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ABSTRACT

Speech-to-text errors made by automatic speech recognition (ASR) system nega-
tively impact downstream models relying on ASR transcriptions. Language error
correction models as a post-processing text editing approach have been recently
developed for refining the source sentences. However, efficient models for cor-
recting errors in ASR transcriptions that meet the low latency requirements of
industrial grade production systems have not been well studied. In this work, we
propose a novel non-autoregressive (NAR) error correction approach to improve
the transcription quality by reducing word error rate (WER) and achieve robust
performance across different upstream ASR systems. Our approach augments
the text encoding of the Transformer model with a phoneme encoder that em-
beds pronunciation information. The representations from phoneme encoder and
text encoder are combined via multi-modal fusion before feeding into the length
tagging predictor for predicting target sequence lengths. The joint encoders also
provide inputs to the attention mechanism in the NAR decoder. We experiment
on 3 open-source ASR systems with varying speech-to-text transcription quality
and their erroneous transcriptions on 2 public English corpus datasets. Results
show that our PATCorrect (Phoneme Augmented Transformer for ASR error Cor-
rection) consistently outperforms state-of-the-art NAR error correction method on
English corpus across different upstream ASR systems. For example, PATCorrect
achieves 11.62% WER reduction (WERR) averaged on 3 ASR systems compared
to 9.46 % WERR achieved by other method using text only modality and also
achieves an inference latency comparable to other NAR models at tens of mil-
lisecond scale, especially on GPU hardware, while still being 4.2 - 6.7x times
faster than autoregressive models on Common Voice and LibriSpeech datasets.

1 INTRODUCTION

Automatic speech recognition (ASR) models transcribe human speech into readable text. It has
many applications including real-time captions and meeting transcriptions. ASR model is also a
critical component in large-scale natural language processing (NLP) systems like Amazon Alexa,
Google Home and Apple Siri. Transcribed text serves as input for downstream models such as intent
detection in voice assistants and response generation in voice chatbots. Errors made in speech-to-
text ASR transcriptions can severely impact the accuracy of downstream models and thus lower the
performance of the entire NLP system.

Recent advances in ASR systems using Transformer (Gulati et al.| (2020); [Tiiske et al.| (2021) and
CNN based models|Li et al.|(2019) have achieved state-of-the-art (SOTA) accuracy as measured by
word error rate (WER). However, due to the complexity of human natural language and the quality
of speech audios, even SOTA ASR systems can still make unavoidable and unrecoverable errors
such as phonetic confusion between similar-sounding expressions. To improve the quality of ASR
transcriptions, error correction models are applied to the outputs from ASR systems to detect and
correct errors.

ASR error correction can be formulated as a sequence-to-sequence generation task, taking the ASR
transcribed text as input source sequence and the ground-truth speech-to-text transcription as target
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sequence. Previous studies [D’Haro & Banchs| (2016); [Liao et al.| (2020); Mani et al.| (2020) have
proposed sequence-to-sequence models that decode the target sequence in an autoregressive (AR)
manner. [Wang et al.|(2020) added phoneme information to the AR decoder and found that it helps
retrieve the correct entity from ASR transcriptions. These autoregressive models achieve SOTA
accuracy but incur high latency making them infeasible for online production systems with low-
latency constraints. For example, for voice digital assistants the end-to-end latency for a response is
at the order of milliseconds for high quality user experience. Hence when incorporating such error
correction models into the whole system, we need to seriously consider the speed and accuracy
trade-off. Autoregressive decoding is a big bottleneck as it cannot be parallelized during inference,
which does not meet the latency buffer allocated to the ASR error correction component in the end-
to-end pipeline. Therefore, the critical need of reducing latency brings us the strong motivation to
use non-autoregressive (NAR) models over AR models. Leng et al.[(2021) applied a NAR sequence
generation model with edit alignment to Chinese corpus that achieved comparable WER reduction
and is 6 times faster than AR models. However, the performance of this NAR approach has not been
tested for English corpus.

In this paper, we propose PATCorrect (Phoneme Augmented Transformer for ASR error Correction)
as shown in Figure [I} a novel NAR based ASR error correction model with edit alignment that is
based on both text and phoneme representations of the ASR transcribed sentences. PATCorrect cre-
ates inputs for the length tagging predictor by applying a multi-modal fusion approach to combine
phoneme representation and text representation into joint feature embeddings. Both encoders (text
and phoneme) interact with NAR decoder via encoder-decoder attention mechanism. PATCorrect
improves the WER reduction (WERR) to 11.62% compared to the FastCorrect which is the SOTA
NAR method that solely uses text only representation of the input, with comparable inference latency
at tens of milliseconds scale. PATCorrect model is robust and scalable to different upstream ASR
systems. We use three ASR systems to transcribe two public English corpus datasets, LibriSpeech
and Common Voice, respectively to get their erroneous transcriptions as inputs. Experimental evalu-
ations demonstrate that applying PATCorrect can consistently improve the transcription WER across
different upstream ASR models with varying levels of transcription quality. To demonstrate our per-
formance improvement, we benchmark against other ASR error correction models by applying them
to the same sets of erroneous transcriptions.

Our contributions are summarized as follows:

e We propose PATCorrect, a novel model based on the Transformer architecture for NAR ASR
correction. This model uses a multi-modal fusion approach that augments the traditional input text
encoding with an additional phoneme encoder to incorporate pronunciation information, which is
one of the key characteristics for spoken utterances.

e Through extensive offline evaluations, We demonstrate that PATCorrect outperforms the state-of-
the-art NAR ASR error correction model that uses text only modality. For example, PATCorrect
improves WERR to 11.62% with an inference latency at the same tens of milliseconds scale, while
still being about 4.2 - 6.7x times faster than AR models.

e To the best of our knowledge, we are the first to establish that multi-modal fusion is a promising
direction for improving the accuracy of low latency NAR methods for ASR error correction, and
comprehensively study the performance of NAR ASR error correction for English corpus across
different ASR systems with varying levels of quality.

2 RELATED WORK

AUTOREGRESSIVE METHODS

The goal of ASR error correction is to convert erroneous source sequences from ASR outputs to
target sequences with errors corrected. It can be viewed as Neural Machine Translation (NMT)
problem with erroneous sentences as source language, and corrected sentences as target language.
Therefore, research on ASR error correction started with conventional statistical machine translation
methods. |Cucu et al.|(2013)) applied it in domain-specific ASR systems for error correction. |Anan-
taram et al.| (2018) further utilized ontology learning to repair ASR outputs by a 4-step method.
Recent NMT methods based on Transformers Vaswani et al.[(2017); Ng et al.| (2019) have become
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increasingly accurate and have inspired applications to ASR error correction Liao et al.[(2020); Mani
et al.[(2020); [Hu et al.| (2020). Based on the intuition that phonetic information helps with under-
standing ASR errors |[Fang et al.[(2020); Sundararaman et al.| (2021), Wang et al.| (2020) found that
adding phoneme information for domain-agnostic ASR system could benefit entity retrieval task.
Although achieving high accuracy, these encoder-decoder based autoregressive generation models
suffer from slow inference speed, error propagation and demand for a large amount of training data.

NON-AUTOREGRESSIVE METHODS

To address these issues in AR models, non-autoregressive sequence generation methods in NMT
Gu et al|(2017), which aim to speed up the inference of AR models while maintaining comparable
accuracy, has been a popular research topic in recent years. For NAR decoder, the length predictor
is crucial as it outputs latent variables to determine the target sequence length for parallel genera-
tion. |Gu et al.| (2019) proposed to use dynamic insertion/deletion to iteratively refine the generated
sequences based on previous predictions. |Ghazvininejad et al.| (2019) used a conditional masked
language modeling for more efficient iterative parallel decoding. Straight-forward adaptation of
these NAR methods from machine translation to the ASR error correction problem may even lead
to increase in WER as shown in |[Leng et al.|(2021). Current SOTA method for Chinese corpus er-
ror correction |[Leng et al.[(2021)) utilized edit alignment with text editing operations (i.e. insertion,
deletion, substitution) to train the length predictor and assign each source token with a length tag.

3 PATCORRECT FOR ASR ERROR CORRECTION
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Figure 1: The overview of PATCorrect architecture. Starting from the bottom, we input the text se-
quence w and phoneme sequence p to two encoders separately. The outputs from phoneme and text
encoders are combined together by multi-modal fusion operations, and then fed into the tag predic-
tor T'ag P for adjusting source tokens. We use two encoder-decoder attention layers sequentially in
the joint NAR decoder for parallel decoding, to get the target sequences with ASR error correction.

The goal of ASR error correction is to correct the erroneous source tokenized sentence w =
{w1,wa, ..., w,} to the target error-free sequence W = {w, s, ..., W5}, where the length of in-
put tokens n and the length of output tokens n can be the same or different. In PATCorrect, we add
the phoneme sequence p = {p1, p2, ..., Pm } Of the source sentence w to represent the pronunciation
information. During training, we first pre-compute the text editing path from source sequence w to
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target sequence  in the training set, similar toLeng et al.|(2021). Then both source sequence w and
corresponding phoneme sequence p are used as inputs to train a tag predictor which generates token-
level alignment tags t = {t1, to, ..., t,, }. For each source token w;, the corresponding alignment tags
t; consist of 4 possible edit operation types: ¢; = 1 means keep the token unchanged; ¢; = 0 means
delete this token; {; = —1 means substitute the token with another token; ¢; < —1 means add other
tokens adjacent to this token, for example, ¢; = —5 means add 4 adjacent tokens. Before input into
the non-autoregressive (parallel) decoder, the source tokens are adjusted based on the corresponding
alignment tags in order to match the target sequence. During inference when we do not have ground
truth target sequence to compute text editing paths, the tag predictor is used to predict the edit tags
for the input source sequence, and then the target sequence is generated according to predicted tags.

3.1 PHONEME AUGMENTED ENCODER

The vanilla Transformer model Vaswani et al.| (2017) consists of a single encoder and a single de-
coder module, each of which is a stack of several identical layers. We augment the architecture
by adding an additional encoder to provide more information, which conceptually could encode
any information modality depending on the application. Here we choose to use phoneme sequence
because homophone error is one of the major sources of ASR speech-to-text transcription errors
Fang et al.| (2020); Sundararaman et al.| (2021)). The two encoders first encode text and phoneme
information separately without sharing model parameters. The stacked encoder layers, consist-
ing of multi-head self-attention layers and position-wise fully connected feed-forward (MLPs) lay-
ers, transform the input text sequence w and phoneme sequence p into hidden representations
Hy = {huw,, Ry, huw, } € R™¥% and H, = {hy,, hyp,,...hy, } € R™¥%  with the output
dimension d;,. We use the same hidden dimension d}, for both encoders to simplify the multi-modal
fusion operations later. There are two purposes for H,, and Hp: firstly their fused representations
are input into tag predictor for predicting the edit alignment corresponding to each source token,
secondly they both provide inputs to encoder-decoder cross attention mechanism in the joint NAR
decoder during parallel decoding.

3.2 MULTI-MODAL FUSION FOR TAG PREDICTOR

The tag predictor T'agP is trained using precomputed ground truth tags with optimal editing align-
ment paths from source sequences to target sequences [Leng et al.| (2021). The text encoder output
H,, and phoneme encoder output [, are combined into H, via multi-modal fusion operations be-
fore feeding into the tag predictor to get one-dimensional scalar vector ¢ € R™*!, that has the
same length n as the source sequence. We experiment with 3 different fusion approaches Kiela
et al.| (2018));|Ghazvininejad et al.|(2018)) to combine the text encoder output and phoneme encoder
output, and then compare their performances in Sec. [5]

Concatenation We concatenate the two encoder outputs H,, and H, together so that H; =
{ Ry s hags P, s By s By B, 3 € ROVEMIXdn By feeding this fused representation to convo-
lutional and linear layers, the tag predictor T'ag P will output one intermediate vector I € (n+m)x1
that has the same length as the fused input Hs. We then crop I by selecting the first n dimensions
to get the final tag prediction t € R"*1,

Pooling operations Considering that normally n # m for these multi-modal inputs, we first
zero-pad the smaller dimension encoder outputs to make them the same length. In this ASR error
correction application where the length of phoneme sequences is longer than or equal to the length
of the text sequences, i.e. m > n, we pad H,, € R™*4n with zeros to create H,, € R™*dn  Then
component-wise addition or max pooling can be applied to H,, and Hp:

H, = Addition(H.,, H,) (1)

or

Hy = Max(H,,, Hp) 2)
where H, € R™*% Similarly, we crop the vector I € R™>! which is the intermediate output of
TagP(H,) by selecting the first n dimensions to get the final tag prediction t € R™*1,

Cross attention We add cross attention layers with learnable parameters to project the phoneme
encoder outputs on the text encoder outputs, which can also handle the embedding length difference
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between the different modalities. We compute the cross attention outputs by taking text encoder

output Iy, as query, phoneme encoder output H, as key and value:

HoW2)(Hp W)
Vdy,

where W@ WE WY € R4»*dr are the parameter matrices in cross attention layer with multi-

ple attention heads, H, € R™*% is the output after additional dropout, residual connection and
normalization layers. No further cropping operation is needed since TagP(Hy) = t € R"*1,

H, = Softmax(( Y(H,WY) 3)

3.3 NON-AUTOREGRESSIVE JOINT DECODER

In the conventional AR model, the next token in the output sequence is conditioned on previous
predicted tokens to form a chain of conditional probabilities:

A+l

Par(w|w; 0) = [ Plabildo:i—1, wrn; ) 4)

i=1
These conditional probabilities can be trained autoregressively with cross-entropy loss at each de-
coding step. Adapted from |Gu et al|(2017), our NAR model utilizes the tag predictor output as a
latent variable to indicate the target length beforehand. So the conditional probability of the target
sequence  is defined as:

Pearcorreat (W|w, p; ) = Z (H Progp(tilw, p; 0) H (wi|wg, p; )) &)
i=1

teT

where 7 is the set of all possible tag sequences that produces the correct editing of target sequences
of length 7, and w} is the adjusted source inputs based on predicted tags ¢. The adjusted source
sequence wj is the actual input to the NAR decoder. Therefore, the training of PATCorrect is
equivalent to optimizing the overall maximum likelihood with a variational lower bound:

>

EPATCorrecl = 10g PPATCorrect ('uf)\'w, p; 0)

— log (t (H Progp(tilw,p;0) - HP(?I)A’UJ{,P; e)q(lt)>>

=1
> E (Z 10g Pragp(ti|w, p; 0) + > log P(ib;|w}, p; e)) + H(q) 6)
i=1
where H(q) = — E¢q(log¢(t)) is the Shannon entropy. With the optimal edit alignment paths,

we provide an approximate distribution q for the tag sequence with the most likely sample as the
expectation. The first term within E¢~.q(-) trains the tag predictor T'ag P, and the second term trains
the error correction model. This design enables the parallel decoding for every target token w; at the
same time.

In the meantime, we include the encoder-decoder attention mechanism for both of our encoders in

the joint NAR decoder, by sequentially combining them together Wang et al.| (2020). After getting

the self-attention output from decoder Hy € R™*9r with causal mask removed to enable parallel

calculation similar to|Gu et al.|(2017)), we calculate the text and phoneme encoder-decoder attention

by first using H,; as query, text encoder output H,, as key and value:

(HoW3)(Hw W )"
Vdp,

and then using the output Z,, as query, phoneme encoder output I, as key and value:
(Zu W) (Hp W)
Vdp

where {W, W W {WE WK W)Y} € R are the parameter matrices in the text and
phoneme encoder-decoder multi-head attention layers, respectively. The remaining of the decoder
layers are the same as the vanilla Transformer model where Z, € R™*9 will be input into fully-
connected MLPs with residual connection and layer normalization.

Z,, = Softmax( )(Ho W) (7)

Z, = Softmax( )(HpW)) (8)
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4 EXPERIMENTS

4.1 DATASETS AND ASR MODELS

We create training data specifically designed for correcting ASR errors because ASR systems are ac-
curate for most tokens and source sentences are usually aligned monotonically with target sentences
unlike the shuffle error in NMT. For the ASR transcription dataset S"*", multiple ASR systems
{Ak} k< are used to transcribe public English audio corpus A = {C, S;i"*}, where the audio clips
C have corresponding ground truths from human transcriptions ng“s. The transcriptions of C from

ASR systems Szfans’k = A (C) contain actual ASR errors, which leads to the ASR transcription

dataset S = Ule{S;fa“S7k,Sg§“S} = UK { A (C),Sgi™}. We combine two public English
datasets, LibriSpeech |Panayotov et al.|(2015) and Common Voice v9.0|Ardila et al.|(2019), together
to get corpus A.

In order to test different ASR systems with different architecture and performances, we choose 3
pre-trained ASR systems {.Aj } <3 implemented in NeMo |Kuchaiev et al.|(2019): The Convolution-
augmented Transformer Conformer Gulati et al. (2020ﬂ trained on several thousands hours of
English speech with top-tier performance; The Convolution-based Jasper |Li et al. (2019E] trained
on 7,057 hours of audio samples with above average performance; A light-weight 5x5 QuartzNet
Kriman et al. (2020 trained on 960 hours LibriSpeech dataset with subpar performance. All 3
ASR systems are trained with the Connectionist Temporal Classification (CTC) loss. We use the
default splits in LibriSpeech and Common Voice with transcriptions from 3 ASR systems together
to compose the dataset S"™" as shown in Table which in total has more than 3.5 million sentences
pairs in training split. Note that LibriSpeech has been included in the training of all 3 ASR systems,
so we use DEV and TEST splits from Common Voice as benchmarks in accuracy evaluations later.

Table 1: ASR transcription dataset statistics and ASR original WER

LibriSpeech Common Voice
TRAIN DEV TEST | TRAIN DEV  TEST

# of sents 281,241 5,567 5,559 | 890,107 16,331 16,318
Avg. words/sent 334 18.9 18.9 10.3 9.8 94

Conformer WER 1.58 3.21 3.27 7.62 9.84 10.03
Jasper WER 2.13 6.87 6.90 13.63 18.91 21.02
QuartzNet WER 1.97 10.37 11.01 36.42 47.90 52.85

4.2 EVALUATION METRICS

The performance of ASR error correction models should be evaluated in two aspects: accuracy and
speed. Speed is measured by the latency of the whole inference process including encoding and
decoding for different methods. For accuracy, we use Word Error Rate (WER), WER Reduction
(WERR), Fj 5, Fy.25, and Correction. Similar to [Leng et al.|(2021), WER is defined as total edit
distances{zf] between source and target divided by the total number of words in target sequence, and
WERR is defined as the percentage of improvement in WER. For error detection ability, Precision
measures how many actual error tokens are edited among all of the edited tokens, i.e., how many of
them actually need to be corrected; Recall measures how many actual error tokens are edited among
all of the error tokens. In this application of ASR error correction, unnecessary edits may even
lead to WER increase because original ASR outputs are mostly correct. So to put more weight on
Precision, we use Fj 5 and Fj o5 as overall measurements for error detection ability as in|Liao et al.
(2020); |Omelianchuk et al.| (2020); Rothe et al.[| (2021). For error correction ability, C'orrection,

"https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_large
Zhttps://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_jasper10x5dr
3’QuartzNet5x5LS-En’: https://catalog.ngc.nvidia.com/orgs/nvidia/models/nemospeechmodels
*total edit distances = total number of substitutions + insertions + deletions
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defined as (# of correctly edited error tokens) /(# of edited error tokens), measures the percentage
of edited error tokens that match the ground truth.

4.3 MODEL CONFIGURATIONS

PATCorrect In our PATCorrect architecture, we use 6-layer text encoder, 6-layer phoneme en-
coder and 6-layer joint decoder with the hidden model dimension d;, = 512, and MLP dimension
dmrp = 2048. We use 8 attention heads for self-attention, encoder-decoder attention and cross atten-
tion respectively. In the cross attention setup for fusing two encoder outputs, we use 2 consecutive
modules of cross attention with dropout, residual connection and layer normalization. For tag pre-
dictor T'ag P, we apply 5 layers of convolutional modules which consists of 1-D Convolution layer
with kernel size equals 3, ReLU activation, layer normalization and dropout, followed by 2 layers of
MLPs to generate one-dimensional vector ¢ which is the output from tag predictor TagP. We use
MSE loss to train T'ag P to predict the length adjustment for each source token.

Baseline models We compare our model with both AR Transformer and popular NAR methods.
For AR Transformer, we use the standard vanilla Transformer architecture with 6-layer encoder
and 6-layer decoder and the same hidden size d;, = 512. For NAR methods from NMT, we use the
default training hyperparameters from Mask Predict (CMLM) Ghazvininejad et al.[(2019) and Lev-
enshtein Transformer (LevT) |Gu et al. (2019ﬂ For SOTA NAR method for ASR error correction
problem FastCorrect Leng et al.| (2021 ﬂ we adapt the same 6-layer encoder-decoder architecture
and the same architecture for its length predictor.

Training and inference details All models are implemented using Fairseq |Ott et al.| (2019),
and trained using 4 NVIDIA Tesla V100 GPUs with maximum batch token size of 5000 and la-
bel smoothed cross entropy loss function. They are trained from scratch using the ASR transcription
dataset S"™™ for 30 epochs. Source and target sentences are tokenized using sentencepiece Kudo
& Richardson| (2018), and the phoneme sequences are generated by English grapheme to phoneme
conversion using the CMU pronouncing dictionaryﬂ an independent post-processing step of the 1-
best ASR hypothesis as model inputs. We use Adam optimizer [Kingma & Bal (2014) and inverse
square root for learning rate scheduling starting from 5e~%. During inference, we set the test batch
size as 1 to simulate the automated machine learning system environment with output from the up-
stream ASR system, and all NAR methods have the same max decoding iteration of 1. Different
hardware conditions are tested including single NVIDIA Tesla V100 GPU, 8 CPUs and 4 CPUs
with Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz.

5 RESULTS

5.1 ACCURACY

We compare the WER and WERR using different error correction models for all three ASR systems
and their total combined transcriptions on Common Voice DEV and TEST splits, as shown in Table[2]
and 3] The lower WER and higher WERR, the better model accuracy. Results show: 1) In total,
the proposed PATCorrect model beats the SOTA FastCorrect method by improving the TEST set
WERR from 9.46 to 11.62, which is more than 20% relative improvement; 2) Our PATCorrect model
outperforms other NAR methods robustly when dealing with all three ASR system transcriptions.
Straight-forward adaptations of NMT NAR methods like CMLM and LevT may even introduce
more WER for some well-performing ASR systems like Conformer and Jasper; 3) Among all of
the multi-modal fusion operations experimented, cross attention performs best across almost all
datasets.

5.2 SPEED

We test inference speed on both GPU and CPUs as shown in Table ] The inference latency on
LibriSpeech (LS) is longer than that of Common Voice (CV) because LibriSpeech has twice average

Shttps://github.com/facebookresearch/fairseq/tree/main/examples/nonautoregressive_translation
®https://github.com/microsoft/NeuralSpeech/tree/master/FastCorrect
"https://github.com/Kyubyong/g2p
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Table 2: WER (%) | using different error correction models

Models Conformer Jasper QuartzNet Total
DEV TEST | DEV TEST | DEV TEST | DEV TEST
No error correction 9.84 10.03 | 1891 21.02 | 4790 52.85 | 25.55 27.96
AR Transformer 8.56 926 | 1595 18.56 | 33.84 40.64 | 19.45 22.82
CMLM 1043  10.72 | 19.25 21.37 | 42.09 47.39 | 23.92 26.49
LevT 10.05 1037 | 18.69 20.74 | 40.82 4598 | 23.19 25.70
FastCorrect 9.25 9.88 | 17.45 19.96 | 39.69 46.11 | 22.13 25.32
PATCorrect(cat) 9.22 9.78 | 1745 1993 | 39.61 46.00 | 22.09 25.24
PATCorrect(add) 9.26 9.83 | 17.50 19.96 | 39.67 46.04 | 22.14 25.28
PATCorrect(mazx) 9.20 9.79 | 17.34 19.82 | 39.25 45.60 | 21.93 25.07
PATCorrect(cross_atten) | 9.15  9.84 | 17.28 19.80 | 38.27 44.50 | 21.57 24.72
Table 3: WERR (%) 1 using different error correction models
Models Conformer Jasper QuartzNet Total
DEV TEST | DEV TEST | DEV TEST | DEV TEST
AR Transformer | 13.07 7.65 | 1564 11.70 | 29.34 23.10 | 23.87 18.40
CMLM -6.00 -6.89 | -1.80 -1.67 | 12.12 1032 | 6.36 5.26
LevT 2,15 -341 1.15 1.35 | 1477 1299 | 9.24 8.11
FastCorrect 5.98 1.41 7.68 5.05 | 17.13 12.74 | 13.37 946
PATCorrect(cat) 6.29 2.44 7.73 5.17 | 17.31 1295 | 13.53 9.75
PATCorrect(add) 5.90 1.94 7.45 5.04 | 17.18 12.88 | 13.33  9.61
PATCorrect(max) 6.50 2.32 8.28 5.71 | 18.05 13.71 | 14.16 10.35
PATCorrect(cross_atten) | 7.01 1.81 8.61 580 | 20.11 15.79 | 15.59 11.62

words per sentence as shown in Table E} Consistent with the observation from |Gu et al.|(2017), AR
model shows a linear latency trend with decoding lengths, while the latency of the NAR methods
only slightly increases. PATCorrect achieves an inference latency which is comparable with other
NAR models, especially on GPU hardware it is only slower than FastCorrect, while still being about
4.2 - 6.7x times faster than AR models on Common Voice and LibriSpeech datasets.

Table 4: Inference latency | using different hardwares with unit ms/sentence

Models Single GPU 8xCPUs 4xCPUs
LS Ccv LS CvV LS cv
AR Transformer | 246.74 141.00 | 306.40 149.79 | 366.54 186.89
CMLM 3949 3554 | 4796 4378 | 55.15  47.90
LevT 52.61 4786 | 4989 45.68 | 60.27 55.33
FastCorrect 2225  20.81 | 29.28 23.77 | 36.02 29.14
PATCorrect(cross_atten) | 36.92  33.71 5247  41.89 | 66.97 4997

5.3 SENSITIVITY ANALYSIS

To further investigate the performance improvements of PATCorrect, we conduct sensitivity analysis
by comparing the error detection ability and error correction ability for different models with 3
ASR system transcriptions in total. In Table [5] P, R, C' denote Precision, Recall, Correction
respectively. Results show that our PATCorrect not only has the highest Fy 5 and Fp o5 score with
great Precision that is comparable to AR model, but also has better ability to edit error tokens to
the correct targets indicated by higher Coorrection. As shown in the examples in Appendix Table[7}
our PATCorrect’s design of adding a phoneme information helps our model identify and correct the
sound-alike ASR errors that previous method couldn’t correct with only text information.
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Table 5: Sensitivity metrics 1 for error correction models
DEV TEST

Models P R Fys Foes C | P R Fys Fpos C

AR 9150 6672 85.17 89.54 44.53| 90.89 6533 8430 88.85 37.81
Transformer

CMLM | 8339 61.70 7792 81.70 3143 | 84.87 6145 78.86 83.01 27.37

LevT 8508 61.95 79.17 8326 32.53| 8649 6175 80.07 84.49 2842
FastCorrect | 90.25 61.64 82.58 87.85 32.66| 89.53 60.90 81.83 87.12 27.70
PATCorrect | g1 45 6028 82.86 88.72 34.45| 9027 59.64 81.86 87.62 29.50
(cross_atten)

5.4 ABLATION STUDY

We perform ablation study to understand the effectiveness of different components of PATCorrect by
removing a component while retaining the others. No phoneme input for T'ag P means that we only
use text information as input for predicting token tags while still using phoneme encoder-decoder
attention in NAR decoder. No phoneme attention means that we remove phoneme encoder-decoder
attention from the NAR decoder and only use text encoder-decoder attention, while still using cross-
attention to fuse the text and phoneme encoder outputs for T'agP. We also increase the amount of
pre-training data by using a synthetic dataset S¥"" for data augmentation to pretrain the model for
20 epochs. We crawl 50M sentences from English Wiki pages°} and add random editing operations
like deletion, insertion, substitution with a homophone dictionary to produce erroneous sentences
paired with the original correct texts, that mimics the ASR errors with a simulated error distribution.
The results in Table [f] with WER and WERR, equal-weight averaged from all 3 ASR systems, show
that adding phoneme information in T'agP and NAR decoder lead to better WER and WERR. Our
PATCorrect, using phoneme information in both tag predictor and NAR decoder, yields the best
results. In addition, using synthetic dataset for pretraining can also boost the model accuracy to
further reduce WER.

Table 6: Ablation study for PATCorrect model

Models DEV TEST
WER| WERR?T | WER| WERR?®
No error correction 25.55 - 27.96 -
FastCorrect 22.13 13.37 25.32 9.46

No phoneme input for T'ag P 21.88 14.35 25.13 10.14
No phoneme attention in decoder 21.90 14.30 25.06 10.39
PATCorrect(cross-atten) 21.57 15.59 24.72 11.62
PATCorrect(cross_atten) + S | 21.12 17.35 24.33 13.00

6 CONCLUSIONS

We propose PATCorrect, a novel NAR phoneme-augmented Transformer-based model with robust
performance on different upstream ASR systems with varying speech-to-text transcription quality,
to serve as an independent post-processing text editing component for reducing the errors in ASR
transcriptions. Our model outperforms state-of-the-art NAR ASR error correction models, and still
4.2 - 6.7x times faster than AR models, which makes it a great fit as industrial scale text editing
method to refine ASR transcriptions. Our study establishes that multi-modal fusion is a promising
direction for improving the accuracy of low latency NAR methods for ASR error correction. Fu-
ture explorations including adding context information for source sequences, and using knowledge
distillation with AR model as teacher Zhou et al.|(2019) to improve the performance of PATCorrect.

8https://github.com/attardi/wikiextractor
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A APPENDIX

We show some examples in Common Voice TEST split with ground truths, QuartzNet transcriptions,
FastCorrect and PATCorrect corrections.

Table 7: Examples for error correction sentences

Ground truths

ASR transcriptions

\ FastCorrect corrections \ PATCorrect corrections

idon’t blame you

idon’t lame you

| idon’t lame you

idon’t blame you

areabased visu-
alizations have
existed for decades

areobased visualiza-
tions have existed for
decates

a realbased visualiza-
tions have existed for
decays

areabased  visualiza-
tions have existed for
decades

a blond woman is
singing on stage

a blond woman is
singing on states

a blond woman is

singing on sticks

a blond woman is

singing on stage

a white bike is
leaning against a
post

a white wike is lean-
ing against the post

a white white is leaning
against the post

a white bike is leaning
against a post

he
carnegie
university

attended
mellon

he attended canegy
melon niversity

he attended carnegie
milan university

he attended carnegie
mellon university

make sure you get
a doctor’s note

make sure you get a
doctor’s nowte

make sure you get a
doctor’s know it

make sure you get a
doctor’s note

he was the prime
suspect out of thir-
teen

he was the prime sus-
pect out of thirte n

he was the prime sus-
pect out of the team

he was the prime sus-
pect out of thirteen

we need to run

wanet to run

what it to run

we need to run

she was silent for a
moment or two

she was silent for a
moment or to

she was silent for a mo-
ment or too

she was silent for a mo-
ment or two

it was one of
the first private
commercial broad-
caster in the
netherlands

it was one of the
furest private com-
mercial brod gaster
in the nidderlans

it was one of the first

private commercial
broadcaster in  the
midlands

it was one of the first
private commercial
broadcaster in  the
netherlands

they are available
in shades of white
pink purple and
blue

they are available in
shades of white pak
purple and blue

they are available in
shades of white pig
purple and blue

they are available in
shades of white pink
purple and blue

the bloom of the
rose lasts a few
days

the bloom of the rors
lasts a few days

the bloom of the rows
lasts a few days

the bloom of the rose
lasts a few days

a man in a blue
shirt is sitting at a
bus stop

a man in a blue shore
tos sitting at a busttup

a man in a blue shirt is
sitting at a bus

a man in a blue shirt is
sitting at a bus stop
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