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Abstract

Inferring temporal logic specifications from plan traces can
offer significant insight into several aspects of planning such
as goal recognition, policy summarization, and system dy-
namic modelling. Temporal logic specifications have the
power to provide significant insights for explainability be-
cause they are capable of representing relevant patterns and
partitions unique to certain groups of traces. Prior work in this
area has predominantly focused on the identification of speci-
fications that satisfy all plan traces within a set, however more
recently, contrastive approaches concerning the delineation of
two sets have also been established. While these approaches
are effective in their defined scope, they assume the existence
of only one or two behavioural clusters. In this paper, we
re-imagine contrastive specification learning by proposing a
novel tree generation technique which allows k clusters to be
discovered. By embracing a Monte Carlo node-splitting ap-
proach, our algorithm seeks balance to contrastively divide
any given set of plan traces into two sets with an accompa-
nying temporal logic specification satisfying one of the sets.
Recursing this procedure, we demonstrate the effectiveness
of our approach to cluster and delineate plan traces, allowing
temporal logic specifications to evoke insight at each level of
the resulting tree.

1 Introduction
Time series data represents a significant opportunity for in-
stitutions and individuals to learn from the past and present
to improve the future. The prevalence of unstructured data
within real-world settings, however, represents an active
challenge for existing analytical techniques. This impedi-
ment is especially relevant within research areas such as
goal recognition, policy summarization, and system dy-
namic modelling, where the shared objective is to derive
meaning from observed behavior. To establish meaningful
insights from unstructured time-series data, partitions and
patterns must be identified to effectively differentiate obser-
vations based on temporal attributes. These insights can take
the form of temporal logic specifications, where specifica-
tions are used to explain a given set of observations. Cur-
rently, however, there are no existing techniques that allow
multiple sets of time-series traces to be automatically clus-
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tered and differentiated. To address this challenge, we pro-
pose a novel decision-tree approach to provide structure to
unstructured time-series data. By leveraging linear temporal
logic, our proposed method successfully clusters an unspec-
ified quantity of plan traces using unsupervised techniques
and contrastively explains how these clusters are character-
ized. Representing unique temporal properties of each clus-
ter, the identified specifications contribute to the explain-
ability of the input set of traces by describing the distinc-
tive interaction of subgroups. Given these developments, our
novel framework represents a vital first step in providing re-
searchers a new and more powerful approach to time-series
data analysis.

Prior works in the area of plan explanations have focused
on effectively summarizing a single set of traces with the
goal of making sense of the output of planners. This has
typically been done by determining temporal specifications
that are satisfied by all traces in a given set (Yang et al.
2006; Lemieux, Park, and Beschastnikh 2015). The prob-
lem with summarization-based methods like these, however,
is that temporal specifications are not designed to be rele-
vant or interesting, merely accurate. To address this, more
recent research has shifted focus towards contrastive expla-
nations, where the research task is to automatically identify
specifications that differentiate two sets of traces (Kim et al.
2019). While contrastive explanations arguably offer greater
insight than summarization-based approaches because they
allow trade-offs within plan rationale to be understood, the
conditions required for these techniques to be applicable are
quite niche. Most importantly, traditional contrastive expla-
nation research condenses the assertion of contrast to ex-
actly two sets of traces; in practical applications, natural de-
composition likely exists between more than two clusters
of traces. To accommodate this, we reimagine contrastive
explanations to account for multiple sets of traces. Given
the significant research interest that has been demonstrated
in these similar areas in recent years, this topic is demon-
strated to be both important and relevant. The main con-
tribution of this paper includes an extension of contrastive
explanations to differentiate multiple sets of traces via a
decision-tree method. As a further contribution, this paper’s
proposed methodology allows contrastive sets to be auto-
matically identified through a novel unsupervised clustering
process.



Our methodology approaches contrastive explanations as
an unsupervised learning task, where the objective is to
automatically identify k sets of traces guided by temporal
logic specifications. We begin by formulating this as a sub-
problem, where the challenge becomes identifying an ef-
ficient and accurate technique to split a single set of plan
traces into two balanced sets of near-equal size via temporal
logic specifications. To achieve information gain when split-
ting a given set of plan traces, the identified temporal logic
specification must entail the first subset of traces, but not the
second; the more equal these subsets are in size, the greater
the information gain of the split. By proposing a solution
to this sub-problem and recursing on that, our decision-tree
method focuses on discovering trees of LTL specifications
that allow human users to understand plan traces with re-
spect to the behaviour of acting agents.

Applying tree generation to six benchmark planning do-
mains of three unique vocabulary sizes, we demonstrate
the generality of our algorithm to adapt to diverse problem
sets. Evaluating the size of the resulting LTL specifications
from this assessment, we discover a tendency of robust fit,
mitigating threats of underfitting/overfitting behavior. For a
deeper analysis of the mechanics of our approach, we mea-
sure the relationship between node size and splitting exe-
cution time, discovering a near-linear positive correlation
and justifying our sampling step. To further highlight the ef-
fectiveness of sampling, we derive probability distributions
of information gain with respect to sample size, observing
consistently high information gain densities for samples as
small as 10% of the original set of traces. Finally, we in-
vestigate the benefit in time of additional search iterations,
discovering a trend of diminishing marginal returns, which
indicates a lack of necessity for excessive iterations.

2 Preliminaries
2.1 Linear Temporal Logic (LTL)
Linear temporal logic (LTL) is a modal logic which was
first proposed by Pnueli in 1977 and has become widely
adopted for applications such as automata-theoretical model
checking (Vardi 1996; Rozier 2011; Latvala 2005), prop-
erty expression in formal verification (Grosse and Drech-
sler 2003; Kupferman 2006), and as a specification language
(Kim et al. 2019; Kasenberg and Scheutz 2017; Lemieux,
Park, and Beschastnikh 2015). Due to its powerful ability
to encode relationships between events in time, LTL repre-
sents an effective medium for describing system behaviour
in relation to the past, present, and future. LTL’s modali-
ties referring to time enable formulae to express concepts
such as possibility, necessity, and existence. The syntax of
LTL consists of two fundamental operators, ”next”(X) and
”until”(U). The first fundamental operator, X, is designed to
provide a constraint for the next period in time, where the
proposition Xϕ is defined to be true if in the next time pe-
riod ϕ is true. The second fundamental operator, U, is de-
signed to connect various fluents with each other, where the
proposition ϕ Uψ is defined to be true if ϕ remains true in
every state until ψ becomes true. Using these fundamental
operators, additional operators can also be created.

Template Meaning
global pi is true throughout the entire trace
eventual pi eventually occurs (may later become false)
stability pi eventually occurs and stays true forever
response If pi occurs, pj eventually follows
until pi has to be true until pj eventually becomes true
atmostonce Only one contiguous interval exists where pi is true
sometime before If pi occurs, pj occurred in the past

Table 1: The set of LTL templates embraced within
BayesLTL (Kim et al. 2019), adopted within our approach.
When multiple propositions are used in a template, the con-
dition is asserted for all propositions using conjunction. See
BayesLTL for formal LTL translations.

When evaluating the size |φ| of an LTL formula, we em-
brace Gaglione et al.’s definition, which counts the number
of unique subformulas contained within an expression. For
example, the size of φ = (p UXq) ∨ Xq is 5 because
the unique subformulas in φ are p, q, Xq, p UXq, and
(p UXq) ∨ Xq (Gaglione et al. 2021). Since we employ
BayesLTL (Kim et al. 2019) as a subprocess within our al-
gorithm, we embrace the same interpretable templates used
by Kim et al. in our research. These templates were selected
within BayesLTL due to their widespread use within soft-
ware verification systems; these templates can be viewed in
Table 1.

2.2 BayesLTL
Leveraging the strengths of LTL, BayesLTL (Kim et al.
2019) proposes a method to contrastively explain the dif-
ferences between two sets of plan traces using LTL spec-
ifications. BayesLTL approaches specification learning as a
Bayesian inference problem by building upon the fundamen-
tal Bayes theorem P (φ|X) = P (φ)P (X|φ)∑

φ∈Φ
P (φ)P (X|φ)

.

The goal of BayesLTL is to then infer φ∗ =
argmaxΦP (φ|X), where P (φ) represents the prior distri-
bution over the hypothesis space, and P (X|φ) is the prob-
ability of observing evidence (πA, πB), representing two
unique sets of traces, given LTL specification φ. A proba-
bilistic generative modelling approach is then used through
the development and implementation of a prior function, a
likelihood function, and a proposal function. BayesLTL’s
prior function is built to allow the system designer to in-
corporate their preferences. For example, the user might
choose to specify a preference for ”global” operators ver-
sus ”until” operators. According to the system designer’s
parameter configuration, the prior function chooses a LTL
template from a table of potential options (shown in Table
1) and decides upon the number of conjuncts and propo-
sition instantiations for the various conjuncts. The like-
lihood function asserts a contrast between the two sets
of traces. By assuming that individual traces within sets
are independent of each other, the likelihood of observ-
ing the input sets of traces within the satisfying (πA) and
non-satisfying (πB) sets can be calculated via P (X|φ) =∏πA

i=1 P (πi|φ)
∏πB

j=1 P (πj |φ). Satisfaction checks are then
conducted over all traces from both sets for the respective



LTL specifications, which also provides robustness for out-
liers and noise. Finally, BayesLTL’s proposal function ap-
proximates the true posterior and MAP estimates {φ∗} by
sampling from the true posterior distribution and applies a
Markov Chain Monte Carlo (MCMC) method to optimize
template and LTL selection. In coordination with each other,
these functions operate effectively together to generate rel-
evant and interesting LTL specifications and differentiate a
pair of trace sets.

While BayesLTL is highly effective at identifying accu-
rate and relevant contrastive explanations, the assertion of
contrast is limited to exactly two sets of traces. In considera-
tion of this limitation, our framework expands contrastive
analysis to allow k sets of traces to be evaluated. Addi-
tionally, BayesLTL requires input sets to be predefined and
labelled, which presents another challenge for applications
where associative groupings are unknown. To combat this
limitation, our approach allows k sets to be automatically
identified via our novel clustering procedure. By expand-
ing the scope of contrastive explanations and enabling auto-
matic identification of clusters, our framework leverages the
strengths of BayesLTL along with two novel contributions to
enhance the explainable power of contrastive explanations.

3 Problem Statement and Approach
3.1 Tree and Node Structure
Our proposed delineation tree consists of nodes and edges
that resemble a binary tree data structure. The primary at-
tribute that defines a given node is a set of internally stored
traces. Non-terminal nodes also possess an LTL formula that
is catered to their respective traces and designed for delin-
eation. By using a given node’s LTL specification, traces
within that node can be contrastively evaluated based on en-
tailment. This evaluation allows two new nodes to be cre-
ated, whereby traces are allocated into two subsets based on
whether the formula is satisfied by a given trace. These sub-
sets of traces are initialized as new nodes, and this novel pro-
cess is recursively implemented and repeated until a tree is
fully created. Once the tree generation process is complete,
the delineation of nodes can be analyzed as a collective or
in subsets of any size. By evaluating the shortest path be-
tween any pair of nodes, the conjugation of LTL along the
tree’s branches allows nodes to be accurately differentiated
and contrastively explained. These LTL specifications effec-
tively answer the question of what temporal property differ-
entiates a given set of traces from one or more other sets of
traces. See Figure 1 for a visual representation of this tree
structure.

3.2 Node Splitting Criteria
As the primary engine of tree generation, our approach re-
lies on a node splitting technique that is designed to effi-
ciently discover contrastively differentiating LTL specifica-
tions. Representing the primary sub-problem of cluster iden-
tification and delineation, the challenge of this step is to au-
tomatically discover LTL specifications that maximize in-
formation gain. Formally, we define information gain of a
specification φ, given node n, containing the set of traces π

as:

1−

∣∣∣∣∣∣{π : π |= φ, π ∈ πn}
∣∣− ∣∣{π : π ̸|= φ, π ∈ πn}

∣∣∣∣∣∣
|πn|

(1)
Specifications that demonstrate information gain of 1 are
considered perfect, while specifications with information
gain of 0 are ineffectual. By maximizing information gain,
we maximize the balance of the resulting decision tree, lead-
ing to an optimally efficient and concise data structure.

To discover specifications that maximize information
gain, our technique embraces the explanatory power of the
BayesLTL framework (Kim et al. 2019). Given the effec-
tiveness of BayesLTL to identify LTL specifications dif-
ferentiating two groups of traces, the tool can be used as
an instrument to assist in the discovery of relevant splits.
BayesLTL, however, requires positive and negative labels
for input traces. Therefore, given a single set of unlabelled
traces, the problem becomes identifying the optimal alloca-
tion of traces into positive and negative subsets (π+ and π−),
such that an LTL specification can be discovered that main-
tains balance post-evaluation of entailment. The quantity of
ways in which these two equally sized subsets can be created
intuitively leads to a combinatorial explosion. To combat the
complexity associated with this immense search space, we
employ both sampling and Monte Carlo search.

We first use random sampling without replacement to mit-
igate the complexity of each search step. This means that in-
stead of evaluating BayesLTL (Kim et al. 2019) on positive
and negative sets of size 1

2 |πn|, we reduce the contrastive
evaluation to input sets of size p

2 |πn|, where p represents
the size of the sample proportion from the parent set. We
demonstrate the representative abilities of varying sample
proportions, and allow this value to be adjusted as a param-
eter. By reducing search step complexity through our use of
sampling, search capacity is enhanced.

Algorithm 1: LTL Specification Search
Input: Parent set of traces πn
Parameters: Iteration limit max iter, Information gain
threshold τ , Sample proportion p
Output: LTL specification φbest

1: φbest ← None
2: for i = 0...max iter do
3: πsample ← random sample set of size p|πn| from πn
4: π+, π− ← random balanced split of πsample

5: for values of φ resulting from BayesLTL(π+, π−) do
6: if InfoGain(φ, πn) ≥ τ then
7: return φ
8: else if !φbest or InfoGain(φ, πn) >

InfoGain(φbest, πn) then
9: φbest ← φ

10: end if
11: end for
12: end for
13: return φbest



π0

π1 = {π : π ̸|=
φ0, π ∈ π0}

π2 = {π : π |=
φ0, π ∈ π0}

π3 = {π : π ̸|=
φ1, π ∈ π1}

π4 = {π : π |=
φ1, π ∈ π1}

π5 = {π : π ̸|=
φ2, π ∈ π2}

π6 = {π : π |=
φ2, π ∈ π2}

π7 =
{...}

π8 =
{...}

π9 =
{...}

π10 =
{...}

π11 =
{...}

π12 =
{...}

π13 =
{...}

π14 =
{...}

Figure 1: A visual representation of the binary tree structure used within our delineation process. Each node π represents a
collection of traces sorted by entailment for each formula φ down the tree.

Figure 2: Example of a Generated Tree from Blocksworld Domain

We iterate search according to a Monte Carlo approach,
which is procedurally shown in Algorithm 1. Our proposed
approach begins by sampling a subset of traces from the par-
ent set, as previously described. We then randomly split this
subset into two equally sized new subsets, labelling one pos-
itive and the other negative. Applying BayesLTL (Kim et al.
2019) to these positive and negatively labelled sets of traces,
we arrive at a list of contrastive explanations, which each
individually attempts to best describe the variation between
the two groups. Using this list of discovered LTL specifi-
cations, we score each formula on the information gain it
offers to the parent set of traces. If a given specification is
found to provide information gain that is either perfect or
is beyond a parameterized threshold, the specification is ac-
cepted and the splitting process is ceased for that node. Al-
ternatively, the specification offering the highest information
gain is compared with the previous best, and the better spec-
ification is retained. This entire process is repeated until a
parameter representing the maximum permitted quantity of
iterations is reached, and the best LTL formula is accepted.
This information gain-maximizing formula is then stored in
the parent node and used as a splitting mechanism to create
child nodes.

4 Evaluations and Results
4.1 Evaluation Dataset Derivation
To establish an evaluation dataset of discrete time-series
data, we embrace planning as an environment for testing. Six
benchmark domains were selected from International Plan-
ning Competition (Fox and Long 2003), and used in con-
junction with a diversity-bounded diverse planner (Katz and
Sohrabi 2020). Representing assortment in testing, these se-
lected domains include Blocksworld, Gripper, Rovers, Satel-

lite, TPP, and ZenoTravel. Additionally, within each domain,
three vocabulary sizes |V | in {10, 15, 20} were used. Given
these 18 unique configurations, 100 diverse plans were gen-
erated for each configuration using a stability similarity
threshold (Fox et al. 2006; Coman and Munoz-Avila 2011)
of 0.25, enforcing every possible pair of two plans to have a
maximum of 25% identical actions. By following this pro-
cess, we arrived at 18 unique datasets to probe various as-
pects of our methodology in testing.

Similar to Kim et al.’s evaluation of BayesLTL (Kim
et al. 2019), we also explored injection of LTL ground
truth into problem/domain PDDL files via LtlFond2Fond
(Camacho et al. 2017). However, this additional step was
deemed unnecessary for our purposes, since preliminary
results demonstrated an abundance of naturally balancing
partitions existing between diverse plans generated using
stability-similarity. Unlike BayesLTL where two sets of
traces are contrasted, our approach contrasts multiple sets
of traces, resulting in a greater quantity of available solu-
tions. Since several accurate ground truths exist within our
generated diverse plans, the expectation for any specific pre-
determined solution to be found is typically unreasonable.

4.2 General Effectiveness of Tree Generation
Since our approach merely represents an introduction to the
solution of this problem, functional testing is beyond the
scope of this paper. We, therefore, leave functional testing
to future work and instead focus our evaluation on the inner
mechanics and properties of our proposed solution. Addi-
tionally, since we are the first to expand contrastive explana-
tions to k automatically identified groups, there is no exist-
ing benchmark for us to relatively measure our success. We
must therefore rely on internal metrics to assess the strength



Domain
(100 Traces) |V |

Average Depth
(20 Trees)

Average Info Gain
(20 Trees), (|π| ≥ 10)

Med Mean Med Mean

Blocks
10 6.299 6.308 0.505 0.501
15 6.372 6.404 0.388 0.380
20 6.219 6.202 0.128 0.135

Gripper
10 5.789 5.792 0.860 0.867
15 5.995 6.009 0.729 0.726
20 6.382 6.381 0.622 0.618

Rovers
10 5.836 5.821 0.788 0.783
15 5.942 5.944 0.873 0.876
20 5.783 5.776 0.879 0.880

Satellite
10 5.789 5.788 0.911 0.921
15 5.810 5.811 0.844 0.847
20 5.783 5.797 0.879 0.873

TPP
10 5.779 5.784 0.897 0.898
15 5.789 5.787 0.891 0.893
20 5.799 5.796 0.888 0.893

Zeno-
Travel

10 5.779 5.781 0.898 0.899
15 5.784 5.784 0.897 0.895
20 5.779 5.779 0.899 0.895

Table 2: Performance results of 20 test cases for each of the
listed domains and vocabulary sizes |V |. Trees were gener-
ated using a sample proportion of 40%, an information gain
threshold of 80%, and a maximum of 10 iterations, isolating
all unique traces as leaves. Each row reports the median and
mean of average node depth and average information gain
from the 20 samples of each respective domain/vocabulary
configuration. For reference, a perfect tree initialized with
100 traces and possessing maximal information gain at ev-
ery node, would have an average node depth of 5.759.

of our approach.
To evaluate the effectiveness and applicability of our de-

lineation process, we analyze our approach’s adaptability
and scalability potential. To assess these attributes, we gen-
erated 20 trees for each domain/vocabulary size configura-
tion in our evaluation dataset. An example of one of these
trees can be viewed in Figure 2, where we display four lev-
els of a contrastive explanation tree derived from the blocks
domain with a vocabulary size of 10. Post-generation, we
then judged the strength of the discovered trees according to
balance and information gain metrics. Balance, which repre-
sents the efficiency of our process to organize and differen-
tiate traces, was calculated using average node depth. Since
high quality specifications minimize the number of splits re-
quired to isolate traces, smaller values of average depth are
desirable, as they are indicative of higher quality specifica-
tions. When analyzing average depth of trees, it is impor-
tant to note they can both only be evaluated in contrast to
trees with identical quantities of root traces, as is the case
within our presented experiment. Alternatively, the balance
can also be evaluated as a ratio of log2(n), where n rep-
resents the total quantity of nodes in a tree, releasing the
measurement from its context dependency, but the resulting
value is less intuitive to comprehend. We calculated infor-
mation gain according to Formula 1 for all nodes containing
at least 10 traces in each tree, then averaged these values for
each individual tree, presenting the median tree. The mini-
mum node size of 10 traces was selected as a filter for our

Domain
(100 Traces) |V |

Average LTL Size
(20 Trees), (|π| ≥ 10)

Min Med Max σ

Blocks
10 6.905 7.841 8.857 0.626
15 4.381 5.390 6.947 0.676
20 3.600 4.667 5.733 0.562

Gripper
10 5.357 6.942 8.357 0.765
15 6.933 8.036 9.063 0.742
20 7.125 8.092 10.222 0.744

Rovers
10 5.824 7.129 10.467 1.081
15 7.071 8.171 10.467 1.083
20 5.400 8.157 10.800 1.231

Satellite
10 6.266 7.633 10.231 1.104
15 4.643 6.829 8.692 0.712
20 5.214 6.379 8.067 1.009

TPP
10 6.423 8.100 10.307 1.104
15 4.643 7.031 11.214 1.601
20 5.214 6.893 9.286 0.935

Zeno-
Travel

10 5.857 9.033 11.400 1.407
15 6.308 8.136 10.357 1.180
20 4.923 7.833 9.786 1.085

Table 3: Analysis of LTL specification size |φ| distribution
within the test cases established in Table 2. LTL size is mea-
sured according to the quantity of unique subformulas, as
defined by Gaglione et al.. Each row reports the minimum,
median, maximum, and standard deviation of average |φ|
within the 20 sample trees of each respective domain/vocab-
ulary configuration, where robust fit is apparent.

analysis of information gain as averages should not be over-
shadowed and overstated by including easier splits of less
relevant nodes. By generating and evaluating several trees
of diverse configurations, the resilience of our algorithm to
identify high-quality specifications was demonstrated.

Table 2 summarizes the characteristics of the resulting
trees generated to evaluate the efficacy of our approach.
From the recorded measurements, it is clear that our al-
gorithm is capable of discovering and differentiating clus-
ters existing within a variety of unique domains associated
with diverse vocabulary sizes. In analyzing the median in-
formation gain of our evaluation trees, we observe little im-
pediment associated with higher-complexity problems. This
is also shown to translate successfully to median average
depth, where measures appear similarly small across all do-
mains and vocabulary sizes. These observations effectively
demonstrate our algorithm’s ability to cluster and delineate
traces in an efficient manner.

4.3 Analysis of Discovered Specifications
Since the interestingness of a given specification is relative
to unique problems, interestingness is not something that can
be quantitatively evaluated or generalized. However, since
we rely on the BayesLTL framework (Kim et al. 2019) as a
subprocess in our LTL discovery method, we can also rely



Domain LTL Specification (φ) Size (|φ|)
Blocks atmostonce: ((clear object i)), ((on object a object d)), ((on object j object b)) 19

Gripper eventual: ((carry object ball16 object right)), ((carry object ball19 object left)),
((carry object ball21 object right)), ((carry object ball4 object left)) 9

Rovers atmostonce: ((calibrated camera camera2 rover rover1)),
((calibrated camera camera5 rover rover3)) 13

Satellite sometime before: ((have image object star15 object spectrograph1),
(pointing object satellite4 object phenomenon8)) 5

TPP eventual: ((loaded goods goods5 truck truck2 level level1)) 2

Zeno-
Travel

eventual: ((at object person3 object city4)), ((fuel-level object plane1 object fl1)),
((in object person8 object plane2)) 7

Table 4: Examples of LTL specifications discovered within trees of our six evaluation domains, along with their respective
measurements of size. See Table 1 for descriptions of templates. We measure LTL size according to the number of unique
subformulas within a given expression, as defined by Gaglione et al..

on the success that BayesLTL presents in discovering rele-
vant specifications based on the preferences of the user.

Quantitatively though, it has been shown that our algo-
rithm is capable of identifying high-information gain LTL
specifications to establish minimal-depth trees; however, a
more extensive analysis of those specifications is necessary
to rule out unintended behaviour. For instance, it would
likely be problematic if only large specifications were iden-
tified because this would be indicative of overfitting, miti-
gating the usefulness of discovered formulae. To investigate
the quality tendency of discovered specifications, we eval-
uate the size of the specifications within our sample trees;
we measure the size according to the number of unique sub-
formulas within a given expression, as defined by Gaglione
et al..

In Table 3 we present the resulting size measure-
ments of specifications within our 20 evaluation trees for
each domain/vocabulary configuration. These values posi-
tively demonstrate our algorithm’s ability to identify low-
complexity formulas corresponding with a robust fit for each
configuration within our test data. To provide a clear under-
standing of the LTL specifications our process discovers, we
present example formulas in Table 4 along with their respec-
tive sizes. Another insightful finding in these measurements
is the tendency of LTL size to negatively correlate with vo-
cabulary size in most domains. This trend is likely due to the
idea that higher complexity domains have greater quantities
of natural ground truth to be found, which eases discovery.

4.4 Node Size Versus Splitting Time
Since our Monte Carlo node-splitting technique with ran-
domized balanced subsets of traces represents the primary
sub-process behind our delineation method, the execution
time performance of this step, with respect to the quantity
of analyzed traces, was of interest. We expected the execu-
tion time required to split a single node of traces to increase
with the quantity of input traces; however, the rate of growth
defining this relationship was unknown. To approximate this

Figure 3: The average execution time of splitting a node
π of randomly sampled traces with respect to the quan-
tity of traces |φ| over 10 splits for each value of |φ| in
{10n : n ∈ Z+, n < 11}. Since scales of execution time
differ relative to each domain, normalization is conducted
via xi−min(x)

max(x)−min(x) for plotting purposes.

rate of growth, we conducted 10 splits for each size |φ| in
{10n : n ∈ Z+, n < 11} of randomly sampled subsets of
traces, measuring the execution time of each split. By plot-
ting these data points for each domain, the relationship be-
tween node size and splitting time can be visualized.

In Figure 3, we observe a near-linear relationship between
node size and splitting time within all six of the explored do-
mains. This relationship emphasizes the importance of our
sampling step since the time complexity of a single split ap-
pears to grow continuously large.

4.5 Probability Distribution of Information Gain
with Respect to Sample Size

Given a randomly sampled subset of traces of a larger set,
it is of interest to derive the probability distribution of in-



Information Gain Information Gain Information Gain

Figure 4: Kernel density estimation (KDE) plots of information gain with respect to sample proportion used when approximating
split. Each subplot shows the KDEs of 100 single-split iterations for each sample proportion in {0.02, 0.05, 0.1, 0.4, 0.7, 1}.

formation gain. Intuitively, larger sample sizes should have
stronger representative abilities; however, since runtime is
dependent upon the size of the input set, accepting lesser
probabilities may be of better utility. We estimated this dis-
tribution by running 100 splits of sample proportions in
{0.02, 0.05, 0.1, 0.4, 0.7, 1} for each domain and analyzing
the resulting information gain.

As seen in Figure 4, sampling was shown to be highly
effective and proved capable of representing the population
distributions. Within all six of the evaluated domains and
across each of the tested sample proportions, significant den-
sity was observed in the upper range of the information gain
spectrum. As would be expected, higher sample proportions
tended to provide greater representative ability; however, the
size of this effect was interestingly small-scale. Within some
domains, such as Satellite and TPP, we observe sampling ef-
fectiveness with sampling sizes as small as 2%; within all
domains, however, we observe effectiveness with samples
as small as 10%. This tiny performance cost of using small
sample sizes represents a strong opportunity for runtime sav-
ings within complex domains.

4.6 Specification Exploration Time Utility
When searching for an LTL specification to split a given set
of traces, the number of exploration iterations permitted will
impact the information gain of the resulting split. Since iter-
ations represent opportunities for better specifications to be
found, the number of iterations should negatively correlate
with the resulting information gain. The rate at which infor-
mation gain is improved per iteration is of interest because
iterations come at a cost of execution time. To investigate
this tradeoff, we conducted 20 splits for each iteration limit
value in {5i : i ∈ Z+, i < 11} for each evaluation domain,
recording execution times and discovered LTL. By analyz-

ing the average information gain and average execution time
of these splits with respect to the iteration limit used for each
domain, the curve of this relationship can be approximated.

When increasing specification search iterations, we ob-
serve performance improvements through measurements of
information gain across all six evaluation domains. How-
ever, with marginal increases, the size of observed infor-
mation gain improvement tends to decrease. This trend of
diminishing marginal benefit of search iterations persists
across all experimented values of permitted iterations, while
search time appears to increase near-linearly. This means
that although the cost of search time increases at a constant
rate, the marginal value received by incurring this cost de-
creases with higher values of the parameter. This curve of
diminishing marginal value can be seen in Figure 5. This
trend can likely be attributed to the idea that specifications
satisfying the information gain threshold do not always ex-
ist, or, for a variety of reasons, may be less conducive to
being found. Since our algorithm’s precondition for early
stopping is achieving a minimum score of information gain,
if this milestone is impossible to reach, all iterations will
still be conducted, even if a globally optimal specification
has already been found.

4.7 Future Work
With complexity mitigation in mind, extensions focused on
improving algorithmic efficiency represent the greatest po-
tential for future work. One way this could be achieved
is through an improved splitting policy, such as allowing
marginal information gain to inform the number of itera-
tions. Another avenue, which we initially investigated, is a
process whereby splitting criteria could be intelligently iden-
tified via the analysis of previous splitting attempts. In this
revised procedure, when a discovered specification fails to



Figure 5: The average information gain and average execution time with respect to permitted maximum quantity of iterations
over 20 sample splits for each test value and evaluation domain. Splits were conducted using a sample proportion of 10% with
an information gain threshold of 100% to ensure maximal performance potential.

meet the information gain threshold, we do not resample π+
and π− from πparent. Instead, we reestablish π+ and π− as
the subsets of traces that satisfy and dissatisfy φ, respect-
fully. We then rebalance π+ and π− by randomly drawing
traces from the majority set and inserting them into the mi-
nority set. The hope of this revised strategy was that the sizes
of these subsets would converge over iterations, leading to
the desired information gain specified by the threshold.

However, when testing this revised process to split nodes
of traces, we observed identical formulas being discovered
repeatedly until the maximum iterations were reached. We
observed this same pattern across all six of our evaluation
domains, indicating a lack of success for this specific pro-
cedure. With no variety in the formulas being discovered,
our revised algorithm failed to learn, meaning the resulting
information gain was equal to that of the first identified for-
mula. While this observed failure to learn rejects the pro-
posed method as a viable alternative, it is possible that the
approach could be adapted and improved to make learning
feasible. From our experiment, we can deduce that in order
for an intelligent-splitting algorithm to be successful, it is
likely that greater freedom from the initial random alloca-
tion of traces is necessary. This could perhaps take the form
of randomized resets or other statistical methods to intro-
duce variance; we identify this side of our research to be the
area with the greatest potential for future work.

5 Related Work
As an alternative to traditional planning research, which
seeks to investigate the process of identifying optimal plans
from problems, the area of plan explanation seeks to iden-
tify and describe characteristics of problems from plans.
Through the analysis of observed behaviour, the goal of plan
explanation is to use abductive reasoning to infer reason-
ing behind observed actions to better understand why cer-
tain events occur. To rationalize observed actions, plan ex-
planation research focuses on automatically learning tempo-
ral properties that allow system behaviour to be modelled,
understood, and predicted.

Plan explanations have been relevant in goal recognition
settings, where they have been used as a means to infer la-
tent goal states from incomplete observations (Ramı́rez and
Geffner 2010; Sohrabi, Riabov, and Udrea 2016), and ex-
plicable planning research has embraced plan explanations
to synthesize plans that are self-explanatory for a human’s
mental model (Zhang et al. 2017). Research focused on sys-
tem diagnosis has also incorporated plan explanations to
explain failures (Göbelbecker et al. 2010; McIlraith 1999).
While each of these works focuses on identifying accurate
specifications to explain plans, they focus on describing a
single set of traces. Our approach, on the other hand, is de-
signed to contrast multiple sets of traces and characterize
behavioural differences.

Prior works on contrastive explanations have elevated the
plan explanation problem to describe temporal differences
between two sets of plan traces. Approaches to contrastive
explanations have adopted SAT-based methods (Neider and
Gavran 2018; Camacho and McIlraith 2021; Gaglione et al.
2021), in addition to Bayesian inference, as in the BayesLTL
framework (Kim et al. 2019). Our approach embraces the
Bayesian inference strategy, using BayesLTL as a subpro-
cess. However, instead of limiting the assertion of contrast to
two sets of plan traces, we evaluate contrast amongst k-sets.
Our approach also clusters input traces to establish suitable
contrastive sets automatically, as opposed to prior works,
which require contrastive sets to be predefined by the user.

Leveraging decision tree learning algorithms to infer tem-
poral logic formulas is an area that has also been previously
explored (Bombara et al. 2016; Brunello, Sciavicco, and
Stan 2019; Gaglione et al. 2021). As the most relevant ap-
proach in this space, Gaglione et al. use decision tree learn-
ing in their Algorithm 2 to discover contrastive LTL speci-
fications between two sets of plan traces. Similarly, our ap-
proach adopts a decision tree learning method for contrastive
explanations; however, our tree’s structure is also designed
to hold sets of traces in nodes, rather than only representing
formulas. We use decision tree learning for cluster discov-
ery, where we construct formulas simultaneously.



6 Concluding Remarks
The challenge of inferring temporal logic specifications to
cluster and delineate plan traces is relevant to a wide ar-
ray of planning applications. In this work, we reimagined
the trace clustering and delineation challenge by proposing
a novel tree generation technique which allows k clusters to
be automatically discovered and described. By embracing a
Monte Carlo node-splitting approach, our algorithm seeks
balance to contrastively divide any given set of plan traces
into two sets with an accompanying temporal logic specifi-
cation satisfying one of the sets. Recursing this procedure,
we demonstrate the effectiveness of our approach to clus-
ter and delineate plan traces from our evaluation dataset of
benchmark domains, allowing temporal logic specifications
to evoke insight at each level of the resulting decision tree.
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