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Abstract001

We tackle societal bias in image-text datasets002
by removing spurious correlations between pro-003
tected groups and image attributes. Traditional004
methods only target labeled attributes, ignoring005
biases from unlabeled ones. Using text-guided006
inpainting models, our approach ensures pro-007
tected group independence from all attributes008
and mitigates inpainting biases through data009
filtering. Evaluations on multi-label image clas-010
sification and image captioning tasks show our011
method effectively reduces bias without com-012
promising performance across various models.013

1 Introduction014

Models trained on biased data can develop pre-015

diction rules based on spurious correlations (i.e.,016

associations devoid of causal relationships), perpet-017

uating and amplifying harmful stereotypes (Zhao018

et al., 2017). For example, image captioning mod-019

els may generate gendered captions by associat-020

ing gender with depicted activities (Zhao et al.,021

2023), location (Hendricks et al., 2018), or ob-022

jects (Wang and Russakovsky, 2021). Dataset-level023

bias mitigation aims to reduce spurious correla-024

tions between labeled image attributes (e.g., teddy025

bear) and protected groups (e.g., woman). Resam-026

pling approaches balance the co-occurrence of each027

attribute with each group (Agarwal et al., 2022;028

Wang et al., 2020b). However, models can still029

exploit correlations between groups and sets of at-030

tributes (e.g., man with {dog, pizza, couch}), even031

when individual attributes are balanced (Zhao et al.,032

2023). Moreover, spurious correlations extend to033

unlabeled attributes, which current strategies do034

not address—e.g., gender disparities in image color035

statistics (Meister et al., 2023) or the person-to-036

object spatial distances (Wang et al., 2020a).037

While equal group distributions in real-world038

datasets are challenging to achieve, generative text-039

to-image models now enable targeted image modifi-040

cations (Rombach et al., 2022; Brooks et al., 2023;041

Couairon et al., 2023). For example, bias detection 042

methods alter image subjects’ appearance to assess 043

counterfactual fairness (Joo and Kärkkäinen, 2020) 044

or model bias (Smith et al., 2023; Brinkmann et al., 045

2023). However, manipulating individuals’ ap- 046

pearances without consent raises significant ethical 047

and privacy concerns (Andrews et al., 2023; Yew 048

and Xiang, 2022; Sobel, 2020; Ramaswamy et al., 049

2021a; Orekondy et al., 2018; Oh et al., 2016). 050

To address these challenges, we create train- 051

ing datasets with text-guided inpainting (Rombach 052

et al., 2022), ensuring attribute distributions are 053

independent of protected groups. Using masked 054

person images and text prompts, we generate coun- 055

terfactual images by inpainting only the masked 056

regions, addressing ethical concerns of altering non- 057

consensual images and ensuring equal representa- 058

tion of protected groups across attributes. We intro- 059

duce data filters to mitigate biases from generative 060

text-guided inpainting models (Bianchi et al., 2023; 061

Cho et al., 2023; Bansal et al., 2022; Luccioni et al., 062

2023), evaluating images based on adherence to 063

prompts, preservation of attributes and semantics, 064

and color fidelity, validated by human evaluators. 065

Unlike prior work (Wang et al., 2019, 2020b; Zhao 066

et al., 2023; Agarwal et al., 2022), training on our 067

counterfactual data decorrelates both labeled and 068

unlabeled attributes from protected groups with- 069

out impacting model performance. Comprehen- 070

sive evaluations show our approach significantly 071

reduces prediction rules based on spurious corre- 072

lations in multi-label classification and image cap- 073

tioning across various architectures (e.g., ResNet- 074

50 (He et al., 2016), Swin Transformer (Liu et al., 075

2021)), datasets (COCO (Lin et al., 2014), Open- 076

Images (Krasin et al., 2017)), and protected groups 077

(gender, skin tone). Our key contributions are sum- 078

marized as follows: 079

• Introducing a framework for generating syn- 080

thetic training datasets with group-independent 081

image attribute distributions. 082
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Figure 1: (a) Predicted objects by baseline ResNet-50 and with bias mitigation, i.e., over-sampling (Wang et al.,
2020b) versus our method. (b) Generated captions by baseline ClipCap and with bias mitigation, i.e., LIBRA (Hirota
et al., 2023) versus our method. Incorrect predictions, possibly affected by gender-object correlations, are in red.

• Proposing data filtering to mitigate biases intro-083

duced by generative inpainting models.084

• Conducting quantitative experiments, demon-085

strating significant bias reduction in classifica-086

tion and captioning tasks compared to baselines.087

• Identifying limitations of training on combined088

real and synthetic datasets, emphasizing the089

need for cautious synthetic data augmentation.090

1.1 Related Work091

Societal bias in datasets, characterized by demo-092

graphic imbalances leading to spurious correla-093

tions, has been extensively studied (DeVries et al.,094

2019; Birhane et al., 2024; Birhane and Prabhu,095

2021; Birhane et al., 2021; Wang et al., 2020a;096

Meister et al., 2023). These biases persist and097

can be exacerbated by multi-label classifiers (Zhao098

et al., 2017; de Vries et al., 2019; Wang et al., 2019)099

and image captioning models (Zhao et al., 2021;100

Hendricks et al., 2018; Hirota et al., 2022), dispro-101

portionately impacting historically marginalized102

groups such as women and individuals with darker103

skin tones (Garcia et al., 2023; Ross et al., 2020).104

Two common approaches to bias mitigation are105

dataset-level and model-level. Dataset-level ap-106

proaches leverage generative adversarial networks107

(GANs), counterfactual training dataset augmen-108

tation, and resampling. GANs create synthetic109

images to balance datasets and mitigate spurious110

correlations (Ramaswamy et al., 2021b; Sattigeri111

et al., 2019; Sharmanska et al., 2020), counterfac-112

tual data augmentation generates alternative sce-113

narios to address biases (Kaushik et al., 2019;114

Wang and Culotta, 2021), and resampling bal-115

ances the co-occurrence of attributes and pro- 116

tected groups (Agarwal et al., 2022; Wang et al., 117

2020b). Model-level approaches reduce bias 118

through corpus-level constraints (Zhao et al., 2017), 119

adversarial debiasing (Wang et al., 2019; Hendricks 120

et al., 2018; Tang et al., 2021; Alvi et al., 2018), 121

domain discriminative/independent training (Wang 122

et al., 2020b), modified loss functions (Lin et al., 123

2017; Cui et al., 2019; Sagawa et al., 2019), and 124

model output editing (Hirota et al., 2023). How- 125

ever, despite these advancements, existing miti- 126

gation methods focus on single labeled attributes, 127

which can inadvertently increase models’ reliance 128

on spurious correlations between protected groups 129

and combinations of attributes (Zhao et al., 2023) 130

or unlabeled attributes (Meister et al., 2023). 131

Recent progress in text-to-image generative mod- 132

els has enabled targeted image manipulation (Rom- 133

bach et al., 2022; Brooks et al., 2023; Couairon 134

et al., 2023), which can help address bias in multi- 135

modal datasets. Nonetheless, these models have 136

also been shown to perpetuate harmful stereo- 137

types (Mandal et al., 2023; Zhang et al., 2023; 138

Wang et al., 2023a; Struppek et al., 2022; Ungless 139

et al., 2023; Naik and Nushi, 2023; Seshadri et al., 140

2023; Friedrich et al., 2023). In contrast to prior 141

bias mitigation work, we use text-guided inpainting 142

to generate synthetic training datasets that ensure 143

equal representation of protected groups across all 144

attribute combinations, whether labeled or unla- 145

beled. To mitigate inpainting biases, we propose 146

data filters, producing higher quality and less bi- 147

ased synthetic data. We go beyond previous work 148

focused solely on gender bias mitigation (Joo and 149
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Kärkkäinen, 2020; Smith et al., 2023; Brinkmann150

et al., 2023) by also addressing skin tone biases.151

2 Method152

We create training datasets with group-independent153

image attribute distributions by using masked per-154

son images and text prompts with an off-the-shelf155

diffusion model, as outlined in Figure 2.156

2.1 Resampled Datasets Are Not Enough157

We denote an image by x ∈ X , a protected group158

by g ∈ G, and an image attribute by a ∈ A. A159

spurious correlation exists if pX (a | g) ̸= pX (a),160

indicating biases in the data. Resampling aims to161

remove these biases by adjusting the sampling pro-162

cess so that pX (a | g) = pX (a) for all g (de Vries163

et al., 2019; Wang et al., 2020b). This is done164

using a limited set of labeled attributes O ⊂ A,165

where attributes a are drawn from a distribution166

q(a) over O and groups g are drawn from a uni-167

form distribution u(g) over G such that X ′ = {x ∼168

pX (x | g, a) | a ∼ q(a), g ∼ u(g)}. This ensures169

pX ′(a | g) = q(a) for a ∈ O and g ∈ G. However,170

this method has a limitation: it does not account for171

a being an unlabeled attribute or a combination of172

labeled and unlabeled attributes, making it difficult173

to sample x from pX (x | g, a) due to insufficient174

information about a. In short, while resampling can175

reduce biases, it is not always enough, especially176

when dealing with unlabeled or mixed attributes.177

2.2 Text-Guided Inpainting178

Suppose D = {(xi, ωi, ai, t
(g)
i ) | 1 ≤ i ≤ n} is a179

training set, where x ∈ Rd is an image, ω ∈ [0, 1]d180

is a person mask, a is a labeled image attribute,181

a combination of labeled attributes, or an unla-182

beled attribute, and t(g) is a text prompt contain-183

ing a protected group-specific word g. To create184

a dataset with group-independent image attribute185

distributions, we utilize a text-guided inpainting186

model (Rombach et al., 2022). This model, guided187

by t(g), inpaints ω in x with a synthetic person188

from protected group g described in t(g). For each189

tuple in D, we generate m ∈ N+ versions for each190

g ∈ G, resulting in m · |G| samples:191

Dsynthetic = {(x(j,g
′)

i , ωi, ai, t
(g′)
i )

| 1 ≤ i ≤ n, g′ ∈ G, 1 ≤ j ≤ m},
(1)192

where x(j,g
′)

i denotes the j-th inpainted version of193

xi ∈ X for g′ and t(g
′)

i the modified text prompt194

where g in t(g)i is replaced with g′.195

2.3 Societal Bias Data Filtering 196

Text-to-image generative models often perpetuate 197

societal biases, portraying certain groups stereotyp- 198

ically, such as depicting women in brighter cloth- 199

ing (Bianchi et al., 2023; Cho et al., 2023; Bansal 200

et al., 2022; Luccioni et al., 2023). Since these bi- 201

ases remain largely unaddressed (Smith et al., 2023; 202

Brinkmann et al., 2023), we set m > 1 in Equa- 203

tion (1) to generate multiple variations for each 204

group. We propose filters to select the least biased 205

inpainted images, evaluating images based on ad- 206

herence to text prompts, preservation of attributes 207

and semantics, and color fidelity. Specifically, for 208

each tuple (i, g′), we select the highest quality and 209

least biased version among them versions to create 210

a training dataset: 211

Ssynthetic = {(x(j
⋆,g′)

i , ωi, ai, t
(g′)
i ) ∈ Dsynthetic

| ∀(i, g′), j⋆},
(2)

212

where j⋆ = argminj
∑

k ck · r(s(i,j,g
′)

k ), ck ∈ R 213

are weights assigned to filters sk, s(i,j,g
′)

k is the 214

score obtained from applying filter sk to image 215

x
(j,g′)
i for group g′, and r(s(i,j,g

′)
k ) is the rank of 216

the score for (i, g′) in descending order, with lower 217

ranks indicating less bias. Here, x(j
⋆,g′)

i is the se- 218

lected inpainted image for tuple (i, g′) that mini- 219

mizes the sum of the ranks of the weighted filter 220

scores, with j⋆ representing the index of the se- 221

lected candidate image for tuple (i, g′). 222

Rather than creating an entire dataset of syn- 223

thetic samples, we can augment D: 224

Saugment = D ∪ {(x(j
⋆,g′)

i , ωi, ai, t
(g′)
i ) ∈ Dsynthetic

| ∀(i, g′ ̸= g), j⋆}.
(3)

225

The condition g′ ̸= g ensures that we only add in- 226

painted images to D for groups different from those 227

originally present in xi. In contrast to resampling, 228

Ssynthetic and Saugment ensure pX ′(a | g) = pX (a) 229

for all g ∈ G without making assumptions about A. 230

Our proposed filters are introduced below. 231

Prompt Adherence. To evaluate the seman- 232

tic alignment between x
(j,g′)
i and t

(g′)
i , we use 233

CLIPScore (Hessel et al., 2021), which computes 234

the cosine similarity between their CLIP embed- 235

dings (Radford et al., 2021). Formally, 236

s
(i,j,g′)
prompt = ϕ(x

(j,g′)
i ) · ψ(t(g

′)
i ) ∈ [−1, 1], (4) 237
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Figure 2: Overview of our pipeline for binary gender as a protected attribute. Original images are inpainted to
synthesize diverse groups, maintaining consistent context. Synthesized images (highlighted in blue) are ranked
using filters to select high-quality, unbiased samples (Module: Filtering & Ranking). Selected images are then used
to construct datasets with group-independent image attribute distributions (Module: Create dataset).

where ϕ and ψ are CLIP’s vision and text encoders,238

respectively. If s(i,j,g
′)

prompt > s
(i,j′,g′)
prompt , then x(j,g

′)
i bet-239

ter reflects the content described in t(g
′)

i .240

Object Consistency. To prevent the introduction241

of spurious correlations, such as generating ob-242

jects not mentioned in t(g
′)

i or reinforcing stereo-243

types (Bianchi et al., 2023; Cho et al., 2023; Bansal244

et al., 2022), we assess the object similarity be-245

tween predicted objects in x
(j,g′)
i and xi. Con-246

cretely, we compute the F1 score (Sokolova et al.,247

2006) using a pretrained object detector (Zhou248

et al., 2022), denoted η:249

s
(i,j,g′)
object = F1[η(x(j,g

′)
i ), η(xi)] ∈ [0, 1]. (5)250

If s(i,j,g
′)

object > s
(i,j′,g′)
object , then x(j,g

′)
i better preserves251

the integrity of the original unmasked scene in xi.252

Color Fidelity. Generative models can introduce253

subtler biases (Bansal et al., 2022; Bianchi et al.,254

2023), including those related to color (Meister255

et al., 2023). Addressing color biases is crucial256

as color choices can implicitly carry cultural or257

gendered connotations. To mitigate this, we down-258

sample x(j,g
′)

i and xi to 14 × 14 pixels to focus259

on color rather than fine details, then measure the260

color difference using the Frobenius norm:261

s
(i,j,g′)
color = ∥(x(j,g

′)
i )↓14×14 − (xi)↓14×14∥−1

F . (6)262

If s(i,j,g
′)

color > s
(i,j′,g′)
color , then x(j,g

′)
i has better color 263

fidelity to the original unmasked scene in xi. 264

3 Experiments 265

Building on prior research (Zhao et al., 2017; Wang 266

et al., 2019; Zhao et al., 2023; Hendricks et al., 267

2018; Zhao et al., 2021; Tang et al., 2021), we 268

evaluate our synthetic dataset creation method on 269

multi-label image classification and image caption- 270

ing tasks using quantitative metrics, human studies, 271

qualitative comparisons, and effectiveness analysis. 272

Evaluations are conducted on test sets of real data. 273

Implementation Details. We inpaint the largest 274

person in the image based on bounding box size, 275

and if the second largest person exceeds 55,000 pix- 276

els, we also inpaint that region, using the person 277

label for COCO. For image generation, we create 278

m = 30 inpainted images per group (e.g., woman, 279

man)using guidance scales of 7.5, 9.5, and 15.0 to 280

ensure diversity. Filter weights are set to 1 (ck = 1 281

for all k), contributing equally. Results are based 282

on five models trained with different random seeds. 283

More details are in Appendices A and B. 284

3.1 Multi-Label Classification 285

Experimental Setup. We focus on gender bias 286

using the COCO dataset, retaining only images 287

with gender-specific terms (e.g., woman, man) in 288
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ResNet-50 Swin-T ConvNeXt-B
mAP Ratio Leakage mAP Ratio Leakage mAP Ratio Leakage

Original 66.4 6.3 13.4 72.8 4.0 14.3 76.3 4.6 18.2

Adversarial 63.3 — 3.3 67.8 — 4.4 69.6 — 4.7
DomDisc 57.4 4.1 15.4 65.4 4.6 16.8 68.8 4.5 19.1
DomInd 60.4 2.8 10.4 67.9 3.8 11.4 72.6 5.9 15.0
Upweight 64.9 9.1 8.3 71.5 6.3 9.8 75.0 5.6 12.9
Focal 66.1 6.3 12.0 72.2 3.8 13.3 76.2 3.8 16.2
CB 63.0 4.3 10.9 69.6 3.5 12.3 73.8 3.5 14.7
GroupDRO 64.1 3.0 11.4 70.8 1.5 12.6 75.3 4.2 16.4

Over-sampling 62.6 3.8 9.7 69.9 2.6 10.5 73.5 3.4 13.7
Sub-sampling 58.3 2.0 12.2 64.4 1.8 11.6 66.3 2.2 18.2
Saugment (Ours) 66.9 4.6 8.1 72.8 3.1 10.5 76.3 2.2 11.3
Ssynthetic (Ours) 66.0 1.1 7.5 71.9 1.4 8.4 75.5 1.2 8.2

Table 1: Classification performance and gender bias scores of ResNet-50, Swin-T, and ConvNeXt-B backbones on
COCO. Ratio is inapplicable to Adversarial due to its gender prediction module for mitigation. Bold and underline
represent the best and second-best, respectively. For an unbiased model, Ratio = 1 and Leakage = 0.

ClipCap BLIP-2 Transformer
M CS Ratio LIC M CS Ratio LIC M CS Ratio LIC

Original 29.1 75.1 2.5 2.2 29.5 75.1 5.7 4.7 26.9 71.5 4.7 4.7

LIBRA 28.9 74.9 6.5 0.5 29.0 75.4 6.3 1.9 27.4 73.4 6.7 2.3

Over-sampling 28.6 74.7 3.2 3.5 28.7 74.1 3.8 3.0 26.2 70.6 4.1 1.6
Sub-sampling 28.0 74.0 1.4 4.1 28.3 74.5 1.4 3.2 25.0 69.7 2.0 3.9
Saugment (Ours) 29.0 75.0 2.5 1.7 29.4 75.3 2.9 3.8 26.2 71.1 2.6 1.5
Ssynthetic (Ours) 28.5 75.3 1.3 0.3 29.3 75.0 1.2 2.5 25.7 70.9 1.4 0.5

Table 2: Captioning quality and gender bias scores of ClipCap, BLIP-2, and Transformer backbones on COCO. M
and CS denote METEOR and CLIPScore. Bold and underline represent the best and second-best, respectively. For
an unbiased model, Ratio = 1 and LIC = 0.

their captions. This results in 28,487/13,487289

train/test samples. We focus on objects co-290

occurring with these terms, yielding 51 objects.291

ResNet50, Swin Transformer Tiny (Swin-T), and292

ConvNext models are fine-tuned using early stop-293

ping. Performance is assessed using mean average294

precision (mAP). Bias is quantified using leakage295

and ratio. Leakage measures how much the model’s296

predictions amplify the group’s information com-297

pared to the ground truth. A gender classifier fg(y),298

predicting gender group g from input y (i.e., set of299

objects), is trained on a training set T = {(y, g)}.300

For the test set T ′, the model’s leakage score is:301

LKM =
1

|T ′|
∑

(y,g)∈T ′

fg(y)1

[
argmax

g′
fg′(y) = g

]
(7)302

The leakage score for the original dataset, LKD,303

is similarly computed. The final leakage is304

Leakage = LKM −LKD. Higher leakage indicates305

greater model exploitation of protected group infor-306

mation. Ratio measures the exploitation of attribute307

information for group prediction. By masking in-308

dividuals in test images and measuring the bias in309

group predictions (e.g., #man-to-#woman ratio), de- 310

viations from a ratio of 1 indicate attribute exploita- 311

tion. We report Ratio = max(r, r−1), where r is 312

the observed ratio. This captures the magnitude of 313

deviation from unbiased predictions consistently. 314

We compare our method with existing bias mit- 315

igation techniques, including dataset-level meth- 316

ods (Over-sampling (Wang et al., 2020b), Sub- 317

sampling (Agarwal et al., 2022)) and model-level 318

methods such as adversarial debiasing (Wang 319

et al., 2019) (Adversarial), domain-independent 320

training (Wang et al., 2020b) (DomInd), do- 321

main discriminative training (Wang et al., 2020b) 322

(DomDisc), loss upweighting (Byrd and Lipton, 323

2019) (Upweight), focal loss (Lin et al., 2017) (Fo- 324

cal), class-balanced loss (Cui et al., 2019) (CB), 325

and group DRO (Sagawa et al., 2019) (GroupDRO). 326

Additional results on the OpenImages dataset and 327

skin tone bias mitigation are provided in Ap- 328

pendix B.1, demonstrating consistent conclusions. 329

Results. Results are shown in Table 1. Our 330

method, Ssynthetic, achieves the best balance by sig- 331

nificantly improving both ratio and leakage while 332
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maintaining a high mAP. Specifically, Ssynthetic333

achieves a near-ideal ratio of 1.1, low leakage of334

7.5, and an mAP of 66.0 for ResNet-50, with simi-335

lar trends observed for Swin-T and ConvNeXt-B.336

Adversarial debiasing achieves lower leakage337

scores by removing gender information from inter-338

mediate representations. However, this method re-339

duces mAP, indicating that object information may340

also be inadvertently removed. Over-sampling and341

sub-sampling methods address class imbalance but342

at the cost of model performance. Sub-sampling,343

in particular, reduces the ratio compared to over-344

sampling but results in worse mAP and increased345

leakage. This is likely due to the loss of diversity346

and information in the training data, which forces347

the model to rely more on the remaining features,348

increasing the influence of protected attributes.349

In contrast, Ssynthetic generates diverse, high-350

quality synthetic samples, effectively balancing351

bias and variance. This approach avoids the pitfalls352

of other methods, resulting in superior performance353

metrics. While Saugment performs similarly to the354

original dataset, it performs worse in terms of ratio355

and leakage compared to Ssynthetic.356

3.2 Image Captioning357

Experimental Setup. Using the COCO dataset358

(Section 3.1), we benchmark captioning models359

ClipCap, BLIP-2, and Transformer, which are fine-360

tuned using early stopping. Performance is evalu-361

ated with METEOR and CLIPScore. Bias is quan-362

tified using LIC and ratio, where LIC is a leakage-363

based metric that assesses the generation of group-364

stereotypical captions compared to ground-truth365

captions (i.e., y is a caption in Equation (7)), and366

predicted group-related terms (e.g., woman) in cap-367

tions used to compute ratio.368

Bias mitigation baselines include dataset-level369

methods (over-sampling, sub-sampling) and the370

current state-of-the-art model-level method LI-371

BRA (Hirota et al., 2023). LIBRA is a model-372

agnostic debiasing framework designed to mitigate373

bias amplification in image captioning by synthe-374

sizing gender-biased captions and training a de-375

biasing caption generator to recover the original376

captions. Detailed results for skin tone bias mitiga-377

tion, along with fine-tuning specifics, are provided378

in Appendix B.2, showcasing the generalizability379

of our approach.380

Results. Results are shown in Table 2. Our381

method, Ssynthetic, significantly improves both ra-382

tio and LIC while maintaining high METEOR and 383

CLIPScore values. Specifically, Ssynthetic achieves 384

a near-ideal ratio of 1.3, low LIC of 1.2, and a ME- 385

TEOR score of 29.3 for BLIP-2, with similar trends 386

observed for ClipCap and Transformer. 387

While LIBRA effectively reduces LIC, it shows 388

an increase in the ratio metric, indicating a trade- 389

off between debiasing effectiveness and caption 390

quality. Over-sampling and sub-sampling methods 391

resulted in varying degrees of performance. Sub- 392

sampling showed improved bias metrics compared 393

to over-sampling but resulted in worse METEOR 394

scores, especially for the Transformer model. 395

As in the multi-label classification task, we ob- 396

serve that although Saugment significantly reduces 397

bias compared to using the original dataset, there is 398

a significant gap between it and Ssynthetic in terms 399

of bias mitigation. 400

3.3 Analysis of Synthetic Artifacts 401

Recent studies show that text-to-image models in- 402

troduce synthetic artifacts in images, which mod- 403

els may exploit (Qraitem et al., 2023; Corvi et al., 404

2023; Wang et al., 2023b). Our observations in 405

Sections 3.1 and 3.2 suggest that bias persists with 406

Saugment, which augments the dataset with coun- 407

terfactual images to balance group distributions. 408

We hypothesize that Saugment may lead to short- 409

cut learning due to spurious correlations between 410

minoritized groups and inpainted artifacts. In con- 411

trast, Ssynthetic distributes artifacts equally across 412

all groups, avoiding this issue. To test this, we 413

created a test set by inpainting random body parts 414

using COCO-WholeBody annotations (Jin et al., 415

2020). Given an image, its caption, and body part 416

annotations (e.g., left hand, right hand, head), we 417

randomly selected a body part, created a mask us- 418

ing the Segment Anything Model (Kirillov et al., 419

2023), and performed inpainting with the caption 420

as a prompt. We evaluated the consistency of ratios 421

between the original and synthetic test sets; a gap 422

indicates the exploitation of synthetic artifacts for 423

gender prediction. 424

Table 3 presents scores for multi-label classifi- 425

cation (ResNet-50, Swin-T) and image captioning 426

(ClipCap, BLIP-2). The table includes the ratio of 427

gender predictions (#man-to-#woman) for the orig- 428

inal test set (Ratioorig) and the inpainted test set 429

(Ratioinp), along with the relative difference (∆) be- 430

tween these ratios. Results show a significant shift 431

in gender predictions with Saugment-trained models. 432

Despite identical gender ratios in the original and 433
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𝒮augment

𝒮synthetic

A man riding on the 
back of a motorcycle

A man riding on the 
back of a motorcycle

A woman riding on the 
back of a motorcycle

A man riding on the 
back of a motorcycle

Man flying in the air
riding a motorcycle

Man flying in the air
riding a dirt bike

Woman flying in the air 
riding a motorcycle

Man flying in the air
riding a dirt bike

𝒮augment

𝒮synthetic

Original Inpainted

Figure 3: Predicted captions for the original (left) and
unpainted (right) test images.

inpainted test sets (both set at 2.3), models trained434

with Saugment predict woman much more frequently435

for the inpainted test set, indicated by the large436

relative differences. In contrast, models trained437

solely on synthetic data (Ssynthetic) show minimal438

relative differences, indicating consistent gender439

predictions across original and inpainted test sets.440

Figure 3 shows examples of synthetic images441

and predictions by ClipCap (trained on Saugment or442

Ssynthetic). The examples demonstrate inconsistent443

gender predictions with Saugment; specifically, the444

model tends to predict woman for inpainted test im-445

ages, evidencing exploitation of synthetic artifacts.446

3.4 Human Filter Evaluation447

We conducted human evaluations on Amazon Me-448

chanical Turk (Turk, 2012) to evaluate the effective-449

ness of our filters, aiming to determine if our filters450

prevent additional biases from inpainting models451

and ensure high-quality images. For 300 randomly452

selected original images, we analyzed inpainted453

images chosen by each filter combination. Evalua-454

tions focused on the similarity of 1) held/nearby ob-455

jects, 2) object color, and 3) skin tone compared to456

the original images. Workers assessed differences457

between original and synthetic images for objects458

and their color, and selected skin tone classes using459

the Monk Skin Tone Scale (Schumann et al., 2023;460

Monk, 2023). Additionally, workers verified accu-461

rate gender depiction through a sentence gap-filling 462

exercise (e.g., “A ____ with a dog.”), where they 463

must choose a protected group term to complete 464

the sentence. More details are in Appendix B.3. 465

For the evaluation of the similarity of objects and 466

their colors, scores are computed as the proportion 467

of times the inpainted images are rated as similar. 468

Regarding the skin tone and gender evaluations, the 469

scores are calculated as the proportion of matching 470

responses form workers between the original and 471

inpainted images. All the scores range from 0 to 1. 472

Table 4 summarizes the human evaluation and cap- 473

tioning performance of ClipCap trained on Ssynthetic 474

(CS), with images selected by each filter. Notably, 475

using all filters consistently received higher rat- 476

ings across most criteria. In contrast, randomly 477

selecting images without any filtering often leads 478

to synthetic images differing significantly from the 479

originals. This indicates that our filters are effective 480

in mitigating additional biases introduced by the 481

inpainting model. Furthermore, CLIPScore shows 482

that using all filters improves captioning perfor- 483

mance, highlighting its effectiveness in selecting 484

higher-quality images. 485

3.5 Inherited Biases 486

To further discuss the potential biases introduced 487

by the models used in our method, we conducted 488

several assessments. First, for the object detector, 489

we ran Detic (Zhou et al., 2022) on both real and 490

synthetic images, achieving similar mAP scores 491

of 32.0 for real images and 32.3 for synthetic im- 492

ages, indicating consistent performance. Second, 493

addressing biases in CLIP, we acknowledge the po- 494

tential biases inherent in the model. However, our 495

use of object- and color-based filters helps mitigate 496

these biases. Additionally, image classification and 497

captioning results verify that our method effectively 498

reduces gender and skin tone biases. Lastly, for the 499

inpainting model, our filters effectively removed 500

synthetic images that deviated from the prompt, 501

altered color statistics, or introduced undescribed 502

objects, as shown in Table 4. These assessments 503

confirm that our method successfully mitigates bi- 504

ases without compromising performance. 505

3.6 Qualitative Results 506

We present qualitative examples of bias mitiga- 507

tion by applying our method (Ssynthetic) in Figure 1. 508

The results show that training models on Ssynthetic 509

produces less biased outputs. For instance, in the 510

classification task, the baseline ResNet-50 model 511
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ResNet-50 Swin-T ClipCap BLIP-2
Ratioorig Ratioinp ∆ Ratioorig Ratioinp ∆ Ratioorig Ratioinp ∆ Ratioorig Ratioinp ∆

Original 3.5 3.0 14.3 3.1 2.6 16.1 2.3 2.5 8.7 2.3 2.4 4.4

Saugment 3.7 1.5 59.5 3.2 0.6 81.3 2.5 0.8 68.0 2.3 1.8 21.7
Ssynthetic 1.9 1.8 5.3 2.1 2.0 4.8 1.7 1.6 5.9 1.8 1.7 5.6

Table 3: Comparison of the original (Ratioorig) and inpainted (Ratioinp) versions of the COCO test set. The relative
difference is denoted by ∆ = 100 · |Ratioorig−Ratioinp

Ratioorig
|%. A larger ∆ signifies a greater change.

Best

Worst

Prompt Adherence Object Consistency Color Fidelity Overall

A man standing on the grass near some dogsInput

Figure 4: Best/worst inpainted images for each filter in Section 2.3 and their combination (overall).

Object Color Skin Gender CS

sprompt + sobject + scolor 0.57 0.46 0.29 0.95 75.3
sprompt + sobject 0.49 0.50 0.20 0.99 74.8
sprompt + scolor 0.45 0.56 0.21 0.94 75.2
sobject + scolor 0.53 0.52 0.20 0.96 74.8
sprompt 0.32 0.46 0.26 0.97 75.1
sobject 0.36 0.43 0.25 0.95 74.5
scolor 0.52 0.50 0.30 0.95 74.6
No filter 0.09 0.07 0.18 0.94 74.6

Table 4: Human evaluation and captioning quality
(CLIPScore, CS in short) for each filter combination.
Higher values indicate better alignment with original im-
ages. Bold and underline represent the best and second-
best score for each metric.

and the over-sampling model incorrectly predict512

tie, due to its frequent co-occurrence with man in513

the training set. In contrast, Ssynthetic results in a514

gender bias-free prediction. Image captioning re-515

sults further validate our approach. The baseline516

ClipCap model and LIBRA model generate the517

man-stereotypical word skateboard, whereas our518

method correctly predicts the object frisbee.519

In Figure 4, we also present the best and worst520

inpainted images for each filter (prompt adher-521

ence, object consistency, and color fidelity), as522

well as their combination (overall). The results523

demonstrate each filter’s effectiveness, and combin-524

ing them selects a high-quality image that closely 525

resembles the original. For instance, the image 526

judged worst by the object consistency filter lacks 527

the object the man is holding, while the color fi- 528

delity filter’s worst image shows significant color 529

changes in the man’s clothing. Combining these fil- 530

ters helps select an inpainted image that minimizes 531

additional bias and closely matches the original. 532

4 Conclusion 533

We present a dataset-level bias mitigation pipeline 534

that effectively reduces gender and skin tone biases 535

by ensuring group-independent attribute distribu- 536

tion using synthetic-only images. Our findings 537

indicate that mixing real and synthetic images in- 538

troduces spurious correlations, underscoring the 539

need for caution when augmenting datasets with 540

synthetic data. Our work highlights the potential 541

of synthetic data in bias mitigation and suggests 542

further exploration into optimizing synthetic data 543

generation and integration techniques for increased 544

bias reduction. 545

Limitations 546

Binarized Group Classes and Intersectional Bias 547

Analysis. While acknowledging that gender and 548
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skin tone exist on a spectrum, our data limitations549

necessitated a focus on binarized groups (i.e., man,550

woman), similar to prior work (Zhao et al., 2017;551

Wang et al., 2019; Zhao et al., 2023, 2021). Our552

analysis centered on gender and skin tone sepa-553

rately. However, our method can be extended to554

handle intersectional attributes (e.g., gender and555

skin tone) by inpainting with combinations of at-556

tributes (e.g., {woman, darker-skinned}, {woman,557

lighter-skinned}, {man, darker-skinned},558

{man, lighter-skinned}). We leave this exten-559

sion for future work to ensure a more comprehen-560

sive and inclusive analysis of biases.561

Risks of Using Pre-trained Models. As dis-562

cussed in Section 3.5, the pre-trained models em-563

ployed in our framework (e.g., inpainting model,564

object detector) may introduce inherent biases.565

While our analysis in Section 3.5 confirmed that566

these models do not adversely affect our method567

based on our evaluations, it is possible that some568

biases were not detected. Future research should569

focus on incorporating additional filters to further570

mitigate risks associated with pre-trained models.571

Residual Bias. Our experimental results demon-572

strated that our method significantly mitigates soci-573

etal bias compared to existing methods. However,574

bias is not completely eliminated (e.g., leakage is575

not zero). Future work could explore further debi-576

asing by optimizing the weight of each filter (cur-577

rently, all filters are equally weighted), introduc-578

ing additional filters, and combining our method579

with existing bias mitigation techniques (e.g., focal580

loss).581

Extending to Additional Protected Groups.582

Due to a lack of annotations for other protected583

attributes, our focus in this paper is on gender and584

skin tone biases. Nevertheless, our pipeline is ap-585

plicable to various protected attributes, such as age586

(e.g., “A woman with a dog” → “An elderly587

woman with a dog”). Future research should ex-588

plore the application of our method to additional589

protected attributes.590

Ethics Statement591

Our research involves the manipulation of image592

data to mitigate societal bias, raising important eth-593

ical considerations. We address these concerns by594

creating synthetic images that completely inpaint595

over identifiable individuals, thereby respecting pri-596

vacy and consent without altering their appearance.597

Our approach aims to promote fairness and equity 598

by ensuring diverse and unbiased representation 599

in image datasets. We acknowledge the potential 600

biases inherent in the pre-trained models used and 601

have implemented filters to mitigate these biases 602

as much as possible. Future work should continue 603

to explore ethical guidelines and safeguards to en- 604

sure the responsible use of generative models in 605

research. 606

References 607

Sharat Agarwal, Sumanyu Muku, Saket Anand, and 608
Chetan Arora. 2022. Does data repair lead to fair 609
models? curating contextually fair data to reduce 610
model bias. In WACV. 611

Mohsan Alvi, Andrew Zisserman, and Christoffer Nel- 612
låker. 2018. Turning a blind eye: Explicit removal 613
of biases and variation from deep neural network 614
embeddings. In ECCV Workshops. 615

Jerone Andrews, Dora Zhao, William Thong, Apostolos 616
Modas, Orestis Papakyriakopoulos, and Alice Xiang. 617
2023. Ethical considerations for responsible data 618
curation. In Thirty-seventh Conference on Neural 619
Information Processing Systems Datasets and Bench- 620
marks Track. 621

Hritik Bansal, Da Yin, Masoud Monajatipoor, and Kai- 622
Wei Chang. 2022. How well can text-to-image gen- 623
erative models understand ethical natural language 624
interventions? In EMNLP. 625

Federico Bianchi, Pratyusha Kalluri, Esin Durmus, 626
Faisal Ladhak, Myra Cheng, Debora Nozza, Tat- 627
sunori Hashimoto, Dan Jurafsky, James Zou, and 628
Aylin Caliskan. 2023. Easily accessible text-to- 629
image generation amplifies demographic stereotypes 630
at large scale. In FAccT. 631

Abeba Birhane, Sanghyun Han, Vishnu Boddeti, Sasha 632
Luccioni, et al. 2024. Into the laion’s den: Inves- 633
tigating hate in multimodal datasets. Advances in 634
Neural Information Processing Systems Datasets and 635
Benchmarks Track (NeurIPS D&B). 636

Abeba Birhane and Vinay Uday Prabhu. 2021. Large 637
image datasets: A pyrrhic win for computer vision? 638
In WACV. 639

Abeba Birhane, Vinay Uday Prabhu, and Emmanuel 640
Kahembwe. 2021. Multimodal datasets: Misog- 641
yny, pornography, and malignant stereotypes. arXiv 642
preprint arXiv:2110.01963. 643

Jannik Brinkmann, Paul Swoboda, and Christian Bartelt. 644
2023. A multidimensional analysis of social biases 645
in vision transformers. In ICCV. 646

Tim Brooks, Aleksander Holynski, and Alexei A Efros. 647
2023. Instructpix2pix: Learning to follow image 648
editing instructions. In CVPR. 649

9

https://openreview.net/forum?id=Qf8uzIT1OK
https://openreview.net/forum?id=Qf8uzIT1OK
https://openreview.net/forum?id=Qf8uzIT1OK


Jonathon Byrd and Zachary Lipton. 2019. What is the650
effect of importance weighting in deep learning? In651
ICML.652

Jaemin Cho, Abhay Zala, and Mohit Bansal. 2023. Dall-653
eval: Probing the reasoning skills and social biases654
of text-to-image generation models. In ICCV.655

Riccardo Corvi, Davide Cozzolino, Giada Zingarini,656
Giovanni Poggi, Koki Nagano, and Luisa Verdoliva.657
2023. On the detection of synthetic images generated658
by diffusion models. In ICASSP.659

Guillaume Couairon, Jakob Verbeek, Holger Schwenk,660
and Matthieu Cord. 2023. Diffedit: Diffusion-based661
semantic image editing with mask guidance. In662
ICLR.663

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and664
Serge Belongie. 2019. Class-balanced loss based on665
effective number of samples. In CVPR.666

Terrance de Vries, Ishan Misra, Changhan Wang, and667
Laurens van der Maaten. 2019. Does object recogni-668
tion work for everyone? In CVPR Workshops.669

Terrance DeVries, Ishan Misra, Changhan Wang, and670
Laurens van der Maaten. 2019. Does object recog-671
nition work for everyone? In CVPR Workshop on672
Fairness, Accountability Transparency, and Ethics in673
Computer Vision.674

Alexey Dosovitskiy, Lucas Beyer, Alexander675
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,676
Thomas Unterthiner, Mostafa Dehghani, Matthias677
Minderer, Georg Heigold, Sylvain Gelly, et al. 2021.678
An image is worth 16x16 words: Transformers for679
image recognition at scale. In ICLR.680

Felix Friedrich, Patrick Schramowski, Manuel Brack,681
Lukas Struppek, Dominik Hintersdorf, Sasha Luc-682
cioni, and Kristian Kersting. 2023. Fair diffusion:683
Instructing text-to-image generation models on fair-684
ness. arXiv preprint arXiv:2302.10893.685

Noa Garcia, Yusuke Hirota, Yankun Wu, and Yuta686
Nakashima. 2023. Uncurated image-text datasets:687
Shedding light on demographic bias. In Proceedings688
of the IEEE/CVF Conference on Computer Vision689
and Pattern Recognition, pages 6957–6966.690

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian691
Sun. 2016. Identity mappings in deep residual net-692
works. In ECCV.693

Lisa Anne Hendricks, Kaylee Burns, Kate Saenko,694
Trevor Darrell, and Anna Rohrbach. 2018. Women695
also snowboard: Overcoming bias in captioning mod-696
els. In ECCV.697

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le698
Bras, and Yejin Choi. 2021. Clipscore: A reference-699
free evaluation metric for image captioning. In700
EMNLP.701

Yusuke Hirota, Yuta Nakashima, and Noa Garcia. 2022. 702
Quantifying societal bias amplification in image cap- 703
tioning. In CVPR. 704

Yusuke Hirota, Yuta Nakashima, and Noa Garcia. 2023. 705
Model-agnostic gender debiased image captioning. 706
In CVPR. 707

Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao 708
Liu, Chen Qian, Wanli Ouyang, and Ping Luo. 2020. 709
Whole-body human pose estimation in the wild. In 710
ECCV. 711

Jungseock Joo and Kimmo Kärkkäinen. 2020. Gender 712
slopes: Counterfactual fairness for computer vision 713
models by attribute manipulation. In International 714
Workshop on Fairness, Accountability, Transparency 715
and Ethics in Multimedia (FATE/MM). 716

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton. 717
2019. Learning the difference that makes a difference 718
with counterfactually-augmented data. In ICLR. 719

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A 720
method for stochastic optimization. In ICLR. 721

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi 722
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, 723
Spencer Whitehead, Alexander C Berg, Wan-Yen 724
Lo, et al. 2023. Segment anything. arXiv preprint 725
arXiv:2304.02643. 726

Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Fer- 727
rari, Sami Abu-El-Haija, Alina Kuznetsova, Has- 728
san Rom, Jasper Uijlings, Stefan Popov, Andreas 729
Veit, et al. 2017. Openimages: A public dataset for 730
large-scale multi-label and multi-class image clas- 731
sification. Dataset available from https://github. 732
com/openimages. 733

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 734
2023. Blip-2: Bootstrapping language-image pre- 735
training with frozen image encoders and large lan- 736
guage models. arXiv preprint arXiv:2301.12597. 737

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, 738
and Piotr Dollár. 2017. Focal loss for dense object 739
detection. In ICCV. 740

Tsung-Yi Lin, Michael Maire, Serge Belongie, James 741
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, 742
and C Lawrence Zitnick. 2014. Microsoft COCO: 743
Common objects in context. In ECCV. 744

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, 745
Zheng Zhang, Stephen Lin, and Baining Guo. 2021. 746
Swin transformer: Hierarchical vision transformer 747
using shifted windows. In ICCV. 748

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph 749
Feichtenhofer, Trevor Darrell, and Saining Xie. 2022. 750
A convnet for the 2020s. In CVPR. 751

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 752
weight decay regularization. In ICLR. 753

10



Alexandra Sasha Luccioni, Christopher Akiki, Margaret754
Mitchell, and Yacine Jernite. 2023. Stable bias: An-755
alyzing societal representations in diffusion models.756
In NeurIPS.757

Abhishek Mandal, Susan Leavy, and Suzanne Little.758
2023. Multimodal composite association score: Mea-759
suring gender bias in generative multimodal models.760
arXiv preprint arXiv:2304.13855.761

Nicole Meister, Dora Zhao, Angelina Wang, Vikram V762
Ramaswamy, Ruth Fong, and Olga Russakovsky.763
2023. Gender artifacts in visual datasets. In ICCV.764

Ishan Misra, C Lawrence Zitnick, Margaret Mitchell,765
and Ross Girshick. 2016. Seeing through the human766
reporting bias: Visual classifiers from noisy human-767
centric labels. In CVPR.768

Ron Mokady, Amir Hertz, and Amit H Bermano. 2021.769
Clipcap: Clip prefix for image captioning. arXiv770
preprint arXiv:2111.09734.771

Ellis Monk. 2023. The monk skin tone scale.772

Ranjita Naik and Besmira Nushi. 2023. Social biases773
through the text-to-image generation lens. In AIES.774

Seong Joon Oh, Rodrigo Benenson, Mario Fritz, and775
Bernt Schiele. 2016. Faceless person recognition:776
Privacy implications in social media. In European777
Conference on Computer Vision (ECCV), pages 19–778
35. Springer.779

Tribhuvanesh Orekondy, Mario Fritz, and Bernt Schiele.780
2018. Connecting pixels to privacy and utility: Au-781
tomatic redaction of private information in images.782
In IEEE/CVF Conference on Computer Vision and783
Pattern Recognition (CVPR), pages 8466–8475.784

Maan Qraitem, Kate Saenko, and Bryan A Plummer.785
2023. From fake to real (ffr): A two-stage train-786
ing pipeline for mitigating spurious correlations with787
synthetic data. arXiv preprint arXiv:2308.04553.788

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya789
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-790
try, Amanda Askell, Pamela Mishkin, Jack Clark,791
et al. 2021. Learning transferable visual models from792
natural language supervision. In ICML.793

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,794
Dario Amodei, Ilya Sutskever, et al. 2019. Language795
models are unsupervised multitask learners. OpenAI796
blog.797

Vikram V. Ramaswamy, Sunnie S. Y. Kim, and Olga798
Russakovsky. 2021a. Fair attribute classification799
through latent space de-biasing. In IEEE/CVF Con-800
ference on Computer Vision and Pattern Recognition801
(CVPR).802

Vikram V Ramaswamy, Sunnie SY Kim, and Olga Rus-803
sakovsky. 2021b. Fair attribute classification through804
latent space de-biasing. In CVPR.805

Robin Rombach, Andreas Blattmann, Dominik Lorenz, 806
Patrick Esser, and Björn Ommer. 2022. High- 807
resolution image synthesis with latent diffusion mod- 808
els. In CVPR. 809

Candace Ross, Boris Katz, and Andrei Barbu. 810
2020. Measuring social biases in grounded vi- 811
sion and language embeddings. arXiv preprint 812
arXiv:2002.08911. 813

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, 814
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej 815
Karpathy, Aditya Khosla, Michael Bernstein, Alexan- 816
der C. Berg, and Li Fei-Fei. 2015. ImageNet Large 817
Scale Visual Recognition Challenge. IJCV. 818

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, 819
and Percy Liang. 2019. Distributionally robust neu- 820
ral networks for group shifts: On the importance 821
of regularization for worst-case generalization. In 822
ICLR. 823

Prasanna Sattigeri, Samuel C Hoffman, Vijil Chen- 824
thamarakshan, and Kush R Varshney. 2019. Fairness 825
gan: Generating datasets with fairness properties us- 826
ing a generative adversarial network. IBM Journal of 827
Research and Development. 828

Candice Schumann, Gbolahan O Olanubi, Auriel 829
Wright, Ellis Monk Jr, Courtney Heldreth, and Su- 830
sanna Ricco. 2023. Consensus and subjectivity of 831
skin tone annotation for ml fairness. arXiv preprint 832
arXiv:2305.09073. 833

Candice Schumann, Susanna Ricco, Utsav Prabhu, Vit- 834
torio Ferrari, and Caroline Pantofaru. 2021. A step 835
toward more inclusive people annotations for fairness. 836
In AIES. 837

Preethi Seshadri, Sameer Singh, and Yanai Elazar. 2023. 838
The bias amplification paradox in text-to-image gen- 839
eration. arXiv preprint arXiv:2308.00755. 840

Viktoriia Sharmanska, Lisa Anne Hendricks, Trevor 841
Darrell, and Novi Quadrianto. 2020. Contrastive 842
examples for addressing the tyranny of the majority. 843
arXiv preprint arXiv:2004.06524. 844

Brandon Smith, Miguel Farinha, Siobhan Mackenzie 845
Hall, Hannah Rose Kirk, Aleksandar Shtedritski, and 846
Max Bain. 2023. Balancing the picture: Debiasing 847
vision-language datasets with synthetic contrast sets. 848
arXiv preprint arXiv:2305.15407. 849

Benjamin Sobel. 2020. A taxonomy of training data: 850
Disentangling the mismatched rights, remedies, and 851
rationales for restricting machine learning. Artificial 852
Intelligence and Intellectual Property (Reto Hilty, 853
Jyh-An Lee, Kung-Chung Liu, eds.), Oxford Univer- 854
sity Press, Forthcoming. 855

Marina Sokolova, Nathalie Japkowicz, and Stan Sz- 856
pakowicz. 2006. Beyond accuracy, f-score and roc: 857
a family of discriminant measures for performance 858
evaluation. In Australasian joint conference on artifi- 859
cial intelligence. 860

11



Lukas Struppek, Dominik Hintersdorf, and Kristian Ker-861
sting. 2022. The biased artist: Exploiting cultural862
biases via homoglyphs in text-guided image genera-863
tion models. arXiv preprint arXiv:2209.08891.864

Ruixiang Tang, Mengnan Du, Yuening Li, Zirui Liu,865
Na Zou, and Xia Hu. 2021. Mitigating gender bias866
in captioning systems. In WWW.867

Amazon Mechanical Turk. 2012. Amazon mechanical868
turk. Retrieved August.869

Eddie L Ungless, Björn Ross, and Anne Lauscher. 2023.870
Stereotypes and smut: The (mis) representation of871
non-cisgender identities by text-to-image models. In872
ACL.873

Angelina Wang, Arvind Narayanan, and Olga Rus-874
sakovsky. 2020a. REVISE: A tool for measuring875
and mitigating bias in visual datasets. In ECCV.876

Angelina Wang and Olga Russakovsky. 2021. Direc-877
tional bias amplification. In ICML.878

Jialu Wang, Xinyue Gabby Liu, Zonglin Di, Yang Liu,879
and Xin Eric Wang. 2023a. T2iat: Measuring valence880
and stereotypical biases in text-to-image generation.881
In ACL.882

Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei883
Chang, and Vicente Ordonez. 2019. Balanced884
datasets are not enough: Estimating and mitigating885
gender bias in deep image representations. In ICCV.886

Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis,887
Kyle Genova, Prem Nair, Kenji Hata, and Olga Rus-888
sakovsky. 2020b. Towards fairness in visual recog-889
nition: Effective strategies for bias mitigation. In890
CVPR.891

Zhao Wang and Aron Culotta. 2021. Robustness to892
spurious correlations in text classification via auto-893
matically generated counterfactuals. In AAAI.894

Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun895
Wang, Hezhen Hu, Hong Chen, and Houqiang Li.896
2023b. Dire for diffusion-generated image detection.897

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien898
Chaumond, Clement Delangue, Anthony Moi, Pier-899
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,900
et al. 2020. Transformers: State-of-the-art natural901
language processing. In EMNLP: system demonstra-902
tions.903

Rui-Jie Yew and Alice Xiang. 2022. Regulating facial904
processing technologies: Tensions between legal and905
technical considerations in the application of illinois906
bipa. In ACM Conference on Fairness, Accountabil-907
ity, and Transparency (FAccT), page 1017–1027.908

Yanzhe Zhang, Lu Jiang, Greg Turk, and Diyi909
Yang. 2023. Auditing gender presentation differ-910
ences in text-to-image models. arXiv preprint911
arXiv:2302.03675.912

Dora Zhao, Jerone TA Andrews, and Alice Xiang. 2023. 913
Men also do laundry: Multi-attribute bias amplifica- 914
tion. In ICML. 915

Dora Zhao, Angelina Wang, and Olga Russakovsky. 916
2021. Understanding and evaluating racial biases in 917
image captioning. In ICCV. 918

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or- 919
donez, and Kai-Wei Chang. 2017. Men also like 920
shopping: Reducing gender bias amplification using 921
corpus-level constraints. In EMNLP. 922

Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp 923
Krähenbühl, and Ishan Misra. 2022. Detecting 924
twenty-thousand classes using image-level supervi- 925
sion. In ECCV. 926

A Method Details 927

A.1 Image Generation Settings 928

Selection of People for Inpainting. Following 929

the previous works (Zhao et al., 2021; Misra et al., 930

2016), we apply inpainting to a person with the 931

largest bounding box. In addition, if the second 932

largest person’s box is larger than 55, 000 pixels, 933

the region is also inpainted. For COCO, we do 934

this by using the person label and corresponding 935

bounding boxes. For OpenImages, we use person- 936

bounding boxes presented in More Inclusive Anno- 937

tations for People (MIAP) annotations (Schumann 938

et al., 2021), then we generate person masks within 939

the boxes using Segment Anything Model (Kirillov 940

et al., 2023). 941

Parameters of Image Generation. In Sec- 942

tion 2.2, we generate m = 30 inpainted images 943

for each group (e.g., {woman, man} for binary gen- 944

der). When generating the images, we use three 945

different guidance scale parameters (7.5, 9.5, and 946

15.0) to generate diverse inpainted images (i.e., gen- 947

erating 10 images for each guidance scale). We use 948

6 NVIDIA A100-PCIE-40GB GPUs, resulting in a 949

total of 72 hours to finish synthesizing images. 950

A.2 Visual examples of inpainted images & 951

failure cases 952

We show the visual examples of the inpainted im- 953

ages after filtering in Figure 5 (for binary gender) 954

and Figure 6 (for binary skin tone). The examples 955

show that the inpainted images depict the target 956

groups (e.g., woman and darker-skinned), keep- 957

ing the rest fixed. In some cases, artifacts are no- 958

ticeable, which enables us to identify synthetic im- 959

ages (e.g., the details of the faces are not clear), but 960

they do not affect the downstream performance, as 961

shown in the main paper. 962

12



O
rig
in
al

W
om

an
M
an

Figure 5: Examples of inpainted images for binary gender.
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Figure 6: Examples of inpainted images for binary skin tone.

B Experimental Settings and Additional963

Results964

B.1 Multi-Label Classification965

Datasets. We use COCO (Lin et al., 2014) and966

OpenImages (Krasin et al., 2017). Following pre-967

vious works (Zhao et al., 2017, 2023), we focus968

on attributes co-occurring with woman or man more969

than 100 times and remove person-related classes970

(e.g., person class), resulting in 51 and 126 at-971

tributes for COCO and OpenImages, respectively.972

The list of the attributes is as follows:973

COCO: {sink, refrigerator, laptop,974

surfboard, vase, bottle, remote, donut,975

motorcycle, car, chair, suitcase, tv, knife,976

fork, couch, bus, toothbrush, bicycle, tie,977

clock, microwave, teddy bear, frisbee, spoon, 978

dog, truck, bench, backpack, skis, horse, 979

sandwich, bed, handbag, umbrella, pizza, book, 980

dining table, traffic light, banana, potted 981

plant, tennis racket, cat, sports ball, 982

kite, cake, wine glass, bowl, cup, oven, cell 983

phone}. 984

OpenImages: {goggles, building, cloud, 985

smile, tree, sunglasses, light, t-shirt, 986

glasses, water, forehead, wall, sky, tire, 987

roof, road, wheel, vehicle, land vehicle, car, 988

tie, furniture, microphone, suit, clothing, 989

fence, jeans, trousers, shirt, footwear, 990

flooring, outerwear, coat, ceiling, floor, 991

jacket, table, house, couch, mammal, hat, 992

shoe, sports uniform, baseball (sport), cap, 993
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ResNet-50 Swin-T ConvNeXt-B
mAP Ratio Leakage mAP Ratio Leakage mAP Ratio Leakage

Original 42.3 5.2 18.9 45.3 4.3 20.9 46.0 5.0 22.7

Adversarial 37.5 — 8.3 40.8 — 11.3 40.4 — 12.3
DomDisc 40.7 3.7 20.6 43.6 4.6 22.1 42.9 4.1 21.9
DomInd 40.3 3.7 19.1 42.7 3.5 20.2 43.4 2.6 22.0
Upweight 41.3 6.5 13.1 44.7 5.8 17.9 45.3 7.4 18.0
Focal 43.0 4.6 18.7 45.4 4.4 21.3 45.4 4.0 22.3
CB 40.5 5.2 18.0 42.6 3.9 19.8 43.9 4.6 21.5
GroupDRO 42.3 4.2 18.9 45.1 4.2 20.9 46.1 3.4 22.5

Over-sampling 38.5 3.3 15.0 41.1 4.0 16.1 41.7 5.2 18.4
Sub-sampling 38.3 2.2 18.3 41.2 2.1 19.8 39.8 2.8 21.7
Saugment (Ours) 42.0 1.9 16.0 44.9 2.4 18.0 45.5 2.6 19.0
Ssynthetic (Ours) 41.4 1.1 14.6 44.4 2.0 17.6 44.7 1.3 17.9

Table 5: Classification performance and gender bias scores of ResNet-50, Swin-T, and ConvNeXt-B backbones on
OpenImages. Ratio is inapplicable to Adversarial due to its gender prediction module for mitigation. Bold and
underline represent the best and second-best, respectively. For an unbiased model, Ratio = 1 and Leakage = 0.

ResNet-50 Swin-T ConvNeXt-B
mAP Leakage mAP Leakage mAP Leakage

Original 65.8 3.2 72.2 7.1 75.9 7.2

Ssynthetic (Ours) 65.2 2.3 71.4 3.7 74.5 5.9

Table 6: Classification performance and skin tone bias scores of ResNet-50, Swin-T, and ConvNeXt-B backbones
on COCO. Bold represents the best. For an unbiased model, Ratio = 1 and Leakage = 0.

baseball cap, bag, drawing, sun hat, musical994

instrument, baby, window, door, sweater,995

lake, chair, tableware, bottle, drink,996

handwriting, paper, food, tent, concert,997

drum, guitar, glove, sports equipment,998

blazer, art, painting, dress, flower,999

sneakers, screenshot, watercraft, beach,1000

animal, grass family, plant, soil, desk,1001

poster, bus, computer, personal computer,1002

watch, mountain, helmet, bicycle helmet,1003

bicycle wheel, bicycle, curtain, dance,1004

football, ball (object), soccer, wedding1005

dress, jewellery, bride, office building,1006

laptop, toddler, shorts, hiking, fashion1007

accessory, fedora, swimming, swimwear,1008

camera, playground, weapon, ship, statue,1009

boat, fast food, flag, soft drink, book, auto1010

part, snow, carnivore, dog, horse, motorcycle,1011

pole dance}.1012

Training. The models (ResNet-50 (He et al.,1013

2016), Swin-T (Liu et al., 2021), and ConvNeXt-1014

Base (Liu et al., 2022)) are initialized with Ima-1015

geNet (Russakovsky et al., 2015) pre-training, and1016

fine-tuned with early stopping using a validation set1017

split from the training set (20% of the training set).1018

The optimizer is Adam (Kingma and Ba, 2015),1019

batch size is 32, and a learning rate is 1 × 10−5. 1020

For binary gender, the classification layers predict 1021

both protected groups (i.e., {woman, man}) and ob- 1022

ject classes. For binary skin tone, the models only 1023

predict object classes as ground-truth skin tone la- 1024

bels are not available. 1025

Results for OpenImages. We show the complete 1026

results of the experiments in the main paper: gender 1027

bias on OpenImages (Table 5). The results show 1028

that all the insights described in the main paper are 1029

consistent across the datasets. 1030

Results for skin tone bias. Previous bias mit- 1031

igation methods face a significant limitation, re- 1032

quiring protected group labels for all training set 1033

samples (Zhao et al., 2017; Wang et al., 2019; 1034

Agarwal et al., 2022). They typically focus on 1035

gender as a protected attribute due to its preva- 1036

lence in captions (Misra et al., 2016), allowing 1037

for label inference through gender-related terms. 1038

In contrast, Ssynthetic applies to attributes without 1039

labels, such as skin tone. We use our pipeline (ex- 1040

cluding the color fidelity filter, as we aim to mod- 1041

ify skin tone) on binary skin tone categories (i.e., 1042

G = {darker-skinned, lighter-skinned}) us- 1043

ing COCO. We evaluate skin tone bias using leak- 1044

age only since ratio requires models to predict pro- 1045
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tected groups, and there are no skin tone annota-1046

tions for the COCO training set. Results are shown1047

in Table 6, demonstrating consistent conclusions1048

with gender bias.1049

B.2 Image Captioning1050

Training. We benchmark three captioning mod-1051

els: ClipCap (Mokady et al., 2021), BLIP-21052

(Li et al., 2023), and Transformer (i.e., the1053

Transformer-based encoder-decoder model com-1054

posed of Vision Transformer (Dosovitskiy et al.,1055

2021) and GPT-2 (Radford et al., 2019)). As1056

with multi-label classification, we train the mod-1057

els with early stopping. Specifically, for Clip-1058

Cap, we follow the official implementation regard-1059

ing the training settings. For BLIP-2 and Trans-1060

former, we use the implementation in Hugging1061

Face (Wolf et al., 2020). We use the AdamW opti-1062

mizer (Loshchilov and Hutter, 2019) with a learn-1063

ing rate of 2 × 10−6/1 × 10−4 and batch size of1064

8/64 for BLIP-2 and Transformer, respectively.1065

Results for skin tone. We show the results of the1066

experiments for skin tone bias mitigation in Table 7.1067

The results show that the insights in the main paper1068

are mostly consistent across the protected groups.1069

B.3 Human Filter Evaluation1070

In Figures 7 to 9, we present example tasks for1071

human evaluation conducted on Amazon Mechan-1072

ical Turk (AMT) (Turk, 2012). This evaluation1073

assesses how well each combination of filters iden-1074

tifies desirable inpainted images. Figure 7 shows1075

the user interface for evaluating the similarity of1076

held/nearby objects and their colors between the1077

original (left) and inpainted (right) images. Fig-1078

ure 8 asks workers to select a skin tone class us-1079

ing the Monk Skin Tone Scale (Schumann et al.,1080

2023; Monk, 2023). We conduct this evaluation on1081

both original and inpainted images and compute1082

the degree of agreement between them. Figure 91083

verifies if perceived gender is accurately depicted—1084

according to the AMT worker—in the inpainted1085

images through gap-filling, where workers must1086

choose a protected group term to complete the sen-1087

tence. Each assignment pays $0.07, with a total1088

participant compensation of approximately $2,000.1089
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ClipCap BLIP-2 Transformer
M CS LIC M CS LIC M CS LIC

Original 29.4 75.3 4.6 27.1 73.9 2.2 27.0 71.5 5.3

Ssynthetic (Ours) 29.1 75.4 3.7 26.8 73.6 2.0 26.5 71.0 4.7

Table 7: Captioning quality and skin tone bias scores of ClipCap, BLIP-2, and Transformer backbones on COCO.
M and CS denote METEOR and CLIPScore. Bold represents the best. For an unbiased model, Ratio = 1 and
LIC = 0.

Figure 7: Evaluation of perceived object and color similarity between original and inpainted images on AMT.

Figure 8: Evaluation of perceived skin tone using the Monk Skin Tone Scale on AMT.
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Figure 9: Evaluation of perceived gender depiction accuracy in inpainted images on AMT.
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