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Abstract

Confidence calibration, the alignment between a model’s predicted confidence1

and its empirical correctness, is crucial for the trustworthiness of Large Language2

Models (LLMs). Previous studies on multilingual calibration mainly use machine-3

translated data and are limited to a small number of languages. In this work,4

we present the first systematic evaluation of multilingual calibration on 3 high-5

quality datasets over 100 languages with 7 model families. Our analysis reveals that6

LLMs exhibit significant disparities across languages, particularly underperforming7

in low-resource and non-Latin-script settings. To understand the source of this8

miscalibration, we conduct a layer-wise analysis and uncovered a consistent pattern:9

intermediate layers often yield better-calibrated outputs than final layers, especially10

for low-resource languages. Inspired by this observation, we propose leveraging11

intermediate representations to enhance multilingual calibration. Our methods12

significantly improve Expected Calibration Error (ECE), Brier Score, and AUROC,13

outperforming final-layer baselines by large margins. Importantly, our approach is14

orthogonal to existing calibration methods, and combining them leads to further15

improvements. This work challenges the conventional reliance on final-layer16

decoding and opens a new direction for achieving robust and equitable multilingual17

calibration.18

1 Introduction19

Calibration in machine learning refers to the alignment between a model’s confidence in its predictions20

and the actual probability of those predictions being correct [Guo et al., 2017, Tian et al., 2023, Geng21

et al., 2024]. For example, a perfectly calibrated model that assigns an 80% confidence to a prediction22

should indeed be correct approximately 80% of the time. Accurate calibration is crucial in practical23

applications of large language models (LLMs), particularly in high-stakes scenarios such as medical24

diagnosis, legal advice, or critical decision-making processes [Zhang et al., 2024a,b, Yang et al.,25

2024b]. Properly calibrated models can provide more reliable and interpretable confidence scores,26

increasing their trustworthiness and clearly indicating the reliability of generated responses.27

However, existing research on calibration has primarily focused on English [Tian et al., 2023, Li et al.,28

2024, Zhang et al., 2024b]. Recent study on multilingual calibration relies on machine-translated29

datasets [Xue et al., 2024], which may introduce potential biases [Vanmassenhove et al., 2021,30

Choenni et al., 2024]. We argue that model calibration in more realistic multilingual scenarios, and31

the effectiveness of calibration methods in such environments, remain largely underexplored. This32

gap is especially concerning for low-resource languages, where limited training data often results in33

poorer calibration, increasing the risk of misleading or harmful outputs in critical applications.34

We first empirically analyze the calibration of popular LLMs across 7 model families using 3 human-35

translated datasets: MMMLU [Hendrycks et al., 2020], Belebele [Bandarkar et al., 2024a], and36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



… …

26th Layer 32nd Layer

Calibration
Status for 
Different 
Layers

:

Questions in Low-Resource Languages

… …

Model Layers

Figure 1: Different layers show various levels of calibration in multilingual LLMs for questions in
low-resource languages. Intermediate layers usually exhibit better calibration, while last layers tend
to be overconfident and poorly calibrated.

MKQA [Longpre et al., 2021], covering both multiple-choice and short-form QA tasks. Our study37

spans over 100 languages and provides further evidence that low-resource languages tend to exhibit38

lower accuracy and worse calibration. We also observe that Latin-script languages generally show39

better calibration and accuracy compared to non-Latin-script languages.40

We further explore the underlying reasons of the consistently poor calibration observed at the final41

output layer. We draw inspiration from recent findings which suggest that intermediate layers in LLMs42

encode language-agnostic knowledge, while upper layers are more language-specific [Bandarkar43

et al., 2024b, Wendler et al., 2024]. Building on this insight, we analyze calibration across different44

layers in Section 4 and reveal that different layers exhibit varying calibration quality. Specifically45

for low-resource languages, models are better calibrated in intermediate layers before a significant46

drop-off in the final layer.47

Our findings motivate us to use logits from intermediate layers as confidence scores to improve48

calibration in multilingual LLMs. In Section 5, we propose a series of novel calibration methods that49

leverage intermediate layers to enhance final calibration. Our results show consistent improvements50

in calibration without affecting accuracy, especially for low-resource languages. Furthermore, we51

demonstrate that our approach is orthogonal to traditional calibration methods, and combining them52

leads to even better performance. Our study offers valuable insights and methodological advances53

toward reliable multilingual calibration, supporting more equitable and trustworthy deployment of54

LLMs worldwide.55

Our contributions are listed as follows:56

• We provide a comprehensive empirical analysis of calibration in multilingual LLMs on57

human-translated datasets, revealing significant disparities between high-resource and low-58

resource languages.59

• We are the first to investigate layer-wise calibration, showing that intermediate layers often60

exhibit better calibration for low-resource languages compared to the final layer.61

• We propose novel calibration methods that leverage intermediate layer representations,62

demonstrating their effectiveness in improving calibration and reducing performance gaps63

across languages.64

2 Related Work65

Multilingual Calibration Recent work has highlighted that modern LLMs, despite their strong66

performance, often generate overconfident predictions [Xiong et al., 2024, Zhang et al., 2024a].67

Calibration techniques are thus in need to mitigate the overconfidence issue Geng et al. [2023], but68
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Language LLaMA3 Cohere

AUROC ECE BRIER Accuracy AUROC ECE BRIER Accuracy

Arabic 61.00 33.06 24.37 38.20 71.49 28.41 33.79 45.20
Bengali 58.44 24.93 23.39 35.20 60.01 29.01 31.48 31.30
German 65.36 25.81 24.92 44.40 69.70 26.54 33.51 53.00
English 80.36 4.61 17.63 61.20 74.65 20.66 25.30 57.40
Spanish 71.65 18.21 21.89 52.00 71.12 28.17 31.86 51.10
French 71.39 13.87 22.75 51.30 70.69 23.80 32.72 53.40
Hindi 62.07 28.31 24.28 39.90 70.08 30.21 34.98 42.30
Indonesian 66.25 19.67 23.76 45.00 70.85 27.88 31.54 51.20
Italian 71.57 21.19 22.74 51.80 71.76 26.65 30.33 52.70
Japanese 61.73 28.36 27.27 43.00 69.92 16.30 26.26 46.70
Korean 62.59 30.86 25.06 42.50 72.06 32.07 37.09 45.00
Portuguese 71.37 10.51 21.76 50.40 70.71 27.33 31.42 53.50
Swahili 61.10 23.84 21.45 32.20 58.23 32.01 36.72 31.30
Yoruba 58.00 8.18 19.43 27.40 60.73 30.11 28.56 26.40
Chinese 50.63 41.94 19.56 23.10 67.35 17.12 28.75 52.20

Avg. Low-Resource 61.14 23.00 22.78 36.32 65.23 29.60 32.84 37.95
Avg. High-Resource 67.41 21.71 22.62 46.63 70.88 24.29 30.80 51.67
Avg. Non-Latin-Script 59.44 27.44 23.10 35.19 66.23 26.90 32.20 40.05
Avg. Latin-Script 71.14 16.27 22.21 50.87 71.35 25.86 30.95 53.19

Average (All Languages) 64.90 22.22 22.68 42.51 68.62 26.42 31.62 46.18

Table 1: Multilingual performance of LLaMA3 (left) and Aya (right) on the MMMLU dataset.
Metrics include AUROC, ECE, Brier Score, and Accuracy. All numbers are in percentages.

it is underexplored in multilingual setting. Seminal work by Ahuja et al. [2022] first established69

that massively multilingual models like mBERT and XLM-R are poorly calibrated, especially for70

low-resource and typologically distant languages. Subsequent research has confirmed that this71

problem persists and may even be amplified in modern generative models. For instance, Yang et al.72

[2023] specifically evaluated multilingual question-answering LLMs and found substantial calibration73

gaps between high-resource and low-resource languages. Expanding this line of research, Xue et al.74

[2024] conducted a comprehensive study across various models, covering both language-agnostic75

and language-specific tasks. However, all datasets in their study were translated by machine, which76

can potentially import bias. These studies collectively establish a critical performance bottleneck:77

even when models achieve reasonable accuracy, their reliability is undermined by poor multilingual78

calibration. However, they primarily focus on documenting this phenomenon at the final output layer.79

The architectural origins of this cross-lingual calibration deficit remain underexplored, motivating80

our work to investigate calibration dynamics within the internal layers of the model.81

Layer-wise Representations A growing body of research investigates the functional specialization82

of layers within multilingual transformers. It is widely observed that intermediate layers encode cross-83

lingual semantic knowledge in a largely language-agnostic manner, forming a shared representational84

space [Bandarkar et al., 2024b]. In contrast, the final layers tend to be more language-specific,85

adapting these general representations to handle surface-level features like syntax and word order86

for the target language. Recent studies on predominantly English-trained LLMs, such as LLaMA,87

suggest a more specific mechanism: these models often process multilingual text by mapping it to88

an internal English-based representation in the middle layers, before translating it back to the target89

language in the final layers [Wendler et al., 2024, Kojima et al., 2024, Alabi et al., 2024]. This "latent90

English" hypothesis explains the empirical success of prompting strategies that explicitly ask the91

model to "think in English" before generating a response in another language, as this aligns with the92

model’s internal processing pathway [Shi et al., 2022, Zhang et al., 2024c]. Our work builds on these93

insights by exploring the implications of this layer-wise specialization for model calibration.94

3 Benchmarking Multilingual Calibration on Human-Translated Datasets95

3.1 Experimental Setup96

Datasets We use datasets that cover both multiple-choice and short-form question-answering97

formats across diverse languages, including (1) MMMLU [Hendrycks et al., 2020] (15 languages,98
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Figure 2: Relationship between language resource level and AUROC (%) for the LLaMA3 model on
the Belebele benchmark. Each point represents a language, and languages sharing the same color use
the same writing system.

multiple-choice), (2) Belebele [Bandarkar et al., 2024a] (122 languages, multiple-choice), (3) MKQA99

[Longpre et al., 2021] (26 langauges, short-form). All three datasets consist of high-quality human-100

translated items. All experiments were conducted using a eight-shot prompting setup in its respecitve101

language.102

Models Our experiments involve evaluating several recent large language models:103

LLaMA3 [Grattafiori et al., 2024] (Llama-3.1-8B-Instruct), Qwen2.5 [Yang et al., 2024a]104

(Qwen2.5-7B-Instruct), Mistral [Jiang et al., 2023] (Mistral-7B-Instruct-v0.3), Babel [Zhao105

et al., 2025] (Babel-9B-Chat), Aya [Dang et al., 2024](aya-expanse-8b), DeepSeek [DeepSeek-AI,106

2025] (DeepSeek-R1-Distill-Qwen-7B), and Phi [Abdin et al., 2024] (phi-4).107

Confidence Elicitation Methods and Metrics For multiple-choice datasets such as MMMLU and108

Belebele, we adopt the standard confidence estimation approach, which uses the log-probability of109

the selected answer choice. For short-form datasets (MKQA), we experiment with three confidence110

elicitation approaches, following Xue et al. [2024]’s setup: (1) log probability of the generated answer111

sequence (Prob), (2) the probability of generating a "true" token given the question-answer pair112

(True), and (3) verbalized confidence (Verb), where the model explicitly articulates its confidence113

level. For all models, we restrict the answer format to short-form outputs by setting maximum114

response length to 48 during inference. We use PREM (Positive-Recall Exact Match) to evaluate115

accuracy, this is a relaxed evaluation metric that considers an answer correct if the predicted answer116

contains the reference or vice versa.117

Metrics To evaluate calibration and accuracy, we use four primary metrics: Accuracy, ECE118

(expected calibration error; Guo et al., 2017), AUROC (area under the receiver operating characteristic119

curve; Fawcett, 2006), and the Brier Score (Brier, 1950).120

To quantify resource availability across languages, we utilize the Common Crawl dataset121

(CC-MAIN-2025-30; Common Crawl Foundation, 2025), calculating resource levels as the percentage122

of web pages available per language from the crawl, as will be shown in Figure 2.123

3.2 Results124

Our results, presented in Table 1 for the LLaMA3 and Aya models on MMMLU, and visually125

summarized in Figure 2 for Belebele, reveal variations in accuracy and calibration across languages126

and resource categories. Additional results on MKQA are included in Appendix C.3. Similar patterns127

are observed for MMMLU across other models, including Mistral (Table 3), Babel (Table 4), Qwen2.5128

(Table 5), Phi (Table 6), and Deepseek (Table 7). Complete Belebele results for LLaMA3 are also129

provided in Appendix 8.130

Low-resource languages exhibit lower accuracy. As shown in Table 1, low-resource languages131

consistently underperform in terms of accuracy. The average accuracy in LLaMA3 across low-132

resource languages is just 36.32%, compared to 46.63% for high-resource languages and 61.20% for133
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Figure 3: ECE vs. entropy across layers on the MMMLU subset for LLaMA3. In the multilingual
setting, many languages achieve their lowest (best) ECE in intermediate layers (e.g., 22-26), after
which calibration quality degrades towards the final layer. This contrasts with the English-only
setting, where calibration improves monotonically.

English. Languages such as Swahili (32.20%), Yoruba (27.40%) demonstrate particularly low scores,134

highlighting substantial performance gaps in multilingual understanding and reasoning.135

Low-resource languages suffer from worse calibration. In addition to reduced accuracy, cali-136

bration is also worse in low-resource languages. The average AUROC for these languages is 61.14,137

substantially lower than the 80.36 observed for English, suggesting that model confidence is far less138

reliable. Similarly, the average observed ECE for low-resource languages in Aya (29.60) exceeds139

that of the high-resource counterparts (24.29). This disparity is further illustrated in Figure 2, which140

shows a clear correlation between resource level and calibration performance, with low-resource141

languages consistently exhibiting higher calibration error.142

Latin-script languages show better calibration and accuracy compared with non-Latin-script143

languages. Our results also highlight a performance gap between languages based on their script.144

In LLaMA3 Latin-script languages achieve an average accuracy of 50.87% and an average ECE of145

16.27%. In contrast, non-Latin-script languages have a lower average accuracy of 35.19% and a much146

higher average ECE of 27.44%, indicating poorer calibration. This disparity is consistent across all147

metrics, with Latin-script languages showing a higher average AUROC (71.14% vs. 59.44%) and a148

slightly lower (better) Brier score (22.21% vs. 23.10%).149

4 Mid-Layers Reveal Better Calibration150

To understand the source of the poor calibration observed in the multilingual setting, we investigate151

how calibration evolves throughout the model’s depth. Inspired by recent insights in layer-wise152

multilingual representations [Bandarkar et al., 2024b, Wendler et al., 2024]. We hypothesize that the153

final layers, which may over-specialize in high-resource languages like English, could be detrimental154

to the calibration of other languages.155

4.1 Methodology for Layer-Wise Early Decoding156

To investigate how calibration evolves across the depth of the model, we adopt a layer-wise probing157

technique inspired by the early exiting paradigm [Elbayad et al., 2020]. Instead of applying the158

modeling head only to the final hidden state, we attach it to each intermediate transformer layer. This159

allows us to extract logits and compute prediction confidence from every layer, providing a granular160

view of the model’s decision-making process.161
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Formally, let hℓ ∈ Rd denote the hidden representation at layer ℓ, where ℓ = 1, . . . , L, and d is162

the dimensionality of the hidden state. We apply the original language modeling head, with weight163

matrix W ∈ RV×d, to compute the logits at each layer:164

zℓ = Whℓ

where zℓ ∈ RV are the unnormalized token logits over the vocabulary of size V . These logits are165

then converted into probabilities using the softmax function, from which we derive the predicted166

token and its confidence at each layer:167

pℓ = softmax(zℓ), ŷℓ = argmax
v

[pℓ]v

To quantify the model’s uncertainty at each stage, we also compute the entropy of the probability168

distribution for each layer:169

Hℓ = −
V∑

v=1

[pℓ]v log2[pℓ]v

4.2 Multilingual Language Models Calibrate Earlier170

Calibration improves as expected in English-only settings. We first establish a baseline by171

conducting a layer-wise analysis in an English-only setting. As shown in Figure 4 in the Appendix172

for LLaMA3, we observe a clear and expected trend: calibration improves monotonically with layer173

depth. The ECE is high in the early layers and steadily decreases, reaching its minimum at the final174

layer. This aligns with the conventional understanding that representations become progressively175

more refined and task-specific, leading to greater confidence and better calibration as data propagates176

through the network.177

Multilingual settings reveal a surprising calibration peak in middle layers. However, our178

analysis reveals a strikingly different pattern in the multilingual context. As illustrated in Figure 3,179

the best calibration performance for many languages does not occur at the final layer. Instead, we180

find that ECE often reaches its minimum in the late-intermediate layers (typically between layers 22181

and 26 for a 32-layer model), after which calibration quality worsens as the signal proceeds to the182

final output layer.183

Final-layer specialization may degrade multilingual calibration. This effect is particularly184

pronounced for low- and mid-resource languages, where the final layers exhibit a sharp degradation185

of calibration. It suggests that while intermediate layers may capture a well-calibrated, language-186

agnostic representation, the final layers might be overfitting to the patterns of dominant languages187

(i.e., English) or introducing noise during the final language-specific adaptation phase. This could188

harm calibration for less-represented languages, whose representations might be distorted by this189

final step.190

The mid-layer calibration peak is a robust finding across models. This critical observation is191

not isolated to a single model or metric. We consistently find this pattern across multiple architectures192

and evaluation metrics, as detailed in the Appendix. For models like LLaMA3 (Figure 5), Cohere193

(Figure 6), Mistral (Figure 7), and more, calibration (measured by ECE, Brier score, and AUROC)194

improves through the deep layers, hits an optimal point in the middle, and then deteriorates. This core195

finding motivates the novel calibration methods proposed in the next section, which aim to leverage196

these better-calibrated intermediate representations.197

5 Improving Multilingual Calibration198

Our observations from the previous section suggests a promising direction: rather than relying199

solely on the final layer, we can develop calibration methods that explicitly leverage the strengths200

of intermediate representations. Below, we outline several such methods and their variations, each201

designed to enhance calibration in multilingual settings by taking advantage of these findings.202
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5.1 Traditional Post-hoc Calibrations203

As classical calibration methods widely used in the literature, we incorporate Temperature Scaling204

[Guo et al., 2017], Isotonic Regression [Zadrozny and Elkan, 2002], Histogram Binning [Zadrozny205

and Elkan, 2001], and Platt Scaling [Platt, 2000] into our experiments. These traditional approaches206

are post-hoc calibration methods typically applied to directly adjusting the predicted probabilities207

from the model’s final output layer. We include them to establish baseline performance levels.208

5.2 Intermediate Representation Inspired Calibration Methods209

Best Layer From our empirical analysis (Figure 3), we identify that the model achieves optimal210

calibration at certain intermediate layers. We define the "best" layer as the one that minimizes ECE on211

a held-out validation set. Formally, let ECEℓ denote the ECE computed from the output probabilities212

at layer ℓ. The best-performing layer ℓ∗ is then selected as:213

ℓ∗ = arg min
ℓ∈{1,...,L}

ECEℓ

We then use the output probabilities from layer ℓ∗ for downstream prediction and calibration-sensitive214

decision making. This approach is both simple and effective, requiring no additional parameters or215

training while leveraging empirical calibration dynamics.216

Best+Last Ensemble To leverage complementary strengths of both intermediate and final layers,217

we propose a method that ensembles outputs from the best-calibrated layer ℓ∗ and the final layer L.218

We explore two strategies:219

(1) Probability Averaging: Compute the average of the softmax probabilities from both layers:220

pensemble =
1

2
(softmax(Whℓ∗) + softmax(WhL))

(2) Hidden State Averaging: Compute the average of the hidden states before applying the output221

head and softmax:222

pensemble = softmax

(
W · 1

2
(hℓ∗ + hL)

)
This method allows the model to combine calibration-aware signals from intermediate layers with the223

semantic richness of the final layer, often resulting in improved overall calibration.224

Good Layers Pooling Rather than selecting a single intermediate layer, we identify a set of layers225

that are better calibrated than the final layer and treat them collectively as "good" layers. Specifically,226

we define the set of good layers G as:227

G = {ℓ : ECEℓ < ECEL}

We then explore two ensembling strategies, same as method 2:228

(1) Probability Averaging:229

pensemble =

∑
ℓ∈G softmax(Whℓ) + softmax(WhL)

|G|+ 1

(2) Hidden State Averaging:230

pensemble = softmax

(
W ·

∑
ℓ∈G hℓ + hL

|G|+ 1

)
This approach integrates broader calibration-aware signals from multiple intermediate layers, poten-231

tially smoothing out noise from any individual layer and capturing more robust confidence estimates.232

Contrastive Layer Decoding Inspired by contrastive decoding methods (e.g., Li et al. [2023]), we233

propose to enhance calibration by contrasting the final layer with the best-calibrated intermediate layer.234

The intuition is to use the calibrated intermediate signal to guide and correct the often overconfident235

final prediction.236
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Let pℓ∗ and pL denote the softmax probability distributions from the best and final layers, respectively.237

We compute the contrastive log-probability vector as:238

pcontrast = softmax (logpℓ∗ − α · logpL)

where α is a tunable contrastive strength parameter.239

Hidden State Steering To improve calibration without modifying the model head, we steer the final240

hidden state toward the better-calibrated intermediate representation. Let hL and hℓ∗ be the hidden241

states from the final and best layers, respectively. We compute a steering vector ∆h = hℓ∗ − hL and242

apply it with a tunable weight β:243

psteered = softmax (W (hL + β ·∆h))

This method gently shifts the final representation in the direction of the calibrated intermediate signal,244

improving output confidence without disrupting task semantics.245

5.3 Combining Intermediate Representation Methods with Traditional Calibrations246

We predict that the intermediate representation-inspired calibration methods introduced above are247

complementary to traditional post-hoc calibration techniques in Section 5.1. Given that traditional248

methods operate on predicted probabilities independently of how those probabilities were derived,249

they can be straightforwardly applied as a second-stage calibration on top of our intermediate250

representation-based ensembles.251

Specifically, we performed a two-step calibration procedure: First, we obtain calibrated predictions252

using our proposed intermediate representation methods (Good Layers Pooling as an example). This253

step exploits the inherent calibration benefits found in intermediate representations. Subsequently,254

we apply a traditional post-hoc calibration method to the probabilities obtained from the intermediate255

representation ensemble. Formally, given ensemble probabilities , we apply one of the classical256

calibration transformations:257

pfinal = Calibrate(pensemble)

This combined approach leverages the strengths of both calibration strategies, potentially leading258

to further improvements in multilingual calibration performance. Additionally, it allows us to259

systematically investigate whether intermediate representation-inspired calibration provides benefits260

orthogonal to well-established post-hoc techniques.261

5.4 Calibration Results262

All proposed methods substantially outperform the final-layer baseline. As shown in Table 2,263

our evaluation on the MMMLU dataset with LLaMA3 and Mistral clearly demonstrates the effective-264

ness of leveraging intermediate representations for calibration. All the proposed intermediate-layer265

aggregation methods achieve substantial improvements compared to the final-layer baseline. Notably,266

the final-layer method exhibits high calibration error (ECE > 25% for both models), which is markedly267

reduced by employing our intermediate representation-inspired ensemble approaches.268

Aggregating signals from multiple well-calibrated layers yields the most robust results. Among269

the evaluated ensemble approaches, Good Layers Ensemble (Hidden Avg) achieves superior overall270

performance on the LLaMA3 model, attaining the highest AUROC (75.55%) and a significantly271

improved ECE (10.03%), along with the lowest Brier Score (19.96%). Similarly, for the Mistral272

model, Best+Last Ensemble (Hidden Avg) provides substantial improvements, resulting in a273

notable reduction in calibration error (ECE of 7.32%) and the best Brier Score (20.48%). These274

results underscore the clear advantage of combining representations from multiple well-calibrated275

intermediate layers, significantly outperforming traditional post-hoc calibration methods.276

Orthogonal combinations of ensemble and post-hoc methods further enhance calibration.277

Importantly, we observe that combining intermediate-layer ensembles orthogonally with traditional278

post-hoc calibration methods leads to even greater improvements. For example, the Best Ensemble279

combined with Histogram Binning achieves the lowest ECE (5.26% for LLaMA3 and 4.40% for280

Mistral) among all methods tested. Moreover, Best Ensemble combined with Isotonic Regression281
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LLaMA3 Mistral
Method ECE ↓ Brier Score ↓ AUROC ↑ ECE ↓ Brier Score ↓ AUROC ↑

Baseline

FINAL LAYER (32) 26.42 31.62 68.62 25.55 28.15 69.77

Post-hoc Calibration

TEMPERATURE SCALING 15.04 22.70 64.83 16.48 23.51 68.84
ISOTONIC REGRESSION 15.49 22.26 64.51 6.75 21.05 69.55
HISTOGRAM BINNING 12.24 22.29 63.66 5.59 21.11 68.70
PLATT SCALING 17.00 22.26 64.56 6.41 21.29 69.77

Ensembling Methods

BEST LAYER (29) 20.22 28.75 68.11 21.75 27.45 72.33
BEST+LAST ENSEMBLE (PROB AVG) 12.26 20.32 72.76 21.00 25.88 73.32
GOOD LAYERS ENSEMBLE (PROB AVG) 12.33 19.84 74.68 25.13 31.19 72.99
BEST+LAST ENSEMBLE (HIDDEN AVG) 9.95 20.28 74.36 7.32 20.48 71.99
GOOD LAYERS ENSEMBLE (HIDDEN AVG) 10.03 19.96 75.55 13.28 22.01 72.43
CONTRASTIVE DECODING 14.97 22.55 72.76 22.53 28.44 71.18
HIDDEN STATE STEERING 17.11 24.05 73.90 25.79 32.38 72.92

Orthogonal: Ensembling + Post-hoc

BEST ENSEMBLE + ISOTONIC 6.11 18.97 75.44 6.83 19.82 72.91
BEST ENSEMBLE + HISTOGRAM 5.26 19.09 75.11 4.40 20.93 69.23

Table 2: Calibration methods performance for LLaMA3 and Mistral. Languages with accuracy
below 20% are excluded from this analysis to ensure that calibration metrics are meaningful and not
confounded by extremely low prediction performance. For LLaMA3, Best Ensemble is Good Layers
Pooling (Hidden Avg) and for Mistral it is Best+Last Ensemble (Hidden Avg).

yields the highest AUROC (75.44% for LLaMA3 and 72.91% for Mistral) and the best Brier Scores282

across both models (18.97% and 19.82% respectively). These findings indicate that intermediate-layer283

ensembles and post-hoc calibration methods capture complementary aspects of model confidence284

and uncertainty, enabling more robust and reliable calibration. Our results thus highlight the value of285

adopting a hybrid strategy particularly in multilingual scenarios.286

6 Conclusion287

We present the first systematic evaluation of multilingual calibration on human-translated benchmarks,288

confirming that large language models are multilingually poor-calibrated, particularly for low-resource289

and non-Latin-script languages. Our key finding is that calibration quality does not monotonically290

improve with model depth; instead, for many languages, it peaks at intermediate layers before291

degrading at the final output. Motivated by this discovery, we propose a suite of novel methods that292

leverage these more reliable intermediate representations including layer ensembling, which can be293

orthogonally deployed with traditional post-hoc calibration methods. Our experiments demonstrate294

that these approaches substantially improve performance in calibration metrics, significantly reducing295

ECE and improving AUROC across diverse multilingual settings. Crucially, combining intermediate-296

layer ensembling with traditional post-hoc calibration methods yields complementary gains, delivering297

the most robust and reliable calibration outcomes. These results not only advance our understanding298

of calibration behavior in multilingual contexts but also offer practical guidance for deploying large299

language models reliably in linguistically diverse scenarios.300
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Yiran Zhao, Chaoqun Liu, Yue Deng, Jiahao Ying, Mahani Aljunied, Zhaodonghui Li, Lidong Bing,460

Hou Pong Chan, Yu Rong, Deli Zhao, and Wenxuan Zhang. Babel: Open multilingual large461

language models serving over 90462

A Limitations463

We conduct experiments on mid-scale models (7B–8B parameters), leaving larger model sizes out464

of the current picture; larger models may exhibit different internal dynamics. Further, our focus465

is on standard multiple-choice and short-answer QA tasks as with such tasks model correctness466

is well-defined and easy to measure. The observed benefits of using intermediate layers may not467

directly extend to open-ended generative tasks such as dialogue, summarization, or long-form QA:468

we leave those tasks for future research. Finally, our proposed methods are post-hoc interventions469

that correct poor calibration, rather than fundamental solutions that integrate multilingual calibration470

objectives into the model’s training process to address the issue at its root. This constitutes another471

very compelling direction for future research.472

B Ethics Statement473

Our research adheres to strict ethical guidelines. We verified the licenses of all software and datasets474

used in this study to ensure full compliance with their terms. No privacy concerns have been identified.475

We have conducted a thorough assessment of the project and do not anticipate any further risks.476

C Additional Results on Multilingual Calibration Evaluation477

In this section, we present the detailed multilingual evaluation results for the models and benchmarks478

discussed in the main text.479

C.1 MMMLU Results480

Language AUROC ECE BRIER Accuracy

Arabic 64.91 41.18 11.87 4.50
Bengali 64.56 49.70 11.72 0.10
German 70.84 24.14 29.32 43.00
English 73.75 23.92 27.95 54.00
Spanish 71.33 21.64 26.79 42.90
French 71.25 22.20 28.36 46.40
Hindi 75.08 39.77 6.23 1.60
Indonesian 69.48 26.98 29.69 38.80
Italian 74.08 25.24 28.25 44.50
Japanese 56.09 44.15 15.48 6.50
Korean 39.78 46.62 16.25 5.50
Portuguese 71.11 29.25 27.59 47.10
Swahili 56.02 30.81 27.34 26.30
Yoruba 44.79 44.18 21.99 16.10
Chinese 62.12 33.55 24.58 16.70

Avg. Low-Resource 62.47 38.77 18.14 14.57
Avg. High-Resource 65.59 30.08 24.95 34.07
Avg. Latin-Script 71.69 24.77 28.28 45.24
Avg. Non-Latin-Script 57.92 41.24 16.93 9.66

Average (All Languages) 64.35 33.56 22.23 26.27

Table 3: Performance comparison across languages for AUROC, ECE, BRIER score, and Accuracy
in Mistral, evaluated on the MMMLU dataset.

• Mistral Results are provided in Table 3.481

• Babel Results are provided in Table 4.482
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Language AUROC ECE BRIER Accuracy

Arabic 72.52 5.12 21.32 51.70
Bengali 69.42 14.08 19.35 31.00
German 75.66 8.22 19.85 57.00
English 77.38 7.09 18.61 65.50
Spanish 78.22 6.65 18.94 59.10
French 74.35 7.23 20.04 59.60
Hindi 64.91 16.07 22.01 37.20
Indonesian 79.00 5.22 18.64 56.80
Italian 77.86 4.74 18.92 59.50
Japanese 67.60 37.98 15.96 19.20
Korean 60.43 35.34 20.31 26.10
Portuguese 75.60 9.09 20.11 57.40
Swahili 66.53 6.04 21.65 38.80
Yoruba 18.59 50.08 25.27 5.50
Chinese 70.67 16.63 18.67 24.20

Avg. Low-Resource 61.83 16.10 21.37 36.83
Avg. High-Resource 73.09 14.77 19.05 47.51
Avg. Latin-Script 76.87 6.89 19.30 59.27
Avg. Non-Latin-Script 61.33 22.67 20.57 29.21

Average (All Languages) 68.58 15.31 19.98 43.24

Table 4: Performance comparison across languages for AUROC, ECE, BRIER score, and Accuracy
in Babel, evaluated on the MMMLU dataset.

Language AUROC ECE BRIER Accuracy

Arabic 67.15 14.30 26.67 54.90
Bengali 64.10 26.68 31.98 33.20
German 76.94 21.59 25.08 55.60
English 78.23 15.77 19.25 65.60
Spanish 76.95 19.26 23.98 61.10
French 75.65 16.92 22.88 62.20
Hindi 72.01 28.73 28.86 33.90
Indonesian 75.69 15.83 23.53 54.30
Italian 75.32 21.07 24.46 58.70
Japanese 80.03 6.71 17.10 33.10
Korean 74.15 17.60 25.75 52.20
Portuguese 75.85 18.86 23.61 58.40
Swahili 59.93 30.12 33.09 32.30
Yoruba 23.49 46.99 36.11 2.00
Chinese 85.31 12.47 17.42 47.00

Avg. Low-Resource 60.40 27.11 30.04 35.10
Avg. High-Resource 77.60 16.69 22.17 54.88
Avg. Latin-Script 76.38 18.47 23.26 59.41
Avg. Non-Latin-Script 65.77 22.95 27.12 36.08

Average (All Languages) 70.72 20.86 25.32 46.97

Table 5: Performance comparison across languages for AUROC, ECE, BRIER score, and Accuracy
in Qwen, evaluated on the MMMLU dataset.

• Qwen2.5 Results are provided in Table 5.483

• Phi Results are provided in Table 6.484

• DeepSeek Results are provided in Table 7.485

C.2 Belebele Results486

Complete multilingual results for LLaMA3 on the Belebele dataset are shown in Table 8.487
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Language AUROC ECE BRIER Accuracy

Arabic 52.66 30.21 25.35 36.50
Bengali 52.62 34.13 24.73 27.20
German 63.47 22.86 22.86 65.60
English 71.13 20.48 17.92 73.10
Spanish 61.29 27.15 25.32 56.40
French 71.57 17.07 20.21 68.90
Hindi 37.74 46.43 26.16 15.70
Indonesian 42.89 32.36 30.63 30.70
Italian 72.25 10.51 19.13 67.50
Japanese 30.62 46.69 17.59 8.30
Korean 66.95 29.00 24.50 50.00
Portuguese 73.79 13.24 18.77 66.60
Swahili 64.42 16.18 23.61 40.50
Yoruba 53.76 20.83 21.01 27.60
Chinese 59.73 31.98 26.17 44.60

Avg. Low-Resource 50.68 30.02 25.25 29.70
Avg. High-Resource 63.42 24.33 21.39 55.67
Avg. Latin-Script 65.20 20.52 22.12 61.26
Avg. Non-Latin-Script 52.31 31.93 23.64 31.30

Average (All Languages) 58.33 26.61 22.93 45.28

Table 6: Performance comparison across languages for AUROC, ECE, BRIER score, and Accuracy
in Phi, evaluated on the MMMLU dataset.

Language AUROC ECE BRIER Accuracy

Arabic 55.33 32.74 21.54 26.40
Bengali 58.50 40.80 14.41 13.70
German 60.28 18.50 23.91 39.80
English 66.21 9.10 22.92 47.10
Spanish 62.24 12.47 23.51 40.80
French 62.93 10.84 23.12 41.40
Hindi 56.08 30.42 20.62 26.40
Indonesian 61.00 31.61 21.11 27.30
Italian 63.14 5.65 22.85 40.40
Japanese 55.56 18.05 23.14 32.10
Korean 21.56 49.09 18.66 1.10
Portuguese 62.37 16.78 23.26 39.10
Swahili 51.67 45.76 12.45 12.00
Yoruba 60.35 38.16 4.94 2.80
Chinese 69.00 16.13 23.97 43.10

Avg. Low-Resource 57.16 36.58 15.84 18.10
Avg. High-Resource 58.14 17.40 22.82 36.10
Avg. Latin-Script 62.60 14.99 22.95 39.41
Avg. Non-Latin-Script 53.51 33.89 17.47 19.70

Average (All Languages) 57.75 25.07 20.03 28.90

Table 7: Performance comparison across languages for AUROC, ECE, BRIER score, and Accuracy
in DeepSeek, evaluated on the MMMLU dataset.

C.3 MKQA Results488

For short-form datasets (MKQA and MlingConf), we experiment with three confidence elicitation489

approaches, following Xue et al. [2024]’s setup: (1) log probability of the generated answer sequence490

(Prob), (2) the probability of generating a "true" token given the question-answer pair (True), and491

(3) verbalized confidence (Verb), where the model explicitly articulates its confidence level. For all492

models, we restrict the answer format to short-form outputs by setting maximum response length493

to 48 during inference. We use PREM (Positive-Recall Exact Match) to evaluate accuracy, this is494
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Set 1 Set 2 Set 3

Lang Acc AUR. ECE Brier Lang Acc AUR. ECE Brier Lang Acc AUR. ECE Brier

acm 58.2 78.4 8.7 19.2 arz 69.8 77.8 11.9 18.2 ceb 65.8 75.6 12.5 19.7
fin 80.8 75.6 10.4 14.1 hin 67.0 72.9 18.1 20.6 ita 86.0 79.6 10.0 10.8

khm 4.0 5.5 50.3 51.4 lvs 74.8 79.7 10.7 16.2 npi 59.8 74.8 5.8 20.0
pol 80.0 78.9 8.8 13.3 slv 81.0 76.6 9.2 13.8 swe 79.2 81.6 15.9 12.8
tso 34.0 62.5 9.9 21.5 xho 37.0 60.0 12.9 22.8 afr 80.8 81.2 10.9 12.7
asm 45.8 68.0 11.2 22.8 ces 82.2 80.2 10.4 11.8 fra 86.2 77.4 14.4 11.4
hin 57.0 72.1 4.2 21.1 jav 68.0 78.4 10.8 18.4 kin 34.8 63.3 12.7 21.3
mal 60.5 74.0 12.5 21.3 npi 32.5 59.9 11.6 21.4 por 86.2 79.8 16.0 10.2
sna 35.8 58.6 25.0 23.0 swh 67.0 75.0 8.2 19.1 tur 78.2 78.8 8.1 14.6
yor 31.2 61.1 12.0 20.4 als 73.5 78.0 7.4 16.2 azj 66.8 71.8 17.5 21.4
ckb 46.0 71.8 17.0 22.2 fuv 28.0 51.9 16.4 20.4 hrv 79.8 78.1 11.5 14.3
jpn 66.5 73.3 28.7 28.0 kir 63.0 73.8 27.8 24.7 mar 67.5 73.5 8.8 19.4
nso 37.8 60.3 7.5 22.7 snd 17.5 50.5 34.7 25.3 tam 65.5 73.4 13.4 21.5
ukr 84.2 77.4 13.3 12.8 zho 76.5 71.2 24.0 25.2 amh 34.8 63.2 18.4 21.4
bam 31.2 60.6 16.2 20.8 dan 79.8 78.8 9.1 13.9 gaz 31.8 53.1 20.3 21.7
hun 82.5 84.0 11.2 11.8 kac 30.2 61.8 9.9 20.5 kor 77.8 77.9 13.1 16.3
mkd 77.8 79.1 10.7 14.4 nya 32.0 60.7 12.8 21.1 ron 80.0 80.4 9.9 13.0
som 35.2 59.0 12.2 22.2 tel 59.5 73.7 10.4 20.4 urd 59.5 67.3 29.3 25.8
zho 81.2 68.9 23.1 21.1 apc 65.0 78.3 9.2 18.4 ben 65.5 72.6 9.7 20.3
deu 86.8 72.3 23.4 12.9 grn 39.8 65.5 10.2 22.4 hye 0.2 1.5 54.0 42.1
kan 58.5 72.1 6.4 20.9 lao 32.5 59.5 14.1 21.5 mlt 69.8 76.4 10.7 18.4
ory 55.8 70.0 14.4 24.7 rus 81.2 81.0 12.7 13.0 sot 32.8 57.5 17.1 21.8
tgk 63.8 70.1 11.9 22.1 urd 41.2 64.8 12.7 22.5 zsm 82.5 82.9 11.3 11.8
arb 79.5 74.2 10.3 15.5 ben 35.2 59.9 25.0 22.4 ell 80.5 80.6 10.6 13.7
guj 58.0 68.8 10.2 22.0 ibo 40.2 62.0 8.8 22.6 kat 1.5 6.0 55.0 51.6
lin 34.2 59.3 11.5 21.9 mri 35.5 63.3 6.2 21.5 pan 58.0 74.4 21.1 21.6
shn 16.8 47.9 32.9 16.9 spa 84.0 79.3 8.6 11.7 tgl 75.2 80.1 7.5 15.3
uzn 69.0 77.0 12.8 19.2 zul 36.5 59.3 8.2 22.8 arb 29.8 56.4 15.9 20.8
bod 29.0 60.2 12.1 20.3 eng 87.8 87.9 9.9 8.1 hat 55.8 72.9 6.1 20.9
ilo 54.0 69.8 17.9 22.6 kaz 63.5 75.6 20.9 23.0 lit 73.8 82.3 10.6 15.7

mya 0.8 7.2 58.0 55.7 pbt 47.5 67.7 8.6 22.6 sin 32.2 59.2 17.1 21.5
srp 83.2 77.5 15.1 13.7 tha 71.8 75.5 16.4 21.2 vie 83.5 78.4 10.0 12.4
ars 62.0 78.5 11.0 18.8 bul 80.8 77.7 12.7 14.6 est 71.8 78.2 4.2 16.4
hau 45.2 67.1 14.2 23.9 ind 81.8 75.6 8.4 13.4 kea 48.8 73.0 8.2 21.1
lug 35.5 57.6 11.2 22.5 nld 83.0 78.2 8.1 12.0 pes 79.2 77.8 8.0 14.4
sin 58.8 72.7 10.8 21.6 ssw 31.8 61.5 10.9 20.8 tir 28.0 57.7 12.4 19.7
war 62.2 74.7 12.7 21.0 ary 58.5 72.0 9.6 21.2 cat 86.2 84.8 9.5 10.2
eus 69.5 75.7 15.1 18.1 heb 77.2 76.9 22.3 17.8 isl 67.0 78.3 6.2 17.4
khk 48.0 70.2 10.7 22.9 luo 31.8 55.7 8.3 21.5 nob 79.2 77.8 9.6 14.7
plt 44.2 65.6 12.1 23.1 slk 82.0 76.9 9.0 13.0 sun 65.5 74.3 14.9 20.9
tsn 31.8 62.7 6.4 20.8 wol 33.0 53.2 20.7 22.3 Avg. 57.6 68.9 14.3 19.8

Table 8: Per-language performance on the belebele test set for the LLaMA3 model, reporting AUROC,
ECE, and Brier score. Each row is color-coded by language category, based on resource availability
(high, medium, low) and script type (Latin vs. non-Latin). The categories are shaded with soft pastel
colors: high-resource Latin (light blue), high-resource non-Latin (light pink), medium-resource Latin
(light green), medium-resource non-Latin (lavender), low-resource Latin (cream), and low-resource
non-Latin (tan).

a relaxed evaluation metric that considers an answer correct if the predicted answer contains the495

reference or vice versa.496

Results for LLaMA3, Mistral, and Qwen2.5 on the MKQA dataset are shown in Table 9.497

D Additional Results on Layer-Wise Calibration Analysis498

D.1 English Calibration improves as layer deepens499

As shown in Figure 4, calibration in English steadily improves as the model progresses through500

deeper layers, with lower ECE observed alongside increasing entropy.501
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Language LLaMA3 Mistral Qwen2.5

Prob True Verb Acc. Prob True Verb Acc. Prob True Verb Acc.

Arabic 26.16 57.02 42.06 7.62 49.90 48.32 47.07 1.35 49.23 48.50 46.79 2.61
Danish 15.26 38.63 30.41 34.54 38.18 38.00 43.83 29.06 40.11 55.92 41.82 14.08
German 13.90 34.77 27.66 37.84 35.79 37.28 37.49 31.61 42.05 53.42 40.57 15.98
English 11.86 20.73 27.79 43.01 40.18 35.07 36.90 37.07 43.41 47.68 43.55 16.68
Spanish 11.88 32.76 24.06 35.99 36.74 39.74 39.81 28.51 44.81 51.55 44.15 14.38
Finnish 17.77 36.13 29.78 31.03 37.07 30.89 36.04 22.44 36.90 55.08 36.71 15.33
French 13.48 31.04 28.16 37.04 31.92 36.58 43.95 31.61 46.27 51.68 42.75 13.23
Hebrew 33.97 49.33 50.16 8.67 50.39 48.98 48.28 0.95 40.19 50.54 43.72 3.06
Hungarian 17.10 42.23 40.36 30.33 36.75 38.44 38.52 23.15 39.59 53.47 38.78 11.82
Italian 17.53 32.80 31.28 35.19 35.79 34.18 45.41 31.51 46.39 52.68 44.27 12.93
Japanese 36.25 50.18 46.27 8.27 41.12 48.42 52.17 3.01 51.18 56.16 46.22 3.51
Khmer 52.01 69.72 51.77 0.35 58.62 49.92 48.42 0.05 59.30 65.01 47.29 0.40
Korean 29.12 51.92 48.52 7.17 47.48 48.74 41.59 1.85 51.90 50.20 46.95 2.45
Malay 14.62 28.65 31.80 36.29 34.96 36.53 39.47 28.01 36.30 50.96 41.72 19.44
Dutch 14.47 25.64 39.04 36.19 33.66 29.97 37.83 32.41 42.20 53.21 41.81 15.58
Norwegian 16.83 30.69 40.82 32.78 34.91 38.65 40.26 27.91 38.11 54.58 38.98 15.33
Polish 16.27 28.45 29.68 35.14 36.04 35.17 46.81 31.56 38.50 57.20 39.78 17.13
Portuguese 14.46 30.12 31.57 34.94 37.77 35.38 37.72 29.81 49.98 49.46 41.57 14.68
Russian 20.86 45.11 37.98 17.34 37.23 43.95 39.70 16.28 47.02 54.67 44.67 7.21
Swedish 14.93 30.79 39.36 31.83 37.09 33.42 38.03 29.01 38.14 51.20 44.04 13.98
Thai 45.94 63.49 49.56 4.91 41.97 47.64 53.47 1.55 54.93 46.70 47.39 2.45
Turkish 16.49 36.48 31.90 33.13 39.85 39.76 36.56 17.99 39.06 61.84 42.79 13.03
Vietnamese 15.01 29.73 33.08 35.34 39.53 37.53 48.19 17.69 42.81 51.95 42.84 12.17
Chinese (CN) 34.87 59.53 44.98 4.41 32.43 47.76 49.48 3.06 51.47 59.82 44.51 6.51
Chinese (HK) 36.24 57.55 43.36 5.96 43.87 49.37 43.69 2.20 49.18 56.02 45.95 4.46
Chinese (TW) 40.14 55.68 45.54 3.51 39.31 48.83 51.88 2.25 50.20 56.64 44.35 5.46

Average 22.98 41.12 37.57 24.19 39.56 40.71 43.18 18.53 44.97 53.70 43.23 10.53

Table 9: Per-language evaluation of model calibration and accuracy on the MKQA dataset across
three models: LLaMA3, Mistral, and Qwen2.5. For each language, we report the ECE score of three
uncertainty evaluation methods—Prob, True, and Verb—alongside accuracy.

D.2 Multilingual Calibration is Best at Late-Intermediate Layers502

We visualize calibration performance across layers by plotting metrics against entropy on the503

MMMLU dataset. Across all models, we observe that ECE, Brier score, and AUROC improve504

(lower ECE/Brier, higher AUROC) at deeper layers before slightly degrading toward the final layers.505

This trend is consistent in LLaMA3 (Figure 5), Cohere (Figure 6), Mistral (Figure 7), Phi (Figure 9),506

Deepseek (Figure 9). These findings support our hypothesis that multilingual calibration benefits507

most from late-intermediate layers rather than the final decoder output.508

E Dataset Details509

E.1 MMMLU Language Group Definitions510

We group languages in the MMLU dataset according to resource availability and script as follows:511

Low-Resource Languages Languages with relatively limited annotated data and pretrained model512

support: Arabic, Bengali, Swahili, Yoruba, Hindi, Indonesian513

High-Resource Languages Languages with substantial resources and strong support in major mul-514

tilingual models: German, French, English, Spanish, Chinese, Italian, Japanese, Korean, Portuguese515

Latin-Script Languages Languages primarily written using the Latin script: German, English,516

Spanish, French, Indonesian, Italian, Portuguese517
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Figure 4: ECE vs. Entropy across layers in LLaMA3 on the MMMLU English subset.

Non-Latin-Script Languages Languages primarily written using non-Latin scripts (e.g., Arabic518

script, Devanagari, Hangul, Han characters): Arabic, Bengali, Hindi, Japanese, Korean, Swahili,519

Yoruba, Chinese520

Note: Some languages fall into multiple categories. For example, Indonesian is both low-resource521

and Latin-script, while Chinese is high-resource and non-Latin-script.522

E.2 Belebele523

Belebele [Bandarkar et al., 2024a] is a multiple-choice machine reading comprehension (MRC)524

dataset covering 122 language variants, enabling robust evaluation of NLU across high-, medium-525

, and low-resource languages. The dataset is fully parallel, allowing for direct cross-linguistic526

comparison of model performance. In our experiments, we sample 400 examples per language and527

evaluate the LLaMA3 model using eight-shot inference, where eight in-context examples are provided528

for each test instance529

F Baseline Detail530

F.1 Temperature Scaling531

We used temperature scaling as a baseline method on a held-out validation set sampled from the532

MMMLU dataset (1000 examples per language, non-overlapping with the main evaluation set).533

We performed a grid search over temperatures in the range: Temperature_start = 0.5,534

Temperature_end = 1.5, At each temperature value, we evaluated model predictions with the ECE535

per language. The average ECE across languages was used to select the optimal temperature. Best536

temperature was found at 0.72. This value was then used to rescale the logits of all models before537

computing final evaluation metrics (AUROC, ECE, Brier score, Accuracy) on the test set.538

F.2 Isotonic Regression539

We applied Isotonic Regression as a post-hoc calibration method. The procedure was as follows:540

1. An IsotonicRegression model from scikit-learn was fitted on the a held-out calibra-541

tion set (1000 examples per language, same as the test set) using predicted probabilities and542

binary ground-truth labels.543

2. The fitted model was used to recalibrate probabilities on the test set.544
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Figure 5: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the MMMLU
subset for LLaMA3.
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Figure 6: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the MMMLU
dataset for Cohere.
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Figure 7: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the MMMLU
dataset for Mistral.
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Figure 8: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the MMMLU
dataset for Phi.
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Figure 9: Calibration metrics (ECE, Brier score, AUROC) vs. entropy across layers on the MMMLU
dataset for Deepseek.
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3. Calibration metrics (ECE, AUROC, and Brier score) were computed using the calibrated545

probabilities on the held-out test set.546

F.3 Histogram Binning547

We applied Histogram Binning as a non-parametric post-hoc calibration method. The procedure548

was as follows:549

1. Predicted probabilities and binary ground-truth labels from the held-out calibration set (1000550

examples per language) were used to construct the binning model.551

2. The probability range [0, 1] was divided into 10 equal-width bins. For each bin, we computed552

the empirical accuracy (mean label).553

3. For inference, each predicted probability was mapped to the corresponding bin and replaced554

with the empirical accuracy of that bin. Empty bins were assigned a default value of 0.5.555

4. The calibrated probabilities were evaluated on the test set using ECE, AUROC, and Brier556

score.557

F.4 Platt Scaling558

We applied Platt Scaling as a parametric post-hoc calibration method using logistic regression. The559

procedure was as follows:560

1. A LogisticRegression model from scikit-learn was fitted on the held-out calibration561

set (1000 examples per language) using predicted probabilities and binary ground-truth562

labels.563

2. The model was trained with the "lbfgs" solver and outputs calibrated probabilities via564

predict_proba.565

3. The fitted model was used to recalibrate probabilities on the test set.566

4. Calibration metrics (ECE, AUROC, and Brier score) were computed using the calibrated567

probabilities on the held-out test set.568
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