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Abstract: Knowledge and skills can transfer from human teachers to human stu-
dents. However, such direct transfer is often not scalable for physical tasks, as they
require one-to-one interaction, and human teachers are not available in sufficient
numbers. Machine learning enables robots to become experts and play the role
of teachers to help in this situation. In this work, we formalize cooperative robot
teaching as a Markov game, consisting of four key elements: the target task, the
student model, the teacher model, and the interactive teaching-learning process.
Under a moderate assumption, the Markov game reduces to a partially observable
Markov decision process, with an efficient approximate solution. We illustrate our
approach on two cooperative tasks, one in a simulated video game and one with a
real robot.
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1 Introduction

How do we teach humans to re-orientate a table jointly or play tennis? Humans often learn by
practicing the skills with teachers or partners [1, 2, 3]. This mode of learning is, however, difficult to
scale up, as it requires one-to-one interaction and there are not sufficient human teachers [4]. With
advances in machine learning, robots can not only master complex tasks [5, 6, 7] but also collaborate
with humans and adapt to human behaviors [8, 9, 10]. In this work, we aim to create robot teachers
for physical tasks, thus scaling up teaching and providing learning opportunities to many even when
human teachers are not available.

Specifically, we propose Cooperative rObot teACHing (COACH), a robot teaching framework to
teach humans cooperative skills for two-player physical tasks through interaction. We assume the
robot teacher has full knowledge of the task, specifically, a set of optimal policies. The objective is to
teach the student an optimal policy as fast as possible. See Fig. 1 for an illustration. COACH treats
the teaching task as a two-player Markov game for a farget task. One player is the robot teacher,
and the other is the human student. Under a suitable student learning model, COACH transforms the
game into a partially observable Markov decision process (POMDP). The POMDP solution enables
the robot teacher to adapt to the different behaviors, according to the history of interactions.

One key challenge of COACH is to represent the student’s knowledge of the target skills and learn-
ing behaviors. First, we leverage item response theory (IRT), a well-established framework for
educational assessment [11]. IRT provides simplified parametric models that capture the student’s
knowledge level with respect to the task difficulty in a small number of parameters. COACH treats
these parameters as latent variables in the teaching POMDP and learns them from human-robot in-
teraction data by solving the POMDP. Next, to teach complex skills, we draw insights from student-
centered learning [12] and human-robot cross-training [13]. We decompose a complex target skill
into a set of sub-skills, based on the student’s potential roles in the target task. With this compact,
decomposed skill representation, we naturally obtain a partially assistive robot teaching curriculum
to facilitate learning: the human student learns the sub-skills one at a time, and the robot teacher
assists with the sub-skills not yet learned, to complete the target task. While the robot assists the
human in the teaching task, its behavior differs from those in common collaborative human-robot
interaction tasks [14, 15]. There, the primary objective is to complete the task, and the robot is fully
assistive: if the human does not perform, the robot then tries to complete the task on its own, if
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Figure 1. Cooperative robot teaching. In the target task (left), two human players jointly reorient a table,
for example. In the corresponding teaching task (right), the robot teacher interacts with the human student
and teaches cooperative skills so that the student learns to cooperate with partners with varying capabilities or
preferences in the target task.

possible. In the teaching task, the robot is partially assistive and usually avoids assisting with the
specific sub-skill to be learned, in order to encourage student exploration and learning.

As a first attempt, we conducted human-subject experiments on two challenging human-robot col-
laboration tasks, Overcooked-Al and Cooperative Ball Maze ( Fig. 2). Our results show that COACH
enables the robot teacher to model and reason over adaptive human students in cooperative teaching.
Also, a fully-assistive teacher may impede student learning, and a partially assistive teacher indeed
motivates the student to explore new strategies.

2 Related Work

Assistance in HRI. One major aspect of HRI is how the robot could assist humans with a hidden
human objective [14, 15]. The objective of the robot is to infer the human’s intention and learns
to assist the human. In its simplest form, the action selection and human intention inference are
separated [16, 17, 18]. A decision-theoretic framework, assistant POMDP, is developed to capture
the general notion of assistance in HRI [19]. The robot integrates the reward learning and control
modules to perform sophisticated reasoning over human feedback [20, 21]. However, these two
approaches neglect human learning/adaptation and may hinder humans from improving their skills.
Our work focuses on how to generate behaviors that facilitate human learning during interactions.
Collaboration in HRI. Another important aspect of HRI is to model interactions as the collabo-
ration between the human and the robot [22], for which the human and the robot share the same
objective. However, the joint optimal policy, e.g. rotating the table counter-clockwise, is unknown
to both agents in the first place. Their interaction is mutually adaptative [23, 24, 25]. Particularly, as
pointed out in [10], if one side is only aware of partial information about the task, the optimal policy
pair naturally induces the behavior of active teaching, active learning, and efficient communication
between the robot and human. In this work, we focus on the following setting: given that the robot
teacher knows the optimal policy, how to carry out active teaching.

Teaching Algorithm for Algorithms. Teaching for algorithms aims to facilitate the learning of
the algorithm by choosing or generating training samples. Various teaching techniques including
curriculum learning [26] and machine teaching [27, 28, 29, 30, 31] have been effectively applied
to supervised learning and semi-supervised learning problems. Similar ideas are further extended
to train reinforcement learning agents to learn complex skills, e.g., generate training environment
for reinforcement learning [32, 33, 34], choose various demonstrations [35] or learn to decompose
the skill [36, 37]. Teaching in cooperative multi-agent RL allows agents to simultaneously become
teachers and students for each other [3, 38, 39]. However, such approaches generally require rel-
atively more data for training and to some extent the controlled learning behavior of the learner.
Transfer of these approaches to human learning is promising but difficult.

Teaching Algorithm for Human. Despite the aforementioned practical challenges, some algo-
rithms have been successfully deployed for human learning. Attempts on teaching the crowd on
classification or concepts prove to be successful [40, 41, 42, 43, 44]. While humans can learn con-
cepts from visual or verbal examples, complex skills like motor control skills can hardly be mastered
through these signals. Recently, skill discovery techniques in reinforcement learning have been in-



troduced to generate a curriculum based on skill decomposition and facilitate humans to learn motor
control skills [45]. It focuses on how to adaptively decompose the skill into learnable sub-skills for a
human to practice on its own and achieves promising results. Here, we seek to automate the teaching
process for humans to cooperate in a physical task and provide a framework for this teaching mode,
e.g., table co-reorientation.

3 Cooperative Robot Teaching

We identify four key elements in COACH: (1) the target task, (2) the student learning model, (3) the
teacher model, and (4) the interactive teaching-learning process.

Target task. In this work, we focus on teaching in a two-player cooperative task, which we call it
the target task.

Definition 1 . The target task is a two-player cooperative Markov game M = (S, A*, A%, T, R, )
between two agents, 1 and 2, where

S is a set of target task states;
Al is a set of actions for agent 1;
A2 is a set of actions for agent 2;
T(s'|s,a',a?) is a conditional probability function on the next target task state s' € S,
given the current state s € S and both agents’ actions a* € A' and a® € A?;
o R(s, a',a?) is a target task reward function that maps the target task state and players’
actions to a real number,
e v is a discount factor.

At each step ¢, agent 1 and 2 both observe the current task state s; and select their respective actions
at ~ 7t and a? ~ 72, where 7’ the policy of agent i for i = 1, 2. They then receive a joint reward

r¢ = R(s¢,a},a?). The next state is updated as s; 41 ~ T(s¢y1 | 5¢,at,a?).

Given the definition of the target task, we first answer how to represent the knowledge/skills. In this
work, we choose to represent a skill by the optimal policy ¢* to the target task. The optimal policy
maximizes the expected cumulative reward when the agent is cooperating with a given partner. For
example, in the table co-reorientation task, the agent needs to learn to deal with either stubborn or
adaptive partners. We recognize that there are other ways to represent knowledge/skills, such as
a set of demonstrations and the ground-truth reward function. However, such representations are
indirectly linked with the skill’s performance; therefore, evaluating its proficiency is more obscured.
We choose the optimal policy as the representation since it can be directly optimized over and
evaluated.

Student. The student policy is non-stationary since it will improve along with teaching. We model
this evolutionary behavior with a tuple of student policy and an updating function (¢, U). The
student policy represents the student knowledge state. It will take in the current target task state s as
input and output the student’s action. The updating function U models how the student changes its
policy after each teaching step.

Teacher. We define the teacher as a knowledgeable agent (expert) who knows a set of optimal
policies ®* for a target task. The teacher aims to acquire a teaching policy 7" that can teach any
¢; € ®* to the student effectively. In this general setting, the choice of the optimal student policy
¢* depends on the capability, preference, and current knowledge level of the student. A principled
approach to selecting the optimal student policy needs to consider the student’s preference, his/her
update model for the knowledge level, and an estimate of his/her current capability. In this paper,
we assume that we have an oracle to choose the optimal student policy ¢* € ®* to teach, such that
this policy ¢* matches the preference of the student. The teacher can be described by a tuple of an
optimal target task policy and the corresponding teaching policy, (¢*, 7).

Interactive teaching-learning. We now refer to the robot as the teacher and the human as the
student. In the target task, the teacher knows the target task’s optimal policy ¢* while the student
does not. The teacher’s goal is to act in the most informative way so that the student learns ¢* fastest.
The choice of ¢* should account for the student’s preferences. To embed the objective of teaching
and distinguish it from the Target Task, we define it as the Teaching Task in the following way:



Definition 2 . Given a target task M = (S, A', A%, T, R,~), a student (¢,U), and an optimal
policy ¢* for the target task, the teaching task is a POMDP M’ = (S, A,T,0,Z, R,7) for the
teacher, where

o S is a set of teaching states: 5 = (s, ¢), for target task state s € S and student policy ¢;

o Aisaset of actions: A= A' U A% -

e T'(§|3,a) is a conditional probability function on the next state 5' € S, given the current
state 5 € S and teacher’s action a € A;

o O is a set of observations: 0 = (s, ), for target task state s € S and target task reward r;

e Z(0]|a,5) is a conditional probability function on the observation 6 € O, given teacher’s
action & € A and current state 5 € S; ~

e R(5,a,§) is a teaching reward function that maps current state 5 € S, teacher’s action
a € A, and next state ' € S to a real number measuring the effectiveness of teaching;

e 7 is a discount factor.

The objective of the teaching task is to derive a teaching policy 7™, enabling students to learn ¢* for
the target task fastest. More specifically, the teacher can influence the student through interactive
actions a € A. Given the student policy ¢ and the update function U, the student would learn
through interaction: ¢y11 = U(¢y, ). The goal of the teaching task is to find a teaching policy 7"
that allows ¢y — @™ as fast as possible.

Next, we introduce our choice of the teaching policy 7", the update function U, and the reward
function R. To devise a student-aware teaching strategy, apart from the current state s; and the
target policy ¢*, our 7" also takes the history of observation as input. The history of observation
is hy = [(s0,70), -+, (8, 7¢)]. The action of the teacher can be sampled from the policy, i.e., a; ~
7T (@t | he1,St,®*). The student updates ¢ with any arbitrary iterative functions conditioned on
the history of interactions: ¢¢11 = U(¢¢, hi). Moreover, to incentivize the teacher to speed up the
teaching process, we introduce a step-wise teaching cost to the teacher ¢; = C(sq, ;) to penalize
unnecessary teaching actions. To this end, we define the reward function as

R(gv &t7§/;D7C7 ¢*7w) = D(¢t,¢*) - D(¢t+17 ¢*) - WO(St,ZLt), (1)

where 5§ = (8¢, ¢¢), § = (S¢41,P1+1), w is the weighting factor to trade-off the teaching cost and
teaching efficiency, and D can be any reasonable distance measure between two policies, e.g., initial
state value in the target task. The solution to the POMDP M’ is a teaching policy 7™ that maximizes
the expected sum of rewards Eg, 7[> e 7 R(5, @, 5)].

4 Method

In this section, we prqv1de a solution that Algorithm 1 Approximated Solution to the Teaching
grounds all the ingredients in the concep- Task

tual framework of COACH. The main spirit
of our solution is to parameterize students’
knowledge state with IRT and decompose
complex tasks into a set of role-based inde-
pendent skills. This enables easier evalua-

Require: Maximum Interactions L, Predefined Inter-
actions N
for k € A do:
Randomly initialize A and o, 8, and X = {}
fori=1,2,...,N do:

tion of the students’ proficiencies and pro- en d%;dd(vi)
vides a ground to derive the partially assis- end for
tive interaction mode. To begin with, we fori=1,2,..., L do:
first define the action space, A. for k € A do:
Learn A and oy, 8 from X
end for

4.1 Actions k < Action selection from A and o, 8

. ) v; = Performance measure from interactions
The action space is constructed through : X.add(v;)

sub-skill decomposition.  Sub-skills de- 14: end for

composition is well-studied for single-

agent tasks [46, 47, 48]. However, extending the same idea to a multi-agent setting is still chal-
lenging since task completion relies on the interaction among multiple parties. We observe that in
a multi-agent game, the task naturally comprises several roles, of which each agent takes a subset.
The well-established leader-follower model is a particular choice of role-based skill decomposi-
tion [49, 50, 51, 52]. Therefore in our work, we propose to decompose skills based on role alloca-
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tion. We divide the skill into K independent teachable sub-skills according to the student’s potential
roles in the task. The teacher’s action space A = {k : k € Z, 0 < k < K} consists of teaching each
sub-skill. Such a decomposition of skills naturally leads to a partially assistive mode of interaction.

4.2 States

The state space is constructed with Item Response Theory (IRT) [11]. IRT provides a parametric
form to represent students’ skill levels. Given the limited interactions, we adopted the simplest
form, the one-parameter logistic model (1PL), to model human skills. In the 1PL model, each sub-
skill k € A is assigned a parameter 3* representing the difficulty, and a parameter o* called the
proficiency representing a student’s knowledge state. The probability that a student has mastered
sub-skill k is given by P(k) := o(a* — B¥), where o is the sigmoid function. Hence, instead of
representing the state with the student’s policy ¢, we use (a, 3)% to represent the hidden state. That
is, for 5 € 5,5 = (s, (a, B)), where (o, 3)¥ is hidden. For each student and each k € A, we
assume that « changes over time while 5 does not.

4.3 Transitions

The transition model consists of two main parts, the target task transition model 7', and the student’s
update function U. While the former one is known to the teacher, we need to make assumptions
about the latter one. Since we define the state space over the student’s proficiency « in Sec 4.2,
the transition model is also constructed over the proficiency. Following the previous work on online
estimation of student proficiency [53, 54], for each sub-skill, we model the student’s proficiencies
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interval and ) is a parameter controlling the “smoothness” with which student’s proficiency varies
over time. For each student and for each k£ € A, we assume A does not change over time and is
learned for each sub-skill respectively. To this end, we construct the transition model in the POMDP
as T = {T, U}, where T is the transition function in the target task.

over time as a Wiener process: U(ay1at|ay) = exp (— ) , where At refers to the step

4.4 Observations

The observation is composed of the target task state and the reward received, (s,r). Recall that
in Sec 4.1, we define the action as choosing one sub-skill to train the student, which is a macro-
action. For teaching sub-skill k, we redefine the observation as the ratio between the target task

~ S
rewards achieved by the student’s current and optimal policies: v := %, where a* is the

action generated by the optimal policy ¢* given the same the target task state s. Since all the sub-
skills are treated equally, we will omit the index k for simplicity in the following discussion. As
a result, for 0 € O, 6 = (s,v). Unlike the binary response in conventional knowledge tracing,
the response v we have is continuous and we assume the teacher will only teach one sub-skill at
a time. Thus, we use the continuous Bernoulli distribution to construct the observation model:
Z(v|P(k)) = P(k)"(1 — P(k))'~", where k is the sub-skill being taught when v is observed. As a
result, the observation model can be defined as Z = {I, Z}, where [ is an identity mapping for the
observable target task state, I(s) = s.

4.5 Reward

The distance between the student’s policy and the optimal policy can be represented using P (k). We
represent the distance as the average of one minus master probabilities of each sub-skill: D(¢, ¢*) =

K
M. There are other ways to specify the goal according to the decomposition of the skill,
e.g. weakest or multiply [55]. We choose the sum due to our independence assumption on sub-
skills. In this work, we assume the cost is uniform, thus, given a finite horizon of interactions,
maximizing the reward function defined in Equation (1) is equivalent to maximizing R(3, @, ') =

Zico P (M=) where P (k) = o(ak — B%).




4.6 Model Learning and Decision Making

We use the student’s performance during the interactions to estimate both A\ and a;, 8. Parameters
for each sub-skill are learned separately, thus, we omit k for simplicity. Let v;.; denote sequences
of student’s performance measure against the optimal policy up to step t. We have the posterior
P\ ay, Blure) o< P(v1.t|A, ay, B)P(X, i, 3). The conditional probability of the observation and
current proficiency can be obtained by integrating out all the previous proficiencies. The likelihood
can be approximated through P(v1.¢|\, oy, ) =~ Hi/:l J P(vy| M\ awr, B)U (| )dayy. An ap-
proximation of the log posterior over the student’s current proficiency given previous responses can
be derived to learn the parameters A and «y, /3. Following [53, 54], we employ maximum a posteri-
ori estimation (MAP) to learn these parameters. Given the estimation of current state using the past
history, we use one-step look-ahead to reduce the impact of the inaccuracy in the transition function.
At timestep t, the teacher’s action is given as

Qg1 = arg rqax/ Ul |af) P (k) daf,, — Pi(k). 2
keA

In practice, the student is asked to perform on each sub-skill for a few interactions to initialize the
parameters.

4.7 Training on Sub-skills

Our overall strategy for training students on each sub-skill is to diversify scenarios the student would
encounter during training. Training students on sub-skills naturally leads to a partially assistive
partner on unlearned sub-skills, which allows the student to explore the sub-skill freely. We adopt
an intuitive assumption: an agent learns cooperation better with a diverse group of partners. Such a
teaching strategy is effective when dealing with synthetic students [56, 57]. The student could learn
from a diverse set of partially assistive partners or learn to cope with them by acquiring new skills.

S Experiments

We carried out two human-subject experiments to demonstrate how COACH works, one in simu-
lation (Overcooked-Al [58]) and the other with a real robot (Cooperative Ball Maze). Experiment
setups are shown in Figure 2. We investigated the teaching performances of three types of teachers:
the fully-assistive teacher who performs optimally concerning the student’s initial capability, the
student-aware teacher who behaves according to our teaching strategy, and the random teacher.
The random teacher in the Cooperative Ball Maze experiment chooses sub-skills randomly, while
the random teacher in the Overcooked-Al experiment executes actions randomly.

5.1 Setups

Overcooked-Al. Overcooked-Al is a benchmark environment for fully cooperative human-AlI task
performance and has become a well-established domain for studying coordination [59, 60, 61, 62].
The goal of the game is to cook and deliver as much soup as possible in a limited time.
We decompose the policy into two sub-skills:
putting ingredients in the pot and delivering
the soup. To put ingredients in the pot, there
exists one efficient strategy to pass the in-
gredient through the middle table. In brief,
rather than picking up one onion at a time
and putting them into the pot, the efficient
strategy is 1) put multiple onions on the mid-
dle table; 2) go to the pot; 3) pick up onions Figure 2. Experimgnt setups. (a) Overcooked-Al lay-
from the middle table; 4) put them into the out: human partlc“lpants”control the “chef” and the
pot. The overall idea is to reduce the num- robot con.trols the “robot : (b) T_he re_:al robot.setup of
ber of movements needed to deliver the same Cooperative Ball Maze with a simplified setting.

amount of ingredients. We recruited V=20 (8 females and 12 males) participants and randomly
assigned them into three groups, each with a different teaching strategy. Students are trained with
different teachers and are evaluated with a common unseen partner. We emulate the human partner
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Figure 3. Results of the Overcooked-Al experiment. (a) Rewards achieved together by the human-robot
pairs during training and evaluation. The error bars correspond to the 95% confidence intervals (95%CI).
The student-aware teacher outperformed the fully assistive and the random teachers in terms of the evaluation
reward (with one-sided p-values 0.001 and 0.03). (b) Percentage of students who found the efficient strat-
egy. None of the students are aware of this strategy at the beginning of the training. (c) Percentage of reward
achieved by the human participants during training.
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Figure 4. Results of the Cooperative Ball Maze experiment. (a) Evaluation of performances of the two sub-
skills of all participants. The marker styles correspond to the sub-skill preferences of the participants. (b)
Evaluation performances. The error bars correspond to the 95%ClIs. (c) Improvements after 20 interactions.
The error bars correspond to the 95%CIs. The students improve more under student-aware teachers than both
fully-assistive and random teachers (with one-sided p-values 0.069 and 0.039).

in evaluation using a trained model. Each participant was trained for 5 games and then evaluated for
1 game.

Cooperative Ball Maze. The Cooperative Ball Maze game requires coordination from both the
robot and the human. Each party will hold one side of the maze board and tilt it to move the ball out
from one of the two exits. We define two sub-skills leading the rotation and following the rotation.
We recruited N=21 (10 females and 11 males) participants to carry out human-subject experiments.
The participants were first evaluated in the two sub-skills, then trained for 20 interactions, and finally
evaluated in the two sub-skills again. Details can be found in the supplementary materials.

5.2 Results

A fully-assistive teacher impedes human’s acquisition of skills. In the Overcooked-Al experiment
shown in Figure 3(a), we observe that the students trained with a fully-assistive teacher perform
worse than the students with a random teacher: it seems that a student becomes “lazy” and free rides
the teacher when the teacher unilaterally adapts to the student and performs optimally. We further
investigate the learning pattern of the “lazy student” problem and find out that this “laziness” does
not lie in the student’s reluctance to take actions, but rather in the lack of motivation to explore and
improve. In Figure 3(c), we show the percentage of reward achieved by the student in Overcooked-
Al during training. Compared with the student-aware counterpart, the percentage of reward achieved
by humans is similar. However, only 17% of the participants of the group find out the efficient
strategy (Figure 3(b)), which is crucial to achieving high scores in the evaluation.

Partially assistive or random partner motivates students to explore new strategies. By leaving
some/all work to the student, partially assistive and random teachers both motivate the student to
acquire new skills. This is shown in Figure 3(b) that most of the students under these two teachers
can find out the efficient strategy in Overcooked-Al. However, their performance and the robustness
of the learned strategies differ significantly. Though multiple explanations could account for it, we
hypothesize the student under the random teacher learns a single fixed strategy to finish the task
alone (Figure 3(c)). Such a strategy that completes the task alone cannot utilize the possibly helpful
inputs from the partner, therefore resulting in a poorer performance score.



An individualized curriculum should be designed for the student. In the post-experiment survey of
Cooperative Ball Maze, we asked the participants “which mode of the robot is easier to cooperate
with?”. Out of the 21 participants, 4 participants preferred to follow the robot and 17 participants
preferred to lead the robot. Moreover, as we evaluated the student performance with partners of
different sub-skills, we found that the student performances were consistent with their declared
preferences (Figure 4(a)). That is to say, the student may have a bias over which strategy to ac-
quire, and tailoring the teaching curriculum to focus on that specific strategy is efficient and more
intuitive to the student. As demonstrated in Figure 5(a), after the first 6 trials that estimated the stu-
dent’s proficiency for each sub-skill, the teacher found out this student improved more as the leader,
therefore, the teacher allocated 10 trials to perfect the leading sub-skills and only 4 trials for fol-
lowing. Moreover, one participant in the random teacher group responded “the robot leading mode
is too difficult and I gave up”. This demonstrates the importance of an individualized curriculum:
though there are multiple equally optimal strategies, the individual may have strong preferences,
and teaching a non-preferable strategy will discourage the student from learning anything at all.
We refer the readers to the Appendix for the complete
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cording to the role of the student. Often, such a de- Figure 5. Sub-skill performances (vertical

composition may not be possible or requires care-
ful design. We can mitigate this problem with re-
cent progress on skill decomposition in single-agent
task [45] and role-based task decomposition in multi-
agent tasks [63]. However, it still demands much
more effort to verify their efficacy with a real human
on real-world tasks.

Teacher’s Knowledge. In the definition of the teach-
ing task, we assume the teacher has full knowledge
of optimal policies. However, it can be hard for the

axis) with respect to training progress (hor-
izontal axis) of two example participants
trained by the student-aware teacher. Dots
represent the raw scores and lines represent
the smoothed scores. The top and bottom
figures correspond to leading and follow-
ing sub-skills respectively. (a) Participant 4.
The student improved more when trained in
the leading sub-skill. (b) Participant 6. The
student improved more when trained in the
following sub-skill.

robot to know the oracle human policy beforehand.

To make the conceptual framework practical, we need to relax the requirement on the teacher’s prior
knowledge. In our implementation, we reduce such an assumption by approximating the distance to
the optimal policy by the difference in performances. There can be cases where the optimal perfor-
mance is hard to know or such relaxation results in severe information loss. We need more insights
on tasks to make the framework practical.

Curriculum design. In this work, we only design the curriculum over different sub-skills. However,
during our experiment, we observe that humans show various responses to the same sub-skill of
different difficulties. One specific finding is that people may give up learning when the task becomes
too difficult. As a result, a finer-grained curriculum on the sub-skill training shall be generated to
further facilitate human learning.

7 Conclusion

In this work, we propose a conceptual framework, Cooperative Robot Teaching, that enables robots
to teach humans in cooperative tasks. We show that, by abstracting a teaching task over the original
duo cooperative task, the robot can learn to act as a specialized teacher to humans. To be more
specific, we model the teaching task as a POMDP with hidden student policy and propose a partially
assistive teaching curriculum to support human learning. We believe that robot teaching fills in the
gap in the bilateral knowledge transfer in HRI: unlike other HRI tasks where the humans instruct the
robots how to behave, the role is reversed and robots try to instill the knowledge back into humans.
Despite the challenges that lie ahead, we believe that robot teaching has great potential and is a
necessary step forward to bring robots closer to our daily life.
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