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Abstract

While Large Language Models (LLMs) have revolutionized chatbot interactions, they often
fall short of aligning responses with the nuanced preferences of individual users, a challenge
rooted in the inherently subjective and proprietary nature of those preferences. Conse-
quently, prompt-based learning, though effective in enhancing factual accuracy due to its
emphasis on universal correctness, remains insufficient for achieving accurate personalised
response alignment. Because user preferences vary widely across individuals and contexts,
aligning responses requires a more personalized and context-aware approach. To address
this limitation, we propose Consistent Marginalization (CM), a novel framework that aims
to unlearn misalignment by constructing a personalised memory bank of instance-response-
dependent discrepancies, built from a small set of user preference samples. This personalised
memory bank equips LLMs with the ability to understand, recall, and adapt to individual
preferences, enabling more consistent and personalized responses. Evaluated across a diverse
range of domain-specific datasets and model architectures, CM yields notable improvements
in response alignment and robustness. We believe Consistent Marginalization represents a
valuable step toward enabling LLMs to become genuinely personable and adaptive conver-
sational agents by understanding user preferences and generating responses that are better
aligned with individual user expectations.

1 Introduction

Autoregressive large language models (LLMs) have recently achieved widespread adoption due to their re-
markable performance across various domains (Brown et al.l [2020; |Touvron et al.l [2023; |OpenAl| 2023).
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These models are predominantly trained via next-token prediction objectives targeted at maximizing output
accuracy (Devlin et all |2018; |Touvron et al., 2023 |Hu et al.l [2024). However, as LLLMs become increasingly
employed in personalized applications, requiring alignment with nuanced and individual user preferences,
their outputs frequently diverge from anticipated or preferred responses (Zhao et al.| [2025; [Zhang et al.|
2025). Such deviations often characterized as misaligned or undesired outputs, presenting substantial chal-
lenges in applications requiring adaptive and personalized supervision, including recommendation systems,
personalized response generation, and text mining, where consistency, reliability, and alignment with individ-
ual expectations are critical (Wu et al.| |2024). While the effectiveness of LLMs is closely tied to the prompt
strategies employed , serving as external guidance for self-correction (Brown et al.| |2020; [Wei et al.| |2021;
Yao et al.; 2022; [Liu et al.| |2023)), these strategies are primarily designed to ensure output accuracy, rather
than personalized response alignment. Figure |1 highlights two separate learning objectives: response
alignment (how well an LLM reflects subjective, user-specific preferences) and output accuracy (the objec-
tive factual correctness of its content). Standard prompt-based learning (Figure optimizes for output
accuracy but neglects instance-response independent and dependent discrepancies (a misalignment between
user intent and model response) illustrated in Figures [1b| and Ignoring these discrepancies leads to per-
sistent misalignment, underscoring the need for mechanisms that can record, recall, and correct personalised
response misalignment between the user and LLM. Aligning large language models (LLMs) to generate re-
sponses tailored to individual users is challenging because it requires understanding and incorporating user
preferences. Unlike complex reasoning tasks, which are objective due to their basis in facts and definitive
solutions, user preferences are inherently subjective, reflecting personal opinions and judgments (Hu et al.,
2024)). While supervised fine-tuning on comprehensive datasets can achieve such alignment, it is often costly,
and many user-specific datasets are valuable only to the individual, limiting their applicability to the broader
community and countries.

Given a user from a region that uses distinctive slang or localized expressions, it can be challenging for an
LLM to accurately interpret their intent, especially when there is no prior knowledge of the user’s cultural
or linguistic background. Such expressions can easily lead to misinterpretation by the LLM and result in
irrelevant or incorrect responses. For example, a user might say, “I want a Kopi O,” which in some Southeast
Asian regions means to black coffee with sugar. Without cultural grounding, the LLM may misinterpret the
query and generate a response that does not match the user’s intention. Similarly, local expressions such
as “sabo” (a slang term for blame-shifting) or “Can or not?” (meaning “Is this possible?”) can confuse the
model if it lacks familiarity with these phrases. Without learning the discrepancies, the LLM’s responses may
become misaligned. To address this, we can collect a small set of representative user preference samples (see
Section that include localized expressions or slang (as inputs X) along with their intended interpretations
(as ground truth outputs Y'). These user-verified pairs help us estimate the instance-response-dependent
discrepancies between the LLM'’s initial outputs and the user’s actual preferences. These discrepancies
are stored in a lightweight memory bank (see Section , which endows the LLM to learn the user’s
linguistic style and improve future responses. For instance, when the same user later says “Kopi O” or uses
expressions like “Let’s makan” (meaning “Let’s eat”), the LLM can infer to the estimated discrepancy and
generate the correct response, such as black coffee or interpreting the phrase as a request to eat, without
requiring further clarification. Prompt-based self-reflection and self-correction alone (Zhou et al.| [2022; Paul
et al., 2023} [Shinn et al., 2023; |Bang et al., [2023; [Li et al., |2023; Zhou et al.| 2023) struggle to achieve such
personalized alignment, especially when rich user feedback are scarce. Moreover, even in tasks focused on
output accuracy, intrinsic self-correction remains limited when models rely exclusively on their own outputs
for feedback (Huang et al., 2023; Hu et al.l |2024)).

Even though existing LLM-based chatbots with long context windows demonstrate some memorization
ability, it is often achieved through external, proprietary mechanisms and there is still a lack of persistence
across sessions in API-based settings, where each query is stateless. In such cases, the context is not
retained between sessions, forcing users to repeatedly provide preference information. Furthermore, small
or mid-sized companies relying on third-party LLM APIs face significant challenges in offering personalized
experiences to users, as they typically lack access to internal memory or user history maintained by the
LLM provider. In addition, while some commercial LLMs use prior conversations for personalization, these
memory systems are proprietary, non-transparent, and non-transferable. Users and developers have no
direct access or control over how preferences are stored or updated, nor can they audit or export this
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memory to alternative providers or offline deployments. In contrast, our approach maintains a lightweight,
user-specific memory of instance—response—dependent discrepancies, which can be stored locally or ported
between models and platforms. This enables persistent, controllable, and transparent personalization, even
in stateless or offline environments. Overall, the goal of this work is to:

e Equip LLMs to remember and consistently follow each user’s preferences, ensuring
their responses remain aligned over time.

Z*
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Figure 1: Contrasts standard prompt with Consistent Marginalization (CM) framework and
underscores why accounting for instance-response-dependent discrepancies is necessary to
bridge the gap between LLM-generated responses and user-preferred responses. In standard
API-based prompt, given an input X to a Large Language Model (LLM), it is assumed that the desired
output, or user-preferred responses Y, can be obtained by identifying a latent variable Z representing the
prompt strategy. Consistent marginalization acknowledges that the LLM’s generated responses can deviate
from the user-preferred responses Y, which is denoted as Y’, even for a given input X and an optimal
latent variable Z*. Our method explicitly considers these discrepancies and aims to construct a personalised
memory bank of the discrepancies between Y and Y, given X and Z. We distinguish two types of response
discrepancies: one of which is instance-response independent discrepancies shown in Figure 1(b),
where Y’ is independent of X, and other one is instance-response dependent discrepancies shown in
Figure 1(c), which is a more realistic scenario. Our study focuses on the latter instance-response dependent
discrepancies. Assuming that the optimal Z* has already been determined, our primary learning objective
is to estimate p(Y”’ | Y, X). This probability shows the discrepancies between the user-preferred responses Y’
and the LLM-generated responses Y’ under given X.

To overcome the limitations, we introduce Consistent Marginalization (CM). This method mitigates mis-
alignment between a large-language-model (LLM) and an individual user’s preferred response in a low-data
regime without any full user-specific dataset fine-tuning. CM tackles the two fundamental obstacles that
prevent off-the-shelf LLMs from delivering truly personalised aligned responses: (i) preference recognition,
since current models often fail to detect a user’s latent preferences (Zhao et al., |2025)), and (ii) preference
retention, because even when a preference is conveyed once, the model does not remember it in later turns.
We argue that both shortcomings stem from overlooking instance-response-dependent discrepancies during
pre-training or the prompt. CM resolves them by (i) explicitly estimating the discrepancy between an LLM’s
response and the user’s preferred response, and (ii) storing these discrepancies in a lightweight “personalised
memory bank.” During future interactions, the model consults this bank, recalls past misalignments, and
self-corrects, achieving strong personalization with only a small set of preference examples and no per-user
fine-tuning. Our experimental results validate the effectiveness of the Consistent Marginalization (CM)
method. The main contributions include:

e A general framework for personalised response alignment. We introduce CM, a method
that accounts for instance-dependent discrepancies to mitigate misalignment between an LLM and
an individual user’s preferred response in data-constrained settings without any full, user-specific
fine-tuning.

e A probabilistic formulation for unlearning misalignment. CM performs principled, amortised
inference of user preferences in a low-data regime by marginalising instance-response discrepancies
between the LLM and the user.
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e Demonstrated effectiveness on large-scale datasets with multiple open and closed-
sourced LLMS. We validate our method on multiple user preference-related large-scale datasets.
The experimental results demonstrate its effectiveness in enhancing the user personalised response
alignment of LLMs without fine-tuning, indicating broad applicability.

2 Problem Setting

2.1 Preliminaries

Let X denote a user query, expressed as a natural language question. The desired response, provided a
priori by the user, is denoted as Y. Notably, Y is not generated by the large language model (LLM) but is
instead a user-specified reference. A latent variable Z represents the prompt strategy to guide the LLM’s
generation process. While Z is instrumental in aligning the LLM’s response with the user’s expectations, it
alone is insufficient to guarantee perfect alignment. The LLM-generated response, given X and the chosen
Z, is represented as Y’. Discrepancies between the user desired response Y and the generated response Y’
are represented and stored using a deterministic transition matrix M X)yry (See Section .

2.2 Notation

We define a feature space X C R? and a label space ) = {1,...,c}, where c is the total number of response
classes. Each instance X € X is associated with a true response Y € ) and a generated response Y’ € ).
Here, the user’s preferred response Y is treated as the true response. In many real-world scenarios, full
supervision is unavailable for the entire dataset. Instead, there is usually a small subset of cleanly labelled
samples alongside a larger set of unlabeled data. More specifically, we can define Dyge, as the distribution
of the cleanly labelled small sample set, denoted as user-preference sample, which contains pairs (XY }7)
where Y = Y, representing a candidate label set encompassing all responses. This can be expressed as
{(X;,Y;, ?)}le, with s being the total number of clean samples. We define Di.rge as the distribution for
the large unsupervised dataset, denoted as {X;, }7}?:8 41, where n is the total number of both labelled and
unlabeled training samples. The Diarge is considered an unsupervised dataset, meaning neither a ground
truth response nor weak supervision is associated with each instance in the distribution. The learning
objective is to design a prompt strategy that leverages Duyser, which constitutes about 5% of the total
training samples, to allow large language models (LLMs) to accurately annotate the large unsupervised
dataset Diarge. The initial full candidate set Y is pruned to a refined candidate set denoted as Chrefinea € V
applying the estimated M (X). The LLM’s final response, selected from this refined candidate set, is the
refined prediction, denoted as ¥ € Crefined.

3 Incorporating LLM—-User Response Dependent Discrepancies via Marginalisation

Most recent work on prompt engineering focus on designing or searching for effective prompt schemes, e.g.,
chain-of-thought or tool-augmented prompts to maximise the clean (prompt-based) predictive distribution
p(Y | X) E| of an LLM (Wei et al., [2022; [Yao et al., 2022)). The conventional approach of [Hu et al.| (2024),
which does not account for personalised response misalignment, is

p(Y |X) =Y p(ZY|X) =) pY|X.2)p(Z] X), (1)

where Z indexes prompts (latent reasoning paths) and p(Y | X) is the clean or prompt-based predictive
distribution. Equation equation [I] corresponds to the ideal, personalised response misalignment-free setting
in which the model’s response Y is always aligned to the user-preferred response Y. In practice, however,
even an optimal prompt Z* may be inadequate for personalisation if the LLM has not been pre-trained
or fine-tuned on user-specific data. Therefore, the unmodified formulation in equation [I] is inadequate

1We use “likelihood” informally to denote the model’s predictive probability of a sequence (Hu et al.l [2024). Where needed,
we refer to p(Y | X) as the clean/prompt-based predictive distribution and p(Y’ | X) as the observed-output predictive
distribution
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for personalised response-alignment tasks because it neglects the systematic discrepancies between actual
LLM outputs and user-preferred responses. This work addresses that limitation by explicitly modelling and
estimating this discrepancy.

3.0.1 Instance—Response Dependent Discrepancies via Marginalisation

We now extend the prompt-based formulation in Eq. equation [I] to a personalised setting where the ac-
tual LLM output Y’ may be misaligned with the user-preferred response Y. Let Y’ denote the observed
(possibly misaligned) response produced by the LLM for input X under prompt Z, and let Y denote the
latent user-preferred response. By modelling the conditional distribution p(Y”’ | Y, X), we model and later
marginalise the instance—response dependent discrepancy between Y/ and Y given X. Under this perspective,
the likelihood of observing Y’ given X (observed-output predictive distribution) is defined as follow:

p(Y'| X) = ZZpZYY/|X ZZpZ\X Y| X,2)p(Y'|Y,X,Z)
izzpmx Y| X,Z)p(Y'|Y,X)
Z

=3 p(Y' Y, X) p(Y [ X). (2)
Y

Instance-Response
Dependent Discrepancies

Step (i) assumes the conditional-independence Y’ 1 Z | (Y, X). This assumption is reasonable, as
our goal is to recover an unbiased estimate of LLM misalignment, capturing how the LLM responds to
a user query without being undermined by external factors such as the specific prompting strategy. The
final factor p(Y’ | Y, X) is denoted as instance-response-dependent discrepancies. Our aim is to estimate
the p(Y’ | Y, X) to maximise the conditional likelihood of LLM in producing personalised responses that
align with user preferences. Our formulation explicitly covers the realistic case in which the LLM’s raw
response Y’ is misaligned from the user-preferred response Y. When those instance-response-dependent
discrepancies are shown, we estimate the p(Y’ | Y, X) and utilise it to endow the LLM to align more
with the user. In the hypothetical, perfectly aligned regime where Y/’ =Y for every input, the
discrepancy distribution reduces to an identity matrix p(Y’' | Y, X) = 1;y/—y) and our framework
naturally reduces to equation Because our learning objective is discrepancy estimation rather than
prompt optimisation, we assume a suitable prompt Z* has already been given. The joint model for the
user-preferred response Y and the LLM’s misaligned response Y’ then factorises as

p(Y' | X)=3 " p(27Y,Y' | X) = Y pY'|Y,X) pY]|X) 3)
Y Y

Instance-Response
Dependent Discrepancies

To obtain the user’s preferred response by searching Z* is indeed essential but insufficient. In this paper,
our goal is to estimate the term p(Y’ | Y, X), which quantifies the discrepancies between LLM outputs and
user preferences for all instances with their corresponding true labels Y by marginalizing over all possible
LLM-generated responses Y’. Given that p(Y | Z*, X) and p(Z* | X) are either known or given, the task
of maximizing p(Y | X) ultimately depends on accurately estimating p(Y’ | Y, X). The p(Y | Z*, X)
and p(Z* | X) are assumed obtainable since we assume Z* is given. p(Y | Z*, X) describes how likely
each possible Y is, given the input X and the optimal prompt strategy Z*. However, this distribution
alone does not guarantee that the LLM will produce the ground truth response in practice. The model’s
generated output Y’ can still deviate from Y due to inherent uncertainties or imperfections in the LLM. To
address this issue, it is crucial to consider the discrepancy distribution p(Y”’ | Y, X) and incorporate it into
the inference process. By consistently marginalizing over all possible generated responses Y’, we can more
accurately model the process by which the true label Y relates to the observed LLM output Y. This leads
to a more reliable and coherent inference framework that accounts for the discrepancy between the idealized
distribution p(Y | Z*, X) and the practical reality of the LLM’s response generation.
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Figure 2: Estimated Instance-Response-Dependent Discrepancies on ChatGPT 3.5 Turbo for datasets
StackExchange(Topic) CLINC150(Intent), Banking77(Intent), MOTE(Intent), Massive(Scenario).The diag-
onal entries of the matrix indicate the aligned responses from LLMs given each dataset, whereas the other
highlighted entries indicate misaligned responses. The annotation also can be denoted as response.
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Figure 3: Semantic Depiction of Instance-Response Dependent Discrepancy Estimation. Clusters indicate
instances with the same responses.

3.1 Instance-Response-Dependent Discrepancies Between LLMs and User

This subsection bridges theory and implementation: we show how the notion of response misalignment
formalised by p(Y’ |Y, X ) is realised in practice and subsequently exploited.

Definition of misalignment. For a fixed query X and ground-truth label Y, the probability p(Y”' | Y, X)
which we denote as the instance—response-dependent discrepancy—quantifies how often the LLM produces
each (possibly mis-aligned) response Y'. We instantiate the p(Y’ | Y, X) via a deterministic transition matrix
M(X) € {0, 1}YXIYl whose entry M(X); , = 1 iff, at least once in the interaction history for query X, the
LLM produced response Y’ = k' while the ground-truth label was Y = k. Each column % therefore encodes
the set of previously observed alignments (k' = k) and misalignments (k' # k) associated with Y = k given
X. During our experiments we treat M (X) as an personalised memory bank rather than a binary mask.
Formally,

M )1, if there exists a user preference sample 4 such that Y; = k and Y/ = &/
(Xwrw = 0, otherwise.
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Ideally, only the diagonal entries of M x) would be positive, indicating that the LLM’s generated responses
match the true responses (Y = Y”’). All off-diagonal entries would remain zero, indicating perfect response
alignment. In practice, however, discrepancies arise which represent instances where the LLM’s responses
deviate from the true responses in the user preference samples, resulting in nonzero off-diagonal elements
that capture the discrepancies between true responses and the LLM-generated responses. Each row of the
estimated matrix M x) encodes the dependency between the LLM’s generated responses Y’ and the possible
true labels Y. Specifically, M(x) records all past discrepancies observed for instances sharing the same true
label Y. This dependency is utilized to truncate the candidate label set for each sample based on the LLM’s
responses. Formally, M is defined as a K x K deterministic transition matrix (where K is the number of
classes) with elements My r, where: For example: M(x), , = 1 indicates that the LLM predicted responses 1
given the true responses was 1, meaning that there are no response discrepancies. M), , = 1 indicates that
the LLM predicted responses 4 given the true responses was 1, meaning that there are response discrepancies.
For illustration purposes, consider the following example of the deterministic transition matrix Mx:

]\1111‘ ]\/1172| ]V[Lg‘ 1| 0‘ 0|
_ ]\/[2,1‘ ]\4’272| Afg,g‘ ]\/[274| o 0| 1‘ 0| 0‘
Mo = Ms 1] Mss| Msgal| — |0 1 o )
]W4,2| ]V[4.3‘ ]\/[4’4| 0‘ 0| 1‘

The highlighted entries denotes previously made misalignments by LLMs recorded for all instances with
respect to each true responses Y. We treat each true responses as a category, thereby aggregating all possible
misalignments of the instances made by LLMs associated with that category. In this deterministic transition
matrix, Mx),, . indicates that the LLM predicted responses k' when the ground-truth responses was k for
at least one observed sample. Each row of M) corresponds to a predicted label Y’ = k', and each column
corresponds to a ground-truth label Y = k. The entry M X)prp = 1 indicates that the LLM has generated
the response Y’ = k’/ when the true label was Y = k. This can be described as follows:

Condition 1: k¥’ = k (Response Alignment). If ¥’ = k, the LLM’s prediction aligns with the true label,
indicating no discrepancy:

Mxy,, , =1 (LLM’s prediction matches the true label Y = k).

Condition 2: k' # k (Response Discrepancies). If k' # k, the LLM has generated an incorrect response
Y’ = Kk’ for instances where the true label is Y = k. This captures a discrepancy:

Mx),, . =1 (LLM’s prediction Y’ = k" does not match the true label Y = k).

By estimating the M(xy from user preference samples Dyser, we record all possible past misalignments (Y)
made by the LLM for instances with the corresponding true response Y. This matrix provides a structured
representation of the alignment or discrepancies between the LLM’s responses and user-preferred responses.
Given new inputs, the deterministic transition matrix M x) and the initial responses from the LLM, we can
refine the prediction process as follows: By treating the initial prediction Y’ as an index, M x) allows us
to retrieve the set of potential correct responses Y associated with Y’ during the estimation phase. This
enables the LLM to reconsider its prediction by selecting only from the refined candidate set, effectively
recalling past misalignments. To summarise and connect the theoretical construction with our practical
implementation, we add the following. The M (X ) x, records every aligned (k' = k) and mis-aligned (k' # k)
occurrence, we can obtain an empirical conditional distribution of misalignment and alignment via simple

row normalisation: (Y’ =k |Y =k, X) = A/(X)k,’k = % whenever >, M(X);, > 0. In
JEY 7

practice, however, our LLM is a black-box: its parameters, loss function, and internal soft-max layer are
inaccessible. Subsequently, we cannot train the LLM using estimated M xy.

Example: Personalizing LLM Responses to User Preferences The Figure {|illustrates overview of
CM pipeline and role of instance-response-dependent discrepancy-estimation. Each user query X is initially
paired with an candidate set }_/; that lists all potential responses. Our aim is to steer the LLM toward
responses that faithfully reflect individual user preferences across the unlabeled corpus Djarge. Consistent
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Figure 4: Overview of Consistent Marginalization on Tasks Massive Scenario and Banking77. Dyge =
{(X;,Y;)};_, denote a small set of user preference samples with size |s|. Each input X; has a known ground-
truth response Y;. From these samples, we construct a deterministic transition matrix M, which captures
mappings between the LLM’s generated responses Y, and the corresponding ground-truth labels Y;.
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Marginalisation (CM). CM first estimates instance-response-dependent discrepancies between the LLM’s
misaligned response Y and the ground-truth preference Y;. Because full supervision is impractical, these
discrepancies are infers from a small but reliable set of annotated preference samples, storing them in a
transition matrix M xy) . This matrix acts as a lightweight personalised memory bank that records misaligned
response of LLM from user’s true intent. At inference time, M) is exploited to refine the original candidate

set ﬁ, generating a pruned set Cj. ..., that excludes potentially unwanted responses. Finally, the LLM,
represented by the function G, generates a refined output Y; by conditioning on the input X; and the updated
candidate set C; toY; = G(X;,C;

Refined Refined ) :

4 Selection Criterion for User-Preference Samples

In practice, selecting a small subset of samples (hereafter referred to as “user preference samples”) from a large
training set is challenging. High Confidence from Human Annotators: In parallel, we select samples for
which human annotators have high confidence in their preferred responses. Formally, consider an instance X
and a label Y drawn from the label set Y. A user preference sample must satisfy p(Y | X, }7) ~ 1, indicating
that the human annotator is certain of their responses. This criterion ensures that the user preference
samples are as misalignment-free as possible, minimizing uncertainty and reducing the risk of propagating
incorrect user preferences into the learning process. Since our setting assumes the availability of a small set of
user-preferred responses, we do not conduct an extensive feasibility study on the selection process. Instead,
we adopt this selection criterion as a working assumption to approximate reliability, acknowledging that
user-provided preference samples may still contain noise. Nevertheless, we treat these samples as relatively
trustworthy compared to LLM generated responses, particularly when they originate from human annotators
Section 4 shows that instance-response-dependent discrepancies are essential for aligning LLM response with
user preference. We now describe how to estimate )y, p(Y' | Y, X, }7) and specify the assumption of user-
preference samples for the estimation under which alignment can be achieved without per-user fine-tuning.
Because the candidate set Y is deterministic in our setting, it appears explicitly in the conditional notation
to ensure the estimation procedure is clear.

Definition 1 (LLM misaligned Response). Let G denote the LLM. For a query X and candidate set )7,

p(Y’ I X, }7) = G(X7Y>7 (5)

where Y’ may differ from the user-preferred response Y.
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Proposition 1. Because every model output Y’ is paired with (possibly latent) Y, we have

pY'IXY) = (Y YVXY) p(Y [ XY) (6)
——— v —————
LLM-Generated Response User-Preferred Response

Instance-Response
Dependent Discrepancies

Assumption 1 (High-Confidence User Preference Samples). There exists a finite set
DUser - {(Xza m)}lea

for which Pr(Y =Y; | X;,Y) =1 for all i.
Corollary 1 (Discrepancy Estimation). Under Assumption |1} pairing each ground-truth Y; with its model
output Y; enables estimation of p(Y’ | Y, X,Y).

Example 1. If Y = 1 is known for X; with certainty (p(Y =1 Xl,?) = 1), then

p(Y/ =2|XY) =>p(Y'=2[Y=1X.Y) pY=1]/X.Y) . (7)
—_——
LLM-Generated Response (1) Y User-Preferred Response (2)

Estimated Instance-Response
Dependent Discrepancies (3)

With an accurate estimate of the discrepancy distribution p(Y’ | Y, X), we can learn the clean predictive
distribution p(Y" | X) by matching the p(Y' | X) = >, p(Y' | Y, X)p(Y | X), reducing the need for full
per-user fine-tuning.

5 Experiment

5.1 Evaluation Setup

To assess the effectiveness and generalisability of Consistent Marginalization (CM), we conduct exper-
iments on three widely used LLMs—Chatgpt-40-mini, Chatgpt-3.5, and Llama-8b-Instruct—each
run with two random seeds for robustness. CM is benchmarked against standard prompt and recent
self-correction baselines on five diverse, real-world datasets: StackExchange: a multi-domain QA cor-
pus (e.g., programming) that tests how well an LLM aligns responses in varied, user-specific contexts.
CLINC150: 150 intent categories drawn from realistic dialogue, measuring an LLM’s ability to capture
subtle user preferences in high-variance settings. BANKT77: banking-themed user queries that probe align-
ment performance in high-stakes, user-sensitive scenarios. MOTE: a multilingual dataset for evaluating
CM’s cross-lingual adaptability. Massive Scenario: 51 typologically-diverse multilingual natural language
understanding dataset, highlighting CM’s scalability to broad situations and linguistic coverage. For each
LLM, we compare every baseline prompt method with its CM-enhanced counterpart under identical con-
ditions that is, Baseline Prompt versus CM + Baseline Prompt and report results averaged over the two
seeds.

5.2 Baselines

Self-Consistency [Wang et al,| (2023) aims to improve the response accuracy of LLMs by considering con-
sistently generated answers through selecting multiple and diverse paths in a few-shot chain of thought
approach. The problem with this method is its dependence on multiple sources of paths from the same
model; even slight changes in one source’s responses can drastically impact the final responses. In addition,
self-consistency only reflects the proportions of the dataset used for training the LLMS, but not the personal
response preference of the user. The chain of thought method |Wei et al.| (2022)) is a step-by-step illustration
for the given query to the LLMs. Few-Shot Thought Prompting: Brown et al| (2020) uses a few relevant
examples as illustrations in the prompt to aid the model in aligning the response with the user. We have also
included Self-Refine Madaan et al.| (2024)) to show that relying on model reflection is inadequate to make a
model produce persistent alignment.
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Metric ChatGPT-3.5 ChatGPT-3.5 ChatGPT-3.5 ChatGPT-3.5 ChatGPT-3.5
Dataset StackExchange(Topic) ~ CLINC150(Intent)  Banking77(Intent) MOTE(Intent) — Massive(Scenario)
Cof{Wei et al.| 49.82% + 0.19% 64.62% + 1.63% 19.16% +0.14%  57.42% + 0.40% 60.54% + 0.24%
CM; 5+ Cot 54.72% +0.17%  68.09% +1.92%  31.90% + 0.30% 64.91% + 0.36%  68.11% =+ 0.43%

CM; ;+ FoT

46.04% =+ 0.01%
51.92% + 0.08%

61.62% + 1.16%
63.53% + 1.23%

36.77% + 0.44%
45.94% + 0.60%

55.93% + 0.23%
63.94% +1.15%

58.23% + 0.45%
66.70% + 0.86%

Zero-Shot
CM3 5+Zero-Shot

51.96% % 0.02%
56.29% 4 0.04%

63.18% + 1.13%
67.84% + 1.70%

62.55% + 0.85%
66.92% + 1.10%

65.84% + 0.47%
74.36% £ 0.73%

62.22% + 0.05%
67.26% £ 0.12%

Self-Consistency[Wang et al| (2022

CM3; ;+Consistent

51.75% + 0.06%
53.96% + 0.08%

68.90% + 0.08%
69.36% + 0.19%

56.61% + 0.34%
57.42% + 0.44%

68.26% + 0.26%
75.57% + 0.77%

62.49% + 0.19%
64.63% + 0.12%

Self-RefingMadaan et al.|(2024

CM3 ;+Self-Refine

48.94% + 0.68%
54.09% + 0.04%

71.63% + 1.24%
75.29% + 1.23%

53.90% + 2.94%
57.87% + 3.37%

71.88% =+ 0.59%
68.05% + 0.29%

63.55% + 0.02%
68.27% + 0.40%

Metric
Dataset

Llama-8B Instruct

StackExchange(Topic)

Llama-8B Instruct
CLINC150(Intent)

Llama-8B Instruct
Banking77(Intent)

Llama-8B Instruct
MOTE(Intent)

Llama-8B Instruct
Massive(Scenario)

CofWer ot al | @022]

CMLiama+Cot

14.72% + 0.19%
23.22% + 0.02%

32.24% + 0.55%
33.08% + 0.24%

22.20% + 0.45%
24.62% + 0.19%

55.75% + 0.21%
56.89% + 0.16%

46.94% + 0.10%
50.27% + 0.24%

CMLiama+FoT

14.61% + 1.47%
26.56% + 0.20%

42.84% + 1.06%
43.84% + 0.25%

25.07% + 0.78%
29.00% =+ 0.35%

66.87% + 0.84%
65.50% =+ 0.93%

54.91% + 1.38%
56.49% + 0.95%

Zero-Shot
CMLiama-+Zero-Shot

17.80% =+ 0.19%
22.66% + 0.09%

58.24% + 0.69%
59.78% + 0.67%

49.03% £ 0.13%
55.19% + 0.45%

41.09% £ 1.42%
50.91% + 1.77%

55.82% + 0.19%
63.95% + 0.57%

Consistent [Wang et al.|(2022

CM_L14ma+Consistent

19.32% + 0.12%
24.76% + 0.07%

55.36% + 0.11%
55.42% + 0.31%

38.31% + 0.26%
43.34% + 0.35%

63.43% =+ 0.55%
65.98% + 0.32%

57.53% + 1.09%
59.95% + 0.62%

Self-Refine Madaan et al.|(2024
+Self-Refine

18.9% =+ 0.14%

60.19% =+ 0.98

48.70 £ 0.28%

42.64% £ 1.05%

55.75% %+ 0.19%

CM_Liama 23.34% + 0.48% 61.42% + 1.23% 55.23% + 0.32% 51.41% + 0.93% 63.85% + 0.52%

Metric ChatGPT-4-0-mini  ChatGPT-4-o-mini ChatGPT-4-o-mini ChatGPT-4-0-mini ChatGPT-4-0-mini
Dataset StackExchange(Topic) ~ CLINC150(Intent) — Banking77(Intent) MOTE(Intent)  Massive(Scenario)
Cot [Wei et al.| (2022 44.72% + 0.19% 74.55% + 2.73% 59.41% + 0.50% 69.70% + 1.07% 63.99% + 0.69%
CM; ;+Cot 49.54% +0.31%  75.76% +3.22%  65.32% + 1.73% 69.25% +1.32%  66.40% + 0.38%
FoT 42.81% + 0.40% 73.14% + 2.33% 55.87% + 0.10% 66.23% + 0.81% 67.49% + 0.12%
CM; 5+ FoT 48.09% +0.35%  74.60% +2.48%  62.74% +0.89%  67.60% +0.94%  70.03% + 0.19%
Zero-Shot 49.94% +0.36%  83.23% + 1.11% 66.61%+£1.82%  73.79% +£0.61%  72.04% +0.07%
CM; 5+ Zero-Shot 50.02% =+ 0.25% 82.70% £ 1.56%  69.45% + 2.30% 73.72% £ 0.94% 71.03% £ 0.07%
Consistent 47.63% +£0.37%  81.85% + 0.63% 66.08% + 1.38% 74.00% +0.32%  70.82% + 0.02%
CM; ;5+Consistent 48.19% + 0.27% 79.86% =+ 1.53% 65.86% £ 1.30%  79.82% + 0.90% 69.81% =+ 0.40%

Self-RefingMadaan et al.|(2024

CM; ;+Self-Refine

51.72% £ 0.27%
51.69% =+ 0.24%

79.34% =+ 0.49%
80.21% + 1.37%

64.81% + 1.33%
68.71% + 2.68%

71.93% £ 0.02%
71.06% =+ 0.60%

71.35% + 0.29%
71.72% £ 0.38%

Table 1: Response-matching accuracy (%=+STD) of several prompt methods evaluated on five domain-specific NLP
datasets with three LLM back-bones: ChatGPT-3.5-Turbo, ChatGPT-4-0-mini, and Llama-8B-Instruct. For each
dataset, the best score obtained by pairing our Consistent Marginalization (CM) module with standard prompt
techniques is shown in bold. We report Few-Shot, Self-Consistency, Chain-of-Thought(CoT), Self-Refine, and CM
variants. Note: CMs 5 is learned from ChatGPT-3.5-Turbo and then applied to both ChatGPT-3.5-Turbo and
ChatGPT-4-0-mini, whereas C M iqamq is learned and used solely on Llama-8B. The weaker gains on Chatgpt-4-o-
mini highlight that an instance-response discrepancy matrix transfers poorly across model families. In contrast, it

delivers substantial improvements when applied to the model on which it was estimated.

Metric StackExchange CLINC150 Banking77 Mtop Massive

(Topic) (Intent) (Intent) (Intent) (Scenario)
Cot (2022 14.49% +0.19%  32.33% +0.38% 2244%+0.10%  55.95% +0.23%  47.31% + 0.03%
CM_Liama( )+Cot 19.85% £ 0.02%  32.18% £ 0.04% 22.14% £ 0.06% 57.32% +0.14% 50.34% + 0.24%
FoT [Brown et al.| (2020 14.73% +1.54%  43.02% +1.38%  25.45% +0.45%  65.50% +0.57%  53.30% + 0.03%
CMpiama( ) +FoT 22.52% + 0.38%  42.84% £ 0.84% 25.45% +£0.39% 67.28% £ 0.43% 56.25% + 0.17%
Zero-Shot 18.46% +£0.07%  58.04% £ 0.40% 48.70% £0.45%  40.08% +0.05%  55.41% =+ 0.27%
CM_iama(')+Zero-Shot 22.47% +0.10%  58.22% +0.22% 48.38% +£0.52% 51.12% +0.23% 62.14% +0.34%
Consistent (2022 19.42% +0.02% 55.53% +0.02% 38.05% +£0.19%  62.75% +0.41%  56.96% =+ 0.13%
CM_iama( ) +Consistent 23.75% £ 0.31%  54.40% £0.04% 37.92% £ 0.26% 66.19% + 0.52%  59.92% + 0.20%
Self-Refine [Madaan et al.|(2024) ~ 18.94% +£0.07%  58.47% £ 0.38% 48.38% +£0.45%  41.36% +£0.14%  55.35% + 0.34%
CM_iama(' ) +Self-Refine 22.71% £ 0.05%  58.27% +0.22% 48.21% +£0.55% 51.03% +£0.05% 62.10% + 0.30%

Table 2: Response—matching accuracy (%+STD) of several prompt methods evaluated on five domain-specific NLP
datasets with Llama-8B-Instruct. For each method (row), the best score across datasets is shown in bold. Note:
) is estimated with 1% of the training sample and used solely on Llama-8B.

CY]‘4Lla7na (

5.3 Experimental Result

5.3.1 Moderate Gains with Just 5 % User-Preference Samples

Consistent Marginalization (CM) is both effective and adaptable. As|Table 3| shows, adding CM to every
plain-prompt baseline raises response-matching accuracy across all datasets on Chatgpt-3.5 and Llama-
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Model + Method StackExchange  CLINC150  Banking77 MOTE  Massive (Intent)
ChatGPT-3.5

CM3 5 +Cot +4.90% +3.47% +12.74%  +7.49% +7.57%
CM3 5 +FoT +5.88% +1.91% +9.17% +8.01% +8.47%
CMg3 5 +Zero-Shot +4.33% +4.66% +4.37%  +8.52% +5.04%
CM3 5 +Consistent +2.21% +0.46% +0.81%  +7.31% +2.14%
CM3 5 +Self-Refine +5.15% +3.66% +3.97% -3.83% +4.72%
Llama 8B Instruct

CM [ ama +Cot +8.50% +0.84% +2.42% +1.14% +3.33%
CM[1gma +FoT +11.95% +1.00% +3.93% -1.37% +1.58%
CMT | ama +Zero-Shot +4.86% +1.54% +6.16%  +9.82% +8.13%
CM7] 1 ama +Consistent +5.44% +0.06% +5.03%  +2.55% +2.42%
CM[ qma +Self-Refine +4.44% +1.28% +6.53%  +8.77% +8.10%
ChatGPT-40-mini

CM3 5 +Cot +4.82% +1.21% +5.91% -0.45% +2.41%
CM3 5 +FoT +5.28% +1.46% +6.87% +1.37% +2.54%
CMg3. 5 +Zero-Shot +0.08% -0.53% +2.84% -0.07% -1.01%
CM3 5 +Consistent +0.56% -1.99% -0.22%  +5.82% -1.01%
CM3 5 +Self-Refine -0.03% +0.87% +3.90% -0.87% +0.37%

Table 3: Response Alignment Accuracy improvement (%) of Consistent Marginalization (CM) over baseline
prompt methods across datasets.

Method Objective Correction Mechanism Personalised Memory External Limitati on Per lised Response
Alignment of Past Tool Alignment Task
Ability Misalign-
ment
Few-Shot [Brown et al.l General task performance  None X Low X TImplicit No Cannot adapt to user-specific preferences or
(2020} via reason- feedback
ing paths
Chain of Thought Improve reasoning accuracy Implicit via reasoning path X Low X None No No adaptation to feedback; prone to halluci-
(Wei et al.||2022 nations
Self-Consistency (Wang Improve response accuracy ~ Majority voting over responses X Low X None No Relies on diverse paths; No user-specific guid-
ot al.][2023] ance
Self-Refine  (Madaan| Iterative  self-correction  Self-generated revision loop Medium X None Yes Requires Many Iterative rounds of Correction.
ot al.|[2024) with Feedback Lack of long-term Memory
Consistent Personalized response  Explicit memory of instance- v v Yes No No need for per-user Fine-tune; scalable
Marginalization alignment response dependent discrepan- and adaptive to personalised user pref-
(Ours) cies erences

Table 4: Comparison between Prompt-Based Methods and Consistent Marginalization (CM) on Personalized
Response Alignment Task

8b-Instruct, and delivers notable gains on Chatgpt-4o0-mini. ChatGPT-3.5-Turbo. CM improves
every prompt strategy on four of the five datasets; the single dip occurs with CM+Self-Refine on MOTE.
The largest boost is +12.74 % on BANKING77 with CM+CoT, while the other datasets record balanced
gains of +3-8 %. Llama-8B-Instruct. CM produces the strongest overall gains: 23 of 25 cases improve,
16 by at least 2%. The highest is +11.95 % on STACKEXCHANGE with CM+FoT; the single drop is a mild
—1.37% on MOTE with CM +FoT. ChatGPT-40-mini. Because the discrepancy matrix was learned on
GPT-3.5-Turbo, gains transfer slightly less, yet CM still adds +6.87 % on BANKING 77 with CM-+FoT
and remains positive or neutral on most other cells. Overall, with just 5% of user-preference samples, CM
consistently outperforms every plain-prompt baseline, confirming its practical value across prompts, datasets,
and LLM architectures.

5.3.2 Robust Gains with Just 1% User-Preference Samples

To quantify how many annotated preferences CM needs, we perform an ablation using Llama-8b-Instruct
and two annotation budgets 1% and 5% of the training set across all five datasets . Robust gains
with only 1 %. Even at the 1 % budget, CM lifts nearly every prompt baseline. The largest improvement
occurs on STACKEXCHANGE, where CM raises FoT from 14.73 % to 22.52 % (+7.79 pp) and Consistent
from 19.42 % to 23.75 % (+4.33 pp). These results show that CM is effective in low-data settings. Overall,
CM scales smoothly with additional data while remaining highly effective in resource-constrained regimes.

Additional LLM: ChatGPT-4 Turbo. To test the cross-model consis-

tency of CM, we transfer the instance-response discrepancies estimated on Method Ratio (%)
ChatGPT-3.5-Turbo to ChatGPT-4 Turbo. As shows, this transfer  Zero-Shot (GPT-3.5) 62.99
still lifts the Zero-Shot Prompt baseline by 3.5% in response alignment ratio, ~CMs.s+Zero-Shot 67.35

. . Zero-Shot (GPT-4 Turbo 61.98
showing that C'M3 5 remains useful even on a stronger backbone. However, the ¢y, . +Z<em_Shot ) 64.48

absolute gain is smaller than on ChatGPT-3.5-Turbo. We attribute the drop to
model architecture and parameter difference : the larger the gap between the Table 5: Cross-LLMs Con-
source model (where the discrepancies were learned) and the target model, the sistency of CM
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less precisely those discrepancies characterise the new model’s misalignment.
This observation indicates that the effectiveness of a instance response dependent discrepancy decays as the
underlying LLM family shift farther from the one on which it was estimated.

6 Related Works

6.1 Prompt-based learning

Prompt-based learning, first popularised by [Brown et al.| (2020]), shows that a handful of in-context examples
can nudge an LLM toward more accurate responses. Subsequent prompt-engineering methods—instruction
tuning (Wei et al., 2021)), chain-of-thought (Cot) prompt Wei et al. (2022)), and ReAct [Yao et al.[ (2022)—in-
ject explicit task structure or external tool calls to improve reasoning further. Active Prompt [Diao et al.
(2023), Generate-Knowledge Prompting |Liu et al.| (2023)), and Consistency Prompting [Wang et al.| (2023)
curate clarifying questions, external facts, or multi-path consensus so that the final answer is more consis-
tent and accurate. A parallel line of research explores self-correction: Self-Refine Madaan et al.| (2024)) and
Tree-of-Thought (Tot) Long| (2023)); [Yao et al| (2024) allow the LLM to iteratively critique and revise its
own outputs. Reflexion [Shinn et al.| (2023]) introduces external tools to validate self-generated feedback and
maximise accuracy, but obtaining tools that can assess personalised response alignment at scale remains
challenging. Moreover, Huang et al.| (2023) shows that self-generated feedback can actually reduce qual-
ity when no external check is available, making previous methods less effective for personalised response
alignment. However, these methods still fall short on two fronts that are central to personalised response
alignment: (i) they do not tackle fine-grained preference recognition at the instance level, and (ii) they lack
a memorisation mechanism that would let the LLM remember and reuse past preference signals over time.
Our work addresses both gaps.

6.2 User Instance-Response-Dependent Discrepancies Estimation

Patrini et al.| (2017); [Han et al.| (2018); [Yang et al.| (2022)) leverage instance-independent and dependent la-
bel transition matrices to achieve consistent classifiers. These transition matrices, which resemble response
instance-independent and dependent discrepancies. However, such methods generally rely on a white-
box setting, where model parameters are directly accessible. This accessibility enables the estimation of
transition matrices in probabilistic forms rather than discrete forms. Despite their effectiveness in white-
box scenarios, these approaches have not addressed the accurate estimation of instance-response dependent
discrepancies, which capture finer-grained relationships between model outputs and user preferences. Ad-
dressing this gap is essential for enabling robust, personalized response alignment in real-world applications,
particularly when working with sourced black-box models such as open and close-sourced large language
models (LLMs).

7 Conclusion

We have introduced Consistent Marginalization (CM), a paradigm that enables large language models to
deliver personalised responses by explicitly modelling instance-response-dependent discrepancies. CM'’s
learning objective stores each misalignment between the model’s draft and the user-preferred answer, then
recalls this memory to “unlearn” past errors and adapt future outputs. With only a small set of annotated
preference examples and no per-user fine-tuning, CM identify and corrects these discrepancies, steadily
steering the LLM toward the user’s desired response. Experiments across multiple LLM backbones and five
diverse, large-scale datasets show consistent gains in response alignment, confirming CM’s practicality and
robustness in data-constrained settings.
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8 Appendix
Table of Notations

Table 6: Summary of notations. We use lowercase p(-) for (conditional) probability distributions.

Symbol Description

X Input instance / user query.

Z Prompt / latent reasoning variable.

zZ* A fixed (e.g., optimal) prompt; if used, p(Z* | X) = 1.

Y User-preferred (clean, latent) response / class.

Y’ Observed LLM output (possibly misaligned).

Y Final aligned response after correction/refinement.

Y Initial candidate set (often the full label set V).

Clefined Refined candidate set pruned from Y.

y Label space (set of classes).

C Number of classes (C = |Y]).

G Large language model (generator).

p(Y | X,Z) Clean (prompt-based) predictive distribution under prompt Z.
p(Y | X) Prompt mixture: Zzp(Z | X)p(Y | X,Z) (or p(Y | X,Z™) if Z*" fixed).
p(Y'|Y,X) Instance-response discrepancy (misalignment) distribution.
p(Y' | X) Observed-output likelihood: ZY p(Y' | Y, X)p(Y | X).
Duser Labeled user-preference dataset (clean labels).

Dyparge Large-scale unlabeled (or weakly labeled) dataset.

s Number of labeled samples (|Duser|)-

n Total training samples (|Duger| + |Drargel)-

Y'1Z|(Y,X) Independence assumption used in derivations (discrepancies don’t depend on prompt given (Y, X)).

8.1 Example:Instance-Response Dependent Discrepancy Estimation

Let Dyser = {(Xi,Y:)};_, denote a small set of user preference samples, where s = 4. Each input X; has
a known ground-truth label Y;. From these samples, we construct a deterministic transition matrix M,
which captures mappings between the LLM’s generated responses Y; and the corresponding ground-truth
labels Y;. We also define the unlabeled dataset as Diage = {X;}Y,, with N = s = 4 in this illustrative
example. Let X = {X1, X5, X3, X4} be the set of input queries, and let ?Query = {ﬁ,f}g,ff'g,ﬁ} denote
the initial candidate sets for each query. Assuming a known label space of size K, each Y; is initialized to
the same universal candidate set Y € {0,1}%, where all entries are initially set to one—i.e., every class is
a potential candidate. We define Ymuo = {Y1,Y2,Y3, Y4} as the set of one-hot encoded vectors representing
ground-truth responses. Using this setup, the personalised memory bank M (X) is estimated from Dyge,
and subsequently used to refine the prediction space for the LLM during inference, producing a final output
Y, = G(Xi7 CiRcﬁncd)'

111 ] ] 0001 100 0 1001
—» 0100 4 100 0 1100
Youery = (] Yy = Ve = M sy =
aacaal | | | | 0001 ¢ Joo1o| " 10101
I 111 1000 000 1 1001
Given LLMs Generated Response Y, on X;
If LLM generated response is 1 1 0 0 O
If LLM generated response is 2 1 0 0 O
If LLM generated response is 3 0 0 1 0
If LLM generated response is 4 0 0 0 1

In the right-hand-side matrix, the estimated M(x) represents the potential user-preferred response }%Updmd

for X'Z corresponding to different LLM-generated responses. Y denotes the ground truth responses with

respect to X. If the LLM generates response Y’ = k, then ﬁupdated will be the k-th row of the matrix M&).
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This rule applies to all LLM-generated responses and significantly reduces the candidate set of responses
from [1,1,1,1] to a one-hot vector (e.g., [1,0,0,0] if &k =1).

Inference

During inference, the goal is to leverage the learned discrepancy matrix M (X) to guide the LLM’s predictions

on the unlabeled dataset Dyarge. For each unannotated instance X;, the initial candidate set Y is pruned
using the model’s learned error patterns to create a refined candidate set, C; ;cfined. The LLM, denoted
as G, then takes the instance X; and this constrained set C; refined as input to produce the final, refined

prediction Y;:
Yvi - G(X“ CiRcﬁncd)

The objective is to ensure that this final prediction Y; accurately matches the true response Y;.

8.2 Comprehensive comparison table showing the performance differences between 1% and 5%
user-preference samples across all methods and datasets

Dataset Method 1% Acc 5% Acc Improvements
Cot 14.49 14.72 +0.23
CM+Cot 19.85 23.22 +3.37
FoT 14.73 14.61 -0.12
StackExchange CM+FoT 22.52 26.56 +4.04
Consistent 19.42 19.32 -0.10
CM+Consistent 23.75 24.76 +1.01
Cot 32.33 32.24 -0.09
CM+Cot 32.18 33.08 +0.90
Zero-Shot 58.04 58.24 +0.20
CLINC150 CM+Zero-Shot 58.22 59.78 +1.56
Self-Refine 58.47 60.19 +1.72
CM+Self-Refine 58.27 61.42 +3.15
Cot 22.44 22.20 -0.24
CM+Cot 22.14 24.62 +2.48
Banking77 FoT 25.45 25.07 -0.38
CM+FoT 25.45 29.00 +3.55
Zero-Shot 48.70 49.03 +0.33
CM+Zero-Shot 48.38 55.19 +6.81
CM+Self-Refine 48.21 55.23 +7.02
Cot 55.95 55.75 -0.20
CM+Cot 57.32 56.89 -0.43
Mtop FoT 65.50 66.87 —+1.37
CM+FoT 67.28 65.50 -1.78
Consistent 62.75 63.43 +0.68
CM+Consistent 66.19 65.98 -0.21
Cot 47.31 46.94 -0.37
CM+Cot 50.34 50.27 -0.07
Massive FoT 53.30 54.91 +1.61
CM+FoT 56.25 56.49 +0.24
Zero-Shot 55.41 55.82 +0.41
CM+Zero-Shot 62.14 63.95 +1.81
CM+Self-Refine 62.10 63.85 +1.75

Table 7: Accuracy comparison between 1% and 5% user-preference samples. Bold indicates improvements
>1%.

9 How Does Consistent Marginalisation Handle Out-of-Domain Questions

While inputs are inherently free-form, in our experimental setup, the output space is predefined and discrete,
where responses are mapped to specific categories (e.g., banking intents, user queries in StackExchange).
We acknowledge, however, that in real-world settings, users may issue queries from new domains and exhibit
previously unseen preferences. There are two possible scenarios for such new input cases:

e (1) new inputs associated with an existing predefined class,

o (2) new inputs associated with a new, previously unseen class.
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(1): In our experiments, instance-response—dependent discrepancies are estimated based on user preference
samples, which are drawn independently and identically distributed (i.i.d.) from the training distribution.
We have verified that our method performs effectively on new inputs (from the testing distribution) that fall
within the same set of predefined classes.

(2): Nonetheless, if the new input comes from an out-of-domain distribution which is drastically different from
the training data, we can adapt CM to this case with the help of a lightweight pretrained model. To support
progressive personalization, our method can be designed to be continually updatable: When a new input X ew
is given, which can be significantly different from our in-domain datasets, we can use a pretrained sentence
encoder to compute the similarity between the embedding of X, and those of existing user-preference
samples with predefined candidate sets. If the similarity score is lower than a predefined threshold (e.g.,
0.1), the system flags X, as a potential out-of-domain sample. The system then passes the query to the
LLM without showing predefined classes. If user feedback is provided either through explicit correction or
satisfaction signals the user may reject the undesired response Y’ and supply a preferred alternative Y. This
new instance-response pair is incorporated into the memory M (X) without retraining the LLM. If the user is
satisfied, the memory bank records the preference as aligned; otherwise, it logs the misalignment. This setup
supports continuous learning without fine-tuning and enables enhanced personalization via a lightweight,
per-user memory.
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