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ABSTRACT

Disentangled and invariant representations are two critical goals of representa-
tion learning and many approaches have been proposed to achieve one of them.
However, those two goals are actually complementary to each other and we pro-
pose a framework to accomplish both of them simultaneously. We introduce a
weakly supervised signal to learn disentangled representation while using con-
trastive method to enforce representation invariance. Experimental evaluation
shows that the proposed method outperforms state-of-the-art methods on a number
of standard benchmarks.

1 INTRODUCTION

Deep neural networks (DNN) has achieved astonishing success in many computer vision tasks, such
as image classification (Deng et al., 2009), image generation (Goodfellow et al., 2014) and face
recognition (Schroff et al., 2015). In both prediction and generation tasks, learning to encode input
data x into a lower dimensional representation z is the critical first step that facilities down-steam
tasks (He et al., 2015; Kingma & Welling, 2014; van Steenkiste et al., 2019). For robust repre-
sentation learning, increasing generality and preventing overfitting are two fundamental challenges.
Typically, a DNN learns to encode representation which contains all factors of variation of data,
such as pose, expression, illumination, and angle for face recognition, as well as other nuisance
factors which may not have semantic meanings. Disentangled representation learning and invariant
representation learning are often used to address these challenges.

For disentangled representation learning, Bengio et al. (2014) define a disentangled representation
z, where a change in a given dimension zi corresponds to a change in one and only one underlying
factor of variation of the data. Although many unsupervised learning methods have been proposed
(Higgins et al., 2017; Burgess et al., 2018; Kim & Mnih, 2018), Locatello et al. (2019) have shown
both theoretically and empirically that the factor variants disentanglement is impossible without
supervision or inductive bias. To this end, recent works adopted the concept of semi-supervised
learning (Locatello et al., 2020b) and weakly supervised learning (Chen & Batmanghelich, 2020;
Locatello et al., 2020a). On the other hand, Jaiswal et al. (2018) take an invariant representation
learning perspective in which they split representation z into two parts z = [zp, zn], where zp only
contains predictive related information, and zn merely contains nuisance factors.

Invariant representation learning aims to learn to encode predictive latent factors which is invariant
to nuisance factors in inputs (Xie et al., 2017; Jaiswal et al., 2018; Ganin et al., 2016; Louizos
et al., 2016; Moyer et al., 2018; Sanchez et al., 2020b). By removing information of nuisance
factors, invariant representation learning achieves good performance when facing challenges like
adversarial attack (Chen et al., 2020) and out-of-distribution generalization (Arjovsky et al., 2020).
Further, invariant representation learning has also been studied in the reinforcement learning settings
(Hafner et al., 2019; Castro, 2020; Zhang et al., 2021).

Despite the success of both disentangled and invariant representation learning methods, the relation
between the two has not been thoroughly investigated. As shown in Figure 1.a, invariant repre-
sentation learning methods learn representations that maximize prediction accuracy, while leaving
the representations of both known and unknown confounding factors entangled. Meanwhile, as
illustrated in Figure 1.b, supervised disentangled representation methods cannot handle unknown
nuisance factors, which may hurt downstream prediction tasks. Based on this observation, we seek
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Figure 1: Given an image with nuisance factors, (a): invariant representation learning splits pre-
dictive factors from all nuisance factors; (b): disentangled representation learning splits the known
nuisance factors but mixing predictive and unknown nuisance factors; (c): Our method splits all
predictive, known nuisance and unknown nuisance factors simultaneously.

to achieve disentanglement and invariance of representation simultaneously and propose a new train-
ing framework. To split the known nuisance factors znk from predictive zp and unknown nuisance
factors znu, we introduce weak supervision signals to achieve disentangled representation learning.
To make predictive factors zp independent of all nuisance factors zn, we introduce a new invariant
regularizer via reconstruction. The predictive factors from the same class are further aligned through
contrastive loss to enforce invariance. In summary our main contributions are:

• We extend and combine both disentangled and invariant representation learning and pro-
pose a novel approach to robust representation learning.

• We propose a novel approach that split the predictive, known nuisance factors and unknown
nuisance factors. Mutual independence of those factors is achieved by the reconstruction
step we use during training.

• Our new model outperforms state-of-the-art models on both disentangling and invariance
tasks on standard benchmarks.

2 RELATED WORK

Disentangled representation learning: Early works on disentangled representation learning aim
at learning disentangled latent factors z by implementing an autoencoder framework (Higgins et al.
(2017); Kim & Mnih (2018); Burgess et al. (2018)). Variational autoencoder (VAE) (Kingma &
Welling, 2014) is the basic framework used in most state-of-the-art disentanglement learning meth-
ods. VAE uses DNN to map the high dimension input x to low dimension representation z. The
latent representation z is then mapped to high dimension reconstruction x̂. As shown in Equa-
tion (1), the overall objective function to train VAE is the evidence lower bounds (ELBO) of likeli-
hood log pθ(x1, x2, ...xn), which contains two parts: quality of reconstruction and Kullback-Leibler
divergence (DKL) between distribution qφ(z|x) and the assumed prior p(z). Then, VAE uses the
negative of ELBO, LV AE = −ELBO, as loss function to update the parameters in the model.

ELBO =
∑N
i=1

[
Eqφ(z|x(i))[log pθ(x

(i)|z)]−DKL(qφ(z|x(i)||p(z))
]
≤ log pθ(x1, x2, ...xn) (1)

Advanced methods based on VAE improve the disentanglement performance by implementing new
disentanglement regularization. β-VAE (Higgins et al., 2017) modified the original VAE by adding
a hyper-parameter β to balance the weights of reconstruction loss andDKL. When β > 1, the model
gains stronger disentanglement regularization. AnnealedVAE (Burgess et al., 2018) further studied
the effects of different value of β on reconstruction quality and disentangled representations. Based
on its finding, AnnealedVAE implemented a dynamic algorithm to change the β from large to small
value during training. FactorVAE (Kim & Mnih, 2018) proposes to use a discriminator in order to
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Figure 2: Architecture of the model. Red box is the generation part and the blue box is the prediction
part

distinguish between the joint distribution of latent factors q(z) and multiplication of marginal distri-
bution of every latent factor

∏
q(zi). By using the discriminator, FactorVAE finds a better trade-off

between reconstruction quality and disentangled representation. Comparing to β-VAE, DIP-VAE
(Kumar et al., 2018) adds another regularization D(qφ(z)||p(z)) between the marginal distribution
of latent factors qφ(z) =

∫
qφ(z|x)p(x)dx and the prior p(z) to further encourage disentangled

representation learning. D here can be any proper distance function. Chen et al. (2019) proposed
β-TCVAE which decomposed the DKL used in β-VAE into: total correlation, index-coded mutual
information and dimension-wise KL divergence. During training, the quality of reconstruction and
disentanglement are controlled by three different hyper-parameters applied on those three regular-
ization. To overcome the challenge proposed by Locatello et al. (2019), AdaVAE (Locatello et al.,
2020a) purposely choose pairs of inputs as supervision signal to learn representation disentangle-
ment. Besides, Locatello et al. (2020a) proved theoretically that under some assumptions, the ideal
representation disentanglement can be achieved without compromise.

Invariant Representation Learning: The methods that aim at learning invariant representation
can be classified into two groups: those methods that require annotations of nuisance factors (Li
et al., 2014; Louizos et al., 2016) and those that do not. A considerable number of approaches using
nuisance factors annotations have been recently proposed. By implementing a regularizer which
minimizes the Maximum Mean Discrepancy (MMD) (Gretton et al., 2007) on neural network (NN),
The NN+MMD approach (Li et al., 2014) removes affects of nuisance from predictive factors. The
Variational Fair Autoencoder (VFAE) (Louizos et al., 2016) uses special priors which encourage in-
dependence between nuisance factors and ideal invariant factors. Besides, VFAE also incorporates
MMD as the regularizer to further remove any dependencies. The Controllable Adversarial Invari-
ance (CAI) (Xie et al., 2017) approach applies the gradient reversal trick (Ganin et al., 2016) which
penalizes the model if latent representation has information of nuisance factors. CVIB (Moyer et al.,
2018) proposes a conditional form of Information Bottleneck (IB) and encourages the invariant rep-
resentation learning by optimizing its variational bounds. Approaches that need annotations are
suitable for removing specific affects of nuisance factors, such as race or gender bias in face recog-
nition. However, due to the constrains of demanding annotations, those methods take more effort to
pre-process the data and encounter challenges when the annotations are inaccurate or insufficient.
Comparing to annotation-needed approaches, annotation-free methods are easier to be implemented
in practice. The Unsupervised Adversarial Invariance (UAI) (Jaiswal et al., 2018) splits the latent
factors into factors useful for prediction and nuisance factors. UAI encourages the independence
of those two latent factors by incorporating competition between the prediction and the reconstruc-
tion objectives. Sanchez et al. (2020a) achieve invariant representation by using pairs of inputs and
applying a neural network based mutual information estimator to minimize the mutual information
between two shared representations. Furthermore, Sanchez et al. (2020a) employ a discriminator to
distinguish the difference between shared representation and nuisance representation.
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3 LEARNING DISENTANGLED AND INVARIANT REPRESENTATION

3.1 OVERVIEW OF MODEL ARCHITECTURE

As illustrated in Figure 2, the architecture of the proposed model contains two components: a genera-
tion module and a prediction module. Similar to VAE, the generation module performs an encoding-
decoding task. However, it encodes the input x into latent factors z, where z = [zp, zn], where zp
is the latent predictive factors that contains useful information for the prediction task, whereas zn
is the latent nuisance factors that can be further divided into known latent factors znk and unknown
nuisance factors znu. znk are discovered and separated from zn via weakly supervised disentan-
gled representation learning, where the joint distribution p(znk) =

∏
i p(znki). Since zn is the split

containing nuisance factor, after znk is separated, the remaining factors of zn naturally result in un-
known nuisance factors znu. Then, zp and zn are concatenated for generating a reconstruction xrec
which are used to measure the quality of reconstruction and disentanglement degree. To enforce the
independence between zp and zn, we add a regularizer using another reconstruction task, where the
average mean and variance of predictive factors zp are used to form new latent factors z̄p as it will
be discussed in Section 3.3. In the prediction module, we incorporate contrastive loss to cluster the
predictive latent factors from the same class.

3.2 LEARNING INDEPENDENT KNOWN NUISANCE FACTORS znk

The known nuisance factors znk are discovered and separated from zn, where p(znk) =
∏
i p(znki),

because nuisance information is expected to be present only in zn. As illustrated in Figure 1, since
the goal of such procedure is learning disentangled representation, we follow the evaluation protocol
in previous disentangled representation works for estimating the performance (Higgins et al., 2017;
Kim & Mnih, 2018; Kumar et al., 2018; Shu et al., 2020).

To fulfill the requirement of including supervision signal for disentangled representation learning
as proven in (Locatello et al., 2019), we use selected pairs of inputs x(l) and x(m) as supervision
signals, where only a few common generative factors are shared. As illustrated in Figure 3, during
training, the network encodes a pair of inputs x(l) and x(m) into two latent factors z(l) = [z

(l)
p , z

(l)
n ]

and z(m) = [z
(m)
p , z

(m)
n ] respectively, which are then decoded to reconstruct x(l)rec and x(m)

rec . To en-
courage representation disentanglement, certain elements of z(l)n and z(m)

n are detected and swapped
to generate two new corresponding latent factors ẑ(l) and ẑ(m). The two new latent factors are then
decoded to new reconstructions x̂(l)rec and x̂(m)

rec . By comparing x̂rec with xrec, the known nuisance
factors znk are discovered and the elements of znk are enforced to be disentangled with each other.

Figure 3: Disentanglement representation learning for known nuisance factors znk

Selecting image pairs for training and latent factors assumptions: As mentioned by Higgins
et al. (2017), the true world simulator using generative factors to generate x can be modeled as:
p(x|v, w) = Sim(v, w), where v is the generative factors and w is other confounding factors. In-
spired by this, we choose pairs of image by randomly selecting some generative factors to be the
same and keeping the value of other generative factors to be random. As the image pair exam-
ple in Figure 4b indicates, each image x has corresponding generative factors v, and the training
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(a) In early training stages, small number of latent fac-
tors are swapped. the number of latent factors to be
swapped increases gradually.

(b) In early training stages, input pair with small num-
ber of generative factors are chosen. The number of
generative factors increases gradually.

Figure 4: Two training strategies for learning known nuisance factors znk

pair is generated as follows: we first randomly select a sample x(l) whose generative factors are
v(l) = [v1, v2, ...vn]. We then randomly change the value of k elements in v(l) to form a new gen-
erative factors v(m) and choose another sample x(m) according to v(m). During training, indices
of different generative factors between v(l) and v(m), and the groundtruth value of all generative
factors are not available to the model. The model is weakly supervised since it is trained with only
the knowledge of the number of factors k that have changed. Ideally, if the model can learn a dis-
entangled representation, the model will encode the image pair x(l) and x(m) to the corresponding
representations z(l) and z(m) which have the characteristic shown in Equation (2). We annotate the
set of all different elements between z(l) and z(m) to be dfz and set of all latent factors to be dz such
that dfz ⊆ dz .

p(z(l)nj |x
(l)) = p(z(m)

nj |x
(m)); j /∈ dfz

p(z(l)ni |x
(l)) 6= p(z(m)

ni |x
(m)); i ∈ dfz

(2)

Detecting and Swapping the distinct latent factors In VAE, it is commonly assumed that the
posterior distribution of latent factors is a factorized multivariate Gaussian, p(z|x) = qθ(z|x)
(Kingma & Welling, 2014) and the reparameterization trick is used to make the posterior differ-
entiable. By this assumption, we can directly measure the mutual information between the corre-
sponding dimensions of the two latent representations z(l) and z(m) by measuring the divergence
(Dm), which can be either KL divergence (DKL) or Jensen-Shannon divergence (JSD). We show
the process of detecting distinct latent factors in Equations (3) and (4), where a larger value of DKL
or JSD implies higher difference between the two corresponding latent factor distributions.

DKL(qφ(z
(l)
ni |x

(l))||qφ(z(m)
ni |x

(m))) =
(σ

(l)
ni )

2 + (µ
(l)
ni − µ

(m)
ni )2

2(σ
(m)
ni )2

+ log(
σ
(m)
ni

σ
(l)
ni

)− 1

2
(3)

JSD(qφ(z
(l)
ni |x

(l))||qφ(z(m)
ni |x

(m))) =
1

2

(
DKL(qφ(z

(l)
ni |x

(l))||M) +DKL(qφ(z
(m)
ni |x

(m))||M)
)

where M =
1

2
(qφ(z

(l)
ni |x

(l)) + qφ(z
(m)
ni |x

(m))) (4)

Since the model only has the knowledge of the number of different generative factors k, we swap
all corresponding dimension elements of z(l)n and z(m)

n except the top k highest Dm value elements.
We incorporate this swapping step to create two new latent representations ẑ(l)n and ẑ(m)

n shown in
Equation (5).

ẑ(l)ni = z(m)
ni ; ẑ(m)

ni = z(l)ni ; i /∈ dfz
ẑ(l)nj = z(l)nj ; ẑ(m)

nj = z(m)
nj ; j ∈ dfz

(5)

Disentangled representation loss function: After we obtain ẑ(l)n and ẑ(m)
n , they are concatenated

with z(m)
p and z(l)p , respectively, to generate two new latent representations ẑ(l) = [z

(m)
p , ẑ

(l)
n ] and

ẑ(m) = [z
(l)
p , ẑ

(m)
n ]. ẑ(l) and ẑ(m) are decoded into new reconstructions x̂(l) and x̂(m). Reminding
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that there are only k different generative factors between pair of images, ideally, if the model per-
fectly detects the top k most different latent factors, by swapping other latent factors except them,
the new representations ẑ(l) and ẑ(m) are same with the original representations z(l) and z(m). Ac-
cordingly, the new reconstructions x̂(l)rec and x̂(m)

rec should be identical to the original reconstruction
x
(l)
rec and x(m)

rec . Therefore, we design the disentangled representation loss in Equation (6), where D
can be any suitable distance function e.g, mean square error (MSE) or binary cross-entropy (BCE).

L = LV AE(x(l)rec, z
(l)) + LV AE(x(m)

rec , z
(m)) +D(x̂(l)rec, x

(l)
rec) +D(x̂(m)

rec , x
(m)
rec ) (6)

Training Strategies for disentangled representation learning: To further improve the perfor-
mance of disentangled representation learning, we design two strategies: warmup by amount and
warmup by difficulty. Remembering that in swapping step, the model needs to swap |dz| − k ele-
ments of latent representations. Thus, in early stages of training, exchanging too many latent factors
will easily lead to mistakes. Therefore, in the first strategy, we gradually increase the number of
latent factors being swapped from 1 to |dz| − k during training. Further, to smoothly increase the
training difficulty, we set the number of different generative factors to be 1 in the beginning and in-
crease the number of different generative factors as training progresses. Those two training strategies
highly improve the performance of the disentanglement learning and they are illustrated in Figure 4.

3.3 LEARNING INVARIANT PREDICTIVE FACTORS zp

After we obtain the disentangled representation znk, the predictive factors zp may still be entangled
with znu. Therefore, we need to add other constraints to achieve fully invariant representation of zp.

Making zp independent of zn: As proved by Locatello et al. (2019), supervision signals need to
be introduced for disentangled representation. Similarly, the independence of zp and zn also needs
the help from a supervision signals as we discuss in Appendix A.1. Luckily, for supervised training,
a batch of samples naturally contains supervision signal. Similar to Equation (2), the distribution of
the representations zp should be same for same class and can be expressed as Equation (7) where
C(x(l)) means the class of sample x(l).

p(z(l)p |x(l)) = p(z(m)
p |x(m)); C(x(l)) = C(x(m))

p(z(l)p |x(l)) 6= p(z(m)
p |x(m)); C(x(l)) 6= C(x(m))

(7)

Similar to the method we use for disentangled representation learning, we generate new latent rep-
resentation z̄p and its corresponding reconstruction x̄rec−p. Then, we enforce the disentanglement
between zp and zn by comparing the new reconstruction x̄rec−p and xrec. In contrast to the swap-
ping method mentioned in Section 3.2, since the samples batch used for training usually contains
more than two (2) samples from the same class, the swapping method is hard to be implemented
in this situation. Therefore, we generate the new latent representations z̄p by calculating the aver-
age mean µ̄p and average variance V̄p of the latent representations from the same class as shown in
Equation (8).

z̄p = N (µ̄p, V̄p); x̄rec−p = Decoder([z̄p, zn])

µ̄p =
1

|C|
∑

µ(i)
p ; V̄p =

1

|C|
∑

V ip ; where ∀i ∈ C
(8)

We then generate the new reconstruction x̄rec−p using the same decoder as in other reconstruction
tasks and enforce the disentanglement of zp and zn by calculating theD(xrec, x̄recp) and update the
parameters of the model according to its gradient.

Constrastive feature alignment: To achieve invariant representation, we need to make sure the
latent representation that is useful for prediction can also be clustered according to their correspond-
ing classes. Even though the often used cross-entropy (CE) loss can accomplish similar goals, the
direct goal of CE loss is to achieve logit-level alignment and change the representations distribution
according to the logits, which does not guarantee the uniform distribution of features. Alternatively,
we incorporate contrastive methods to assure that representation/feature alignment can be accom-
plished effectively (Wang & Liu, 2021).
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Similar to Khosla et al. (2020), we use supervised contrastive loss to achieve feature alignment and
cluster the representations zp according to their classes as shown in Equation (9) where C is the set
that contains samples from the same class and yp = yi.

Lsup =
∑
i∈I

−1

|C|
∑
p∈C

log
exp (zi · zp/τ)∑

a∈A(i)

exp (zi · za/τ)
(9)

The final loss function used to train the model after adding the standard cross-entropy(CE) loss to
train the classifier, is given by Equation (10).

L = LCE(x, y) + LV AE + αLdisentangle + βLSup + γLZp

Ldisentangle = D(x̂(l)rec, x
(l)
rec) +D(x̂(m)

rec , x
(m)
rec ); LZp = D(x̄rec−p, xrec)

(10)

4 EXPERIMENTS EVALUATION

4.1 BENCHMARK DATASETS, BASELINE MODELS AND METRICS

Since our model learns disentangled and invariant representation simultaneously, our method are
evaluated using multiple metrics and datasets. We evaluate the performance of our model on follow-
ing four (4) datasets with different underlying factor of variations.

• Colored-MNIST Colored-MNIST dataset is augmented version of MNIST (LeCun &
Cortes, 2010) with two known nuisance factors: digit color and background color. Dur-
ing training, the background color is chosen from 3 colors and digit color is chosen from
other 6 colors. In test, we set the background color into 3 new colors which is different
from training set.

• Rotation-Colored-MNIST This dataset is an further augmented version of Colored-
MNIST. The background color and digit color setting is the same with the Colored-MNIST
and this dataset further contains digits rotated to angles θ ∈ Θtrain = {0,±22.5,±45}.
For test data, the rotation angles for digit is set to θ ∈ Θtest = {0,±65,±75}. The rotation
angles are set to be unknown nuisance factors.

• 3dShapes (Burgess & Kim, 2018) 3dShapes contains 480,000 RGB 64 × 64 × 3 images
and the whole dataset has 6 different generative factors: object shape, object scale, object
color, wall color, floor color and scene orientation. We choose object shape (4 classes) as
the prediction task and only half of object colors during training and the remaining half of
object color is used to evaluate performance of invariant representation.

• MPI3D (Gondal et al., 2019) MPI3D is a real-world dataset contains 1,036,800 RGB im-
ages and the whole dataset has 7 generative factors: object color, object shape, object
size, camera height, background color, horizontal degree of robotic arm, vertical degree of
robotic arm. Like 3dShapes, we choose object shape (6 classes) as the prediction target and
half of object colors for training.

Table 1: Test average and worst accuracy results on Colored-MNIST, 3dShapes and MPI3D. Bold,
Black: best result

Colored-MNIST 3dShapes MPI3DModels
Avg Acc Worst Acc Avg Acc Worst Acc Avg Acc Worst Acc

Baseline 0.9512 0.6617 0.9887 0.9689 0.9012 0.8789
β-VAE 0.9265 0.5879 0.9866 0.9577 0.8698 0.8489
VFAE 0.9312 0.6554 0.9772 0.9334 0.8669 0.8243
CAI 0.9356 0.6317 0.9762 0.9432 0.8663 0.8216

CVIB 0.9331 0.7012 0.9711 0.9446 0.8704 0.8561
UAI 0.9474 0.7425 0.9713 0.9521 0.8789 0.8301

Our model 0.9796 0.9043 0.9852 0.9763 0.9132 0.8917

Since our method aims at achieving both disentanglement and invariance at the same time, we cate-
gorize the baseline state-of-the-art models into two groups according their goals.
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Table 2: Test average accuracy and worst accuracy results on Rotation-Colored-MNIST with differ-
ent rotation angles. Bold, Black: best result

Models
Rotation-Colored-MNIST

Avg Acc Worst Acc Avg Acc Worst Acc Avg Acc Worst Acc Avg Acc Worst Acc
-75 -65 +65 +75

Baseline 0.770 0.623 0.897 0.775 0.858 0.658 0.683 0.499
β-VAE 0.771 0.612 0.852 0.750 0.834 0.630 0.687 0.472
VFAE 0.722 0.589 0.858 0.744 0.841 0.646 0.717 0.48
CAI 0.749 0.593 0.865 0.773 0.842 0.678 0.647 0.429

CVIB 0.761 0.592 0.886 0.791 0.856 0.688 0.722 0.534
UAI 0.780 0.611 0.888 0.800 0.854 0.682 0.702 0.511

Our model 0.810 0.753 0.908 0.857 0.873 0.823 0.732 0.633

• Representation Disentanglement: The following state-of-the-art model are used to com-
pare performance of disentangled representation — (1) β-VAE (Higgins et al., 2017), (2)
AnnealedVAE (Burgess et al., 2018), (3) FactorVAE (Kim & Mnih, 2018), (4) DIP-VAE-
I (Kumar et al., 2018), (5) DIP-VAE-II (Kumar et al., 2018), (6) β-TCVAE (Chen et al.,
2019) and (7) Ada-VAE (Locatello et al., 2020a).

• Representation Invariance: The following state-of-the-art model are used for invariant
representation comparisons: (1) VFAE (Louizos et al., 2016), (2) CAI (Xie et al., 2017),
(3) CVIB (Moyer et al., 2018), and (4) UAI (Jaiswal et al., 2018).

We adopt the following metrics to evaluate the performance of disentangled representation. All met-
rics range from 0 to 1, where 1 indicates that the latent factors are fully disentangled — (1) Mutual
Information Gap (MIG) (Chen et al., 2019) which evaluates the gap of top two highest mutual in-
formation between a latent factors and generative factors. (2) Separated Attribute Predictability
(SAP) (Kumar et al., 2018) which measures the mean of the difference of perdition error between
the top two most predictive latent factors. (3) Interventional Robustness Score (IRS) (Suter et al.,
2019) which evaluates reliance of a latent factor solely on generative factor regardless of other gen-
erative factors. (4) FactorVAE (FVAE) score (Kim & Mnih, 2018) which implements a majority
vote classifier to predict the index of a fixed generative factor and take the prediction accuracy as
the final score value. (5) DCI-Disentanglement (DCI) (Eastwood & Williams, 2018) which calcu-
lates the entropy of the distribution obtained by normalizing among each dimension of the learned
representation for predicting the value of a generative factor.

To evaluate the performance of invariant representation learning, the test accuracy is the metric to
evaluate the performance of models. Furthermore, we record both average test accuracy and worst-
case test accuracy which was suggested by Sagawa* et al. (2020). During the experiment, we found
out that using Equation (10) directly does not guarantee good performance. This may be caused
by inconsistent behavior of CE loss and supervised contrastive loss. Thus, we separately train the
classifier using CE loss and use remaining part of total loss to train the rest of the model.

4.2 COMPARISON WITH PREVIOUS WORK

We show invariance learning results which are the test average accuracy and worst accuracy in
Tables 1 and 2. For Color-Rotation-MNIST dataset, since we rotate the test samples with θ ∈
Θtest = {±65,±75} and those angles are different with training rotation angles θ ∈ Θtrain =
{0,± − 22.5,±45}, we record each test average accuracy and worst accuracy under each rotation
angles. The baseline model is the regular CNN model with no extra components for representation
invariance, and β-VAE in Tables 1 and 2 is the regular CNN model with β-VAE structure to do
reconstruction at the same time. Our proposed model significantly outperforms prior work.

To compare the performance of disentanglement, we show the results of disentanglement metrics
on different datasets in Table 3. For divergence measurement Dm for latent factor, we test both
DKL and JSD, and choose the best results. As shown, our approach surpass both unsupervised and
weakly-supervised method in almost all metrics.
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Table 3: Disentanglement metrics on 3dShapes and MPI3D. Bold, Black: best result

3dShapes MPI3DModels
MIG SAP IRS FVAE DCI MIG SAP IRS FVAE DCI

Unsupervised Disentanglement Leanring
β-VAE 0.194 0.063 0.473 0.847 0.246 0.135 0.071 0.579 0.369 0.317

AnnealedVAE 0.233 0.087 0.545 0.864 0.341 0.098 0.038 0.490 0.397 0.228
FactorVAE 0.224 0.0440 0.630 0.792 0.304 0.092 0.031 0.529 0.379 0.164
DIP-VAE-I 0.143 0.026 0.491 0.761 0.137 0.104 0.073 0.476 0.491 0.223
DIP-VAE-II 0.137 0.020 0.424 0.742 0.083 0.131 0.075 0.509 0.544 0.244
β-TCVAE 0.364 0.096 0.594 0.970 0.601 0.189 0.146 0.636 0.430 0.322

β-FactorTCVAE 0.071 0.021 0.496 0.612 0.131 0.066 0.034 0.493 0.464 0.217
Weakly-Supervised Disentanglement Learning

Ada-ML-VAE 0.509 0.127 0.620 0.996 0.940 0.240 0.074 0.576 0.476 0.285
Ada-GVAE 0.569 0.150 0.708 0.996 0.946 0.269 0.215 0.604 0.589 0.401
Our model 0.716 0.156 0.784 0.996 0.919 0.486 0.225 0.615 0.565 0.560

4.3 ABLATION STUDY

Effectiveness of training strategies in disentanglement learning: To prove the effectiveness of
the training strategies illustrated in Figure 4, we compare results of three situations: (1) none of
those strategies is used, (2) only warmup by amount strategy is used, and (3) both strategies are
used. As shown in Table 4, using both training strategies clearly outperforms the others.

Separately training the classifier and the rest of the model: To prove the importance of the
two-step training as mentioned in Section 4.1, we compare the results of training the entire model
together versus separately training classifier and other parts. Further, we also record the results of our
model which does not use contrastive loss for feature-level alignment. As shown in Table 5, either
only using CE loss (LCE) or training the whole together (LCE + Lcontrastive) will harm the per-
formance of the model. By separately training the classifier and other parts (LCE ←→ Lcontrastive),
the framework has the best results for both average and worst accuracy.

Table 4: Disentanglement metrics of with different training strategies applied to 3dShapes

warmup by amount warmup by difficulty MIG SAP IRS FVAE DCI
0.492 0.096 0.661 0.902 0.697

X 0.512 0.126 0.674 0.944 0.781
X X 0.716 0.156 0.784 0.996 0.919

Table 5: Performance of different scheme on Colored-MNIST and Rotation-Colored-MNIST

Training Scheme Colored-MNIST Rotation-Colored-MNIST (65)
avg acc worst acc avg acc worst acc

LCE 0.932 0.680 0.821 0.653
LCE + Lcontrastive 0.935 0.732 0.842 0.678
LCE ←→ Lcontrastive 0.980 0.904 0.873 0.823

5 CONCLUSION

In this work, we extend the ideas of representation disentanglement and representation invariance
by combining them to achieve both goals at the same time. Further, we propose a new framework
for weakly supervised disentanglement representation learning and achieve better performance than
state-of-the-art disentangled learning methods. By introducing contrastive loss and new invariant
regularization loss, we make predictive factor zp to be more invariant to nuisance and increase both
average and worst accuracy on invariant learning tasks.
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A APPENDIX

A.1 WHY RECONSTRUCTION JOB IS NECESSARY FOR INDEPENDENT PREDICTIVE FACTORS

This proof is largely dependent on proof used in Locatello et al. (2019) and the proof can be shown
below:

By the assumption, we hope the latent factors can be separated into two part zp and zn. zp and zn
are expected to be independent to each other. We have :

p(z) = p(zp) · p(zn)

Thus, if we choose any latent factor zi from zp, it should be independent to any other latent factor
zj chosen from zn. zi ⊥⊥ zj .
It can be claimed that there exists an infinite family of bijective functions f : supp(z) −→ supp(z)

such that ∂fi(u)∂uj
6= 0 almost everywhere for all i in zp and j from zn (i.e., z and f(z) are completely

entangled) and P (z ≤ u) = P (f(z) ≤ u) for all u ∈ supp(z) (i.e., they have the same marginal
distribution). Since the unsupervised method only has access to observations x and y, it hence
cannot distinguish between the two equivalent generative models and thus has to be entangled to at
least one of them.

We first choose two bijective functions gi(vi) = P (zi ≤ vi) and gj(vj) = P (zj ≤ vj). By con-
struction g(z) = g(zi) · g(zj) is a 2-dimensional uniform distribution. Similarly, consider function
hi(vi) = ψ−1(vi) and hj(vj) = ψ−1(vj). Where,

ψ(·) is the cumulative density function of standard normal distribution. By this further construction,
the random variable h(g(z)) is a 2-dimensional standard normal distribution.

Let A ∈ R2×2 be an arbitrary orthogonal matrix with Akm 6= 0 for all k = 1, 2 and m = 1, 2. An
infinite family of such matrices can be constructed using a Householder transformation: Choose an
arbitrary α ∈ (0, 0.5)and consider the vector v with v1 =

√
α and v2 =

√
1− α. By construction,

we have vTv = 1. Define the matrix A = I2 − 2vvT . Furthermore, A is orthogonal since

ATA = (I2 − 2vvT )T (I2 − 2vvT ) = I2 − 4vvT + 4v(vTv)vT = I2
.

Since A is orthogonal, it is invertible and thus defines a bijective linear operator. The random
variable Ah(g(z)) ∈ R2 is hence an independent, multivariate standard normal distribution since
the covariance matrix ATA is equal to I2.

Since h is bijective, it follows that h−1(Ah(g(z)))is an independent 2-dimensional uniform distri-
bution. Define the function f : supp(z) −→ supp(z)

f(u) = g−1(h−1(Ah(g(u))))

and note that by definition f(z) has the same marginal distribution as z under P ,i.e.,P (z ≤ u) =
P (f(z) ≤ u)for all u .Finally, for almost every u ∈ supp(z), it holds that

∂fi(u)

∂uj
6= 0,

Since A was chosen arbitrarily, there exists an infinite family of such function f .

To overcomes this problem, we need to do similar reconstruction job like we do for disentangled
representation learning, where introducing supervision signal to enforce independence between zp
and zn is necessary. However, previous works (Jaiswal et al., 2018; Xie et al., 2017; Louizos et al.,
2016; Moyer et al., 2018) fail to do that. The detail of the process is described in Section 3.3.

A.2 VISUALIZATION OF LATENT SPACE

To illustrate the performance of the results of the model, we visualize the latent representation by
different methods. We first visualize the t-SNE results of zp and znu which we tested on Color-
Rotation-MNIST in Figure 5.
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(a) zp embedding (b) znu embedding

Figure 5: t-SNE visualization of zp and znu embeddings of Color-Rotation-MNIST images col-
ored by rotation angle. As desired, the zp embedding does not encode rotation information, which
migrates to znu.

(a) latent factors change by changing the background
color and digit color

(b) latent factors change by changing the digit number
and make the color unchanged

Figure 6: Heat map visualization for Colored-MNIST dataset

(a) latent factors change by chang-
ing the color

(b) latent factors change by chang-
ing the angle

(c) latent factors change by chang-
ing the angle

Figure 7: Heat map visualization for Rotation-Colored-MNIST dataset
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Figure 8: Reconstruction results of Colored-MNIST data

Further, we visualize the heatmap of latent space change by giving the model with different inputs.
In Figure 6, we visualize the latent factors change of model tested on Colored-MNIST and visualize
the latent factors change of model tested on Rotation-Colored-MNIST in Figure 7.

We finally visualize the results of reconstruction of model we tested on Colored-MNIST in Figure 8.
Images in line 1-2 are original images used for training. Images in line 3-4 are reconstructions which
are expected to be same with original inputs. Images in line 5-6 are reconstructions after swapping
operation which are also expected to be same with original inputs and reconstruction in line 2-
3. Images in line 7-8 are decoded from [rand(zp), zn], where rand(zp) is normal random noise.
Since we random sample zp, the outputs of decoder should only contains the color information and
unrecognized digits. In the contrary, images in line 9-10, we randomly sampled zn and the latent
factors for decoding is [zp, rand(zn)] . Therefore, images in line 9-10 should have same digit pattern
with original inputs but have random digit color and background color.
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