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Prior-free Balanced Replay: Uncertainty-guided Reservoir
Sampling for Long-Tailed Continual Learning

Anonymous Author(s)

ABSTRACT
Even in the era of large models, one of the well-known issues in con-
tinual learning (CL) is catastrophic forgetting, which is significantly
challenging when the continual data stream exhibits a long-tailed
distribution, termed as Long-Tailed Continual Learning (LTCL).
Existing LTCL solutions generally require the label distribution of
the data stream to achieve re-balance training. However, obtaining
such prior information is often infeasible in real scenarios since the
model should learn without pre-identifying the majority and minor-
ity classes. To this end, we propose a novel Prior-free Balanced
Replay (PBR) framework to learn from long-tailed data stream
with less forgetting. Concretely, motivated by our experimental
finding that the minority classes are more likely to be forgotten due
to the higher uncertainty, we newly design an uncertainty-guided
reservoir sampling strategy to prioritize rehearsing minority data
without using any prior information, which is based on the mutual
dependence between the model and samples. Additionally, we incor-
porate two prior-free components to further reduce the forgetting
issue: (1) Boundary constraint is to preserve uncertain boundary
supporting samples for continually re-estimating task boundaries.
(2) Prototype constraint is to maintain the consistency of learned
class prototypes along with training. Our approach is evaluated
on three standard long-tailed benchmarks, demonstrating superior
performance to existing CL methods and previous SOTA LTCL
approach in both task- and class-incremental learning settings, as
well as ordered- and shuffled-LTCL settings.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Long-Tailed Distribution, Continual Learning, Catastrophic Forget-
ting, Uncertainty Estimation

1 INTRODUCTION
Over the last decade, deep neural networks (DNNs) have demon-
strated remarkable performance in various multi-media tasks, such
as image segmentation [50], video caption [25], and audio-visual
learning [37]. However, these tasks are usually performed in a static
environment where all data is available in a single training session.
In a dynamic environment where data arrives phase by phase, the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

N
um

be
r

of
 D

at
a

Class Index

Long-tailed Distribution

𝜃! 𝜃" 𝜃# 𝜃$

𝜃! 𝜃" 𝜃# 𝜃$

Shuffled-LTCL

Ordered-LTCL
Incremental Step

Figure 1: Illustration of Ordered-LTCL (bottom) and Shuffled-
LTCL (top). 𝜃𝑖 denotes the model parameters at the incremen-
tal step 𝑖. Ordered-LTCL assumes that all tasks are ordered by
the sample number per task, i.e., old tasks contain majority
classes while new tasks haveminority classes. Shuffled-LTCL
assumes that all classes are randomly distributed.

model trained on a new task tends to forget a significant amount of
information of old tasks, which is commonly known as catastrophic
forgetting issue [19, 27]. Besides, it was reported that recent ad-
vanced large vision and language models still face challenges in
forgetting knowledge when dealing with complex sequential tasks
[4], resulting in the potential loss of previously learned information
during the fine-tuning process for novel tasks [14]. To overcome
the catastrophic forgetting, significant efforts have been made to
learn from the sequential data stream without forgetting previously
acquired knowledge, which is called continual learning (CL) [58].

Despite recent significant progress in conventional CL, it is typi-
cally based on the assumption that the training data is drawn
from a balanced distribution. However, real-world data often
exhibits a long-tailed distribution [13, 53, 55], where only a few
classes dominate the most samples. For instance, in autonomous
driving [49, 57], anomaly accidents often occur with lower proba-
bilities than the frequent safe events. When constructing a medical
dataset [39], it is an usual phenomena that common symptoms are
easily collected while it is difficult to collect enough rare symptoms.
In dynamic environments characterized by realistic scenarios, mi-
nority classes often incrementally emerge as new tasks, posing a
great challenge for the adaptation ability of DNNs [19]. Besides, ex-
isting CL methods exhibit severe performance degradation over the
long-tailed data stream. Therefore, it is essential to investigate
continual learning over the long-tailed data stream.

Inspired by [30], we consider two different long-tailed continual
learning (LTCL) settings, i.e., ordered- and shuffled-LTCL settings as
shown in Figure 1. To address the LTCL problem, several straightfor-
ward solutions have been proposed [15, 21, 30] to combine existing
CL methods with re-balancing techniques, such as data re-sampling
[10], data re-weighting [38], and two-stage training [20]. For in-
stance, [11] explored a balance sampling strategy to keep a balanced
memory buffer for the imbalance continual learning. [36] proposed
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to utilize data augmentation for the memory buffer to alleviate the
class imbalance issue in the class incremental learning. However,
these approaches may not be practical for tasks evolving
over time, as most re-balance techniques require label dis-
tribution information of the entire stream, while obtaining
such information is often infeasible due to unknown prior of
new tasks emerging in the future. In fact, it is usually unknown
whether the incoming data or the emerging class is from majority
or minority classes in the real world. This makes most existing
methods, which are to solve the class imbalance problem unsuited
for real-world applications.

To further cast light on challenges for the LTCL problem, we
conduct a motivating experiment (details can be seen in Sec 3.1) and
observe that: (1) Minority samples are more likely to be forgotten
than majority samples; (2) The classifier weights are easily biased to
the old majority classes; and (3) Minority data is usually distributed
around the task boundaries with higher uncertainty. Besides, with
the limited storage and computing resource, one should utilize a
constrained buffer size throughout the entire training phase to
address the LTCL problem [5].

To address the LTCL issue, motivated by the above experimen-
tal findings, we propose a novel Prior-free Balanced Replay (PBR)
framework to incrementally learn an evolved representation space
for the LTCL problem. More precisely, we design an uncertainty-
guided reservoir sampling strategy to prioritize storing minority
samples in the replay memory, which is based on the mutual in-
formation between changes in model parameters and prediction
results. Besides, two prior-free components are newly designed to
effectively alleviate the catastrophic forgetting issue under LTCL,
especially for minority classes. In detail, prototype constraint en-
sures all classes have balanced magnitudes by maintaining the
consistency of class prototypes learned at different times, while
boundary constraint prevents forgetting task boundary information
by preserving boundary supporting samples of old tasks.

In summary, key contributions of this work are threefold:
(1)We propose a novel PBR framework to address the LTCL prob-

lem without relying on prior information (i.e., label distribution),
which utilizes an uncertainty-guided reservoir sampling strategy
to achieve a balanced replay with less forgetting.

(2)We design two new prior-free components (i.e., boundary and
prototype constraints) to further reduce the forgetting of minority
data, which can be integrated into the PBR framework based on
the uncertain samples.

(3) Extensive experiments are conducted to evaluate the pro-
posed method on three popular datasets under the LTCL setting,
i.e., CIFAR-10 [24], CIFAR-100 [24], and Tiny ImageNet [2]. Experi-
mental results indicate that our method can achieve state-of-the-art
(SOTA) performance for both task- and class-incremental learning
settings, as well as ordered- and shuffled-LTCL settings, surpassing
previous works by a significant margin.

2 RELATEDWORK
Continual Learning. To enhance the adaption ability of deep

neural networks, existing solutions could be roughly divided into
four groups: rehearsal-based [40, 44, 45], distillation-based [26, 41],
architecture-based [34, 48], and regularization-based methods [23].

Rehearsal-based methods [1, 5, 32] store a data subset of the old
tasks and replay these samples to alleviate catastrophic forgetting.
The key is to achieve effective sample selection for rehearsal, such
as experience replay [40, 44] and gradient-based sample selection
[1, 32]. Another solution is to imitate the previous tasks’ behaviors
when learning new ones. The main idea is knowledge distillation
[17] taking past parameters of the model as the teacher. Besides,
it is a common choice to combine rehearsal and distillation by
self-distillation learning [41]. Besides, regularization-based meth-
ods mainly focus on preventing significant updates of the network
parameters when learning new tasks, such as elastic weight con-
solidation [23], synaptic intelligence [47] and Riemannian walk [7].
Furthermore, architecture-based methods [34, 48] distinct different
tasks by devoting distinguished parameter sets. For instance, Pro-
gressive Neural Networks [46] incrementally introduce a new set
of parameters for incoming tasks to tackle the forgetting problem.

Long-Tailed Learning. To address the long-tailed problem, re-
balancing strategies are the most common solutions, including
re-sampling [10] and re-weighting [38]. However, these methods
easily lead to performance degradation for head classes and over-
fitting issues for tail classes. Two-stage based methods are proposed
to further improve the re-balancing strategies, such as decoupled
training [20] and deferred re-balancing schedule [6]. Besides, to
learn a high-quality representation space based on imbalanced data,
regularization-based approaches are proposed to increase inter-
class differences, such as margin [6], bias [35, 42], temperature [54]
or weight scale [20]. Recent works explore flexible ways for re-
weighting by hard sample mining [28, 29], meta-learning [43], and
influence function [38], which target to measure the importance
of each training sample. Other studies propose to transfer useful
knowledge from head to tail classes via designing memory module
[31] or translation [22].

Long-TailedContinual Learning. There are some recentworks
exploring the imbalance issue in continual learning, e.g.. Partition-
ing Reservoir Sampling (PRS) [21] and LT-CIL [30]. PRS [21] pro-
posed a balance sampling strategy for head and tail classes along
with the sequential tasks to preserve balanced knowledge. LT-CIL
[30] utilized a learnable weight scaling layer to decouple represen-
tation learning from classifier learning. However, these methods
ignore the relationship between the tasks of imbalanced and con-
tinual learning and rely on the label distribution for re-balance
strategies, while our work is orthogonal with them to learn an
evolved feature space for the long-tailed continual learning without
label distribution. Besides, [36] proposed to utilize data augmenta-
tion for the memory buffer to alleviate the class imbalance issue,
which only focused on the class imbalance in the current incre-
mental step. [11] explored the class imbalance for online continual
learning, but it ignores the unequal roles for different samples in
the memory buffer.

3 METHODOLOGY
Problem Formulation. A standard learning agent sequentially ob-
serves a data stream {(𝐷0, 𝑡0), . . . , (𝐷𝑖 , 𝑡𝑖 ), . . . , (𝐷𝑛−1, 𝑡𝑛−1)}, where
𝐷𝑖 = {(x𝑖

𝑘
, y𝑖

𝑘
)}𝑠𝑖

𝑘=1 is a labeled dataset of task 𝑡𝑖 . 𝑛 is the time in-
dex indicating the task identity. 𝐷𝑖 consists of 𝑠𝑖 pairs of samples
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Figure 2: Accuracy trajectory for different tasks under
ordered-LTCL. Different colors denotes different tasks and
Y-axis is for incremental step. The experiment is conducted
on the long-tailed CIFAR-10 using stochastic gradient de-
scent (SGD) and cross-entropy (CE) loss. It is observed that
the performance drop of minority classes is larger than ma-
jority classes. Therefore, the long-tailed data may further
aggravate the catastrophic forgetting, as the minority classes
are more likely to be forgotten than the majority classes.

with corresponding targets from the data space X ×Y. To reflect
the general long-tail phenomena, we assume that the sequence
{𝑠0, 𝑠1, . . . , 𝑠𝑛−1} exhibits a power-law distribution, i.e., 𝑠𝑖 = 𝐶𝛼𝑡𝑖 ,
where 𝐶 is the exponent of the power and 𝛼 is the imbalance ratio
for general long-tailed settings [31]. This assumption of power-
law behavior is commonly observed in empirical distributions, and
reflects how frequently samples from each task are observed.

For the classification task, the learning agent predicts the label
for a given input x as 𝑓𝜃 (x), where 𝑓𝜃 (·) is a mapping function from
the inputX to the outputY parameterized by 𝜃 . Let ℓ : Y×Y → R
be the loss function between a prediction 𝑓𝜃 (x) and the target y.
Our goal is to learn the optimal parameter 𝜃 with strong continual
adaptation ability to correctly classify samples from any observed
tasks. The training and inference processes do not rely on task
identities 𝑡𝑖 . The optimization objective for the parameter 𝜃 over
the data stream is given by the follows:

argmin
𝜃

𝑛−1∑︁
𝑖=0

L𝑡𝑖 , whereL𝑡𝑖 ≜ E
(x,y)∼𝐷𝑖

[ℓ (y, 𝑓𝜃 (x))] . (1)

3.1 Motivating Experiment
As a motivation, we conduct an empirical experiment as the mo-
tivation to observe how the representations changes under the
ordered-LTCL setting. We focus on two main factors in a repre-
sentation space, i.e., class prototypes and task boundaries. Overall,
we empirically investigate the reason for the severe performance
degradation of existing CL methods under the LTCL setting, i.e.,
the deterioration of the representation space caused by biased pro-
totypes and easily forgotten task boundaries. Here, the baseline
is ResNet18 [16] trained by the SGD optimizer without any fur-
ther operations (e.g., memory buffer). Main results are visualized in
Figure 3 and Figure 4(b), respectively.

Forgotten Minority Data. As shown in Figure 2, different color
denotes different tasks, i.e., task-1 has the most data and task-5

0

1

2

3

L2
 n

or
m

s o
f t

he
 w

ei
gh

ts

Task-1

Task-2

Task-3

Task-4

Task-5

Figure 3: Biased Prototypes. The magnitudes of classifier
weights are irregularly distributed due to the long-tailed
continual data, producing a biased prototype for each class.

Figure 4: Forgotten Task Boundaries. We visualize the fea-
ture distribution of task 𝑖 at the stream end. Colorful and
gray points denote the forgotten and non-forgotten samples,
respectively. We found that forgotten samples contain more
minority data and are generally located near the task bound-
ary in the feature space, leading to confusing task boundaries.

has the least data, where the tendencies can reflect the forgetting
degree of each task. We observe that the tendency for minority
classes (yellow curve) is steeper than majority classes (blue curve),
indicating that the minority classes are more likely to be forgotten
than the majority classes.

Biased Prototypes.As shown in Figure 3, the weight magnitudes
of the classifier are irregularly distributed. The weight magnitudes
of old majority classes are significantly higher than those of new
minority classes, while the bias magnitudes of new classes are
higher than those of the old classes. Based on such phenomena, the
features of each class prototypes are generally clustered with the
lack of discrimination in the representation space.

Forgotten Task Boundaries. As shown in Figure 4, the bound-
ary supporting samples of each task (i.e., colorful points) are easily
forgotten along with the continually arrived data, which would
lead to confusing task boundaries in the representation space. In
particular, the boundary supporting samples of the tasks with mi-
nority classes are more likely to be forgotten than majority classes
due to insufficient training data.

3.2 Prior-free Balanced Replay
Motivated by the above observations, we propose a novel PBR
framework based on the uncertainty-guided reservoir sampling
and two constraints. The proposed approach is shown in Figure 5.

Experience Replay. Experience replay aims to preserve useful
knowledge of the previous tasks. Here, we explicitly store the most

3
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Figure 5: The pipeline of the proposed PBR framework. It adopts a memory buffer to maintain previous experiences, where dark
knowledge is distilled by teacher-student architecture. The sample selection is an uncertainty quantification problem combined
with reservoir sampling. Prototype constraint could maintain the consistency of learned class prototypes for maintaining
balanced predictions along with training. Boundary constraint measure themutual dependency between themodel and training
samples, which can help to preserve boundary supporting samples of old tasks and maximize dissimilarities among seen tasks.

uncertain samples of the old tasks along the incremental trajectory
to improve the continual adaption ability of neural networks. To
this end, we seek to minimize the following objective at the time 𝑡𝑐 :

L𝑡𝑐 + 𝛼
𝑐−1∑︁
𝑖=1
Ex∼𝐷𝑖

[
L𝑘𝑙

(
𝑓𝜃 ∗

𝑖
(x)∥ 𝑓𝜃 (x)

)]
, (2)

where 𝜃∗
𝑖
is the optimal parameters after time 𝑡𝑖 , and 𝛼 is a hyper-

parameter. L𝑘𝑙 is the knowledge distillation loss. To overcome the
unavailability of 𝐷𝑖 from old tasks, we introduce a small memory
buffer M to retain previous experiences. The objective seeks to
replay the learned experiences by resembling the teacher-student
trick. To save resources, we merely store the latest model state
at 𝑡𝑐−1 rather than a checkpoint sequence from 𝑡0 to 𝑡𝑐−1. In this
work, we aim to maintain prototype knowledge and task boundary
information by incorporating cosine normalization for different
tasks. As follows, we will present the details in turn.

Uncertainty-guided Reservoir Sampling. To further keep a
balance between old and new tasks, we present an uncertainty-
guided reservoir sampling to guarantee that uncertain samples
are stored in the buffer M in priority, since uncertain samples are
more likely to belong to the minority classes. Different from vanilla
reservoir sampling [52], the uncertainty-guided sampling process
is conducted at the end of each task to maintain a well-rounded
knowledge. At the end of task 𝑡𝑐 , the training samples 𝐷𝑐 are sorted
as �̂�𝑐 according to their mutual dependence with the network.
Then the sampling process iterates 𝑠𝑐 times between sample-in and
sample-out for each (𝑥,𝑦) ∈ 𝐷𝑐 . The sample-in decides whether to
sample a data point into the memory, while the sample-out removes
a sample from the memory.

(1) Candidate: To store uncertain samples, for each iteration,
we first generate a candidate sample by:

K = {(x∗, y∗) | (x∗, y∗) = argmin
(x,y) ∈D𝑐

(I [y, 𝜃 | x, 𝐷𝑐 ])}. (3)

where I [·|·] indicates the mutual information (MI) between the
prediction and the posterior over parameters. IfK is already stored
in the memory, we will generate a new candidate from 𝐷𝑐\{𝐾},
otherwise keeping it fixed.

(2) Sample-In:We design a probability function P(K) to decide
whether moving K into the memory M:

P(K) = |M|
𝑁𝑐 +

∑𝑐−1
𝑖 𝑠𝑖𝑤𝑖

, where𝑤𝑖 =
𝑒−𝑠𝑖∑𝑐−1
𝑗=1 𝑒

−𝑠 𝑗
, (4)

where𝑁𝑐 is the total sampling iteration number from the end of task
𝑡𝑐 up to now. 𝑠𝑖 is the running frequency of class 𝑖 . This condition
implicitly achieves a trade-off between old and new tasks.

(3) Sample-Out: If the memory is out of buffer size, a sample
will be removed when a candidate is entered into the memoryM.
The probability that an sample is removed follows the uniform
distribution over the memory size, i.e., 1

|M | , since sample-in works
towards achieving a balanced partition for old tasks.

Note that due to the lack of sufficient knowledge about the mi-
nority classes, the uncertainty degree of minority data is generally
higher. Therefore, our method implicitly encodes the rule to prefer-
entially store minority samples, rather than directly adjusting the
label distribution to alleviate data imbalance.

Uncertainty-guided Mutual Information. Given a network
with the limited capacity, uncertainty can be utilized to estimate the
importance of each training sample and identify easily forgotten
minority samples with boundary information. In this work, we

4
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utilize Monte-Carlo dropout [12] for uncertainty quantification,
which interprets dropout regularization as a variational bayesian
approximation. Conditioning on a neural network on finite random
variables, when training with data 𝐷 , we could calculate the pos-
terior probability distribution 𝑝

(
𝑦∗𝑡 | 𝒙∗𝑡 , 𝐷

)
by marginalizing out

the posterior distribution, which can be approximated using Monte
Carlo integration with dropout regularization:

𝑝
(
y∗𝑡 | x∗𝑡 , 𝐷

)
≈ 1

𝑇

𝑇∑
𝑠=1

softmax
(
w𝑇 𝑓 𝑛

𝜃𝑠
(x∗𝑡 )/𝜏1

)
, (5)

which is achieved by 𝑇 sampled dropout masks and the masked
parameters. This formulation implicitly endues the network with
the ability to quantify the confidence of predicted results. Here, we
employ the predictive entropy as an indication of the amount of
information in the prediction distribution of the network:

H
[
y∗𝑡 | x∗𝑡 , 𝐷

]
= −

𝑐∑
𝑖
𝑝
(
y∗𝑡 = 𝑖 | x∗𝑡 , 𝐷

)
log𝑝

(
y∗𝑡 = 𝑖 | x∗𝑡 , 𝐷

)
.

(6)
To capture the trustworthiness of the network in training samples,
we compute the mutual information (MI) between the prediction
and the posterior over parameters as the mutual dependence:

I
[
y∗𝑡 , 𝜃 | x∗𝑡 , 𝐷

]
= H

[
y∗𝑡 | x∗𝑡 , 𝐷

]
− E𝑝 (𝜃 |𝐷 )

[
H
[
y∗𝑡 | x∗𝑡 , 𝜃

] ]
. (7)

Based on mutual dependence, minority data with boundary infor-
mation of previous tasks are stored in the buffer via an efficient
way, maintaining the previously learned knowledge and maximize
dissimilarities among all seen tasks.

3.3 Prior-free Components
Based on the selected samples in the memory, we propose two new
prior-free components to further alleviate the forgetting issue.

Prototype Constraint. Prototype constraint is to maintain the
consistency of learned class prototypes along with training. A typi-
cal classifier produces the predicted probability of a sample x by:

𝑝𝑖 (𝑥) =
exp

(
w𝑇
𝑦 𝑓𝜃 (x) + 𝑏𝑦

)
∑
𝑖∈Y exp

(
w𝑇
𝑖
𝑓𝜃 (x) + 𝑏𝑖

) (8)

where w𝑖 is the 𝑖-th weight vector and 𝑏𝑖 is the 𝑖-th bias term
in the classifier. As shown in Figure 3, the weight magnitudes
are irregularly distributed, resulting in biased prototypes in the
feature space. To address this issue, we propose utilize two types
of statistical information i.e., class prototype and cosine similarity
to preserve useful class-wise information.

Concretely, given an input data point x, the mapping function
𝑓𝜃 (x) is to map x as a hidden representation before the final lin-
ear projection for classification. Inspired by cosine normalization
[18, 33, 51], we utilize a scaled cosine classifier to extract normal-
ized embeddings of samples by 𝑓 𝑛

𝜃
(x) = 𝑓𝜃

∥ 𝑓𝜃 ∥ , which produces the
predicted probability as follows:

𝑝𝑖 (𝑥) =
exp

(
sŵ𝑇

𝑦 𝑓
𝑛
𝜃
(x)

)
∑
𝑖∈Y exp

(
sŵ𝑇

𝑖
𝑓 𝑛
𝜃
(x)

) , (9)

where ŵ denotes the normalized weights in the classifier and s is
the scaling factor. Instead of computing the average feature over all

samples, this formulation allows us to interpret the weight vectors
of the classifier as class prototypes during training, which could
save the costs for computing average features. It is also noteworthy
to preserve cosine similarity scores among previously learned class
prototypes. Thus, we further enforce the newly updated classifier
to mimic the behavior of previously learned classifier, which could
produce approximately consistent similarity scores for each task
along with newly coming data. Formally, we propose to exploit a
distillation loss to preserve prototype information as follows:

L𝑑𝑐 =

𝑐−1∑︁
𝑖=1




ŵ𝑖, − ŵ∗
𝑖,




 , (10)

where ŵ𝑖, is the weight for previous task 𝑖 in the prototype-based
classifier. Different from previous cosine normalization encouraging
the similar angles between the features and the class prototypes
[18], such a distillation loss enhances the learned prototypes to be
approximately preserved in the current model.

Boundary Constraint. Boundary constraint is to preserve
uncertain samples with boundary supporting information for con-
tinually re-estimating task boundaries. Denote the incoming data
by X𝑖𝑛 and data stored in the memory buffer by X𝑏𝑓 , we use a
modified cross-entropy (MCE) loss to link prototypes and logits:

L𝑡𝑐 (x) = −
∑︁

x∈X𝑖𝑛∪X𝑏𝑓

log
exp

(
sŵ𝑇

𝑦 𝑓
𝑛
𝜃
(x)/𝜏1

)
∑
𝑖∈Y exp

(
sŵ𝑇

𝑖
𝑓 𝑛
𝜃
(x)/𝜏1

) , (11)

where ŵ𝑖 is 𝑖-th weight vector (prototype) of the classifier and 𝜏1 is a
scaling factor. The prototype is normalized so that ŵ𝑇

𝑖
𝑓 𝑛
𝜃
is a cosine

similarity metric. Note that class prototypes are explicitly updated
where samples of the same class lie close by each other. Beyond to
the prototypes, we further consider uncertain samples to preserve
effective boundary information via the knowledge distillation loss:

L𝑘𝑙 (𝑓𝜃 ∗ (𝑥)∥ 𝑓𝜃 (𝑥)) =

−
𝑐−1∑︁
𝑖=1

exp
(
sŵ𝑇

𝑖
𝑓 𝑛
𝜃 ∗ (x)/𝜏2

)
∑
𝑗∈Y

exp
(
sŵ𝑇

𝑗
𝑓 𝑛
𝜃 ∗ (x)/𝜏2

) log exp
(
sŵ𝑇

𝑖
𝑓 𝑛
𝜃
(x)/𝜏2

)
∑
𝑗∈Y

exp
(
sŵ𝑇

𝑗
𝑓 𝑛
𝜃
(x)/𝜏2

) ,
(12)

where 𝜃∗ is the parameters after the task 𝑡𝑐−1. 𝜏2 is the temperature
scale. We can rewrite Equation 2 as follows:

Ex∼{𝐷𝑐∪M}L𝑡𝑐 (x) + 𝛼Ex∼M [L𝑘𝑙 (𝑓𝜃 ∗ (x)∥ 𝑓𝜃 (x))] + 𝛽L𝑑𝑐 . (13)

We approximate the expectation on batches sampled from the cur-
rent task and the buffer, respectively.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Benchmarks. We consider two common CL scenarios [5]:
(1) Task Incremental Learning (Task-IL), where task identities are
provided to select the relevant classifier for each sample during
evaluation; (2) Class Incremental Learning (Class-IL), where task
identities are not provided during evaluation. This difference makes
Task-IL and Class-IL the easiest and hardest scenarios. We present
three benchmarks for LTCL: Seq-CIFAR-10-LT, Seq-CIFAR-100-
LT, and Seq-TinyImageNet-LT, where the training data yields
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Table 1: Accuracy for previous SOTA method on Seq-CIFAR-
100-LT under the ordered-LTCL setting. IR is 0.01.

Method Class-IL Task-IL
PODNET+ [30] 23.90 46.00

Ours 25.05 52.23

standard long-tailed distribution as defined by [31]. Besides, moti-
vated by [30], we also consider order- and shuffled-LTCL settings.

4.1.2 Implementation Details. For a fair comparison, we try our
best to maintain the experimental setting as consistent as possi-
ble. We implement our framework with Pytorch and Torchvision
libraries and use NVIDIA TITAN 2080 Ti GPU to train the deep
neural network. Following [5], we employ ResNet18 as the basic
backbone for all methods, and all networks are randomly initialized
rather than pre-trained. We used stochastic gradient descent with
a batch size of 32 and a learning rate of 0.03. 𝑠 is assigned as 10. 𝜏1
is set as 0.1 and 𝜏2 is 2. It is important that no pre-trained model is
used in all our experiments. As for the testing phase, we utilize 128
as the batch size for validation.

4.1.3 Comparison Methods. Baselines. SGD-LT is using SGD un-
der long-tailed distribution. SGD-BL is under balanced distribution.
Both SGD-LT and SGD-BL are under the CL setting. JOINT-LT is to
jointly train all tasks under long-tailed distribution, and JOINT-BL
is to jointly train all tasks under balanced distribution.

CL Methods. To provide fair comparisons, we compare 14 mod-
els involving regularization, distillation, architecture and rehearsal
basedmethods. Regularization-basedmethods include ElasticWeight
Consolidation (oEWC) [23] and Synaptic Intelligence (SI) [56]. Two
methods leveraging knowledge distillation are Incremental Classi-
fier and Representation Learning (iCaRL) [41] and Learning With-
out Forgetting (LwF) [26]. One architectural method is called Pro-
gressive Neural Networks (PNN) [46] and eight rehearsal-based
methods include Experience Replay (ER) [40, 44], Gradient Episodic
Memory (GEM) [32], Averaged-GEM (A-GEM) [9], Gradient based
Sample Selection (GSS) [1], Function Distance Regularization (FDR)
[3], Hindsight Anchor Learning (HAL) [8], Dark Experience Replay
[5], and DER++ [5]). (3) Conventional long-tailed algorithms are
unavailable due to compatibility with the scenarios.

LTCL Methods. We also include the previous SOTA method
PODNET+ [30] as the comparison, which adopts a two-stage strat-
egy to learn a balance classifier for different tasks.

4.1.4 Evaluation Protocols. We adopt two evaluation metrics. The
first is the average accuracy (ACC) at the end of all tasks. We run 5
times experiments and report the mean accuracy and the standard
deviation. The second is backward transfer (BWT), indicating how
much a new task influences the performance of previous tasks.
Namely, higher negative values for BWT suggest catastrophic for-
getting. ACC and BWT are calculated as follows:

ACC =
1
𝑇

𝑇∑︁
𝑖=1

𝑅𝑇,𝑖 , BWT =
1

𝑇 − 1

𝑇−1∑︁
𝑖=1

𝑅𝑇,𝑖 − 𝑅𝑖,𝑖 , (14)

where 𝑅 𝑗,𝑖 is the accuracy for task 𝑖 at the end of task 𝑗 in the
sequence, and T is the total number of tasks.

4.2 Comparison Results
Comparisons with SOTA LTCL Method under Ordered-LTCL.
As seen in Table 1, compared with previous SOTA method, our
method can outperform PODNET+ [30] by a large margin for both
Class-IL and Task-IL settings. The main reason is that our method
can focus on uncertain samples to achieve imbalanced learning and
reduce forgetting.

Comparisons with CL methods under Ordered-LTCL. As
shown in Table 2, our method could achieve SOTA results com-
pared with CL algorithms. PNN achieves the best results among
non-rehearsal methods but attains lower accuracy than rehearsal-
based ones. Most rehearsal-based approaches achieve higher results
than regularization-based ones because of replaying old samples
and learning new samples together. Distillation-based rehearsal
methods aim to output similar logits for old samples when learning
for new tasks, but the logit information is biased due to long-tailed
distribution. Additionally, the methods resorting to gradients (GEM,
A-GEM, GSS) seem less effective under this setting, since class
imbalance negatively impacts the gradient. Although existing CL
methods could reasonably deal with the forgetting issue, they still
perform poorly under long-tailed distribution.

Comparisons under Shuffled-LTCL. We report the results on
shuffle-LTCL scenario (Seq-CIFAR-100-LT with 5-task setting). The
buffer size is 200. Due to the superior performance of the strong
baseline DER++ on the continual learning task, we utilize DER++
as the baseline. The proposed method outperforms DER++ by a
large margin for both Class-IL and Task-IL settings. With varying
IRs, our method can still improve the final performance.

Comparisons with Different Reservoir Sampling Strategies.
To verify the effectiveness of uncertainty-guided reservoir sam-
pling, we report the comparison results of our method with random
reservoir sampling under ordered-LTCL. As indicated in Table 2,
our method with random reservoir sampling can even outperform
previous CL methods by a large margin. Furthermore, the proposed
method with random reservoir sampling performs slightly lower
accuracy than that with uncertainty-guided reservoir sampling,
demonstrating the effectiveness of uncertainty estimation.

4.3 Data and Task Analysis
Effect of LTCL.. Table 2 reports the average accuracy results at

the end of all tasks under the ordered-LTCL setting. We observe
that the task-IL accuracy of SGD-LT is better than SGD-BL. The
main reason is that new tasks with minority samples could reduce
forgetting of old tasks with majority samples. Furthermore, since
alleviating forgetting may induce imbalanced impacts on the new
tasks, some approaches exhibit lower accuracy than SGD-LT. For
instance, regularization-based methods (e.g., oEWC, Lwf, PNN, and
GEM) suffer from the imbalance issue on the new tasks, which
arises from the learned regularization information from the old task.
Therefore, by considering the motivating experiment in Section 3.1,
our method can well address the LTCL issue by adopting prototype
and boundary constraints.

Effect of Imbalance Ratio. We evaluate the comparison meth-
ods with different imbalanced ratios following [31]. As shown in
Table 3 and Appendix, our approach remarkably outperforms previ-
ous SOTAmethod DER++, where more detailed results are shown in
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Table 2: Comparisons under the ordered-LTCL setting. IR is 0.01. ‘-’ indicates unachievable results due to compatibility issues.

Buffer Method Seq-CIFAR-10-LT Seq-CIFAR-100-LT Seq-TinyImageNet-LT
Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

-

JOINT-BL 92.20 - 75.79 - 61.96 -
JOINT-LT 70.36 - 61.68 - 33.81 -
SGD-BL 19.66 61.02 6.56 17.83 7.92 18.31
SGD-LT 19.62 72.65 6.27 14.13 1.73 10.81

-

oEWC [23] 17.53±0.47 62.26±4.52 8.09±0.30 18.23±3.22 0.40±0.16 5.08±0.97
SI [56] 16.95±0.33 62.48±4.51 7.85±0.52 18.23±4.17 2.47±0.75 8.07±1.00
LwF [26] 16.70±0.20 59.44±1.32 8.47±0.20 14.80±2.13 3.02±0.36 9.10±0.87
PNN [46] - 84.72±0.88 - 48.89±0.86 - 15.61±0.96

200

ER [40, 44] 39.14±1.68 85.72±1.01 14.72±2.31 42.32±1.17 5.58±0.57 35.31±0.67
GEM [32] 29.20±0.97 82.83±0.87 16.15±1.02 43.54±1.17 - -
A-GEM [9] 27.00±0.67 77.56±1.42 11.91±0.45 30.57±1.57 3.34±0.24 12.16±0.21
A-GEM-R [9] 17.86±0.87 71.44±1.64 6.59±0.40 21.62±1.57 2.60±0.27 11.02±0.29
iCaRL [41] 40.27±3.24 86.90±2.12 22.85±3.54 47.62±2.21 7.01±0.62 29.13±1.68
FDR [3] 28.54±3.17 72.52±0.99 19.63±3.01 46.03±0.97 5.98±0.34 31.15±0.77
GSS [1] 35.71±3.64 85.74±1.87 11.78±4.12 40.56±1.57 - -
HAL [8] 30.91±2.97 75.03±2.12 5.18±3.20 17.25±2.74 - -
DER [5] 28.00±1.81 74.75±1.44 18.31±2.03 47.81±1.27 6.56±0.82 35.29±0.78

DER++ [5] 37.65±1.87 83.25±1.24 19.62±1.95 46.22±1.14 6.92±1.53 34.52±1.36
Ours - Random 44.77±1.23 82.50±1.45 20.17±1.78 48.32±1.07 8.06±0.95 34.98±1.11

Ours - Uncertainty 51.00±1.74 89.99±1.32 24.18±1.67 50.66±0.85 10.24±1.44 36.01±1.32

500

ER 56.01±0.61 87.42±0.54 20.50±0.36 49.63±0.31 8.49±0.59 39.61±0.94
GEM 28.46±1.77 84.16±0.75 22.47±2.45 49.63±1.01 - -
A-GEM 18.09±0.71 79.27±1.55 8.68±2.57 49.63±2.23 3.09±0.44 10.35±0.77
A-GEM-R 11.32±0.67 57.97±1.54 6.70±2.46 23.03±2.07 2.42±0.43 11.11±0.78
iCaRL 45.08±3.99 87.53±3.01 24.51±2.03 50.74±1.08 10.51±1.76 11.87±3.01
FDR 30.76±3.58 84.11±1.01 24.99±0.54 50.37±0.86 10.21±0.45 39.42±1.03
GSS 47.63±4.15 87.65±1.32 14.74±3.97 44.82±0.95 - -
HAL 39.18±4.44 82.50±2.36 14.74±4.56 44.82±3.19 - -
DER 42.25±1.94 86.69±0.62 20.47±1.01 50.23±1.23 9.22±1.23 43.38±1.08

DER++ 48.68±1.88 88.42±0.64 20.90±0.98 51.88±1.14 10.42±1.47 41.94±1.23
Ours - Random 50.73±1.53 86.50±1.24 20.94±0.97 50.98±1.02 9.86±1.32 41.26±1.29

Ours - Uncertainty 54.61±1.87 91.03±1.11 25.05±1.32 52.23±1.29 10.78±1.25 44.13±1.36

Table 3: Accuracy for CL approaches on standard long-tailed
benchmarks under the shuffled-LTCL setting.

Buffer Method Class-IL
0.01 0.02 0.05 0.1

200 DER++ 35.43 40.35 45.64 55.03
Ours 38.49 48.64 49.75 59.33

Buffer Method Task-IL
0.01 0.02 0.05 0.1

200 DER++ 74.10 76.09 84.65 84.77
Ours 80.42 83.08 85.72 87.99

Appendix. It is observed that the performance of existing methods
is improved along with increasing imbalance ratio, which mainly
benefits from the increasing sample number for each task. We no-
tice that the imbalance ratio slightly impacts the final performance

of these methods. Thus, when adopting boundary supporting sam-
ples in the buffer, the gain from increasing the imbalance ratio for
our method is much larger than other methods.

Effect of Buffer Size. As shown in Table 2, our method outper-
forms other rehearsal-based methods remarkably using different
buffer sizes. The general rule is that a larger buffer size benefits
the final performance. Besides, GEM, A-GEM-R, and iCaRL exhibit
higher sensitivity to the buffer size, indicating that these methods
are easily influenced by the random samples stored in the buffer.

Evolution of Task. To further justify the effectiveness of our
method, we show the class-IL accuracy curves along with sequen-
tial tasks in different datasets under the ordered-LTCL setting. As
shown in Figure 6, the overall accuracy tendency is downwards
along with incoming new tasks due to forgetting. It can be seen
that our method performs the best accuracy at the end of each task,
while other approaches forget a lot with incoming new tasks.

Ordered-LTCL Accuracy for Tasks with Minority Classes. To
indicate the performance improvement of our method on the minor-
ity data, we report the class-IL accuracy for the tasks with minority
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(a) Seq-CIFAR-10-LT (b) Seq-CIFAR-100-LT (c) Seq-TinyImageNet-LT

Figure 6: Accuracy during task evolution under ordered-LTCL setting on three benchmarks. The imbalance ratio is 0.01. The red
one denotes the best result. It is observed that our method can obtain the best performance with newly coming data and tasks.

Table 4: Ordered-LTCL Class-IL accuracy on Seq-CIFAR-10-
LT for minority classes. IR is 0.01 and buffer size is 200.

Method Task-3 Task-4 Task-5
SGD 28.23 29.76 37.20
Ours 48.75 46.52 58.66

classes (i.e., Task-3, Task-4, and Task-5 on Seq-CIFAR-10-LT). As
shown in Table 4, our method can obtain a significant performance
improvement on the tasks with minority classes, while the baseline
(i.e., SGD) performs worse due to catastrophic forgetting.

BWT Comparisons under Ordered-LTCL. BWT computes the
difference between the current accuracy and its best value for each
task. Lower negative values of BWT indicate that new tasks lead
to more catastrophic forgetting of the previous tasks. As shown in
Appendix, previous methods still forget a lot with lower negative
values of BWT, while our method maximizes BWT with minimal
forgetting. Our method performs significantly better than other
CL methods like iCaRL, DER, and ER. The main reason is that
our method can learn an well evolved feature space based on the
prototypes and boundary supporting samples.

4.4 Ablation Analysis
Importance of Prototype-based Classifier. We analyze differ-

ent components of our method to verify their effects. The linear
classifier is a fully-connected layer with the bias, and the cosine
classifier is a normalized fully-connected layer without the bias. As
shown in Table 5, our method could obtain the best results using
uncertainty quantification and cosine classifier. The linear classifier
without rehearsal yields the worst performance because of both
catastrophic forgetting and imbalance. As the cosine classifier re-
tains the prototype and similarity information among classes, the
class-IL accuracy can be improved compared to the linear classifier.
The linear classifier with uncertainty performs lower accuracy re-
sults without prototype information, although uncertainty is used
to select boundary supporting samples.

Importance of Boundary-supporting Sample. In this part, we
analyze the effect of boundary-supporting samples (uncertainty) on

Table 5: Ordered-LTCL accuracy results on Seq-CIFAR-10-LT
for ablation studies. IR is 0.01 and buffer size is 200.

Buffer Classifier Class-IL Task-IL
- linear 19.27 69.49
- cosine 30.24 74.66

random linear 33.21 76.64
random cosine 44.77 82.50

uncertainty linear 33.66 76.45
uncertainty cosine 51.00 89.99

reservoir sampling. Table 5 reports the results of random reservoir
sampling and uncertainty-guided reservoir sampling. It is observed
that the performance is significantly reduced when using random
reservoir sampling. The main reason is a lack of important bound-
ary information due to catastrophic forgetting, although prototypes
can be maintained via knowledge distillation over random sam-
ples. Based on the uncertainty estimation, the decision boundaries
between old and new classes can be well modeled via replaying
boundary supporting samples.

More experimental analysis can refer to Appendix.

5 CONCLUSION
In this work, we propose a novel Prior-free Balanced Replay (PBR)
framework based on the newly designed uncertainty-guided reser-
voir sampling strategy, which prioritizes rehearsing minority data
without using prior information. Additionally, we incorporate two
other prior-free components to further reduce the forgetting issue
including prototype and boundary constraints, which can main-
tain effective feature information for continually re-estimating task
boundaries and prototypes. Compared with existing CL methods
and SOTA LTCL approach, the experimental results on three stan-
dard long-tailed benchmarks demonstrate the superior performance
of the proposed method in both task and class incremental learning
settings, as well as ordered- and shuffled-LTCL settings. We believe
this would be an important step towards real-world scenarios by
combining continual learning with long-tailed distribution.
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