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Abstract

Offline reinforcement learning (RL) has achieved notable progress in recent years.1

However, most existing offline RL methods require a large amount of training2

data to achieve reasonable performance and offer limited generalizability in out-of-3

distribution (OOD) regions due to conservative data-related regularizations. This4

seriously hinders the usability of offline RL in solving many real-world appli-5

cations, where the available data are often limited. In this study, we introduce6

TELS, a highly sample-efficient offline RL algorithm that enables state-stitching7

in a compact latent space regulated by the fundamental time-reversal symmetry8

(T-symmetry) of dynamical systems. Specifically, we introduce a T-symmetry9

enforced inverse dynamics model (TS-IDM) to derive well-regulated latent state10

representations that greatly facilitate OOD generalization. A guide-policy can then11

be learned entirely in the latent space to optimize for the reward-maximizing next12

state, bypassing the conservative action-level behavioral regularization adopted in13

most offline RL methods. Finally, the optimized action can be extracted using the14

learned TS-IDM, together with the optimized latent next state from the guide-policy.15

We conducted comprehensive experiments on both the D4RL benchmark tasks16

and a real-world industrial control test environment, TELS achieves superior sam-17

ple efficiency and OOD generalization performance, significantly outperforming18

existing offline RL methods in a wide range of challenging small-sample tasks.19

1 Introduction20

Offline reinforcement learning (RL) has seen rapid progress in recent years. It bypasses the reliance21

on environment interactions of online RL, directly utilizing pre-collected datasets for policy learning,22

thus being ideal for many real-world tasks that lack high-fidelity simulators or have environment23

interaction restrictions [1, 2, 3]. However, offline RL is also known to be prone to value overestimation,24

caused by extrapolation error when evaluating out-of-distribution (OOD) samples and amplified25

through the bootstrapped update procedure in RL [4, 5].26

In the past few years, quite a few offline RL methods have been proposed, which commonly adopt the27

pessimism principle using strategies such as adding explicit or implicit policy constraints to prevent28

the selection of OOD actions [4, 5, 6, 7], penalizing value function on unseen samples [8, 9, 10, 11],29

or adopting in-sample learning to implicit regularize policy optimization [12, 13, 14]. What’s in30

common with these methods is the use of some kind of action-level constraints to avoid exploitation31

on OOD actions. Although this could stabilize offline value and policy learning, it inevitably leads32

to over-conservatism and crippled OOD generalization performance [15, 16]. Most of the existing33

offline RL methods only perform well when trained with sufficiently large amounts of offline data34

and reasonable state-action space coverage (e.g., 1 million samples for simple D4RL benchmark35

tasks [17]). This forms a stark contrast to the reality in most real-world scenarios, such as industrial36



control [2, 3], robotics [18], and healthcare [19], where the real-world operational data are often37

scarce, and scaling up data collection can be rather costly.38

Enhancing sample efficiency and OOD generalization capability is essential to making offline RL39

widely applicable to real-world applications. This is particularly important for small dataset settings,40

as most of the state-action space will become OOD regions. Several recent attempts have been made to41

improve the generalization performance of offline RL, which mainly follow three directions. The first42

direction builds upon the empirical observation that deep value functions interpolate well but struggle43

to extrapolate, thus allowing exploitation on interpolated OOD actions to promote generalization [15].44

However, this method has a smoothness assumption on the offline dataset geometry and only applies to45

continuous action space. The second class of methods avoids the conservative action-level constraint46

and instead performs reward maximization on the state-space [20, 21], which allows exploitation of47

OOD actions as long as the corresponding state transitions are reachable (also referred to as "state-48

stitching" [20]). Although such methods offer some promising generalization capabilities, they still49

require the state-action space to have reasonable data coverage to enable valid state-stitching. The last50

and also the most explored direction is to learn compact and robust latent representations to enhance51

sample efficiency [22, 23, 24, 25, 16]. Most of these methods only focus on extracting statistical-52

level information from the data, using techniques such as contrastive learning [22, 23, 24, 26].53

Due to the lack of in-depth modeling of the underlying dynamics inside the sequential data, these54

methods still struggle to provide generalizable information beyond data distribution. Some recent55

methods [25, 16, 3] propose to extract fundamental symmetries of dynamics to facilitate policy56

learning, such as the time-reversal symmetry (T-symmetry) [16, 3], i.e., the underlying physical57

laws should not change under the time-reversal transformation. By leveraging such universally held58

symmetries in the dataset, it is possible to maximally promote OOD generalization without being59

restrained by data distribution-related information. Although promising, these methods are built upon60

offline RL backbone algorithms with action-level constraints (e.g., CQL [8] or TD3+BC [7]), which61

still suffer from the over-conservatism issue.62

In this paper, we find that enabling state-stitching in a coherent, fundamental symmetry-enforced63

latent space can lead to a surprisingly strong sample-efficient offline RL algorithm. We refer to our64

method as Offline RL via T-symmetry Enforced Latent State-Stitching (TELS). Specifically, we65

introduce a T-symmetry enforced inverse dynamics model (TS-IDM) that can not only learn well-66

behaved and OOD generalizable latent representations, but also facilitate effective action inference.67

Within the learned latent state space, we can optimize a T-symmetry regularized guide-policy to output68

the next latent state that maximizes the accumulated reward, bypassing the conservative action-level69

behavioral regularization as adopted in most offline RL algorithms. Lastly, the optimized action70

can be easily extracted by plugging the output of the guide-policy as the goal state in the learned71

TS-IDM. We evaluate TELS on both the challenging reduced-size D4RL benchmark tasks and a72

real-world industrial control test environment [3]. Through comprehensive experiments, we show73

that TELS achieves state-of-the-art (SOTA) sample efficiency and OOD generalization capability,74

significantly outperforming existing offline RL algorithms on small datasets. Our method greatly75

pushes the performance limit of offline RL under low data regimes, offering a new opportunity to76

tackle many previously unsolvable tasks with data size restrictions.77

2 Preliminaries78

Offline RL. We consider the standard Markov decision process (MDP) setting [27], which is79

represented as a tuple M = {S,A, r,P, ρ, γ}, and a dataset D, which consists of trajectories80

τ = {s0, a0, s1, a1, ..., sT , aT }. Here S and A denote the state and action spaces, r(s, a) is a81

scalar reward function, P(s′|s, a) and ρ denote the transition dynamics and initial state distribution82

respectively, and γ ∈ (0, 1) is a discount factor. Our goal is to learn a policy π(a|s) based on dataset83

D by maximizing the expected return in the MDP: Eπ[
∑∞
t=0 γ

t · r(st, at)].84

Offline policy optimization in the state space. Instead of adopting conservative action-level85

constraints for offline policy learning, Policy-guided Offline RL (POR) [20] proposes an alternative86

scheme, which decomposes the conventional reward-maximizing policy into a guide-policy and87

an execute policy. The guide-policy only works in the state space to find the optimal next state88

that maximizes the state-value function, and the execute-policy is learned as an inverse dynamics89

model [20] or a goal-conditioned imitative policy [21]. Such methods only need to learn a state-only90

value function V using the IQL-style expectile regression [12], or the sparse value learning objective91
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as discussed in [13]. We present the former as follows:92

V = argmin
V

E(s,r,s′)∼D
[
Lτ2

(
r(s) + γV̄ (s′)− V (s)

)]
(1)

where Lτ2(x) = |τ−1(x < 0)|x2 is the asymmetric expectile regression loss and V̄ denotes the target93

value network. Based on the learned state-value function, we can learn a guide-policy πg(s′|s) to serve94

as a prophet by telling which state the agent should (high reward) and can (logical generalization) go95

to, without being constrained to state-action transitions seen in the dataset. This can be achieved by96

leveraging an advantage weighted regression (AWR) objective [28, 29] to maximize the value while97

implicitly constraining πg to s→ s′ transitions observed in the dataset (i.e., state-stitching):98

πg = argmax
πg

E(s,r,s′)∼D

[
exp(α ·A(s, s′)) log πg(s′ | s)

]
(2)

where the advantage A(s, s′) = r + γV (s′)− V (s) serves as the behavior cloning weight, and α is99

the temperature parameter to prioritize value maximization over state-wise imitation.100

For the execute-policy πe, POR employs a supervised learning framework and trains πe by maximiz-101

ing the likelihood of the actions given the states and next states: maxπe E(s,a,s′)∼D[log πe (a | s, s′)].102

During evaluation phase, given the current state s, we can sample the optimized next state s′ from103

πg(s
′|s), and get final action simply as a∗ = πe (a | s, πg(s′|s)).104

Time-reversal symmetry for generalizable offline RL. Recently, leveraging fundamental, uni-105

versally held symmetries of dynamics such as T-symmetry discovered in classical and quantum106

mechanics [30, 31] has been shown to be a promising approach to enhance the generalization of107

offline RL [16, 3]. Specifically, if we model the system dynamics with measurements x as a set of108

non-linear first-order differential equations (ODEs) expressed as dx
dt = F (x), a dynamical system109

is said to exhibt time-reversal symmetry if there is an invertible transformation Γ that reverses the110

direction of time: i.e., dΓ(x)/dt = −F (Γ(x)). For the discrete-time MDP setting, the T-symmetry111

can be extended as learning a pair of ODE forward dynamics F (s, a) → ṡ and reverse dynamics112

G(s′, a) → −ṡ, and require them to satisfy F (s, a) = −G(s′, a) [16], where the time-derivative of113

state ṡ = ds
dt is approximated as s′ − s.114

Based on this intuition, TSRL [16] constructed an encoder-decoder structured T-symmetry enforced115

dynamics model (TDM) for representation learning, which embeds a pair of latent ODE forward and116

reverse dynamics to enforce T-symmetry. TSRL achieves impressive performance under small-sample117

settings, and its variant has been successfully deployed for real-world industrial control [3], but it118

still has some limitations. First, TSRL only uses the learned encoder from TDM to derive the latent119

representations, without fully exploiting the rich dynamics-related information for downstream policy120

learning. Second, its representation learning scheme uses both state and action as inputs, forcing121

TSRL to involve policy-induced actions during policy optimization, which inevitably requires adding122

a conservative action-level behavioral constraint as in TD3+BC [7] to stabilize training. Moreover,123

involving action as an input for representation learning is also prone to capturing biased behaviors124

in the behavioral policy, which could impede learning fundamental, distribution-agnostic dynamics125

patterns in data. Please refer to Appendix A for a more detailed comparison and discussion.126

3 Offline RL via T-symmetry Enforced Latent State-Stitching127

We now present our proposed method, TELS, which comprises a T-symmetry enforced inverse128

dynamics model (TS-IDM) integrated with an effective offline policy optimization procedure operated129

in latent state space (illustrated in Figure 1). TS-IDM overcomes multiple drawbacks of TDM in130

TSRL [16], which not only extracts the generalizable, T-symmetry preserving representations from131

the limited data, but also can be seamlessly used as an execute-policy for optimal action extraction.132

3.1 T-symmetry enforced inverse dynamic model133

As illustrated in Figure 1, if inspecting the input and output of our proposed TS-IDM, it functions134

similarly to an inverse dynamics model that takes current and next state (s, s′) as input and outputs135

the predicted action a. However, TS-IDM’s architecture is special in several aspects. In its interior,136

it comprises a state encoder ϕs(s) = zs and a corresponding decoder ψs(zs) = ŝ; a latent inverse137

dynamics model hinv(zs, zs′) = za followed by an action decoder ψa(za) = â; and most importantly,138
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Figure 1: Overview of T-symmetry Enforced Latent State-Stitching (TELS) framework.

a pair of T-symmetry enforced latent ODE forward and reverse dynamics predictors hfwd(zs, za) =139

żs and hrvs(zs′ , za) = −żs. In the following content, we will dive into the design intuitions and140

learning objectives of these components.141

Encoding and decoding. As previously discussed, constructing an informative and well-structured142

latent space is critical for sample-efficient offline policy optimization. To this end, we introduce a143

state encoder ϕs(s) = zs to map a state s into corresponding latent representation zs, and also a state144

decoder ψs(zs) = s to reconstruct the original state from its latent embedding, ensuring that the145

learned latent representations remain faithful to the original state space and avoid excessive distortion.146

We then construct a latent inverse dynamics model hinv(zs, zs′) = za, which infers the latent action147

za from the latent state transitions (zs, zs′). By inferring actions from state transitions, the learned148

latent space implicitly encodes the underlying dynamics of the environment. Moreover, the inverse149

dynamic model hinv can be integrated with a pair of latent ODE dynamic models to derive the150

T-symmetry property of the system, which we will introduce in more detail shortly. Finally, to151

ensure that the inferred actions are both meaningful and interpretable, we employ an action decoder152

ψa(za) = â to map the latent action back to its original action space. We can thus formulate the153

reconstruction loss for the states and actions as follows:154

ℓrec(s, a, s
′) = ∥ψs(ϕs(s))− s∥22︸ ︷︷ ︸

reconstruction loss of states

+ ∥ψa(hinv(zs, zs′))− a∥22︸ ︷︷ ︸
reconstruction loss of actions

(3)

Latent ODE forward and reverse dynamics. Drawing inspiration from previous research that155

integrates physics-informed insights into dynamical systems modeling [32, 33, 31, 16], we embed156

a pair of latent ODE forward and reverse dynamics hfwd(zs, za) = żs and hrvs(zs′ , za) = −żs157

to separately capture the forward and reverse time evolution in the latent states. We are interested158

in modeling ODE systems because it encourages learning parsimonious models helpful to uncover159

fundamental properties from the data that can maximally promote generalization [32, 33]. Note that160

based on the chain rule, we can derive the supervision signal for the latent dynamics models with161

żs =
dz
dt =

dzs
ds · dsdt = ∇szs · ṡ = ∇sϕs(s) · ṡ to enforce the ODE property. Therefore, we introduce162

the following training losses for hfwd and hrvs:163

ℓdyn(s, s
′) = ∥(∇szs)ṡ− żs∥22︸ ︷︷ ︸

latent ODE forward dynamics

+ ∥(∇s′zs′)(−ṡ)− (−żs)∥22︸ ︷︷ ︸
latent ODE reverse dynamics

=∥∇sϕs(s)ṡ− hfwd(zs, za)∥22 + ∥∇s′ϕs(s
′)(−ṡ)− hrvs(zs′ , za)∥22, (4)

where the latent action za is obtained from the latent inverse dynamics model hinv(zs, zs′).164

ODE property enforcement on state decoder. Note that in ℓdyn(s, s
′), we actually implicitly165

enforced the ODE property on the state encoder ϕs, the same should also apply to the state decoder166

ψs to ensure compatibility with the T-symmetry formalism, i.e. the time-derivative of the state167

encoder dϕs(s)
dt and decoder dψs(zs)

dt should behave in the same way as żs and ṡ. Similar to the168

previous treatment on the state encoder, as ṡ = dψs(zs)
dt = dψs(zs)

dzs
· dzsdt = ∇zsψs(zs) · żs, we can169

use the following objective to enforce the ODE property for the state decoder ψs:170
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ℓode(s, s
′) = ∥∇zsψs(zs) · żs − ṡ∥22︸ ︷︷ ︸

enforce ODE of ψs on hfwd

+ ∥∇zs′ψs(zs′) · (−żs)− (−ṡ)∥22︸ ︷︷ ︸
enforce ODE of ψs on hrvs

=∥∇zsψs(zs) · hfwd(zs, za)− ṡ∥22 + ∥∇zs′ψs(zs′) · hrvs(zs′ , za) + ṡ∥22 (5)

Again, the latent action za is obtained from hinv(zs, zs′).171

Notably, the ODE property enforcement in Eq. (5) is not considered in the T-symmetry enforced172

dynamics model (TDM) proposed by TSRL [16]. In other words, TDM only enforces the ODE173

properties for encoders but not for decoders. This can cause inconsistency between the learned174

dynamics and the underlying ODE structure, leading to inaccurate or misaligned ODE representations.175

T-symmetry enforcement. To further regularize the learned latent representations, we incorpo-176

rate the extended version of T-symmetry [16] by requiring hfwd(zs, za) = −hrvs(zs′ , za), which177

corresponds to the following T-symmetry consistency loss:178

ℓT-sym(zs, za) = ∥hfwd(zs, za) + hrvs(zs + hfwd(zs, za), za)∥22 (6)

where we use the fact that zs′ = zs + żs = zs + hfwd(zs, za) and hrvs(zs + hfwd(zs, za), za) =179

−żs = −hfwd(zs, za) to further couple the learning process of hfwd and hrvs. Moreover, given a180

latent state-action pair (zs, za), the above T-symmetry consistency loss can also serve as an evaluation181

metric to assess their agreement with the learned TS-IDM. A large T-symmetry loss indicates that the182

latent state-action representation (zs, za) induced by some (s, s′) may not satisfy the fundamental183

dynamics pattern, making it more likely to be a problematic or non-generalizable sample.184

Overall learning objective. Finally, the complete training loss function of TS-IDM is as follows:185

LTS-IDM =
∑

(s,a,s′)∈D

[
ℓrec + β · (ℓdyn + ℓode + ℓT-sym)

]
(s, a, s′) (7)

where β is a hyperparameter that balances extracting fundamental dynamics properties and ensuring186

the interpretability of the learned representation. Note that we use the same β for ℓdyn, ℓode, and187

ℓT-sym terms, this is to ensure that the ODE property and T-symmetry regularization are enforced in188

the same scale for state encoder ϕs, decoder ψs, latent inverse dynamics hinv, latent ODE forward189

and reverse dynamics hfwd and hrvs, as all of them are strongly coupled. This forms a strongly190

consistent, T-symmetry preserving ODE system to capture the fundamental dynamics properties in191

the offline dataset, while also helping reduce unnecessary hyperparameters of the learning process. In192

Appendix B.3, we provide detailed results on the impact of β on the learning process of TS-IDM.193

3.2 Latent space offline policy optimization194

Once we have learned TS-IDM, we can extract three highly useful components from it to facilitate195

sample-efficient downstream offline policy optimization, including: 1) a state encoder ϕ(s) that196

provides an ideal, well-behaved latent space for state-stitching; 2) T-symmetry consistency as an197

additional regularizer to prevent erroneous generalization when learning a guide-policy in the latent198

state space; and 3) the TS-IDM itself can serve as an execute-policy as in POR [20] to extract199

optimized action given a learned guide-policy.200

Latent state-value functions learning. Based on the state encoder ϕs(s) from the learned TS-201

IDM, we can convert the entire offline policy optimization process into the latent state space, which202

enjoys both a stable learning process and generalizability due to more compact and well-behaved203

representations. Specifically, we can use a similar expectile regression loss as in Eq. (1) to learn a204

state-value function V (zs), but in the latent state space:205

min
V

E(s,r,s′)∼D

[
Lτ2

(
r + γV̄ (ϕs(s

′))− V (ϕs(s))
) ]

(8)

T-symmetry regularized guide-policy optimization. A key benefit of learning within the T-206

symmetry preserving latent space is that, as T-symmetry captures what is essential and invariant about207

the dynamical system, it can provide generalizable information even for OOD samples beyond the208

offline dataset. This naturally favors learning a reward-maximizing guide-policy πg in the latent space,209

which can enjoy more effective state-stitching. Moreover, different from POR [20], by leveraging the210
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T-symmetry consistency term ℓT-sym(·) in Eq. (6) as an additional regularizer, we can prevent πg from211

outputting problematic and non-generalizable latent next state, thereby further enhancing logical212

state-wise OOD generalization. In TELS, we provide two instantiations for guide-policy optimization,213

depending on the choice of using deterministic policy πg(zs) or stochastic policy πg(zs′ |zs):214

- Deterministic policy:

max
πg

E(s,s′)∼D

[
λαV (πg(zs))− η∥ψs(πg(zs))− s′∥22 − ℓT-sym (zs, hivs (zs, πg(zs)))

]
(9)

- Stochastic policy:

max
πg

E(s,s′)∼D

[
exp(α ·A(zs, zs′)) log πg(zs′ | zs)− ℓT-sym(zs, hivs(zs, πg(·|zs))

]
(10)

where zs = ϕs(s), zs′ = ϕs(s
′), andA(zs, zs′) = r+γV (zs′)−V (zs). For the deterministic policy215

πg(zs), we optimize the guide-policy by maximizing the latent state-value function V weighted by a216

normalization term λα, together with two extra regularization terms. The first regularizes the next217

state decoded from the guide-policy using state decoder ψs should not deviate too much from the218

next state s′ in the dataset. The second term regularizes the guide-policy induced latent state-action219

pair (i.e., (zs, za) = (zs, hinv(zs, πg(zs)))) to comply with the T-symmetry consistency specified220

in the learned TS-IDM. For the stochastic guide-policy πg(zs′ |zs), we adopt a similar AWR-style221

objective as in Eq. (2), while also incorporating the T-symmetry consistency regularization as in the222

deterministic version. In our experiments, we find that the deterministic version objective Eq. (9)223

works well for the MuJoCo locomotion tasks, while the stochastic version Eq. (10) works better for224

more complex Antmaze tasks [17], potentially due to more stochastic nature of the task environment.225

Action inference. After learning the guide-policy πg , we can further use it to extract the optimized226

action for control. To do this, we can simply use the optimized latent next state z∗s′ obtained from227

guide-policy πg(zs) or πg(·|zs) as the goal state, and plug it into the learned latent inverse dynamics228

model hinv(zs, zs′) in TS-IDM to replace zs′ . The final action can be extracted by decoding the229

resulting latent action from hinv using the action decoder ψa :230

a∗ = ψa (hinv (zs, πg(zs))) (11)

Note that there is no training process needed for this stage. Moreover, throughout our policy optimiza-231

tion process, actions are completely not involved, allowing TELS to directly bypass the conservatism232

issue caused by the action-level regularization. Please refer to Algorithm 1 in Appendix C for the233

complete training and inference procedure of TELS.234

4 Experiments235

In this section, we present the evaluation results of TELS on the D4RL benchmark tasks [17]236

against behavior cloning (BC), and existing offline RL methods: TD3+BC [7], CQL [8], IQL [34],237

DOGE [15], POR [20], model-based methods MOPO [35] and COMBO [36], diffusion-based method238

IDQL [37], and TSRL [16], the current SOTA method in small-sample settings. To demonstrate the239

effectiveness of TELS in solving real-world tasks, we also validate TELS in a real-world industrial240

control environment, which is a data center (DC) cooling control testbed built by a recent work [38].241

Moreover, we conduct additional experiments to further evaluate the OOD generalizability of TELS242

on a challenging task, and the strengths of the representations learned with TS-IDM in improving243

small-sample performance. More results and implementation details can be found in Appendix B, C.244

4.1 Comparative evaluation on small-sample setting245

Evaluation on D4RL benchmarks. In Table 1, we evaluate TELS against baseline methods on246

challenging reduced-size D4RL datasets (5k∼100k samples, about 0.5∼10% of their original sizes)1.247

These small-sample tasks are particularly challenging for offline RL algorithms, as the data only248

sparsely cover the state-action space and require strong OOD generalization capability for algorithms249

to achieve reasonable performance. Results on full D4RL datasets can be found in Appendix B.1.250

1We use the same reduced-size MuJoCo datasets from the TSRL paper [38], and randomly sub-sample 100k
Antmaze datasets for experiments. We use the original Adroit datasets for evaluation, as they are already small.
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Table 1: Normalized scores on reduced-size D4RL datasets (averaged over the final 10 evaluations with 5 seeds)

Task Size (ratio) BC TD3+BC MOPO COMBO CQL IQL DOGE IDQL POR TSRL TELS
Hopper-m 10k (1%) 29.7±11.7 40.1±18.6 5.5 ± 2.3 30.2 ± 28.0 43.1±24.6 46.7±6.5 44.2 ± 10.2 44.2±12.1 46.4 ± 1.7 62.0±3.7 77.3 ± 10.7
Hopper-mr 10k (2.5%) 12.1±5.3 7.3±6.1 6.8 ± 0.3 10.6 ± 13.1 2.3±1.9 13.4±3.1 17.9 ± 4.5 21.7±7.0 17.4 ± 6.2 21.8±8.2 43.2 ± 3.5
Hopper-me 10k (0.5%) 27.8±10.7 17.8±7.9 5.8 ± 5.8 13.9 ± 22.0 29.9±4.5 34.3±8.7 50.5 ± 25.2 43.2±4.4 37.9 ± 6.1 50.9±8.6 100.9 ± 6.8
Halfcheetah-m 10k (1%) 26.4±7.3 16.4±10.2 -1.1 ± 4.1 16.5 ± 2.4 35.8±3.8 29.9±0.12 36.2 ± 3.4 36.4±1.5 33.3±3.2 38.4±3.1 40.8 ± 0.6
Halfcheetah-mr 10k (5%) 14.3±7.8 17.9±9.5 11.7 ± 5.2 11.8 ± 15.3 8.1±9.4 22.7±6.4 23.4 ± 3.6 26.7±1.0 27.5±3.6 28.1±3.5 33.2 ± 1.0
Halfcheetah-me 10k (0.5%) 19.1±9.4 15.4±10.7 -1.1 ± 1.4 5.2 ± 6.1 26.5±10.8 10.5±8.8 26.7 ± 6.6 38.8±1.9 34.7±2.6 39.9±21.1 40.7 ± 1.2
Walker2d-m 10k (1%) 15.8±14.1 7.4±13.1 3.1 ± 4.7 3.6 ± 1.1 18.8±18.8 22.5±3.8 45.1 ± 10.2 31.7±14.2 22.2±3.6 49.7±10.6 62.4 ± 5.3
Walker2d-mr 10k (3.3%) 1.4±1.9 5.7±5.8 3.3 ± 2.7 4.2 ± 15.6 8.5±2.19 10.7±11.9 13.5 ± 8.4 12.2±10.5 14.8±4.2 26.0±11.3 54.8 ± 6.0
Walker2d-me 10k (0.5%) 21.7±8.2 7.9±9.1 0.6 ± 2.7 0.1 ± 0.1 19.1±14.4 26.5±8.6 35.3 ± 11.6 21.8±14.5 20.1±8.6 46.4±17.4 87.4 ± 13.3

Antmaze-u 10k (1%) 44.7 ± 42.1 0.7 ± 1.2 0.0 0.0 5.5 ± 2.3 65.1 ± 19.4 56.3 ± 24.4 67.5 ±12.4 6.1 ± 7.3 76.1 ± 15.6 88.7 ± 7.7
Antmaze-u-d 10k (1%) 24.1 ± 22.2 16.27 ± 16.4 0.0 0.0 0.5 ± 0.1 34.6 ± 18.5 41.7 ± 18.9 55.1 ± 36.8 42.1 ± 14.2 52.2 ± 22.1 60.9 ± 16.9
Antmaze-m-d 100k (10%) 0.0 0.0 0.0 0.0 0.0 4.8 ± 5.9 0.0 9.0 ±3.4 0.0 0.0 47.2 ± 17.3
Antmaze-m-p 100k (10%) 0.0 0.0 0.0 0.0 0.0 12.5 ± 5.4 0.0 9.4 ± 14.7 0.0 0.0 62.9 ± 17.8
Antmaze-l-d 100k (10%) 0.0 0.0 0.0 0.0 0.0 3.6 ± 4.1 0.0 16.1 ± 8.4 0.0 0.0 39.8 ± 14.1
Antmaze-l-p 100k (10%) 0.0 0.0 0.0 0.0 0.0 3.5 ± 4.1 0.0 9.7 ±8.5 0.0 0.0 47.3 ± 13.1

Pen-human 5k (100%) 34.4 8.4 9.7 27.7 37.5 71.5 42.6 ± 16.3 67.9 ± 17.3 64.1 ± 25.3 80.1 ± 18.1 77.4 ± 17.2
Hammer-human 5k (100%) 1.5 2.0 0.2 0.2 4.4 1.4 -1.2 ± 0.2 2.7 ± 1.3 0.2 ± 0.1 0.2 ± 0.3 3.6 ± 1.5
Door-human 5k (100%) 0.5 0.5 -0.2 -0.3 9.9 4.3 -1.1 ± 0.2 10.5 ± 1.5 0.1 ± 0.1 0.5 ± 0.3 11.8 ± 1.6
Relocate-human 5k (100%) 0.0 -0.3 -0.2 -0.3 0.2 0.1 0.1 ± 0.2 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.3 ± 0.2

Figure 2: Performance of TELS against baselines under different data sizes

As shown in Table 1, most baselines fail to learn reasonable policies under small datasets, especially in251

the challenging 100k Antmaze-medium/large datasets. For example, conventional offline RL methods252

like TD3+BC and CQL perform poorly on small datasets, primarily due to their over-conservative253

data-related policy constraints. Model-based methods also perform badly due to insufficient samples254

to learn accurate dynamics models and the use of problematic model rollout data. Baselines that255

have generalization promotion designs, such as DOGE and TSRL, perform slightly better but still256

fail miserably in the challenging Antmaze-m/l tasks, as they still adopt conservative action-level257

constraints to stabilize policy learning. Recent diffusion-based methods like IDQL, although perform258

well on large datasets, struggle to learn when given limited data. By contrast, TELS dominates the259

chart and outperforms all other baselines in all tasks, sometimes by a large margin. This is attributed260

to the leverage of fundamental, data distribution-agnostic T-symmetry property for policy learning,261

which greatly improves the OOD generalization performance. This is evident when observing the huge262

performance difference between POR and TELS, as the former shares a similar policy optimization263

procedure but does not use the T-symmetry enforced representation and policy regularization.264

We also evaluate the performance of the algorithms across different dataset sizes in Figure 2. The265

results show that TELS can robustly maintain reasonable performance even with only 5k samples,266

surpassing all the other methods, while most baseline methods suffer from significant performance267

drop when training samples are decreased.268

Evaluation on real-world industrial control test environment. To further demonstrate the effec-269

tiveness of TELS in solving real-world industrial control tasks, we deploy TELS in a real-world DC270

cooling control testbed [38] and compare against CQL, IQL, and TSRL. This testbed comprises 22271

servers with oscillating server loads and an Air-Cooling Unit (ACU) for cooling control. A small272

historical operational dataset (43k real-world samples collected over 61 days) with 105 state-action273

features is used for policy learning. The goal is to improve the energy efficiency of the DC’s cooling274

systems (minimizing the Air-side Cooling Load Factor (ACLF), calculated as the ratio of energy275

consumption of ACU to servers), while satisfying thermal safety constraints (no overheating). We276

follow the same real-world experiment setup as in [38] and present the details in Appendix D.277

As shown in Table 2, under a similar server energy consumption level (around 40 kWh), TELS learns278

the best control policy, achieving 20.17% ACLF while maintaining zero thermal safety violations.279

CQL learns a naive policy that achieves lower ACLF but with significant thermal safety violations.280

This shows TELS’s effectiveness in solving real-world complex industry control tasks.281
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Table 2: Evaluation results in the real-world DC cooling control testbed (6-hour length experiments)
Testbed CQL IQL TSRL TELS
Server energy consumption (kWh) 41.44 39.80 40.30 40.61
ACU energy consumption (kWh) 4.16 16.27 10.95 8.19
Energy efficiency measure: ACLF (the lower the better) 10.3% 40.89% 27.16% 20.17% ↓
Percentage of thermal safety violation (the lower the better) 40.99% 0.00% 0.00% 0.00%

Figure 3: Left: Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the red cross
denotes the start point, the yellow star denotes the goal locations, and the red shaded areas denote the data
deletion regions. Right: Visualization of the training dataset and policy rollout trajectories generated by trained
policies from various algorithms under varying deletion ratios.

4.2 Analysis and ablation of TELS282

OOD generalization capability. To further examine the OOD generalizability of TELS, we283

construct a very challenging task based on the reduced-size 100k Antmaze-m-d dataset, as illustrated284

in Figure 3. Specifically, we randomly remove samples within 5 critical regions along the critical285

paths from the start to the goal locations. This task requires extremely strong OOD generalization286

capability to solve, as the vital information for the optimal trajectory is extremely scarce or completely287

OOD. We train IQL, POR, and TELS on the remaining data and plot their policy rollouts over 20288

episodes for performance evaluation and behavior analyses (due to page limit, we also include results289

for IDQL, DOGE, TSRL in Appendix B.2). As shown in Figure 3, IQL can only achieve some290

success when the deletion ratio is 0%, and POR fails to reach the goal in all cases. By contrast,291

TELS consistently learns optimal policy even with 70% and 100% deletion rates. It can effectively292

utilize the limited information provided in the sparse remaining data samples at the boundaries of the293

deletion areas for policy learning. These highlight the extraordinary OOD generalization capability294

of TELS in extremely challenging low-data regimes.295

Effectiveness of the learned representations. To verify the effectiveness of the learned latent296

representation in TS-IDM, we use TS-IDM’s state encoder ϕs(s) as the representation learning297

module on top of two conventional offline RL methods: IQL and TD3+BC. Figure 4 (left) reveals298

significant performance improvements and variance reduction when IQL and TD3+BC are trained299

within the latent state space induced by ϕs(s), suggesting that TS-IDM indeed learns compact300

and generalizable representations that benefit policy learning. To further evaluate the quality of301

TS-IDM’s representations, in Figure 4 (right), we replace TS-IDM in TELS with other representation302

learning methods, including autoencoder (“AE-rep”), variational autoencoder (“VAE-rep”) [39],303

and contrastive learning method SimCLR (“Contras-rep”) [40]. The results show that the TS-IDM304

representation achieves substantially better performance as compared to AE, VAE, and contrastive305

representations, due to the information-rich and well-behaved latent space learned in TS-IDM.306

Ablations on the design components of TS-IDM. To examine the impact of each component in307

TS-IDM, we evaluate various variants of TS-IDM, starting with a vanilla latent inverse dynamics308

model with encoder and decoders, denoted as “ ϕ/ψ+ hinv”, gradually adding latent forward and309

reverse dynamics “hfwd, hrvs”, ODE property enforcement “ℓode”, and eventually the T-symmetry310

consistency loss “ℓT-sym”, resulting in the full TS-IDM. Results on 10k datasets are shown in Table 3.311

8



Figure 4: Left: Performance of IQL and TD3+BC on 10k datasets with or
without using the representation from TS-IDM. Right: The performance of
TELS with different representation models on 10k datasets.

Figure 5: Impact of ℓT-sym
on policy optimization.

312

We observe that the naïve autoencoder-based inverse dynamics model fails to provide reasonable313

representations. Incorporating dynamics-related information via latent dynamics is helpful, but314

Table 3: Ablation on the design components of TS-IDM.

Hopper-me Halfcheetah-me Walker2d-me

ϕ/ψ+ hinv 17.2 ± 7.0 29.7 ± 3.6 24.5 ± 10.1
↑ + hfwd, hrvs 35.5 ± 7.3 31.3 ± 1.1 33.6 ± 9.2
↑ + ℓode 61.4 ± 23.7 31.2 ± 1.2 58.5 ± 18.1
↑ + ℓT-sym 100.9 ± 6.8 40.7 ± 1.2 87.4 ±13.3

the performance gain remains mild. Enforcing315

ODE properties on decoders greatly enhances316

the quality of learned representations. Lastly,317

enforcing T-symmetry consistency proves to be318

the strongest performance improvement factor,319

which greatly enhances the quality of the learned320

representations for downstream policy learning.321

Ablations on regularizer terms in policy optimization. We also conduct ablation experiments in322

Figure 5 to validate the effectiveness of the T-symmetry consistency regularizer term ℓT-sym during the323

guide-policy optimization process of TELS. The results demonstrate that incorporating this term can324

effectively enhance performance while reducing variance, highlighting the importance of utilizing325

T-symmetry consistency regularization to promote OOD generalization and learning stability.326

5 Related Work327

Offline RL faces unique challenges in mitigating the risk of OOD exploitation. Evaluating value328

functions in OOD regions often results in inaccurate estimates, which can lead to severe value329

overestimation and misguiding policy learning. To mitigate this, most offline RL methods leverage330

data-related regularizations to stabilize the learning process. These include explicit behavior constraint331

techniques that penalize action divergence [6, 4, 7, 41], value regularization schemes to discourage332

policies from selecting OOD actions via modifying Bellman update [8, 9, 10, 11] or introducing333

uncertainty penalities [42, 43, 10], and in-sample learning methods [44, 12, 13, 14], which stabilize334

training by only using in-sample data for value and policy learning. While these methods perform335

reasonably well on datasets with sufficient state-action coverage, they often struggle in small-sample336

settings where exploiting OOD generalization is vital for achieving good performance. Recently,337

leveraging expressive model architectures such as Transformers and diffusion models [45, 46, 47, 48,338

37, 49, 50, 51] have gained popularity in offline RL, due to their strong capability to fit complex data339

distributions. However, these models are overly heavy and require extensive amounts of data to learn,340

making them hardly usable for the small-sample setting.341

6 Conclusion342

We propose a highly sample-efficient offline RL algorithm that learns an optimized policy within343

the latent space regulated by the fundamental T-symmetry property. Specifically, we develop a T-344

symmetry enforced inverse dynamics model, TS-IDM, to construct a well-behaved and generalizable345

latent space, effectively mitigating the challenges of OOD generalization. By learning a T-symmetry346

regularized guide-policy within this latent space, we can obtain the reward-maximizing next state347

to serve as the goal state input in the learned TS-IDM for optimal action extraction. Through348

extensive experiments, we show that TELS achieves strong OOD generalization capability and SOTA349

small-sample performance. Moreover, we empirically show that TS-IDM can also function as a350

representation learning model to provide informative representations and enhance the performance351

of existing methods under the small-sample setting. One potential limitation of TELS is that strong352

ODE and T-symmetry property regularizations, although helpful for capturing fundamental patterns353

in data, sometimes could limit the model’s expressive power (see Appendix B.3). Future studies can354

explore improved designs to perfectly balance fundamental pattern extraction and model expressivity.355
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Appendix509

A Additional Discussion on Related Works510

In this section, we present a detailed discussion of the connections and differences between our511

proposed method, TELS with TSRL [16], POR [20], and conventional model-based approaches [52,512

35, 53, 36, 54, 2].513

Figure 6: Comparison of the architecture between TDM in TSRL and our proposed TS-IDM in TELS.

Connection and differences with TSRL. As illustrated in Figure 6, both TSRL and TELS leverage514

the T-symmetry consistency enforcement to construct the latent space. Specifically, in Figure 6 (a),515

TSRL employs a T-symmetry-enforced dynamics model (TDM), which models system dynamics by516

incorporating paired latent ODE forward and reverse dynamics to enforce T-symmetry. In contrast,517

Figure 6 (b) illustrates our proposed T-symmetry-enforced inverse dynamics model (TS-IDM), which518

integrates T-symmetry constraints into both forward and reverse dynamics while incorporating an519

inverse dynamics model. We emphasize the main differences between TELS and TSRL as follows:520

• Architecture: As presented in Figure 6 (a), TDM jointly encodes state-action pairs to form the521

latent space, which may capture behavioral biases from the dataset (e.g., expert-specific action522

patterns) and impede learning fundamental, distribution-agnostic dynamics patterns in data. In523

contrast, Figure 6 (b) illustrates that TS-IDM overcomes these limitations by adopting a state-only524

modeling approach, focusing on the underlying latent state variations. Additionally, the only525

useful component of the learned TDM for downstream policy learning is its encoder ϕ(s, a),526

wasting the dynamics-related information captured by the model. In contrast, TS-IDM trains an527

inverse dynamics model within the T-symmetry-enforced latent space, which can be reused as an528

execute-policy to extract optimal actions.529

• Detailed model design: As shown in Figure 6 (a), TDM only enforces the ODE property for its530

encoder but not the decoder, which could lead to inconsistency between the learned dynamics531

and the underlying ODE structure, resulting in inaccurate or misaligned ODE representations. To532

address this problem, we introduce the loss term ℓode in Eq. (5) specifically to achieve this goal.533

This design is very important as it can greatly enhance the coupling among the different elements534

in the model and results in a more stable learning process.535

• Training procedure: In TSRL, the TDM encoder and decoders must be pre-trained before joint536

training on other components to avoid stability issues. In contrast, our proposed TS-IDM does537

not require pre-training; all components can be learned jointly in a single stage. Additionally,538

TDM requires adding L1-norm regularization to the parameters of the latent forward and reverse539

dynamics models to stabilize the learning process. This is unnecessary in TS-IDM (see Eq. (7)), as540

the design of our proposed TS-IDM enables strongly coupled and consistent relationships among541

all its internal components. The learning curves of TS-IDM can be found in Appendix F.542

• Policy optimization: Since TDM requires both state and action as inputs to derive the latent543

representations, it is constrained to Q-function maximization for policy optimization. Consequently,544

TSRL adopts the TD3+BC framework as its backbone for policy optimization, which inherently545

suffers from over-conservative action-level constraints, particularly in small dataset settings. In546

contrast, TELS performs policy optimization entirely within the compact and generalizable latent547

state space derived from TS-IDM, enabling state-level optimization that avoids the limitations of548

action-space constraints.549
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Table 4: Normalized scores on full-size D4RL datasets (averaged over the final 10 evaluations with 5 seeds).
Task BC TD3+BC MOPO COMBO CQL IQL DOGE IDQL POR TSRL TELS (ours)

Hopper-m 52.9 59.3 28.0 97.2 58.5 66.3 98.6 ± 2.1 63.1 78.6 ± 7.2 86.7±8.7 94.3 ± 2.8

Hopper-mr 18.1 60.9 67.5 89.5 95.0 94.7 76.2±17.7 82.4 98.9 ± 2.1 78.7±28.1 99.5 ± 2.3

Hopper-me 52.5 98.0 23.7 111.1 105.4 91.5 102.7± 5.2 105.3 90.0 ± 12.1 95.9±18.4 105.4 ± 8.5

Halfcheetah-m 42.6 48.3 42.3 54.2 44.0 47.4 45.3± 0.6 49.7 48.8 ± 0.5 48.2 ±0.7 44.3 ± 0.4

Halfcheetah-mr 55.2 44.6 53.1 55.1 45.5 44.2 42.8 ±0.6 45.1 43.5±0.9 42.2 ± 3.5 41.1 ± 0.1

Halfcheetah-me 55.2 90.7 63.3 90.0 91.6 86.7 78.7±8.4 94.4 94.7±2.2 92.0±1.6 87.1 ± 2.9

Walker2d-m 75.3 83.7 17.8 81.9 72.5 78.3 86.8 ± 0.8 80.2 81.1 ± 2.3 77.5 ±4.5 81.3± 5.1

Walker2d-mr 26.0 81.8 39.0 56.0 77.2 73.9 87.3 ± 2.3 79.8 76.6 ± 6.9 66.1±12.0 86.0 ± 3.3

Walker2d-me 107.5 110.1 44.6 103.3 108.8 109.6 110.4±1.5 111.6 109.1 ± 0.7 109.8±3.12 110.7 ± 1.4

Antmaze-u 65.0 78.6 0.0 80.3 84.8 85.5 97.0 ± 1.8 93.8 90.6 ± 7.1 81.4 ± 19.2 94.5 ± 10.3

Antmaze-u-d 45.6 71.4 0.0 57.3 43.4 66.7 63.5 ± 9.3 62.0 71.3 ± 12.1 76.5 ± 29.7 79.7 ± 15.3

Antmaze-m-d 0.0 0.0 0.0 0.0 54.0±11.7 74.6±3.2 77.6±6.1 86.6 79.2±3.1 0.0 82.4 ± 4.5

Antmaze-m-p 0.0 0.0 0.0 0.0 65.2±4.8 70.4±5.3 80.6±6.5 83.5 84.6 ±5.6 0.0 86.7 ± 5.7

Antmaze-l-d 0.0 0.0 0.0 0.0 31.6±9.5 45.6±7.6 36.4 ±9.1 56.4 73.4 ±8.5 0.0 41.7 ± 14.2

Antmaze-l-p 0.0 0.0 0.0 0.0 18.8±15.3 43.5±4.5 48.2±8.1 57.0 58.0 ± 12.4 0.0 60.7 ± 13.3

Connection and differences with POR. As discussed in Section 2, while both POR and TELS550

share similarities in utilizing a state-stitching approach in state space for policy optimization, they551

exhibit the following fundamental differences:552

• Original state-space vs. latent state-space optimization: POR relies on policy optimization in553

the original state space, which inherently requires sufficient state-action coverage for valid state-554

stitching. In contrast, TELS mitigates this limitation by constructing a compact and generalizable555

latent space via TS-IDM.556

• Unregularized T-symmetry vs. T-symmetry regularized policy optimization: POR optimizes557

the guide-policy solely through an AWR formulation [28, 29], constraining πg to stay close to558

the dataset via state-stitching as in Eq. (2), but lacks additional regularization to ensure gen-559

eralizable state transitions. In contrast, TELS enforces an additional T-symmetry consistency560

regularization ℓT-sym, which plays a critical role in preventing πg from outputting problematic and561

non-generalizable latent next states, thereby enhancing its OOD generalizability.562

Differences from model-based approaches. We emphasize that our proposed TELS framework563

fundamentally differs from MBRL methods [52, 35, 53, 36, 54, 2, 55]. Conventional MBRL methods564

prioritize learning forward dynamics models to predict future states and generate rollouts for policy565

learning. In contrast, our proposed TS-IDM is primarily designed for state representation learning566

and action extraction via inverse dynamics, rather than for data generation. Furthermore, as evidenced567

by Table 1, in the small-sample setting, limited data samples are insufficient for the model-based568

approach to learn an accurate dynamics model, causing high approximation errors during model569

rollouts, which significantly deteriorates policy learning performance.570

B Additional Results571

B.1 Evaluation on the full datasets572

We also evaluate the performance of TELS on the original full datasets of D4RL tasks, and the results573

are presented in Table 4. Our proposed method achieves comparable or better performance than574

existing offline RL methods. Note that although TSRL also adopts a similar T-symmetry regularized575

representation learning scheme as ours, it performs poorly in Antmaze medium and large datasets.576

Primarily due to its use of the conservative TD3+BC backbone for policy optimization.577

Moreover, we observe that as the dataset size increases and its state-action space coverage broadens,578

the stringent T-symmetry regularization in the TS-IDM can be proportionally reduced. Since the579

dataset can provide enough information for policy learning, it relieves the need to extract fundamental580
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Table 5: TELS performance on 10k datasets across various TS-IDM with different β.

β = 10 β = 1 β = 0.1

Hopper-m 77.3 ± 5.4 77.3 ± 10.7 61.4 ± 5.6

Hopper-mr 15.3 ± 6.6 43.2 ± 3.5 19.7 ±3.4

Hopper-me 37.6 ± 17.9 100.9 ± 6.8 64.7 ± 3.3

Halfcheetah-m 32.9 ± 2.3 40.8 ± 0.6 41.2 ± 1.1

Halfcheetah-mr 8.6 ± 1.8 33.2 ± 1.0 34.0 ± 2.2

Halfcheetah-me 7.5 ± 2.2 40.7 ±1.2 39.5 ± 2.1

Walker2d-m 37.2 ± 7.9 62.4 ± 5.3 54.6 ± 8.2

Walker2d-mr 17.1±2.9 54.8 ± 6.0 39.2 ± 8.6

Walker2d-me 20.4 ± 10.4 87.4 ± 13.3 44.7 ± 9.8

Figure 7: The learning curves for training TS-IDM on 10k dataset with different β hyperparameter.

features within the data. Consequently, we balance this trade-off by prioritizing model expressiveness581

over strict generalization guarantees (i.e., deploying a lower β in Eq. (7)). For instance, in the582

Antmaze full dataset setting, we use the regularization hyperparameter β = 0.01 to train the TS-IDM.583

Additional ablation studies analyzing the impact of β are detailed in Appendix B.3.584

B.2 Additional OOD generalizability validation experiments585

We further investigate the generalization capabilities of DOGE [15], IDQL [37], and TSRL [16] under586

the variation deletion degrees in the Antmaze environment. Specifically, we train each algorithm on587

the modified dataset after the deletion operation. We then evaluate their behaviors by visualizing588

rollouts over 20 evaluation episodes.589

As illustrated in Figure 8, only IDQL occasionally succeeds in reaching the goal under the 0%590

deletion setting, while both DOGE and TSRL fail consistently. As the deletion ratio increases to 70%591

and 100%, none of the three methods achieves meaningful policy learning. These results highlight the592

inherent challenges of this setting, which requires both a compact yet expressive latent representation593

space and a highly generalizable policy capable of operating with extremely sparse and limited data.594

While TSRL integrates TDM to distill underlying patterns from the dataset, the scarcity of available595

data undermines its action-level constraints approach, preventing it from deriving a viable policy.596

B.3 Additional ablation experiments597

Impact of T-symmetry regularization on TS-IDM. To investigate the impact of T-symmetry598

regularization strength controlled by the hyperparameter β in Eq. (7), we conduct additional ablation599

experiments by varying the value of β to assess how T-symmetry regularization influences the600

representation learning quality and downstream policy’s performance. Specifically, we train TS-601

IDM on reduced-size 10k D4RL MuJoCo datasets with β = {0.1, 1, 10}, representing different602

T-symmetry regularization strengths. The learning curves of TS-IDM’s overall learning loss “LTS-IDM”603
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Figure 8: Left: Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the red cross
denotes the start point, the yellow star denotes the goal locations, and the red shaded areas denote the data
deletion regions. Right: Visualization of the training dataset and policy rollout trajectories generated by trained
policies from various algorithms under varying deletion ratios.

in Eq. (7) are presented in Figure 7. The final policy learning performances with different TS-IDM604

models are presented in Table 5.605

From Figure 7, we observe that choosing a proper β value impacts the learning quality of TS-IDM.606

A large β (e.g., β = 10) could impose overly strong regularization and hurt model expressiveness,607

which is reflected in the high learning loss at convergence. However, when the regularization strength608

is lowered, maintaining a proper scale of β is important to ensure both the quality and generalizability609

of the learned representations. As we can see in Figure 7, in the Hopper and Walker2d tasks, choosing610

β = 1 provides the lowest “LTS-IDM” loss; whereas in the Halfcheetah task, “LTS-IDM” is the lowest611

when choosing β = 0.1. If we check the final policy’s performance under different TS-IDMs in612

Table 5, we can see a clear correlation with what we have observed in Figure 7. TELS achieves the613

highest score on Hopper and Walker2d tasks when β = 1, but the scores are higher for Halfcheetah614

tasks when β = 0.1. This matches exactly with the learning performance of TS-IDM under different615

β values. The strong correlation between TS-IDM’s learning performance and the final policy’s616

performance of TELS shows that we can select the best β hyperparameter values by simply looking617

at TS-IDM’s training loss and using the one that provides the lowest training loss. This avoids the618

need to perform potentially unsafe online policy evaluations or unstable offline policy evaluations,619

which is favorable in real-world deployments.620

Figure 9: TELS with various η.

Impact of regularizer terms η in policy optimization.621

The hyperparameter η governs the strength of regulariza-622

tion in TELS, balancing exploration and adherence to dataset623

states during policy updates. To evaluate the robustness of624

TELS, we test multiple η values (η = {1, 5, 10}) to examine625

its sensitivity to the state-level behavioral constraint in Eq.626

(9). Higher η values impose stronger constraints on the guide-627

policy, requiring generated states s′ to align closely with628

dataset states. As shown in Figure 9, TELS demonstrates629

consistent robustness across η settings, achieving reliable630

performance under varying constraint strengths.631

Impact of each component in TS-IDM for policy optimization. To validate the impact of the632

T-symmetry regularizer ℓT-sym in Eq. (10), we conduct ablation studies on 100k-sample Antmaze tasks.633

From the evaluation results presented in Table 6, the naïve auto-encoder based inverse dynamics model634

“ϕ/ψ + hinv” fails to form a reasonable latent space, yielding 0 average normalized scores across all635

Antmaze tasks. The introduction of latent dynamics models “hfwd” and “hrvs” provides marginal636

improvements by capturing partial system dynamics yet remains insufficient for effective policy637
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Table 6: Ablations on the components of TS-IDM in Antmaze tasks.

Antmaze-m-d Antmaze-m-p Antmaze-l-d Antmaze-l-p

ϕ/ψ+ hinv 0 0 0 0
↑ + hfwd, hrvs 23.6 ± 18.4 30.4 ± 9.3 14.4 ± 5.6 7.8 ± 3.4
↑ + ℓode 34.1 ± 15.7 48.7 ± 13.3 20.1 ± 8.9 22.6 ± 16.7
↑ + ℓT-sym 47.2 ± 17.3 62.9 ± 17.8 39.8 ± 14.1 47.3 ± 13.1

Figure 10: Left: Impact of ℓT-sym on policy optimization with 100k Antmaze datasets. Right: Performance of
TELS with different representation models on Antmaze 100k datasets.

learning. Notably, enforcing ODE properties on decoders and applying T-symmetry consistency638

emerge as the most significant factors driving performance improvements, substantially enhancing639

the reliability of learned representations for downstream guide-policy optimization.640

Impact of T-symmetry regularizer term in stochastic policy optimization. We further conduct641

ablation experiments in Figure 10 (left) to validate the effectiveness of the T-symmetry consistency642

regularization term ℓT-sym during the stochastic guide-policy optimization process of TELS. The643

results demonstrate that in stochastic policy optimization schemes, integrating this term signifi-644

cantly improves performance while reducing variance, underscoring the critical role of T-symmetry645

consistency regularization in enhancing OOD generalization and training stability.646

Effectiveness of learned representations for stochastic policy optimization. As illustrated in647

Figure 10 (right), we evaluate TELS across diverse representation learning approaches in Antmaze648

tasks. The results demonstrate that baseline models struggle to construct meaningful latent spaces649

as task complexity increases and data scarcity intensifies (with only 100k usable samples). In650

contrast, TS-IDM uniquely learns a compact, well-structured latent space that remains informative651

and generalizable, providing a more reliable latent space for policy learning.652

C Implementation Details653

C.1 Implementation details of TS-IDM654

• Network structure. For all MuJoCo locomotion and Antmaze tasks, we deployed 3-layer feed-655

forward neural networks for the state encoder ϕs, latent inverse dynamics model hinv, forward656

and reverse dynamics models hfwd and hrvs, and decoder models ψs and ψa for the latent states657

and actions. The activation function is ReLU and uses Adam optimizer to update the parameters.658

We present the hyperparameters details of training TS-IDM in Table 7, including the details of the659

structure we have implemented as well as the deployed hyperparameters.660

• ODE property enforcement on ϕs and ψs. We adopt a similar approach to TSRL [16] to661

train the ODE enforced forward and reverse dynamic models. Specifically, we compute the662

time-derivative of the state encoder ϕs(s) by calculating its jacobian matrix through vmap()663

function in Functorch 2. This allows us to derive the supervision values dϕs(s)
ds · ṡ and dϕs(s

′)
ds′ · (−ṡ)664

for the forward dynamics model and reverse dynamics model respectively as in Eq. (4). This665

approach implicitly enforces the ODE property on the state encoder ϕs as the encoder is required666

to produce state representations that satisfy the ODE constraints. Unlike TSRL, which enforces667

ODE properties only on the encoders and not on the decoders, our method further regularizes the668

2https://pytorch.org/functorch/stable/functorch.html
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Table 7: Hyperparameters of TS-IDM.

Hyperparameters Value

State encoder hidden units 512× 256
State encoder activation function ReLU
Latent forward model hidden units 256× 256
Latent forward model activation function ReLU
Latent reverse model hidden units 256× 256
Latent reverse model activation function ReLU

TS-IDM latent inverse model hidden units 1024× 1024
Architecture Latent inverse model activation function ReLU

Latent inverse model dropout True
Latent inverse model dropout rate 0.1
State decoder hidden units 256× 512
State decoder activation function ReLU
Action decoder hidden units 512× 512
Action decoder activation function ReLU

Optimizer type Adam
Weight of ℓrec 1
Learning rate 3e-4
Batch size 256
Training epoch 1000
State normalize True

1 (MuJoCo locomotion 10k setting)

Weight of β

0.1 (MuJoCo Antmaze 10k&100k setting)
Hyperparameters 0.1 (MuJoCo locomotion full dataset setting)

0.01 (MuJoCo Antmaze full dataset setting)
0.01 (MuJoCo adroit-human task)
0.01 (Real-world DC cooling control testbed task)

0 (MuJoCo locomotion 10k setting)

Weight decay 1e-5 (MuJoCo locomotion&Antmaze full dataset setting)
1e-5 (MuJoCo adroit-human tasks)
1e-5 (Real-world DC cooling control testbed task)

Table 8: Structure and training parameters of guide-policy optimization.

Hyperparameters Value

Value network hidden units 1024× 1024
Guide-policy Value network activation function ReLU

structure Policy network hidden units 1024× 1024
Policy network hidden units ReLU

Optimizer type Adam
Training Target Value network moving average 0.05

Perparameters Batch size 256
Training steps 100000
State normalize True

state decoder ψs. Specifically, ψs is trained to decode the predicted latent state variables generated669

by hfwd(zs, za) = żs and hrvs(zs′ , za) = −żs ensuring that it also satisfies the ODE constraints670

in Eq. (5). To achieve this, we apply the same approach to compute dψs(zs)
dt and train the state671

decoder accordingly.672

C.2 Implementation details of T-symmetry regularized guide-policy673

• Network structure. For all D4RL MuJoCo-v2 and Antmaze-v1 tasks, we deployed 2-layer674

feed-forward neural networks for the guide-policy πg and the value function V . The activation675

function is ReLU and uses Adam optimizer to update the parameters. The parameter details are676

presented in Table 8.677
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Algorithm 1 Offline RL via T-symmetry Enforced Latent State-Stitching (TELS).
Require: Offline dataset D.
1: / / TS-IDM learning
2: Learning the state encoder ϕs, state decoder ψs, action decoder ψa, latent inverse dynamics hinv , latent

forward and reverse dynamics hfwd and hrvs using the TS-IDM learning objective Eq. (7).
3: Initialize Vθ , Vθ′ , πσ

4: / / Policy training
5: for t = 1, · · · ,M training steps do
6: Sample transitions (s, r, s′) ∼ D and compute their representations (zs, zs′) using the state encoder ϕs.
7: Use (zs, r, zs′) to update the latent state-value function V using Eq.(8).
8: Use (zs, zs′) to update the latent guide-policy πg using Eq. (9) or (10).
9: end for

10: / / Evaluation
11: Get initial state s from environment
12: while not done do
13: Get optimized next state z∗s′ using guide-policy πg .
14: Extract action a using Eq. (11).
15: end while

• Hyperparameters for policy optimization. Under both small-sample and full datasets settings,678

we employ a deterministic policy update strategy for MuJoCo locomotion tasks, as defined in679

Eq. (9), with learning rates of 1e-4 for both value and policy functions. The normalization term680

λ is computed as λα = α/[
∑
si
|V (ϕs(si))|/N ], where α controls the trade-off between value681

maximization and policy regularization and N denotes the number of samples in the training batch.682

For Antmaze tasks, we utilize a stochastic policy optimization strategy, as outlined in Eq. (10),683

with learning rates of 1e-3 for value and policy functions.684

Full dataset setting: We set (τ, α, η) = (0.7, 0.01, 10) for all MuJoCo locomotion tasks and Adorit685

tasks, for all MuJoCo Antmaze tasks, we deploy (τ, α) = (0.9, 10) as the training parameters.686

Small-sample setting: For Halfcheetah and Walker2d tasks, we set (τ, α, η) = (0.5, 0.01, 5) and687

incorporate policy dropout to mitigate overfitting. These tasks share identical state and action688

dimensions (17 states and 6 actions), enabling the use of the same parameter set for guide-policy689

training. In contrast, Hopper tasks with a smaller state-action space (11 states and 3 actions) are690

comparatively simpler given the same amount of training data (e.g., 10k samples). Consequently, we691

adopt a more aggressive learning strategy for Hopper, setting (τ, α, η) = (0.7, 0.1, 10) to prioritize692

value maximization. For Antmaze tasks, we use an identical set of parameters (τ, α) = (0.9, 10)693

as in the full dataset setting to train the guide-policy. For the real-world DC cooling control testbed694

task, we find using the (τ, α, η) = (0.5, 0.01, 5) can derive the best performance.695

Training resources. To train a TS-IDM, we utilize one NVIDIA GeForce RTX 4090 with an AMD696

Ryzen 9 7950X 16-Core Processor and 16GB of memory for approximately 30 minutes, running on697

Ubuntu 22.04.2 LTS 64-bit. We employ the same resource configurations for approximately 6 hours698

for the guide-policy training.699

D Detailed Experiment Setups700

Reduced-size dataset generation. To create reasonably reduced-size D4RL datasets for a fair701

comparison, we use the identical small samples as in the TSRL paper [16] for the locomotion tasks702

training. For Antmaze tasks, we adopt a similar approach by randomly sub-sampling trajectories from703

the original dataset to construct smaller training datasets. Specifically, for the “Antmaze-umaze” tasks,704

we randomly sample 10k data points for training, and for the “Antmaze-medium” and “Antmaze-large”705

tasks, we utilize 100k random samples as the training dataset of TELS.706

The rationale behind this adjustment is the “medium” and “large” environments are significantly707

more expansive than the “umaze” environment. Sampling only 10k data points would likely result708

in trajectories that lack the fundamental information necessary to describe the task. Therefore, we709

relax the small-sample constraints for these environments to ensure that the reduced datasets at least710

contain enough successful trajectories for effective training.711
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Figure 11: The layout illustration of the real-world DC cooling control testbed environment (figure from [38]).

Experiment setups for OOD generalization tasks in Antmaze. In Section 4.2, we conduct a712

more challenging scenario to verify the OOD generalizability of the algorithm. Specifically, based713

on the 100k “Antmaze-medium-diverse-v2” dataset, we manually selected five critical intervals and714

erased the data points within these intervals by randomly deleting them. The selection of intervals715

was determined based on the XY-axis coordinates. In this dataset, the first two dimensions of the716

state represent the vertical and horizontal coordinates, respectively. Based on this information, we717

randomly deleted 70% and 100% of the data in the chosen intervals. We then trained IQL [12],718

DOGE [15], IDQL [37], POR [20], TSRL [16], and TELS using this modified dataset to evaluate719

their performance.720

Experiment details of real-world industrial control test environment. We adapted the figure721

from [3] to illustrate the layout structure of the real-world DC cooling control testbed. As shown in the722

figure D, the testbed comprises 22 server units and an inter-rack air conditioning unit (ACU) positioned723

between Rack 1 and Rack 2, supplemented by 24 temperature and humidity sensors (organized into724

six monitoring sets) to capture spatial thermal dynamics within the environment. Notably, the ACU725

employs compressor-driven cooling, with fan operation and compressor workload constituting the726

primary sources of energy expenditure. The thermal regulation is achieved by modulating the ACU’s727

entering air temperature (EAT) setpoint to maintain the rack exhaust temperature (CAT) below a728

predefined safety threshold. The energy-saving objective is to improve the energy efficiency of the729

DC’s cooling systems (minimizing the ACLF) while satisfying thermal safety constraints.730

We leverage a dataset of 43k real-world operational samples recorded at 2-minute intervals over731

61 days with 105 state-action features. During the training process, we utilize the identical reward732

function and follow the same experimental protocols outlined in [3]. To ensure rigorous benchmarking,733

we adopt the same challenging thermal constraint (set the CAT threshold as 22°C) for comparative734

evaluation of TELS performance.735

Experiment setups for various representation learning. To validate the effectiveness of the736

representations learned by TS-IDM, we integrate it as the representation module in two offline RL737

frameworks (IQL and TD3+BC), verifying the usability of the learned latent space as illustrated in738

Figure 4 (left). Specifically, we process the original states s and next states s′ from the dataset using739

the pre-trained state encoder ϕs of TS-IDM to derive the latent representations: ϕs(s) → zs and740

ϕs(s
′) → zs′ . Then, train IQL and TD3+BC within the latent space to evaluate their performance741

under the small-sample setting.742

Furthermore, in Figure 4(right), we benchmark TELS against three established representation learning743

baselines (“AE-rep”, “Contras-rep” and “VAE-rep”) to rigorously assess TS-IDM’s representation744

quality. Implementation details for all baseline models are provided below:745

• “AE-rep”: We implement a naïve autoencoder-based inverse dynamics framework, consisting of a746

state encoder and decoders ϕs and ψs to construct the latent state space. As in TELS, the inverse747

dynamics model hinv is built within this latent space, serving as the execute-policy. For a fair748

comparison, we use the same network parameters for the encoder, decoder, and inverse dynamics749

model as in TS-IDM. The “AE-rep” model is trained with a reconstruction loss to capture the750

essential features of the input, and the inverse dynamics model is simultaneously trained on the751

latent representations to predict actions.752

• “VAE-rep”: The variational autoencoder (VAE) [39] is built based on the “AE-rep” model by753

introducing additional KL divergence loss terms. Specifically, the encoder outputs parameters of754

a Gaussian distribution in the latent space, and the latent representations are sampled using the755
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reparameterization trick. The VAE is trained using a combined loss function that includes both the756

reconstruction loss and the KL divergence loss, which regularizes the latent space to follow a prior757

distribution. The inverse dynamic model is trained simultaneously with the VAE, sharing the latent758

space and optimizing for both the reconstruction of the input data and the prediction of actions.759

• “Contras-rep”: We utilize the NT-Xent loss (Normalized Temperature-Scaled Cross Entropy Loss)760

used in SimCLR [40] within the latent representation space on top of the “AE-rep” model. The761

overall loss function combines the contrastive loss with the reconstruction loss, ensuring that the762

latent space not only captures the structure of the data but also learns semantically meaningful763

representations that are robust to variations. The inverse dynamic model is trained simultaneously764

within the latent space to predict actions.765

E Border Impact766

While training reinforcement learning (RL) agents on large-scale offline datasets has been extensively767

studied, real-world applications often face prohibitive data scarcity and collection costs. This768

necessitates offline RL methods that achieve reliable performance in small-sample regimes. To769

address this challenge, we introduce a highly sample-efficient offline RL algorithm to learn high-770

performing policies from extremely limited data. We empirically validate its efficacy through771

deployment on a real-world data center cooling control testbed, establishing its practical viability.772

Our approach highlights a promising pathway for advancing sample-efficient offline RL in resource-773

constrained settings. A potential limitation is the inherent risk of unreliable or unsafe actions within774

historical datasets, which may mislead policy learning.775

F Learning Curves776

The following are the learning curves of TS-IDM and the T-symmetry regularized guide-policy777

optimization in TELS on the reduced-size D4RL MuJoCo and Antmaze datasets. We evaluate the778

policy with 10 episodes over 5 random seeds.779
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Figure 12: Learning curves of the overall and each individual loss terms in TS-IDM for Hopper tasks.
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Figure 13: Learning curves of the overall and each individual loss terms in TS-IDM for Halfcheetah tasks.
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Figure 14: Learning curves of the overall and each individual loss terms in TS-IDM for Walker2d tasks.
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Figure 15: Learning curves of policy optimization in TELS for D4RL MuJoCo and Antmaze tasks with reduced-
size datasets. We evaluate the policy within 10 episodes over 5 random seeds.
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• The authors should reflect on the factors that influence the performance of the approach.812
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used reliably to provide closed captions for online lectures because it fails to handle815

technical jargon.816

• The authors should discuss the computational efficiency of the proposed algorithms817

and how they scale with dataset size.818

• If applicable, the authors should discuss possible limitations of their approach to819

address problems of privacy and fairness.820

• While the authors might fear that complete honesty about limitations might be used by821

reviewers as grounds for rejection, a worse outcome might be that reviewers discover822

limitations that aren’t acknowledged in the paper. The authors should use their best823

judgment and recognize that individual actions in favor of transparency play an impor-824

tant role in developing norms that preserve the integrity of the community. Reviewers825

will be specifically instructed to not penalize honesty concerning limitations.826

3. Theory assumptions and proofs827

Question: For each theoretical result, does the paper provide the full set of assumptions and828

a complete (and correct) proof?829

Answer: [NA]830
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Justification: This is not a theoretical paper.831

Guidelines:832

• The answer NA means that the paper does not include theoretical results.833

• All the theorems, formulas, and proofs in the paper should be numbered and cross-834

referenced.835

• All assumptions should be clearly stated or referenced in the statement of any theorems.836

• The proofs can either appear in the main paper or the supplemental material, but if837

they appear in the supplemental material, the authors are encouraged to provide a short838

proof sketch to provide intuition.839

• Inversely, any informal proof provided in the core of the paper should be complemented840

by formal proofs provided in appendix or supplemental material.841

• Theorems and Lemmas that the proof relies upon should be properly referenced.842

4. Experimental result reproducibility843

Question: Does the paper fully disclose all the information needed to reproduce the main ex-844

perimental results of the paper to the extent that it affects the main claims and/or conclusions845

of the paper (regardless of whether the code and data are provided or not)?846

Answer: [Yes]847

Justification: We explained our problem settings in Section 4 and implementation details in848

Appendix C.849

Guidelines:850

• The answer NA means that the paper does not include experiments.851

• If the paper includes experiments, a No answer to this question will not be perceived852

well by the reviewers: Making the paper reproducible is important, regardless of853

whether the code and data are provided or not.854

• If the contribution is a dataset and/or model, the authors should describe the steps taken855

to make their results reproducible or verifiable.856

• Depending on the contribution, reproducibility can be accomplished in various ways.857

For example, if the contribution is a novel architecture, describing the architecture fully858

might suffice, or if the contribution is a specific model and empirical evaluation, it may859

be necessary to either make it possible for others to replicate the model with the same860

dataset, or provide access to the model. In general. releasing code and data is often861

one good way to accomplish this, but reproducibility can also be provided via detailed862

instructions for how to replicate the results, access to a hosted model (e.g., in the case863

of a large language model), releasing of a model checkpoint, or other means that are864

appropriate to the research performed.865

• While NeurIPS does not require releasing code, the conference does require all submis-866

sions to provide some reasonable avenue for reproducibility, which may depend on the867

nature of the contribution. For example868

(a) If the contribution is primarily a new algorithm, the paper should make it clear how869

to reproduce that algorithm.870

(b) If the contribution is primarily a new model architecture, the paper should describe871

the architecture clearly and fully.872

(c) If the contribution is a new model (e.g., a large language model), then there should873

either be a way to access this model for reproducing the results or a way to reproduce874

the model (e.g., with an open-source dataset or instructions for how to construct875

the dataset).876

(d) We recognize that reproducibility may be tricky in some cases, in which case877

authors are welcome to describe the particular way they provide for reproducibility.878

In the case of closed-source models, it may be that access to the model is limited in879

some way (e.g., to registered users), but it should be possible for other researchers880

to have some path to reproducing or verifying the results.881

5. Open access to data and code882

Question: Does the paper provide open access to the data and code, with sufficient instruc-883

tions to faithfully reproduce the main experimental results, as described in supplemental884

material?885
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Answer: [Yes]886

Justification: For anonymity reasons, we have not made our code public. Upon acceptance,887

we will release our code on GitHub.888

Guidelines:889

• The answer NA means that paper does not include experiments requiring code.890

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/891

public/guides/CodeSubmissionPolicy) for more details.892

• While we encourage the release of code and data, we understand that this might not be893

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not894

including code, unless this is central to the contribution (e.g., for a new open-source895

benchmark).896

• The instructions should contain the exact command and environment needed to run to897

reproduce the results. See the NeurIPS code and data submission guidelines (https:898

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.899

• The authors should provide instructions on data access and preparation, including how900

to access the raw data, preprocessed data, intermediate data, and generated data, etc.901

• The authors should provide scripts to reproduce all experimental results for the new902

proposed method and baselines. If only a subset of experiments are reproducible, they903

should state which ones are omitted from the script and why.904

• At submission time, to preserve anonymity, the authors should release anonymized905

versions (if applicable).906

• Providing as much information as possible in supplemental material (appended to the907

paper) is recommended, but including URLs to data and code is permitted.908

6. Experimental setting/details909

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-910

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the911

results?912

Answer: [Yes]913

Justification: All the training and model details are specified in Appendix C and the experi-914

ment setup details are presented in Appendix D.915

Guidelines:916

• The answer NA means that the paper does not include experiments.917

• The experimental setting should be presented in the core of the paper to a level of detail918

that is necessary to appreciate the results and make sense of them.919

• The full details can be provided either with the code, in appendix, or as supplemental920

material.921

7. Experiment statistical significance922

Question: Does the paper report error bars suitably and correctly defined or other appropriate923

information about the statistical significance of the experiments?924

Answer: [Yes]925

Justification: We presented the standard error in the reported results and learning curves,926

with an average of over five random seeds.927

Guidelines:928

• The answer NA means that the paper does not include experiments.929

• The authors should answer "Yes" if the results are accompanied by error bars, confi-930

dence intervals, or statistical significance tests, at least for the experiments that support931

the main claims of the paper.932

• The factors of variability that the error bars are capturing should be clearly stated (for933

example, train/test split, initialization, random drawing of some parameter, or overall934

run with given experimental conditions).935

• The method for calculating the error bars should be explained (closed form formula,936

call to a library function, bootstrap, etc.)937
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• The assumptions made should be given (e.g., Normally distributed errors).938

• It should be clear whether the error bar is the standard deviation or the standard error939

of the mean.940

• It is OK to report 1-sigma error bars, but one should state it. The authors should941

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis942

of Normality of errors is not verified.943

• For asymmetric distributions, the authors should be careful not to show in tables or944

figures symmetric error bars that would yield results that are out of range (e.g. negative945

error rates).946

• If error bars are reported in tables or plots, The authors should explain in the text how947

they were calculated and reference the corresponding figures or tables in the text.948

8. Experiments compute resources949

Question: For each experiment, does the paper provide sufficient information on the com-950

puter resources (type of compute workers, memory, time of execution) needed to reproduce951

the experiments?952

Answer: [Yes]953

Justification: We have presented the training resources requirement in Appendix C.954

Guidelines:955

• The answer NA means that the paper does not include experiments.956

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,957

or cloud provider, including relevant memory and storage.958

• The paper should provide the amount of compute required for each of the individual959

experimental runs as well as estimate the total compute.960

• The paper should disclose whether the full research project required more compute961

than the experiments reported in the paper (e.g., preliminary or failed experiments that962

didn’t make it into the paper).963

9. Code of ethics964

Question: Does the research conducted in the paper conform, in every respect, with the965

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?966

Answer: [Yes]967

Justification: We read and followed the NeurIPS Code of Ethics.968

Guidelines:969

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.970

• If the authors answer No, they should explain the special circumstances that require a971

deviation from the Code of Ethics.972

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-973

eration due to laws or regulations in their jurisdiction).974

10. Broader impacts975

Question: Does the paper discuss both potential positive societal impacts and negative976

societal impacts of the work performed?977

Answer: [Yes]978

Justification: We discuss both potential positive societal impacts and negative societal979

impacts of the work in Appendix E.980

Guidelines:981

• The answer NA means that there is no societal impact of the work performed.982

• If the authors answer NA or No, they should explain why their work has no societal983

impact or why the paper does not address societal impact.984

• Examples of negative societal impacts include potential malicious or unintended uses985

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations986

(e.g., deployment of technologies that could make decisions that unfairly impact specific987

groups), privacy considerations, and security considerations.988
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• The conference expects that many papers will be foundational research and not tied989

to particular applications, let alone deployments. However, if there is a direct path to990

any negative applications, the authors should point it out. For example, it is legitimate991

to point out that an improvement in the quality of generative models could be used to992

generate deepfakes for disinformation. On the other hand, it is not needed to point out993

that a generic algorithm for optimizing neural networks could enable people to train994

models that generate Deepfakes faster.995

• The authors should consider possible harms that could arise when the technology is996

being used as intended and functioning correctly, harms that could arise when the997

technology is being used as intended but gives incorrect results, and harms following998

from (intentional or unintentional) misuse of the technology.999

• If there are negative societal impacts, the authors could also discuss possible mitigation1000

strategies (e.g., gated release of models, providing defenses in addition to attacks,1001

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1002

feedback over time, improving the efficiency and accessibility of ML).1003

11. Safeguards1004

Question: Does the paper describe safeguards that have been put in place for responsible1005

release of data or models that have a high risk for misuse (e.g., pretrained language models,1006

image generators, or scraped datasets)?1007

Answer: [NA]1008

Justification: N/A1009

Guidelines:1010

• The answer NA means that the paper poses no such risks.1011

• Released models that have a high risk for misuse or dual-use should be released with1012

necessary safeguards to allow for controlled use of the model, for example by requiring1013

that users adhere to usage guidelines or restrictions to access the model or implementing1014

safety filters.1015

• Datasets that have been scraped from the Internet could pose safety risks. The authors1016

should describe how they avoided releasing unsafe images.1017

• We recognize that providing effective safeguards is challenging, and many papers do1018

not require this, but we encourage authors to take this into account and make a best1019

faith effort.1020

12. Licenses for existing assets1021

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1022

the paper, properly credited and are the license and terms of use explicitly mentioned and1023

properly respected?1024

Answer: [NA]1025

Justification: N/A1026

Guidelines:1027

• The answer NA means that the paper does not use existing assets.1028

• The authors should cite the original paper that produced the code package or dataset.1029

• The authors should state which version of the asset is used and, if possible, include a1030

URL.1031

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1032

• For scraped data from a particular source (e.g., website), the copyright and terms of1033

service of that source should be provided.1034

• If assets are released, the license, copyright information, and terms of use in the package1035

should be provided. For popular datasets, paperswithcode.com/datasets has1036

curated licenses for some datasets. Their licensing guide can help determine the license1037

of a dataset.1038

• For existing datasets that are re-packaged, both the original license and the license of1039

the derived asset (if it has changed) should be provided.1040
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• If this information is not available online, the authors are encouraged to reach out to1041

the asset’s creators.1042

13. New assets1043

Question: Are new assets introduced in the paper well documented and is the documentation1044

provided alongside the assets?1045

Answer: [NA]1046

Justification: N/A1047

Guidelines:1048

• The answer NA means that the paper does not release new assets.1049

• Researchers should communicate the details of the dataset/code/model as part of their1050

submissions via structured templates. This includes details about training, license,1051

limitations, etc.1052

• The paper should discuss whether and how consent was obtained from people whose1053

asset is used.1054

• At submission time, remember to anonymize your assets (if applicable). You can either1055

create an anonymized URL or include an anonymized zip file.1056

14. Crowdsourcing and research with human subjects1057

Question: For crowdsourcing experiments and research with human subjects, does the paper1058

include the full text of instructions given to participants and screenshots, if applicable, as1059

well as details about compensation (if any)?1060

Answer: [NA]1061

Justification: N/A1062

Guidelines:1063

• The answer NA means that the paper does not involve crowdsourcing nor research with1064

human subjects.1065

• Including this information in the supplemental material is fine, but if the main contribu-1066

tion of the paper involves human subjects, then as much detail as possible should be1067

included in the main paper.1068

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1069

or other labor should be paid at least the minimum wage in the country of the data1070

collector.1071

15. Institutional review board (IRB) approvals or equivalent for research with human1072

subjects1073

Question: Does the paper describe potential risks incurred by study participants, whether1074

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1075

approvals (or an equivalent approval/review based on the requirements of your country or1076

institution) were obtained?1077

Answer: [NA]1078

Justification: N/A1079

Guidelines:1080

• The answer NA means that the paper does not involve crowdsourcing nor research with1081

human subjects.1082

• Depending on the country in which research is conducted, IRB approval (or equivalent)1083

may be required for any human subjects research. If you obtained IRB approval, you1084

should clearly state this in the paper.1085

• We recognize that the procedures for this may vary significantly between institutions1086

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1087

guidelines for their institution.1088

• For initial submissions, do not include any information that would break anonymity (if1089

applicable), such as the institution conducting the review.1090

16. Declaration of LLM usage1091
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Question: Does the paper describe the usage of LLMs if it is an important, original, or1092

non-standard component of the core methods in this research? Note that if the LLM is used1093

only for writing, editing, or formatting purposes and does not impact the core methodology,1094

scientific rigorousness, or originality of the research, declaration is not required.1095

Answer: [NA]1096

Justification: N/A1097

Guidelines:1098

• The answer NA means that the core method development in this research does not1099

involve LLMs as any important, original, or non-standard components.1100

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/1101

LLM) for what should or should not be described.1102
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