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Abstract

Segment Anything Model 2 (SAM 2) has demonstrated strong performance in object
segmentation tasks and has become the state-of-the-art for visual object tracking. The
model stores information from previous frames in a memory bank, enabling tempo-
ral consistency across video sequences. Recent methods augment SAM 2 with hand-
crafted update rules to better handle distractors, occlusions, and object motion. We
propose a fundamentally different approach using reinforcement learning for optimiz-
ing memory updates in SAM 2 by framing memory control as a sequential decision-
making problem. In an overfitting setup with a separate agent per video, our method
achieves a relative improvement over SAM 2 that exceeds by more than three times the
gains of existing heuristics. These results reveal the untapped potential of the mem-
ory bank and highlight reinforcement learning as a powerful alternative to hand-crafted
update rules for memory control in visual object tracking.

1 Introduction

Reinforcement learning (RL) is well-suited for sequential decision-making tasks in dynamic envi-
ronments by learning from delayed rewards to optimize long-term returns. Visual Object Tracking
(VOT) poses precisely this challenge, requiring a tracker to localize a target in a continuous video
stream while adapting to appearance changes, occlusions, and distractions over time. These chal-
lenges align naturally with the strengths of RL in learning adaptive policies under uncertainty.

The current state-of-the-art in visual object tracking, Segment Anything Model 2 (SAM 2) (Ravi
et al., 2024), integrates a promptable segmentation framework with a memory bank. The mem-
ory bank always retains memories from the most recent frames to maintain temporal consistency.
However, this fixed update rule overlooks each frame’s relevance to the tracking quality. Building
upon SAM 2, several recent studies have proposed heuristic enhancements to this memory bank
update mechanism, leading to notable performance improvements. These heuristics target specific
scenarios where SAM 2 underperforms, such as motion-aware selection (Yang et al., 2024; 2025)
and distractor-aware updates (Videnovic et al., 2024).

Rather than hand-crafting these update rules, we propose to learn them directly by framing the
SAM 2 memory updates as a reinforcement learning task. We estimate the upper-bound perfor-
mance achievable with learned memory updates by overfitting an RL agent (SAM2RL) to a set of
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videos individually. In this overfitting setup, SAM2RL achieves more than three times the perfor-
mance gains of prior methods over the original SAM 2, highlighting the potential of RL to improve
SAM 2 memory bank updates. This improvement could set a new state-of-the-art for VOT without
modifying any trainable parameters of the original SAM 2.

The paper is organized as follows. In Section 2, we define the visual tracking task and review
relevant prior work. In Section 3, we describe the SAM 2 architecture and formulate memory bank
updates as a reinforcement learning task. In Section 4, we overfit our policy on a set of videos and
compare its performance against prior methods. Finally, Section 5 concludes with a discussion of
our findings and outlines directions for future work.

2 Related Work

Vision Object Tracking (VOT) is the task of locating and following a specific object over time in a
video sequence, given its initial position in the first frame (Marvasti-Zadeh et al., 2022). Tradition-
ally, this task has been approached using bounding boxes to represent the target object, offering a
simple yet effective way to estimate object location and scale. In recent years, the field has shifted
toward more precise localization methods, with tracking-by-segmentation becoming the dominant
approach. Common challenges of VOT include occlusion, motion blur, and appearance changes.

Segment Anything Model 2 (SAM 2) (Ravi et al., 2024) extends the promptable transformer archi-
tecture of Segment Anything Model (SAM) (Kirillov et al., 2023) with a streaming memory mecha-
nism, enabling unified image and video segmentation. Leveraging large-scale pretraining, it enables
real-time zero-shot tracking across diverse domains, such as self-driving, video editing, or wildlife
monitoring. SAM 2’s fixed-length memory bank always stores only the most recent frames, suffer-
ing from redundancy and irrelevant content. To address these limitations, several recent extensions
propose improved memory update mechanisms using hand-crafted update rules.

SAM2Long (Ding et al., 2024) mitigates error accumulation in long videos by using multiple par-
allel memory banks, improving occlusion handling and object reappearance at increased computa-
tional cost. DAM4SAM (Videnovic et al., 2024) enhances distractor handling with distractor-aware
update rules. SAMURAI (Yang et al., 2024) incorporates motion-aware memory selection via a
Kalman filter (Kalman, 1960) for refined mask selection, while MoSAM (Yang et al., 2025) in-
troduces motion-guided prompting and enhances the memory bank with spatial-temporal memory
selection for accurate predictions.

3 Method

In this section, we formulate memory selection in SAM 2 as a reinforcement learning task, where
an agent learns a memory update policy to optimize tracking performance. We first give a brief
overview of the SAM 2 architecture, and then describe how memory selection is framed as a rein-
forcement learning task.

SAM 2 Architecture. SAM 2 achieves temporally consistent segmentation of a target object by
combining per-frame image embeddings with a memory-attention mechanism. As illustrated in
Figure 1, each incoming frame is first processed by the image encoder to produce a feature embed-
ding. This embedding is then conditioned on memories inside the memory bank using the memory
attention and also on tracking prompts, such as the input mask of the first frame. The resulting con-
ditioned embedding is passed into the mask decoder, which generates the final segmentation mask.
The memory encoder then transforms the predicted mask and the corresponding image embedding
into a memory feature. This memory feature is added to the memory bank with fixed capacity
N = 7, which always retains the initial frame along with the most recent N − 1 memories.

Memory Selection via Reinforcement Learning. We frame the SAM 2 memory selection prob-
lem as a reinforcement learning task. The tracking of a single video object forms an episode in the
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Figure 1: In SAM2RL, the image encoder processes a new frame, which is then conditioned by the
memory bank of past predictions and tracking prompts. The mask decoder uses this representation
to generate a segmentation mask. This mask is used to provide a reward to the RL memory controller
and also by the memory encoder to create a new memory for the current frame. The controller then
observes memories and decides which memory frames to retain.

RL environment operated by an agent who performs memory bank updates. At each timestep, the
incoming input image is first processed by the frozen SAM 2 pipeline, producing the predicted mask
and the encoded memory feature. The agent then receives observation consisting of the representa-
tion of the stored memories in the memory bank and the memory feature of the current frame. Based
on this observation, the agent selects an action that either discards the incoming memory feature or
inserts it into the memory bank by replacing one of the N − 1 stored memories. The objective is to
learn a memory update policy that optimizes the tracking quality Q, which is the primary tracking
measure of the VOTS challenge (Kristan et al., 2023). The tracking quality is measured as the mean
intersection-over-union (IoU) on frames with a visible object, with a penalty for incorrect predic-
tion when the object is not present. Formally, the tracking quality Q for a video of length T with a
predicted mask M̂t and a ground truth mask Mt at timestep t is defined as

Q =
1

T

T∑
t=1

qt, where qt =

{
1, M̂t = ∅ and Mt = ∅,

IoU(M̂t,Mt), otherwise.
(1)

To guide the learning process towards maximizing the tracking quality Q, we set the reward at
timestep t to qt. The final episode return to maximize is thus equal to

∑T
t=1 γ

t−1qt with γ ∈ (0, 1].

4 Evaluation

The memory bank is a relatively small component of the overall SAM 2 architecture. Therefore,
it remains unclear how much of the tracking performance, even on the training dataset, can be
improved by optimizing only the memory update policy. In this section, we explore the power
of the memory bank and its update policy by overfitting a sequence of videos individually using
a reinforcement learning algorithm, as described in Section 3. We compare the obtained results
with those achieved by previous methods using hand-crafted update rules to show how much of the
capacity is effectively utilized by the current methods.
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Table 1: Comparison of SAM 2-based methods and the proposed SAM2RL with an overfitted mem-
ory bank policy, evaluated on 64 videos from the SA-V training set using standard VOTS metrics.

Method Quality [%] Accuracy [%] Robustness [%]

SAM 2 71.95 73.01 88.84

SAMURAI -4.70 67.25 -0.30 72.71 +1.83 90.67
DAM4SAM +1.60 73.55 -0.05 72.96 +0.36 89.20
SAM2RL (ours) +4.91 76.86 +2.52 75.53 +2.33 91.17
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Figure 2: Accuracy vs. robustness plot comparing the performance of SAM 2-based models and
SAM2RL, with marker size indicating the tracking quality.

Training Setup. Our experiments are designed to intentionally overfit individual videos, without
any expectation that the learned policy will generalize beyond them. To this end, we represent the
agent’s observation using a simple binary vector that uniquely encodes both the indices of the image
frames stored in the memory bank and the current timestep. The policy network is then a two-layer
multilayer perceptron (MLP), with an input size equal to the video length, a hidden layer of 1024
units, and a softmax output over the N possible actions. We train the network using Proximal Policy
Optimization (PPO) (Schulman et al., 2017) separately on 64 random videos from the SA-V training
dataset (Ravi et al., 2024), with an average length of 80 frames recorded at 6 frames per second. All
evaluated models employ the largest available Hiera-L image encoder (Ryali et al., 2023) with input
resolution 256× 256 and SAM 2.1 checkpoint. We always track only the first object in a video.

We evaluate the environment and train the policy network for each video using a single NVIDIA
A100 40GB GPU. The environment simulation runs at approximately 750 frames per second. In
each PPO iteration, we collect a dataset of 16k samples and train the policy for 2 epochs. The
training process runs for 150 iterations and takes approximately 1 hour on average per video.

Quantitative Results. We compare the tracking performance of the proposed SAM2RL with
SAM 2 and its two best-performing publicly available variants, SAMURAI (Yang et al., 2024)
and DAM4SAM (Videnovic et al., 2024). We evaluate the tracking performance in Table 1 us-
ing three standard metrics from the VOTS challenge (Kristan et al., 2023). The tracking quality Q
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Figure 3: Visualization of predicted masks and the tracking quality of SAM2RL and DAM4SAM
on a single selected video. SAM2RL produces masks that more closely match the ground truth, and
successfully recovers the object after its disappearance, while DAM4SAM often fails to detect it.

from Equation (1) is the primary performance measure optimized by the RL policy. The accuracy
and robustness are two additional metrics to evaluate mask quality on frames with a visible object
only. The accuracy is equal to the mean IoU in frames with nonzero IoU, and the robustness is the
proportion of frames with nonzero IoU in frames with a visible object. The accuracy and robustness
thus describe the trade-off between the mask precision and the chance of detecting an object with at
least a minimal overlap. We visualize all the metric values in Figure 2.

SAM2RL achieves the highest performance in all three VOTS metrics, surpassing SAM 2 and both
of its enhanced variants. In particular, SAM2RL improves the tracking quality by +4.91%, accuracy
by +2.52%, and robustness by +2.33% compared to SAM 2. In contrast, SAMURAI, in our training
setup, underperforms relative to SAM 2 in tracking quality metric by -4.70%, which we attribute
to its tendency to predict a mask even when the object is not visible, trading off for a modest gain
in robustness by +1.83%. DAM4SAM shows a moderate improvement over SAM 2 with a +1.60%
increase in tracking quality, but it still falls short compared to SAM2RL. These results indicate
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that optimizing the memory bank’s update policy can lead to substantial improvements in tracking
performance, exceeding those achieved by current methods.

Qualitative Results. Figure 3 presents a qualitative comparison of the predicted masks generated
by SAM2RL and DAM4SAM in a selected video from the SA-V dataset. DAM4SAM is used as a
baseline, as it outperforms both SAM 2 and SAMURAI on this specific video. SAM2RL produces
masks that match the ground truth more accurately than those from DAM4SAM. In particular, after
the tracked object disappears completely in frame 45, SAM2RL successfully recovers object track-
ing, whereas DAM4SAM either fails to detect the object completely or produces inaccurate masks.
On the other hand, we observe that although SAM2RL is deliberately overfitted on this video, it still
fails to achieve optimal performance, suggesting the limit of the memory bank capacity.

5 Conclusion

We introduced the first reinforcement learning approach to optimize memory update policies within
SAM 2 for visual object tracking. Although the memory bank constitutes only a small component of
the overall SAM 2 architecture, the significant performance gains of SAM2RL in an overfitting setup
demonstrate that optimizing the update policy can greatly enhance the tracking quality. This high-
lights an opportunity to improve the current hand-crafted update rules using reinforcement learning-
based update policies. We plan to achieve these improvements by scaling our approach through the
integration of richer observations and suitable network architectures, enabling us to learn policies
that would generalize beyond the training data, and thus push the current state-of-the-art in video
object tracking.
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