chosen by m-SAM
for update. Figures 5(a) and 5(b) demonstrate the original loss function and virtual loss function of
component functions f (1) and f (2). Due to the concavity of f (1), a basin of attraction is formed in
Jf(1) , thereby creating a region where the iterations of m-SAM cannot escape.
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Therefore, the suboptimality gap at any timestep is at least

f(xt)− f∗ = f(xt)− f

(
− a

β

)
≥ f(c− ρ)− f

(
− a

β

)
= a(c− ρ) +

a2

2β
.

Therefore, regardless of iterate averaging scheme, the suboptimality gap in terms of function value
will stay above a(c− ρ) + a2

2β .

Moreover, this suboptimality gap can be made arbitrarily large if we choose larger values of c; notice
that c > 5ρ

4 is the only requirement on c. Consequently, it is impossible to guarantee convergence to
global minima, even up to an additive factor, for m-SAM. This finishes the proof.

C.6 Convergence Proof for Smooth and Nonconvex Function under n-SAM (Proof of
Theorem 4.5)

In this section, we establish the convergence result of stochastic n-SAM for smooth and nonconvex
functions. For convenience, we restate the theorem.
Theorem 4.5. Consider a β-smooth function f satisfying f∗ = infx f(x) > −∞, and assume
Assumption 2.5. Under n-SAM, starting at x0 with any perturbation size ρ > 0 and step size

η = min

{
1
2β ,

√
∆√

βσ2T

}
to minimize f , we have

1

T

∑T−1

t=0
E∥∇f(xt)∥2 ≤ O

(
β∆

T
+

√
βσ2∆√
T

)
+ β2ρ2.

Proof. Starting from the definition of β-smoothness, we have

Ef(xt+1) ≤ Ef(xt)− ηE ⟨∇f(xt), g̃(yt)⟩+
βη2

2
E∥g̃(yt)∥2

≤ Ef(xt)− ηE ⟨∇f(xt),∇f(yt)⟩+ βη2
(
E∥∇f(yt)∥2 + E∥g̃(yt)−∇f(yt)∥2

)
≤ Ef(xt)− ηE ⟨∇f(xt),∇f(yt)⟩+ βη2(E∥∇f(yt)∥2 + σ2)

= Ef(xt)−
η

2
E∥∇f(xt)∥2 −

η

2
E∥∇f(yt)∥2 +

η

2
E∥∇f(xt)−∇f(yt)∥2

+ βη2(E∥∇f(yt)∥2 + σ2)

≤ Ef(xt)−
η

2
E∥∇f(xt)∥2 +

β2η

2
E∥xt − yt∥2 + βσ2η2

= Ef(xt)−
η

2
E∥∇f(xt)∥2 +

β2ρ2η

2
+ βσ2η2.

Rearranging the inequality, we get

E∥∇f(xt)∥2 ≤ 2

η
(Ef(xt)− Ef(xt+1)) + β2ρ2 + 2βσ2η.

Adding up the inequality for t = 0, · · · , T − 1, and dividing both sides by T , we get

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤ 2

ηT
(Ef(x0)− Ef(xT )) + β2ρ2 + 2βσ2η

≤ 2∆

ηT
+ β2ρ2 + 2βσ2η. (12)

Substituting η = min

{
1
2β ,

√
∆√

Tβσ2

}
to (12), we get two cases.

Case A: 1
2β ≤

√
∆√

Tβσ2
. η = 1

2β , so we have

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤ 2∆

ηT
+ β2ρ2 + 2βσ2η
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≤ 4β∆

T
+ 2βσ2 ·

√
∆√

Tβσ2
+ β2ρ2

=
4β∆

T
+

2
√
βσ2∆√
T

+ β2ρ2.

Case B:
√
∆√

Tβσ2
≤ 1

2β . η =
√
∆√

Tβσ2
, and it leads to

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤ 2∆

ηT
+ β2ρ2 + 2βσ2η

≤ 2
√
∆

T
·
√

Tβσ2 +
2
√

βσ2∆√
T

+ β2ρ2

=
4
√
βσ2∆√
T

+ β2ρ2.

Merging two cases, we can conclude that

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤ O

(
β∆

T
+

√
βσ2∆√
T

)
+ β2ρ2,

thereby completing the proof.

C.7 Convergence Proof for Smooth Lipschitz Nonconvex Function under m-SAM (Proof of
Theorem 4.6 and Corollary 4.7)

In this section, the convergence proof for stochastic m-SAM for smooth, Lipschitz, and nonconvex
functions is presented. The notation ŷt = xt + ρ ∇f(xt)

∥∇f(xt)∥ is used here once again. The theorem is
restated for convenience.
Theorem 4.6. Consider a β-smooth, L-Lipschitz continuous function f satisfying f∗ = infx f(x) >
−∞, and assume Assumption 2.5. Additionally assume l(·, ξ) is β-smooth for any ξ. Under m-SAM,
starting at x0 with any perturbation size ρ > 0 and step size η =

√
∆√

β(σ2+L2)T
to minimize f , we

have
1

T

∑T−1

t=0
E
[
(∥∇f(xt)∥ − βρ)2

]
≤ O

(√
β∆(σ2 + L2)√

T

)
+ 5β2ρ2.

Proof. The proof technique resembles Mi et al. [27]. Starting from the definition of β-smoothness,
we have

Ef(xt+1) ≤ Ef(xt)− ηE⟨∇f(xt), g̃(yt)⟩+
βη2

2
E∥g̃(yt)∥2

≤ Ef(xt)− ηE∥∇f(xt)∥2 − ηE⟨∇f(xt), g̃(yt)−∇f(xt)⟩+
βη2

2
E∥g̃(yt)∥2

= Ef(xt)− ηE∥∇f(xt)∥2 − ηE⟨∇f(xt), g̃(yt)− g̃(ŷt)⟩ − ηE⟨∇f(xt),∇f(ŷt)−∇f(xt)⟩

+
βη2

2
E∥g̃(yt)∥2

≤ Ef(xt)− ηE∥∇f(xt)∥2 +
η

2
E∥∇f(xt)∥2 +

η

2
E∥g̃(yt)− g̃(ŷt)∥2

− ηE
〈
∥∇f(xt)∥

ρ
· (ŷt − xt),∇f(ŷt)−∇f(xt)

〉
+

βη2

2
E∥g̃(yt)∥2

≤ Ef(xt)−
η

2
E∥∇f(xt)∥2 +

β2η

2
E ∥yt − ŷt∥2 + ηE

[
β∥∇f(xt)∥

ρ
· ∥ŷt − xt∥2

]
+

βη2

2
E∥g̃(yt)∥2

≤ Ef(xt)−
η

2
E∥∇f(xt)∥2 +

β2ρ2η

2
E
∥∥∥∥ g̃(xt)

∥g̃(xt)∥
− ∇f(xt)

∥∇f(xt)∥

∥∥∥∥2 + βρηE∥∇f(xt)∥
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+
βη2

2
E∥g̃(yt)∥2

≤ Ef(xt)−
η

2
E∥∇f(xt)∥2 + 2β2ρ2η + βρηE∥∇f(xt)∥+

βη2

2
E∥g̃(yt)∥2

≤ Ef(xt)−
η

2
E(∥∇f(xt)∥ − βρ)2 +

5

2
β2ρ2η + βη2(E∥∇f(yt)∥2 + E∥g̃(yt)−∇f(yt)∥2)

≤ Ef(xt)−
η

2
E(∥∇f(xt)∥ − βρ)2 +

5

2
β2ρ2η + βη2(σ2 + L2).

Rearranging the inequality, we get

E
[
(∥∇f(xt)∥ − βρ)2

]
≤ 2

η
(Ef(xt)− Ef(xt+1)) + 5β2ρ2 + 2βη(σ2 + L2).

Adding up the inequality for t = 0, · · · , T − 1, and dividing both sides by T , we get

1

T

T−1∑
t=0

E
[
(∥∇f(xt)∥ − βρ)2

]
≤ 2

ηT
(Ef(x0)− Ef(xT )) + 5β2ρ2 + 2βη(σ2 + L2)

≤ 2∆

ηT
+ 5β2ρ2 + 2βη(σ2 + L2). (13)

Substituting η =
√
∆√

β(σ2+L2)T
to (13) yields

1

T

T−1∑
t=0

E
[
(∥∇f(xt)∥ − βρ)

2
]
≤

4
√
β∆(σ2 + L2)√

T
+ 5β2ρ2,

thereby completing the proof.

From the result of Theorem 4.6, Corollary 4.7 can be derived. The corollary is restated for the ease of
reference.
Corollary 4.7. Under the setting of Theorem 4.6, we get

min
t∈{0,...,T}

{E∥∇f(xt)∥} ≤ O

((
β∆(σ2 + L2)

)1/4
T 1/4

)
+
(
1 +

√
5
)
βρ.

Proof. Starting from the result of Theorem 4.6, we have

min
t∈{0,...,T}

{
(E∥∇f(xt)∥ − βρ)

2
}
≤ min

t∈{0,...,T}
E
[
(∥∇f(xt)∥ − βρ)

2
]

≤ 1

T

∑T−1

t=0
E
[
(∥∇f(xt)∥ − βρ)2

]
≤ O

(√
β∆(σ2 + L2)√

T

)
+ 5β2ρ2.

Taking the square root on both sides,

min
t∈{0,...,T}

{∣∣E∥∇f(xt)∥ − βρ
∣∣} ≤ O

((
β∆(σ2 + L2)

)1/4
T 1/4

)
+

√
5βρ.

Rearranging the inequality, we obtain

min
t∈{0,...,T}

{E∥∇f(xt)∥} ≤ O

((
β∆(σ2 + L2)

)1/4
T 1/4

)
+
(
1 +

√
5
)
βρ,

thereby completing the proof.
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(a) (b) (c)

(d) (e) (f)

Figure 6: The results of the SAM simulations on the example functions. The yellow line indicates
the trajectory of SAM iterates. (a) and (d) display deterministic SAM iterates (with initialization
x0 = 0.4) and the plot of x-coordinate values over epochs, for a smooth nonconvex function as shown
in Figure 2(a) under settings in Theorem 3.5. (b) and (e) show m-SAM iterates (with initialization
x0 = 4) and the plot of x-coordinate values over epochs, for the smooth strongly convex function as
shown in Figure 2(b) under settings in Theorem 4.2. (c) and (f) demonstrate m-SAM iterates (with
initialization x0 = 9) and the plot of x-coordinate values over epochs, for the smooth convex function
as shown in Figure 2(d) under settings in Theorem 4.4. All plots empirically verify that practical
SAM cannot converge all the way to optima. Instead, the iterates get trapped in certain regions.

D Simulation Results of SAM on Example Functions

Figure 6 shows the results of SAM simulations on the example functions considered in Sec-
tions 3 and 4. It demonstrates that SAM indeed does not converge in our worst-case example
constructions.
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