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Abstract

In real-world scenarios, arbitrary interactions with the environment can often be
costly, and actions of expert demonstrations are not always available. To reduce
the need for both, Offline Learning from Observations (LfO) is extensively studied,
where the agent learns to solve a task with only expert states and task-agnostic non-
expert state-action pairs. The state-of-the-art DIstribution Correction Estimation
(DICE) methods minimize the state occupancy divergence between the learner and
expert policies. However, they are limited to either f -divergences (KL and χ2) or
Wasserstein distance with Rubinstein duality, the latter of which constrains the un-
derlying distance metric crucial to the performance of Wasserstein-based solutions.
To address this problem, we propose Primal Wasserstein DICE (PW-DICE), which
minimizes the primal Wasserstein distance between the expert and learner state
occupancies with a pessimistic regularizer and leverages a contrastively learned
distance as the underlying metric for the Wasserstein distance. Theoretically, we
prove that our framework is a generalization of the state-of-the-art, SMODICE,
and unifies f -divergence and Wasserstein minimization. Empirically, we find that
PW-DICE improves upon several state-of-the-art methods on multiple testbeds.

1 Introduction

Recent years have witnessed remarkable advances in Offline Reinforcement Learning (RL) [8, 27, 26]:
interaction data collected in the past is used to address sequential decision-making problems without
online interaction, as it is often costly to conduct (e.g., autonomous driving [23]). Even without
online interaction, methods achieve high sample efficiency. Such methods, however, require reward
labels that are often missing when data is collected in the wild [6]. In addition, an informative reward
is also expensive to obtain for many tasks, such as robotic manipulation, as it requires a carefully
hand-crafted design [48]. To bypass the need for reward labels, offline Imitation Learning (IL) has
prevailed recently [18, 19, 22]. It enables the agent to learn from existing demonstrations without
reward labels. However, just like reward labels, expert demonstrations are also expensive and often in
shortage, as they need to be recollected repeatedly for every task of interest. Among different types
of expert data shortage, there is one widely studied type: offline Learning from Observations (LfO).
In LfO, only the expert state, instead of both state and action, is recorded. This setting is useful when
learning from experts with different embodiment [33] or from video demonstrations [7], where the
expert action is either not applicable or not available.

Many methods have been proposed in the field of offline LfO, including inverse RL [52, 42, 24],
similarity-based reward labeling [37, 7], and action pseudo-labeling[41, 28]. The state-of-the-art
solution for LfO is the family of DIstribution Correction Estimation (DICE) methods, which are
LobsDICE [20] and SMODICE [33]; both methods conduct convex optimization in the dual space
to minimize the f -divergence of the state occupancy (visitation frequency) between the learner
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(a) Problem Settings (b) Wasserstein Optimization (c) Weighted BC

Figure 1: An illustration of our method, PW-DICE. Different trajectories are illustrated by different
styles of arrows. PW-DICE minimizes regularized 1-Wasserstein distance between learner’s state
occupancy dπs (s) and expert state occupancy dEs (s), and the underlying distance function is con-
trastively learned to represent the reachability between the states. With the matching result, Weights
are calculated for downstream weighted Behavior Cloning (BC) to retrieve policy. High transparency
indicates a small weight for the state and its corresponding action.

and the expert policies. However, DICE methods mostly focus on f -divergence [20, 33, 25, 22]
(mainly KL-divergence and χ2-divergence; see Appendix A for definition), a metric that ignores some
underlying geometric properties of the distributions [39]. While there is a DICE work, SoftDICE [40],
that introduces the Wasserstein distance into DICE methods, it adopts the Kantorovich-Rubinstein
duality [3], which heavily limits the flexibility of the Wasserstein distances as duality requires the
underlying metric to be Euclidean [39]. This limitation of the distance metric is not only theoretically
infavorable, but also impacts practical performance. Concretely, we find the distance metric in
Wasserstein-based methods to be crucial for performance (Sec. 3.1).

To solve the issue mentioned above, we propose Primal Wasserstein DICE (PW-DICE), a DICE
method that optimizes the primal form of the Wasserstein distance, summarized in Fig. 1. With
adequate regularizer for offline pessimism [21], the joint minimization of the Wasserstein matching
variable and the learner policy can be eventually turned into a single-level convex optimization over the
Lagrange space. The policy is then retrieved by weighted behavior cloning with weights determined
by the Lagrange function. Different from SMODICE and LobsDICE, the underlying distance metric
is arbitrary, and, different from all prior works, we explore the possibility of contrastively learning
the metric from data. Our effort endows PW-DICE with much more flexibility; meanwhile, with
specifically chosen hyperparameters, SMODICE can be seen as a special case of PW-DICE, which
theoretically guarantees the performance of our solution.

We summarize our contributions as follows: 1) we propose a novel offline LfO method, PW-DICE,
which uses the primal Wasserstein distance for LfO, gaining more flexibility regarding the distance
metric than prior works, while removing the assumption for data coverage; 2) we theoretically prove
that PW-DICE is a generalization of SMODICE, thus providing a unified framework for Wasserstein-
based and f -divergence-based DICE methods; 3) we empirically show that our method achieves
better results than the state of the art on multiple offline LfO testbeds.

2 Preliminaries

Markov Decision Process. The Markov Decision Process (MDP) is the widely adopted formulation
for sequential decision-making problems. An MDP has five components: a state space S, an
action space A, a transition function T , a reward r, and a discount factor γ. An MDP evolves in
discrete steps; at step t ∈ {0, 1, 2, . . . }, state st ∈ S is given, and the agent, according to its policy
π(at|st) ∈ ∆(A) (∆(A) is the probability simplex over A), choses an action at ∈ A. After receiving
at, the MDP transits to a new state st+1 ∈ S with the transition probability function T (st+1|st, at),
and gives a reward r(st, at) ∈ R as feedback. The agent needs to maximize the discounted total
reward

∑
t γ

tr(st, at) with discount factor γ ∈ [0, 1]. A complete run of the MDP is defined as an
episode, with the state(-action) pairs collected along the trajectory τ . The state occupancy, which is
the visitation frequency of states given policy π, is dπs (s) = (1−γ)

∑
t γ

tPr(st = s). See Appendix
A in the Appendix for more rigorous definitions of the state and other occupancies.

2



Figure 2: Performance comparison between OTR [32] with default distance metric and Euclidean
distance metric on OTR (two leftmost) and SMODICE [33] (two rightmost) settings. The result
shows that the underlying distance metric is crucial to the performance of Wasserstein-based method.

Offline Imitation Learning from Observations (LfO). In offline LfO, the agent needs to learn from
two sources of data: the expert dataset E with state-only trajectories τE = {s1, s2, . . . , sn1} that
solves the exact target task, and the task-agnostic non-expert dataset I consisting of less relevant state-
action trajectories τI = {(s1, a1), (s2, a2), . . . , (sn2 , an2)}. Ideally, the agent learns the environment
dynamics from I , and tries to follow the expert states in E with information about the MDP inferred
from I . The state-of-the-art methods in offline LfO are SMODICE [33] and LobsDICE [20]. The
two methods are in spirit similar, with the former minimizing state occupancy divergence and the
latter optimizing adjacent state-pair occupancy divergence.

Wasserstein Distance. The Wasserstein distance, also known as Earth Mover’s Distance (EMD) [3],
is widely used as the distance between two probability distributions. It captures the geometry of
the underlying space better and does not require any intersection between the support sets. For two
distributions p ∈ ∆(S), q ∈ ∆(S) over state space S, the Wasserstein1 distance with underlying
metric c(x, y) : S×S → R can be written as W(p, q) = infΠ∈S×S

∫
x∈S

∫
y∈S

Π(x, y)c(x, y), which
is the primal form of the Wasserstein distance. Wasserstein also has an equivalent Kantorovich-
Rubinstein dual form [3], which is W(p, q) = max∥f∥L≤1 Ex∼pf(x)− Ey∼qf(y), where ∥f∥L ≤ 1
means that the function f is 1-Lipschitz. While this form is simpler and more often adopted by
the machine learning community, the Lipschitz constraint is usually practically implemented by a
gradient regularizer; and as the gradient is defined using a Euclidean distance, the underlying distance
metric for Rubinstein duality is also restricted to Euclidean [39], which is often suboptimal.

3 Methodology

3.1 Motivation and Overview

As mentioned in Sec. 1, our goal is to improve the idea of divergence minimization between the
expert’s and the learner’s policies by introducing the primal Wasserstein distance with arbitrary
underlying distance metric. To better show the impotrance of distance metrics and the advantage of
being able to select them, we study Optimal Transport Reward (OTR) [32], a current Wasserstein-
based IL method that can be applied to our LfO setting. OTR optimizes the primal Wasserstein
distance between every trajectory in the task-agnostic dataset and the expert trajectory, and uses the
result to assign a reward to each state in the task-agnostic dataset; then, offline RL is applied to retrieve
the optimal policy. Fig. 2 shows results of OTR on the D4RL mujoco dataset (see Sec. 4.2 for more)
with testbeds appearing in both SMODICE [33] and OTR; we test both the cosine-similarity-based
occupancy used in the paper and Euclidean distance as the underlying distance metric. The result
illustrates that different distance metrics have a significant impact on results; thus, choosing a good
metric is crucial for the performance of Wasserstein-based solutions.

1Unless otherwise specified, we only consider 1-Wasserstein distance in this paper.
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Optimizing the primal Wasserstein distance between the state occupancies, the objective of our
PW-DICE can be written as

min
Π,π

∑
si∈S

∑
sj∈S

Π(si, sj)c(si, sj), s.t. ∀s ∈ S, dπs (s) = (1− γ)p0(s) + γ
∑
s̄,ā

dπsa(s̄, ā)p(s|s̄, ā); dπsa ≥ 0;

∀sj ∈ S,
∑
i

Π(si, sj) = dEs (sj);∀si ∈ S,
∑
j

Π(si, sj) = dπs (si); Π ≥ 0.

(1)

In Eq. 1, we use Π(si, sj) as the matching variable between two state distributions, and c(si, sj)
is the distance between si and sj . dEs is the state occupancy of the expert policy, dπs is the state
occupancy induced by policy π, and the state-action occupancy is dπsa. p0 ∈ ∆(S) is the initial state
distribution. There are two types of constraints in Eq. 1: the first row is the marginal constraint
for the matching variable Π, and the second row is the Bellman flow constraints [33] that ensures
correspondence between occupancy dπs and a feasible policy π.

For a tabular MDP, Eq. 1 can be solved by any Linear Programming (LP) solver, as both the objective
and the constraints are linear; however, such solution is impractical for any MDP with continuous
state or action space. Thus, we will add a pessimistic regularizer in Sec. 3.2 to Eq. 1, with which
the Lagrange dual of the problem is unconstrained. We derive the closed-form solution and retrieve
policy in Sec. 3.3, and discuss the distance metric selection in Sec. 3.4. See Tab. 2 in Appendix F for
reference of notations.

3.2 Lagrange Dual of the Regularized Objective

For simplicity of derivation, we rewrite our main objective in Eq. 1 as a LP problem over a single

vector x =

[
Π
dπsa

]
∈ R|S|×(|S|+|A|), where Π ∈ R|S|×|S| and dπsa ∈ R|S|×|A| are flattened by

row-first manner. Correspondingly, we extend the cost function from c to c′ : (|S| × (|S|+ |A|))×
(|S| × (|S|+ |A|)) → R, such that c′ = c on the original domain of c and c′ = 0 otherwise. Further,
we summarize all linear equality constraints as Ax = b. Then, we get the simplified version of Eq. 1:

min
x≥0

(c′)Tx, s.t. Ax = b. (2)

It is easy to see that the Lagrange dual form of Eq. 2 is also a constrained optimization. In order to
remove the constraints in the dual, we modify the objective as follows:

min
x

(c′)Tx+ ϵ1Df (Π∥U) + ϵ2Df (d
π
sa∥dIsa), s.t. Ax = b, x ≥ 0, (3)

where U(s, s′) = dEs (s)d
I
s(s

′), i.e., U is the product of two independent distributions dEs and dIs .
ϵ1 > 0, ϵ2 > 0 are hyperparameters, and Df can be any f -divergence. Note though f -divergence is
used, unlike SMODICE [33] or LobsDICE [20], such formulation does not require data coverage of
the task-agnostic data over expert data. The two regularizers we add are “pessimistic” and encourages
the agents to stay within the support set of the dataset, which is common in offline IL/RL [21].

With the regularized objective in Eq. 3, we now consider its Lagrange dual form:

max
λ

min
x≥0

L(λ, x) = (c′)Tx+ ϵ1Df (Π∥U) + ϵ2Df (d
π
sa∥dIsa)− λT (Ax− b). (4)

3.3 Convertion Into Single-Level Convex Optimization

While Eq. 4 is unconstrained, it is a bi-level optimization; to obtain a practical and stable solution, a
single-level optimization is preferred. To do so, one could consider using the KKT condition [4], and
set the derivative of the inner-level optimization to 0; however, such approach will lead to an exp
function in the objective [36, 20], and thus is numerically unstable. To avoid this, we first rewrite
Eq. 4 with negated L(λ, x) to separate Π and dπsa in x:
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min
λ

{ϵ1 max
Π∈∆(S2)

[
(AT

1 λ− c)

ϵ1

T

Π−Df (π∥U)] + ϵ2 max
dπsa∈∆(S·A)

[
(AT

2 λ)

ϵ2

T

dπsa −Df (d
π
sa∥dIsa)]− bTλ}. (5)

In Eq. 5, we have A =

[
A1

A2

]
, where A1 ∈ R(|S|×|S|)×M , A2 ∈ R(|S|×|A|)×M , and M = 3|S| is the

number of equality constraints in the primal form. There are two things worth noting in Eq. 5. First,
we append two extra constraints, which are Π ∈ ∆, dπsa ∈ ∆. Such appended constraints does not
affect final results because of the following fact:
Lemma 1. For any MDP and feasible expert policy πE , the inequality constraints in Eq. 1 with
Π ≥ 0, dπsa ≥ 0 and Π ∈ ∆, dπsa ∈ ∆ are equivalent.

The detailed proof of Lemma 1 is given in the Appendix B.3; in a word, the optimal solution of Eq. 4,
as long as it satisfies all constraints in the primal form, must have Π ∈ ∆, dπsa ∈ ∆. Second, we
decompose the max operator into two independent maximizations, as the equality constraints that
correlate Π and dπsa are all relaxed in the dual, and bTλ is independent from the maximization.

With Eq. 5, we now apply the following theorem from SMODICE [33]:
Theorem 1. With mild assumptions [12], for any f -divergence Df , probability distribution p, q on
domain X and function y : X → R, we have

max
p∈∆(X )

Ex∼p[y(x)]−Df (p∥q) = Ex∼q[f∗(y(x))]. (6)

Also, for maximizer p∗(x) = argmaxp∈∆(X ) Ex∼q[f∗(y(x))], we have p∗(x) = q(x)f ′
∗(y(x)),

where f∗(·) is the Fenchel conjugate of f , and f ′
∗ is its derivative.

The proof is out of scope of this work, and is discussed in the Appendix B.4. The rigorous notion
of f -divergence and Fenchel conjugate are in the Appendix A. For this work, we mainly consider
KL-divergence as Df , which corresponds to f(x) = x log x, and f∗(x) = logsumexp(x) to be the

Fenchel dual function with x ∈ ∆ [4]. 2 With Thm. 1, we set p = Π, x = λ, y(x) =
AT

1 λ−c
ϵ1

for the

first max operator, and set p = dπsa, x = λ, y(x) =
AT

2 λ
ϵ2

for the second max operator. Then, we get
the following single-level convex objective:

min
λ

ϵ1 logEsi∼I,sj∼E exp(
(AT

1 λ− c)T

ϵ1
) + ϵ2 logE(si,aj)∼I exp(

AT
2 λ

ϵ2
)− bTλ. (7)

Finally, by considering the elements in A (see Appendix B.2), we get our final objective

min
λ

ϵ1 logEsi∼I,sj∼E exp(
λi+|S| + λj+2|S| − c(si, sj)

ϵ1
)+

ϵ2 logE(si,aj)∼I exp(
−γEsk∼p(·|si,aj)λk + λi − λi+|S|

ϵ2
)− [(1− γ)Es∼p0λ:|S| + Es∼Eλ2|S|:3|S|],

(8)

with the maximizer dπsa = dIsa · softmax(
−γEsk∼p(·|si,aj)

λk+λi−λi+|S|

ϵ2
), and the denominator of the

softmax is summing over all state-action pairs. Thus, we can now retrieve the desired policy π by
weighted behavior cloning:

E(si,aj)∼dπsa
log p(a|s) = E(si,aj)∼I

dπsa(si, aj)

dIsa(si, aj)
log p(aj |si)

∝ E(si,aj)∼I exp(
−γEskλk + λi − λi+|S|

ϵ2
) log p(aj |si).

(9)

In practice, we use 1-sample estimation for p(·|si, aj), which is found in prior works to be simple
and effective [33, 20]. That is, we sample (si, aj , sk) ∼ I from the dataset instead of (si, aj), and

2χ2-divergence does not work as well as KL-divergence in mujoco environment; see Appendix D.3 for
details.
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use λk corresponding to sk as an estimation for Esk∼p(·|si,aj)λk. Since the number of states can be
infinite in practice, we use a 3-head neural network to estimate λs, λs+|S| and λs+2|S| given state s.

Note, the formulation can be seen as a generalization of SMODICE [33]. More specifically, we have
the following theorem (see Appendix B for proof):

Theorem 2. If c(si, sj) = − log
dE
s (si)
dI
s(si)

, ϵ2 = 1, then as ϵ1 → 0, Eq. 8 is equivalent to SMODICE
objective with KL divergence.

For different choice of Df , similarly we have the following corollary:

Corollary 1. If c(si, sj) = − log
dE
s (si)
dI
s(si)

, ϵ2 = 1, then as ϵ1 → 0, Eq. 5 is equivalent to SMODICE
with any f -divergence.

Thus, our PW-DICE work is a unification of f -divergence and Wasserstein distance minimization.

3.4 Underlying Distance Metric

With Eq. 8 and 9, the only problem remaining is to choose the distance metric c(si, sj). For tabular
cases, one could use the simplest distance, i.e., c(si, sj) = 1 if si ̸= sj , and 0 otherwise. However,
such design would lead to gradient disappearance in continuous case; to address this, prior works
have explored many heuristic choices, such as cosine similarity [32] or Euclidean [40]. However,
such heuristic choice is prone to different representations over the same state.

In this work, inspired by both CURL [29] and SMODICE [33], we propose a weighted sum of
R(s) = log

dE
s (s)

(1−α)dI
s(s)+αdE

s (s)
and the Euclidean distance between an embedding learned by the

InfoNCE [43] loss. To be more specifically, we have

c(si, sj) = R(si) + β∥f(si)− f(sj)∥22, (10)

where f(si), f(sj) are embeddings for the states si, sj , α is a positive constant close to 0, and β ≥ 0
is a hyperparameter.

The distance function consists of two parts. The first part, R(si), is an improved version of reward
function log

dE
s (s)
dI
s(s)

in SMODICE [33]; intuitively, high log
dE
s (s)
dI
s(s)

indicates that the state s is more
frequently visited by the expert than agents generating the task-agnostic data, which is probably
desirable. Such reward can be obtained by training a discriminator c(s) that takes expert states
from E as label 1 and non-expert ones as label 0. If c is optimal, i.e., c(s) = c∗(s) =

dE
s (s)

dE
s (s)+dI

s(s)
,

then we have dE
s (s)
dI
s(s)

= log c∗(s)
1−c∗(s) . In our implementation, we change the denominator dEs (s) to

(1− α)dIs(s) + αdEs (s) to avoid the theoretical assumption that the task-agnostic dataset I covers
the expert dataset E, i.e., dIs(s) must be positive wherever dEs (s) > 0.

The second part uses embedding f(s) learned with infoNCE [43] following CURL [29], such that
f(s) and f(s′) are similar if and only if they can be reachable along trajectories in the task-agnostic
dataset. More specifically, we use the following loss function:

Lc = log
exp(qTWk+)

exp(qTWk+) +
∑

k−
exp(qTWk−)

, (11)

where q is the query (anchor), W is a learned, semi positive-definite weight matrix, k+ is positive
key, and k− are negative keys. To train the embedding function f , for every gradient step, we sample
a batch of adjacent state pairs {(si, s′i)|i ∈ {1, 2, . . . ,K}}; then, for q = f(si), we set k+ = f(s′i)
and the set of k− to be {f(s′j)|j ̸= i}; this essentially amounts to a K-way classification task, where
for the i-th sample the correct label is i. Intuitively, the idea is to learn a good embedding space where
the vicinity of state can be evaluated by the Euclidean distance between the embedding vectors. We
define the vicinity as the “reachability” between states; that is, if one state can reach the other through
a trajectory in the task-agnostic data, then they should be close; otherwise, they are far away. Such
definition clusters states that lead to success together in the embedding space, while being robust to
actual numerical values of the state.
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4 Experiments

We evaluate PW-DICE in this section across multiple environments. There are two problems that we
care about: 1) can the Wasserstein objective indeed leads to closer match between the learner’s and
expert’s policy? (Sec. 4.1) 2) can PW-DICE work better than f -divergence based methods on more
complicated environments, and does a flexible underlying distance metric indeed benefit (Sec. 4.2)?

4.1 Tabular Environments

Baselines. We compare to the two baselines closely discussed in the paper, which are SMODICE [33]
and LobsDICE [20]. We test two variants of our method: Linear Programming (LP) that directly
solves Eq. 1, and Regularizer (Reg) that solves Eq. 3 . As the environment is tabular, all methods are
implemented with CVXPY [2] to get optimal numerical solutions. The mean and standard deviation
data are from 10 independent runs with different seeds. We evaluate all methods with the regret, i.e.,
the gap between reward gained by learner policy and expert policy (lower is better). To be consistent
with LobsDICE, We also compare the Total Variation (TV) distance between the state and state-pair
occupancies, i.e., TV(dπs ∥dEs ) and TV(dπss∥dEss), in the Appendix D.1.

Environment Setup. Following random MDP experiment in LobsDICE [20], we randomly generate
a MDP with |S| = 20 states, |A| = 4 actions and γ = 0.95. The stochasticity of the MDP is
controlled by β ∈ [0, 1], where β = 0 is deterministic and 1 is highly stochastic. Agent always start
from one particular state, and tries to reach another particular state with reward +1, which is the only
source of reward. We report the regret with different β, expert dataset size and task-agnostic dataset
size. The only difference from LobsDICE’s experiment is that the expert policy is deterministic
instead of being softmax, as we found that due to the high connectivity of the MDP states, the
value function for each state are close; thus, the softmax expert policy is highly suboptimal and
near-uniform. See Appendix C for the reason and Appendix D.1 for the corresponding results.

Experimental Setup. As the environment is tabular, we use CVXPY [2] to solve the optimal policy
for each method using the primal formulation; for example, we directly solve Eq. 1 to get the learner’s
policy π. Following SMODICE [33], for the estimation of transition function and task-agnostic
average policy πI , we simply count from the task-agnostic dataset I , i.e., the transition probability
p(s′|s, a) = #[(s,a,s′)∈I]

#[(s,a)∈I] , and πI(a|s) = #[(s,a)∈I]
#[s∈I] (# stands for “the number of”). Similarly,

Expert state occupancy dEs is estimated by dEs (s) = #[s∈E]
|E| , where |E| is the size of the expert

dataset E. Specially, if the denominator is 0, the distribution will be estimated as uniform.

Main Results. Fig. 3 shows the regret of each method. It is clearly shown that our method, with or
without regularizer, performs similarly well and achieves the lowest regret across different expert
dataset size, task-agnostic (non-expert) dataset size, and noise level. The gap increases with the
task-agnostic dataset size, which shows that our method works better when the MDP dynamics are
more accurately estimated. LobsDICE performs poorly in this scenario, albeit being the best in
minimizing divergence with softmax expert (see Appendix D.1), as consistent with LobsDICE.

4.2 Mujoco Environments

Baselines. We adopt seven baselines in our comparisons: state-of-the-art DICE methods
SMODICE [33], LobsDICE [20] and ReCOIL [38], non-DICE method ORIL [52], Wasserstein-based
method OTR [32], DWBC [47] with extra access to the expert action, and the plain Behavior Cloning
(BC). As we have no access to the ReCOIL code, we directly report the final numbers in their paper.
The mean and standard deviation data are from 3 independent runs with different seeds. We measure
the performance using the average reward (the higher the better).

Environment and Environmental Setup. Following SMODICE [33], we test PW-DICE on four
standard OpenAI gym mujoco environments: hopper, halfcheetah, ant, and walker2d environment
(see Appendix C for details). The metric we use is the normalized average reward 3, where higher
reward indicates better performance; if the final reward is similar, the algorithm with fewer gradient
step update is better. We plot the reward curve, which illustrates the change of the mean and standard
deviation of the reward with the number of gradient steps. See Appendix C for hyperparameters.

3We use the same normalization standard as that of D4RL [15] and SMODICE [33].
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Figure 3: The regret (reward gap between learner and expert) of each method on tabular environment.
It is clearly shown that our method, regardless of the presence of regularizer, works the best.

Main Results. Fig. 4 shows the result on the mujoco testbed, where our method achieves comparable
or the best result on all four testbeds with the baselines. SMODICE with KL divergence and
LobsDICE works decently well, while the other methods struggles under our setting.

Figure 4: The performance comparison on the mujoco testbed; SMODICE-KL and SMODICE-CHI
stands for variants of SMODICE using different f -divergences (KL or χ2). Our method works the
best among all methods.

Is our design of distance metric useful? To better show the importance and effectiveness of
distance metric design, we conduct an ablation study on the distance metric used in PW-DICE;
specifically, we test the result of PW-DICE with c(s, s′) = R(s), c(s, s′) = ∥s− s′∥22 (Euclidean),
c(s, s′) = 1− sT s′

|s||s′| (cosine similarity), c(s, s′) from contrastive learning and their combinations; the
result is illustrated in Fig. 5. The result shows that both our design of distance and the combination of
cosine similarity and R(s) works well, while distance metrics with single component fails (including
Euclidean distance implied by Rubinstein duality). We also conduct an ablation on the choice of ϵ1
and ϵ2 in Appendix D.2, showing that our method is generally robust to the hyperparameters.

Figure 5: Ablations on the choice of distance metric. Our choice of c(s, s′), which combines
contrastively learned distance and R is the best. Euclidean distance fails in our scenario, which
further proves the importance of using the primal form instead of Rubinstein dual form.
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5 Related Work

Wasserstein Distance for Imitation Learning. As a metric known to be capable of leveraging
geometric properties of the distributions and give gradients to distributions with different support
sets, Wasserstein distance (also known as Optimal Transport) [3] is a popular choice of distribution
divergence minimization in recent years, and is widely used in IL/RL [1, 13, 45, 11, 16]. Among
them, SoftDICE [40] is the most similar work to PW-DICE, which also optimizes Wasserstein
distance under the DICE framework. However, SoftDICE and most Wasserstein-based IL algorithms
use Rubinstein-Kantorovich duality [40, 45, 49, 31], which limits the underlying distance metric to
Euclidean. There are a few methods optimizing primal Wasserstein distance: for example, OTR [32]
computes primal Wasserstein distance between two trajectories and assigns reward accordingly for
offline RL, and PWIL [11] uses greedy coupling to simplify the computation of Wasserstein distance.
However, the former struggles in our experiment settings, and the latter only optimizes an upper
bound of the Wasserstein distance. Our PW-DICE fixes both problems instead.

Offline Imitation Learning from Observation. Offline Learning from Observation (LfO) aims to
learn from expert observations with no labeled action, which is useful in robotics where the expert
action is either not available (e.g. video [35]) or not applicable (e.g. from a different embodiment [37]).
Three major directions present in this area: 1) offline planning or RL with assigned, similarity-based
reward [41, 28]; 2) minimization of occupancy divergence, which includes iterative inverse-RL
methods [52, 46, 42] and DICE [33, 20, 22, 30, 51]; 3) action pseudolabeling, where the missing
actions are predicted with an inverse dynamic model [37, 10, 44]. Our method, PW-DICE, falls in
the second category but is a generalization and improvement over the existing methods.

Contrastive Learning for State Representations. Contrastive learning, such as InfoNCE [43] and
SIMCLR [9], aims to find a good representation that satisfies similarity and dissimilarity constraints
between particular pairs of data points. Such method is widely used in reinforcement learning,
especially with visual input [29, 35, 37] and for meta RL [14] to improve the generalizability of
the agent and mitigate the curse of dimensionality; in such works, similarity constraints can come
from different augmentations of the same state [29, 35], multiview alignment [37], consistency after
reconstruction [50], or task contexts [14]. PW-DICE tries to use contrastive learning to find a good
distance metric considering state reachability, while still adopting the reward from the DICE works.

6 Conclusion

In this paper, we propose PW-DICE, a DICE method that uses the primal form of the Wasserstein
distance with contrastively learned objective. By adding adequate pessimistic regularizer, we conduct
an unconstrained convex optimization in the Lagrange dual space, and retrieve policy using weighted
behavior cloning with weights determined by the Lagrange function. Our method is a generalization
of SMODICE, unifies f -divergence and Wasserstein minimization, and gets better performance than
multiple baselines, such as SMODICE [33] and LobsDICE [20] in multiple environments.
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Appendix: Offline Imitation from Observation via Primal Wasserstein State
Occupancy Matching

The appendix is organized as follows. We first give rigorous introductions on the most important
mathematical concepts in our work in Sec. A, which includes state, state-action and state-pair
occupancy, as well as f -divergence and Fenchel conjugate; then, in Sec. B, we give detailed math
derivations omitted in the main paper, as well as the proofs of the theorems and corollaries appearing
in the main paper; in Sec. C, we give detailed description of our experiments; in Sec. D, we give
additional experimental results, including auxiliary metrics and identical settings as LobsDICE [20] in
the tabular experiment, and ablations in mujoco environments; in Sec. E, we discuss the limitation of
the work; finally, in Sec. F, we give a notation list containing all notations in the paper as a reference.

A Mathematical Concepts

In this section, we introduce three important mathematical concepts in our paper, which are state/state-
action/state-pair occupancy, f -divergence, and Fenchel conjugate. The first one is the key concept
throughout the work, the second is used in our motivation and Thm. 1, and the last is used in Sec. 3.3.

A.1 State, State-Action, and State-Pair Occupancy

Consider a MDP (S,A, T, r, γ) with initial state distribution p0 and infinite horizon; at t-th timestep,
we denote the current state as st and the action as at. Then, with a fixed policy π, the probability of
Pr(st = s) and Pr(at = a) for any s, a are determined. Based on this, the state occupancy, which
is the state visitation frequency under policy π, is defined as dπs (s) = (1− γ)

∑∞
t=1 γ

t Pr(st = s).
Similarly, we define state-action occupancy as dπsa(s, a) = (1 − γ)

∑∞
t=0 γ

t Pr(st = s, at = a).
Some works such as LobsDICE also use state-pair occupancy, which is defined as dπss(s, s

′) =
(1 − γ)

∑∞
t=0 γ

t Pr(st = s, st+1 = s′). In this work, we denote the average policy that generates
the task-agnostic dataset I as πI with state occupancy dIs and state-action occupancy dIsa, and the
expert policy that generates the expert dataset E as πE with state occupancy dEs .

A.2 f -divergences

The f -divergence is a measure of distance between probability distributions p, q and is widely used
in the machine learning community [17]. For two probability distributions p, q on domain X based
on any continuous and convex function f , the f -divergence between p and q is defined as

Df (p∥q) = Ex∼q[f(
p(x)

q(x)
)]. (12)

For instance, when f(x) = x log x, we have Df (p∥q) = Ex∼q
p(x)
q(x) log

p(x)
q(x) = Ex∼p log

p(x)
q(x) , which

induces KL-divergence; and when f(x) = (x−1)2, we have Df (p∥q) = Ex∼q((
p(x)−q(x)

q(x) )2), which
induces χ2-divergence.

A.3 Fenchel Conjugate

Fenchel conjugate is widely used in DICE methods for either debiasing estimations [34] or solving
formulations with stronger constraints to get numerically more stable objectives [33]; PW-DICE uses
Fenchel conjugate for the latter. For vector space Ω and convex, differentiable function f : Ω → R,
the Fenchel conjugate of f(x) is defined as

f∗(y) = max
x∈Ω

⟨x, y⟩ − f(x), (13)

where ⟨·, ·⟩ is the inner product over γ.
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B Mathematical Derivations

In this section, we give the detailed mathematical derivations omitted in the main paper due to page
limit. In Sec. B.1, we briefly introduce SMODICE to clarify the motivation of using Wasserstein
distance and preliminary for Thm. 2; in Sec. B.2, we give a detailed derivation on the elements of A
and b from Eq. 2 to Eq. 7 in Sec. 3; in Sec. B.3, we explain why additional constraints are applied
from Eq. 4 to Eq. 5 while the optimal solution remains the same; in Eq. B.4, we give the source of
the proof for Thm. 1; finally in Eq. B.5, we give a detailed proof for Thm. 2 and Corollary 1.

B.1 SMODICE

SMODICE [33] is a state-of-the-art offline LfO method. It minimizes the f -divergence between the
state occupancy of the learner’s policy π and the expert policy πE , i.e., the objective is

min
π

Df (d
π
s (s)∥dEs (s)), s.t.π is feasible. (14)

where the feasibility of π is the same as the Bellman flow constraint (the second row of constraints in
Eq. 1) in the main paper. To take the only information source of environment dynamics, which is the
task-agnostic dataset I into account, the objective is relaxed to

max
π

Es∼dπ log
dEs (s)

dIs(s)
−Df (d

π
sa(s, a)∥dIsa(s, a)), s.t. π is a feasible policy, (15)

where Df can be any divergence not smaller than KL-divergence (SMODICE mainly studies χ2-

divergence). The first term, log dE
s (s)
dI
s(s)

indicates the relative importance of the state; the more often the
expert visit a particular state s than non-expert policies, the more possible that s is a desirable state.
Reliance on such ratio introduces a theoretical limitation: the assumption that dIs(s) > 0 wherever
dEs (s) > 0 must be made, which does not necessarily hold in high-dimensional space. Thus, we
introduce a hyperpamater of α to mix the distribution in the denominator in our reward design.

By converging the constrained problem into unconstrained problem in the Lagrange dual space,
SMODICE optimizes the following objective (assuming using KL-divergence):

min
V

(1− γ)Es∼p0 [V (s)] + logE(s,a,s′)∼I exp[log
dEs (s)

dIs(s)
+ γV (s′)− V (s)], (16)

where p0 is the initial state distribution and γ is the discount factor. As stated in Thm. 2, such
objective is a special case of PW-DICE with c(s, s′) = log

dE
s (s)
dI
s(s)

, ϵ2 = 1, ϵ1 → 0. LobsDICE [20] is
similar in spirit; however, it minimizes state pair divergence KL(dπss∥dEss) instead.

B.2 Components of A, b in Eq. 2

In Eq. 2, we summarize all equality constraints in Eq. 1 as Ax = b, x =

[
Π
dπsa

]
, where Π, dπsa are

row-firstly expanded. Thus, we have x:i|S|+j = Π(si, sj), and x|S|2+i|A|+j = dπsa(si, aj).

We further assume that in A and b, the first |S| rows are the Bellman flow constraint

∀s,
∑
a

dπsa(s, a)− γ
∑
s̄,ā

p(s|s̄, ā)dπsa(s̄, ā) = (1− γ)p0(s), (17)

the second |S| rows are the
∑

j Π(si, sj) = dπs (si) marginal constraint

∀s,
∑
s′

Π(s, s′) =
∑
a

dπsa(s, a), (18)
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and the third |S| rows are the
∑

i Π(si, sj) = dEs (sj) constraint

∀s,
∑
s′

Π(s′, s) =
∑
a

dEsa(s, a). (19)

Thus, we have Ai,|S|2+j|A|+k = −γp(si|sj , ak) for i ∈ {1, 2, . . . , |S|}, Ai,|S|2+i|A|:|S|2+(i+1)|A| =
1 for i ∈ {1, 2, . . . , |S|} (Eq. 17), Ai+|S|,i|S|+j = 1 for i ∈ {1, 2, . . . , |S|}, Ai+|S|,|S|2+i|A|+j = −1
(Eq. 18), and Ai+2|S|,j|S|+i = 1 (Eq. 19). Other entries of A are 0. For vector b, we have

b =

(1− γ)p0
0
dEs

 . (20)

B.3 Lemma 1

Lemma. 1 is stated as follows:
Lemma 1. For any MDP and feasible expert policy πE , the inequality constraints in Eq. 1 with
Π ≥ 0, dπsa ≥ 0 and Π ∈ ∆, dπsa ∈ ∆ are equivalent.

Proof. according to the equality constraint,
∑

s Π(s, s′) = dEs (s
′) for any s′. Thus, we have∑

s′
∑

s Π(s, s′) =
∑

s′ d
E
s (s

′) = 1 by the definition of state occupancy, and thus Π ≥ 0 is
equivalent to Π ≥ ∆. Similarly, by summing over both sides of the Bellman flow equality constraint,
we have ∑

s

dπs (s) =
∑
s

(1− γ)p0(s) +
∑
s

γ
∑
s̄,ā

dπsa(s̄, ā)p(s|s̄, ā)∑
s,a

dπsa(s, a) = (1− γ) + γ
∑
s

∑
s̄,ā

dπsa(s̄, ā)p(s|s̄, ā)∑
s,a

dπsa(s, a) = (1− γ) + γ
∑
s′

∑
s,a

dπsa(s, a)p(s
′|s, a)

∑
s,a

dπsa(s, a)(1− γ
∑
s′

p(s′|s, a)) = 1− γ

∑
s,a

dπsa(s, a) = 1

(21)

given that p0 and transition function are legal. Thus, dπsa ≥ 0 is equivalent to dπsa ∈ ∆.

Intuitively, by adding the extra constraints, we can assume that redundant equality constraints exist in
Eq. 1, and they are not relaxed in the Lagrange dual. By imposing more strict constraints over the
dual form, Fenchel conjugate yields numerically more stable formulation.

B.4 Theorem 1

Thm. 1 is stated as follows:
Theorem 1. With mild assumptions [12], for any f -divergence Df , probability distribution p, q on
domain X and function y : X → R, we have

max
p∈∆(X )

Ex∼p[y(x)]−Df (p∥q) = Ex∼q[f∗(y(x))] (22)

also, for p∗ = argmaxp∈∆(X ) Ex∼q[f∗(y(x))], we have

p∗(x) = q(x)f ′
∗(y(x)), (23)

where f∗(·) is the Fenchel conjugate of f , and f ′
∗ is its derivative.

This theorem is utilized in SMODICE [33] and our work to get a more robust optimization objective.
The proof of the theorem is out of scope of this work; see Sec. 7.14∗ [36] for the detailed proof of
the theorem.
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B.5 Theorem 2 and Corollary 1

Thm. 2 and Corollary 1 are stated as follows:

Theorem 2. If c(si, sj) = − log
dE
s (si)
dI
s(si)

, ϵ2 = 1, then as ϵ1 → 0, Eq. 8 is equivalent to SMODICE
objective with KL divergence.

Corollary 1. If c(si, sj) = − log
dE
s (si)
dI
s(si)

, ϵ2 = 1, then as ϵ1 → 0, Eq. 5 is equivalent to SMODICE
with any f -divergence.

We first give a simple proof from the primal persepctive:

Proof. (Primal Perspective) According to Eq. 15 and Eq. 1, the SMODICE and PW-DICE primal
objectives are as follows:

min
x

(c′)Tx+ ϵ1Df (Π∥U) + ϵ2Df (d
π
sa∥dIsa), s.t. Ax = b, x ≥ 0; (PW-DICE)

max
π

Es∼dπ log
dEs (s)

dIs(s)
−Df (d

π
sa(s, a)∥dIsa(s, a)), s.t. π is a feasible policy. (SMODICE)

(24)

where x =

[
dπs
Π

]
. Note: 1) Ax = b, x ≥ 0 contains three equality constraints: Bellman flow equation

(which is the same as “π is a feasible policy”),
∑

s′ Π(s, s′) = dπs (s), and
∑

s Π(s, s′) = dE(s′); 2)
(c′)Tx =

∑
s,s′ c(s, s

′)Π(s, s′). Thus, we have∑
s

∑
s′

c(s, s′)Π(s, s′) =
∑
s

log
dEs (s)

dIs(s)

∑
s′

Π(s, s′) = −Es∼dπ
s
log

dEs (s)

dIs(s)
. (25)

Therefore, when ϵ1 = 0, ϵ2 = 1, the objective between PW-DICE and SMODICE is exactly the
opposite (with one maximization and the other minimization), and the constraints on dπsa are identical.
Since Π is also solvable (one apparent solution is Π = dπs ⊗ dEs ), the two objectives are identical,
and thus Eq. 1 and Eq. 15 are equivalent. Since Eq. 1, Eq. 5 and Eq. 8 are equivalent due to strong
duality, both the Theorem and the Corollary are proved.

However, such theorem is unintuitive in its dual form: as we always have ϵ1 > 0, ϵ2 > 0 in the dual
form, the behavior of limϵ1→0 ϵ1 logEsi∼I,sj∼E exp(

λi+|S|+λj+2|S|−c(si,sj)

ϵ1
) in Eq. 8 is non-trivial.

Thus, here we give another proof directly from the dual perspective for KL-divergence as Df in the
continuous space:

Proof. (Dual Perspective, KL-divergence, continuous space) First, we prove by contradiction that

lim
ϵ1→0

ϵ1 logEs∼I,s′∼E exp (
λs+|S| + λs′+2|S| − c(s, s′)

ϵ1
) (26)

is not max operator, because at optimal we have λs+|S| + λs′+2|S| − c(s, s′) to be equal for every
dIs(s) > 0, dEs (s

′) > 0. Otherwise, assume the state pair (s, s′) has the largest λs+|S| + λs′+2|S| −
c(s0, s

′
0); because ϵ1 can be arbitrarily close to 0, there exists ϵ1 small enough such that there exists

s ̸= s0 or s′ ̸= s′0 that makes the infinitesimal increment of λs or λ′
s worthy (i.e., partial derivative

with respect to λs or λ′
s greater than 0).

Then, we have

lim
ϵ1→0

ϵ1 logEs∼I,s′∼E exp (
λs+|S| + λs′+2|S| − c(s, s′)

ϵ1
)

=Es∼I,s′∼E(λs+|S| + λs′+2|S| − c(s, s′))

=Es∼I [λs+|S| + log
dEs (s)

dIs(s)
] + Es′∼Eλs′+2|S|.

(27)
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Note that λs′+2|S| canceled out with the term later, so the value of λs′+2|S| does not matter anymore.
That means, for any λs′+2|S|, there exists an optimal solution (In fact, different optimal solution can
be converted by the formula in the next subsection). Therefore, without loss of generality, we let
λs′+2|S| = 0. The objective then becomes

ϵ1 logEs∼I exp(
λs+|S| + log

dE
s (s)
dI
s(s)

ϵ1
)+

ϵ2 logE(s,a,s′)∼I exp (
−γλs′ + λs − λs+|S|

ϵ2
)− (1− γ)Es∼p0

λs.

(28)

Then, we can use the same trick on ϵ1 → 0 and infer that λs+|S| = − log
dE
s (s)
dI
s(s)

+ Q, where Q is
some constant. Then, we have

L(λ) = Q+ ϵ2 logE(s,a,s′)∼I exp (
−γλs′ + λs + log

dE
s (s)
dI
s(s)

−Q

ϵ2
)− (1− γ)Es∼p0λs. (29)

Note that Q is cancelled out again, which means the value of Q does not matter. Without loss of
generality, we set Q = 0, and then we get SMODICE objective with KL-divergence.

C Experiment Details

C.1 Tabular MDP

Experimental Settings. We adopt the tabular MDP experiment from LobsDICE [20]. For the
tabular experiment, there are 20 states in the MDP and 4 actions for each state s; each action a
leads to four uniformly chosen state s′1, s

′
2, s

′
3, s

′
4. The possibility vector for each possibility is

determined by the formula (p(s′1|s, a), p(s′2|s, a)), p(s′3|s, a), p(s′4|s, a) = (1− β)X + βY , where
X ∼ Categorical( 14 ,

1
4 ,

1
4 ,

1
4 ), and Y ∼ Dirichlet(1, 1, 1, 1). β ∈ [0, 1] controls the randomness of

the transition: β = 0 means deterministic, and β = 1 means highly stochastic. The agent always
starts from state s0, and can only get a reward of +1 by reaching a particular state sx. x is chosen
such that value function at optimal V ∗(s0) is minimized. Discount factor γ is set to 0.95.

Dataset Settings. For each MDP, The expert dataset is generated using a deterministic optimal policy
with infinite horizon, and the task-agnostic dataset is generated similarly but with a uniform policy.
Note we use a different expert policy from the softmax policy of LobsDICE, because we found that
due to the high connectivity of the MDP, the value function for each state are quite close to each
other; thus, the “expert” softmax policy is actually near-uniform and severely sub-optimal.

Selection of Hyperparameters. There is no hyperparameter selection for SMODICE; for LobsDICE,
we follow the settings in their paper, which is α = 0.1. For our method, we use ϵ1 = ϵ2 = 0.01 for
our method with regularizer, and ϵ1 = ϵ2 = 0 for our method with Linear Programming (LP).

C.2 Mujoco Environment

Experimental Settings. We test four widely adopted mujoco locomotion environments, which are
hopper, halfcheetah, ant and walker2d. Below is the detailed description for each environment; see
Fig. 6 for illustration.

1. Hopper. Hopper is a 2D environment where the agent controls a single-legged robot to
jump forward. The state is 11-dimensional, which includes the angle and velocity for each
joint of the robot; the action is 3-dimensional, each of which controls the torque applied on
a particular joint.

2. Halfcheetah. In Halfcheetah, the agent controls a cheetah-like robot to run forward. Similar
to Hopper, the environment is also 2D, with 17-dimensional state space describing the
coordinate and velocity and 6-dimensional action space controlling torques on its joints.
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(a) Hopper

(b) Halfcheetah

(c) Ant

(d) Walker2d

Figure 6: Illustration of environments tested in Sec. 4.2 based on OpenAI Gym [5] and D4RL [15].

3. Ant. Ant is a 3D environment where the agent controls a quadrupedal robotic ant to move
forward with 111-dimensional state space including the coordinate and velocity of each
joint. The action space is 8-dimensional.

4. Walker2d. Walker2d, as its name suggests, is a 2D environment where the agent controls a
two-legged robot to walk forward. The state space is 27-dimensional and the action space is
8-dimensional.

Dataset Settings. We adopt the same settings as SMODICE [33]. SMODICE uses a single trajectory
(1000 states) from the “expert-v2” dataset in D4RL [15] as the expert dataset E. For the task-agnostic
dataset I , SMODICE uses the concatenation of 200 trajectories (200K state-action pairs) from
“expert-v2” and the whole “random-v2” dataset (1M state-action pairs).

Selection of Hyperparameters. Tab. 1 summarizes our hyperparameters, which is also the hyper-
pameters of plain Behavior Cloning if applicable. For baselines (SMODICE, LObsDICE, ORIL,
OTR and DWBC), we use the hyperparameters reported in their paper (unless the hyperparameter
values in the paper and the code are different; in that case, we record the values from the code).

D Additional Experimental Results

D.1 Supplementary Results for the Tabular Environment

D.1.1 State and State-pair Total Variation (TV) distance

In this section, we show the Total Variation (TV) divergence between the state and state-pair oc-
cupancies of the learner and expert, i.e., TV(dπs ∥dEs ) and TV(dπss∥dEss). Fig. 7 shows the result
of state occupancy distance between learner and expert policy, and Fig. 8 shows the distance be-
tween state-pair occupancies. It is clearly shown that our method works better than SMODICE and
LobsDICE.
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Type Hyperparameter Value Note
Disc. Network Size [256, 256]

Activation Function Tanh
Learning Rate 0.0003

Training Length 40K steps
Batch Size 512
Optimizer Adam

Actor Network Size [256, 256]
Activation Function ReLU

Learning Rate 0.001
Weight Decay 10−5

Training length 1M steps
Batch Size 1024
Optimizer Adam

Tanh-Squashed Yes
Critic Network Size [256, 256]

Activation Function ReLU
Learning Rate 0.0003

Training Length 1M steps
Batch Size 1024
Optimizer Adam

ϵ1 0.5 coefficient for the KL regularizer
ϵ2 0.5 coefficient for the KL regularizer
α 0.01 mixing coefficient to the denominator of R(s)
β 5 coefficient for combination of distance metric
γ 0.998 discount factor in our formulation

Table 1: Our selection of hyperparameter. We use the same network architecture and optimizer as
SMODICE [33].

Figure 7: The TV distance TV(dπs ∥dEs ) of each method on tabular environment. Our method, both
with and without regularizer, works comparably well with the baselines on small task-agnostic dataset,
and prevails with larger the task-agnostic dataset (more accurate estimated dynamics).

D.1.2 Tabular Experiment with Softmax Expert

To be consistent with LobsDICE [20], we also test the experiment result under exactly the same
settings of LobsDICE, which uses an expert highly sub-optimal. Fig. 9, Fig. 10 and Fig. 11 shows the
regret, state occupancy divergence TV(dπs ∥dEs ) and state-pair occupancy divergence TV(dπss∥dEss)
of each method under such settings. The result shows that our method does not performs well in
minimizing occupancy divergence, as the coefficient of f -divergence regularizer in our method is
much smaller or 0, which means our obtained policy is more deterministic and thus different from
the highly stochastic “expert” policy. It is worth noting that our method, with accurate estimation
of MDP dynamics (i.e. large size of task-agnostic/non-expert dataset), is the only method that
achieves negative regret, i.e., our method is even better than the “expert” policy; also, our method
with regularizer generally achieves lower regret.
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Figure 8: The state-pair occupancy TV distance between the learner and expert (TV(dπss∥dEss)) on
tabular environment. LobsDICE works the best, but this is because LobsDICE maximizes state-pair
occupancy instead of state occupancy.

Figure 9: The regret of each method for tabular experiment with softmax expert. Our method with
regularizer generally achieves the lower regret; also, our method is the only one that achieves negative
regret (i.e. better than the highly sub-optimal “expert”).

Figure 10: The state occupancy TV distance TV(dπs ∥dEs ) of each method for tabular experiment with
softmax expert. Our method does not work well because the expert policy is highly stochastic.
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Figure 11: The state-pair occupancy TV distance TV(dπss∥dEss) of each method for tabular experiment
with softmax expert. Our method does not work well because the expert policy is highly stochastic.

Figure 12: The ablation of ϵ1 and ϵ2 on mujoco testbed; ϵ1 = 0.1 are marked as green, ϵ1 = 0.5 are
marked as red and ϵ1 = 1.0 are marked as blue. The deeper the color, the larger ϵ2 is. Our method is
generally robust to hyperparameter changes, though some choice leads to failure. Generally, large ϵ1
leads to worse performance.

D.2 The Effect of ϵ1 and ϵ2

In order to show the robustness of PW-DICE with the choice of ϵ1 and ϵ2, we conduct an ablation study
on the choice of ϵ1 and ϵ2 on the mujoco environment; specifically, we test ϵ1 ∈ {0.1, 0.5, 1} × ϵ2 ∈
{0.1, 0.5, 1}. The result is shown in Fig. 12. While some choice of hyperparameter leads to failure,
PW-DICE is generally robust to the choice of ϵ1 and ϵ2; generally, ϵ1 should be small to maintain
good performance.

D.3 PW-DICE with χ2-divergence on Mujoco Environment

In the main paper, we mainly considered PW-DICE with KL-divergence; however, as Corollary 1
suggests, the Df regularizer in PW-DICE can also be χ2-divergence. Suppose we use half χ2-
divergence as SMODICE [33] does, i.e., f(x) = 1

2 (x− 1)2, f∗(x) = 1
2 (x+ 1)2 and f ′(x) = x+ 1;

With such divergence, the final optimization objective of PW-DICE becomes

min
λ

ϵ1
2
Esi∼I,sj∼E(

λi+|S| + λj+2|S| − c(si, sj)

ϵ1
+ 1)2

+
ϵ2
2
E(si,aj ,sk)∼I(

−γλk + λi − λi+|S|

ϵ2
+ 1)2 − [(1− γ)Es∼p0λ:|S| + Es∼Eλ2|S|:3|S|]

(30)

and the policy loss is

E(s,a)∼I max(0,
−γEsk∼p(·|si,aj)λk + λi − λi+|S|

ϵ2
). (31)
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Figure 13: Performance comparison between χ2-divergence (blue) and KL-divergence (red) in PW-
DICE. χ2-divergence does not work as well as KL-divergence.

However, similar to SMODICE, we found that χ2-divergence regularizer does not work well under
mujoco environments, as the weight ratio between good and bad actions in the task-agnostic dataset
is only proportional (instead of exponential) to −γλk + λi − λi+|S|, and thus is not discriminative
enough. As a result, the retrieved policy is highly stochastic. Fig. 13 shows the result of χ2-divergence,
which is much worse than KL-divergence.

E Limitation

In order to get unconstrained optimization formulation, we add KL terms to the objective, which
introduces logsumexp into the final objective. Some works argue that logsumexp brings instability
to optimization [40], which may be a potential shortcoming of our paper on more complicated
environments. Thus, one of the future directions is to find a more robust formulation while maintaining
the good properties of PW-DICE.

F Notations Table

Tab. 2 shows the notations appear in the paper.
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Name Meaning Note
S State space |S| is the size of state space for tabular MDP
A Action space |A| is the size of state space for tabular MDP
γ Discount factor γ ∈ (0, 1)
r Reward function r(s, a) for single state-action pair
T Transition function
p Transition (single entry) p(s′|s, a) ∈ ∆(S)
p0 Initial distribution p0 ∈ ∆(S)
s State s ∈ S
a Action a ∈ A
s̄ Past state
ā Past action
τ Trajectories State-only or state-action; depend on context
E Expert dataset state-only expert trajectories
I Task-agnostic dataset state-action trajectories of unknown optimality
π Learner policy
πE Expert policy abstracted from E
πI Task-agnostic policy abstracted from I
dπsa State-action occupancy of π
dπs State occupancy of π 1) ∀s ∈ S,

∑
a d

π
sa(s, a) = dπs (s). This equation also applies

similarly between dEsa and dEs , as well as dIsa and dIs .
2) dπs (s) =

∑∞
i=0 γ

iPr(si = s), where si is the i-th state in a
trajectory. This holds similarly for dI(s) and dE(s).
3) dπsa(s, a) = dπs (s)π(a|s). This holds similarly for dEsa, πE

and dIsa, πI .
dπss State-pair occupancy of π
dEs State occupancy of πE

dEss State-pair occupancy of πE

dIsa State-action occupancy of πI

dIs State occupancy of πI

λ Dual variable
Df f -divergence
f∗ Fenchel conjugate of f
c Matching cost for Wasserstein distance
c′ Matching cost for Wasserstein distance With extended domain
Π Wasserstein matching variable

∑
s∈S Π(s, s′) = dEs (s

′),
∑

s′∈S Π(s, s′) = dπs (s)
A Equality constraint matrix
x unified self-variable concatenation of flattened Π and dπsa (row first)
b Equality Constraint vector Ax = b
U Distribution as regularizer product of dIs and dEs
W Wasserstein distance

Table 2: Complete list of notations used in the project. The first part is for offline LfO settings and
the second part is notations specific to PW-DICE.
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