© ©® N O o A W N =

20

21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36

Sample Efficient Offline RL via T-symmetry Enforced
Latent State-Stitching

Anonymous Author(s)
Affiliation
Address

email

Abstract

Offline reinforcement learning (RL) has achieved notable progress in recent years.
However, most existing offline RL methods require a large amount of training
data to achieve reasonable performance and offer limited generalizability in out-of-
distribution (OOD) regions due to conservative data-related regularizations. This
seriously hinders the usability of offline RL in solving many real-world appli-
cations, where the available data are often limited. In this study, we introduce
TELS, a highly sample-efficient offline RL algorithm that enables state-stitching
in a compact latent space regulated by the fundamental time-reversal symmetry
(T-symmetry) of dynamical systems. Specifically, we introduce a T-symmetry
enforced inverse dynamics model (TS-IDM) to derive well-regulated latent state
representations that greatly facilitate OOD generalization. A guide-policy can then
be learned entirely in the latent space to optimize for the reward-maximizing next
state, bypassing the conservative action-level behavioral regularization adopted in
most offline RL methods. Finally, the optimized action can be extracted using the
learned TS-IDM, together with the optimized latent next state from the guide-policy.
We conducted comprehensive experiments on both the DARL benchmark tasks
and a real-world industrial control test environment, TELS achieves superior sam-
ple efficiency and OOD generalization performance, significantly outperforming
existing offline RL methods in a wide range of challenging small-sample tasks.

1 Introduction

Offline reinforcement learning (RL) has seen rapid progress in recent years. It bypasses the reliance
on environment interactions of online RL, directly utilizing pre-collected datasets for policy learning,
thus being ideal for many real-world tasks that lack high-fidelity simulators or have environment
interaction restrictions [ 1, 2, 3]. However, offline RL is also known to be prone to value overestimation,
caused by extrapolation error when evaluating out-of-distribution (OOD) samples and amplified
through the bootstrapped update procedure in RL [4, 5].

In the past few years, quite a few offline RL methods have been proposed, which commonly adopt the
pessimism principle using strategies such as adding explicit or implicit policy constraints to prevent
the selection of OOD actions [4, 5, 6, 7], penalizing value function on unseen samples [8, 9, 10, 11],
or adopting in-sample learning to implicit regularize policy optimization [12, 13, 14]. What’s in
common with these methods is the use of some kind of action-level constraints to avoid exploitation
on OOD actions. Although this could stabilize offline value and policy learning, it inevitably leads
to over-conservatism and crippled OOD generalization performance [15, 16]. Most of the existing
offline RL methods only perform well when trained with sufficiently large amounts of offline data
and reasonable state-action space coverage (e.g., 1 million samples for simple D4RL benchmark
tasks [17]). This forms a stark contrast to the reality in most real-world scenarios, such as industrial
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control [2, 3], robotics [18], and healthcare [19], where the real-world operational data are often
scarce, and scaling up data collection can be rather costly.

Enhancing sample efficiency and OOD generalization capability is essential to making offline RL
widely applicable to real-world applications. This is particularly important for small dataset settings,
as most of the state-action space will become OOD regions. Several recent attempts have been made to
improve the generalization performance of offline RL, which mainly follow three directions. The first
direction builds upon the empirical observation that deep value functions interpolate well but struggle
to extrapolate, thus allowing exploitation on interpolated OOD actions to promote generalization [15].
However, this method has a smoothness assumption on the offline dataset geometry and only applies to
continuous action space. The second class of methods avoids the conservative action-level constraint
and instead performs reward maximization on the state-space [20, 21], which allows exploitation of
OQD actions as long as the corresponding state transitions are reachable (also referred to as "state-
stitching" [20]). Although such methods offer some promising generalization capabilities, they still
require the state-action space to have reasonable data coverage to enable valid state-stitching. The last
and also the most explored direction is to learn compact and robust latent representations to enhance
sample efficiency [22, 23, 24, 25, 16]. Most of these methods only focus on extracting statistical-
level information from the data, using techniques such as contrastive learning [22, 23, 24, 26].
Due to the lack of in-depth modeling of the underlying dynamics inside the sequential data, these
methods still struggle to provide generalizable information beyond data distribution. Some recent
methods [25, 16, 3] propose to extract fundamental symmetries of dynamics to facilitate policy
learning, such as the time-reversal symmetry (T-symmetry) [16, 3], i.e., the underlying physical
laws should not change under the time-reversal transformation. By leveraging such universally held
symmetries in the dataset, it is possible to maximally promote OOD generalization without being
restrained by data distribution-related information. Although promising, these methods are built upon
offline RL backbone algorithms with action-level constraints (e.g., CQL [8] or TD3+BC [7]), which
still suffer from the over-conservatism issue.

In this paper, we find that enabling state-stitching in a coherent, fundamental symmetry-enforced
latent space can lead to a surprisingly strong sample-efficient offline RL algorithm. We refer to our
method as Offline RL via T-symmetry Enforced Latent State-Stitching (TELS). Specifically, we
introduce a T-symmetry enforced inverse dynamics model (TS-IDM) that can not only learn well-
behaved and OOD generalizable latent representations, but also facilitate effective action inference.
Within the learned latent state space, we can optimize a T-symmetry regularized guide-policy to output
the next latent state that maximizes the accumulated reward, bypassing the conservative action-level
behavioral regularization as adopted in most offline RL algorithms. Lastly, the optimized action
can be easily extracted by plugging the output of the guide-policy as the goal state in the learned
TS-IDM. We evaluate TELS on both the challenging reduced-size D4RL benchmark tasks and a
real-world industrial control test environment [3]. Through comprehensive experiments, we show
that TELS achieves state-of-the-art (SOTA) sample efficiency and OOD generalization capability,
significantly outperforming existing offline RL algorithms on small datasets. Our method greatly
pushes the performance limit of offline RL under low data regimes, offering a new opportunity to
tackle many previously unsolvable tasks with data size restrictions.

2 Preliminaries

Offline RL. We consider the standard Markov decision process (MDP) setting [27], which is
represented as a tuple M = {S, A,r, P, p,v}, and a dataset D, which consists of trajectories
7 = {so0,a0, 81,01, ...,87,ar}. Here S and A denote the state and action spaces, r(s,a) is a
scalar reward function, P(s’|s, a) and p denote the transition dynamics and initial state distribution
respectively, and v € (0, 1) is a discount factor. Our goal is to learn a policy 7(a|s) based on dataset
D by maximizing the expected return in the MDP: E[>"0° (v - r(s¢, ar)].

Offline policy optimization in the state space. Instead of adopting conservative action-level
constraints for offline policy learning, Policy-guided Offline RL (POR) [20] proposes an alternative
scheme, which decomposes the conventional reward-maximizing policy into a guide-policy and
an execute policy. The guide-policy only works in the state space to find the optimal next state
that maximizes the state-value function, and the execute-policy is learned as an inverse dynamics
model [20] or a goal-conditioned imitative policy [21]. Such methods only need to learn a state-only
value function V' using the IQL-style expectile regression [12], or the sparse value learning objective
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as discussed in [13]. We present the former as follows:
V = arg;nin E(s,r,s)~D [Lg (r(s) +AV(s') — V(S))] )

where L3 (z) = |7 —1(z < 0)|2? is the asymmetric expectile regression loss and V' denotes the target
value network. Based on the learned state-value function, we can learn a guide-policy 74(s’|s) to serve
as a prophet by telling which state the agent should (high reward) and can (logical generalization) go
to, without being constrained to state-action transitions seen in the dataset. This can be achieved by
leveraging an advantage weighted regression (AWR) objective [28, 29] to maximize the value while
implicitly constraining 7, to s — s’ transitions observed in the dataset (i.e., state-stitching):

Ty = argmax E, , o) p | exp(a - A(s,s")) log my(s" | s)} )
Tg
where the advantage A(s, s’) = r + vV (s") — V(s) serves as the behavior cloning weight, and « is
the temperature parameter to prioritize value maximization over state-wise imitation.

For the execute-policy 7., POR employs a supervised learning framework and trains 7, by maximiz-
ing the likelihood of the actions given the states and next states: max, E 4 s)~pllogm. (a | s,5)].
During evaluation phase, given the current state s, we can sample the optimized next state s’ from
7g(s'|s), and get final action simply as a* = 7. (a | s, 74(5|s)).

Time-reversal symmetry for generalizable offline RL. Recently, leveraging fundamental, uni-
versally held symmetries of dynamics such as T-symmetry discovered in classical and quantum
mechanics [30, 31] has been shown to be a promising approach to enhance the generalization of
offline RL [16, 3]. Specifically, if we model the system dynamics with measurements x as a set of
non-linear first-order differential equations (ODEs) expressed as % = F(x), a dynamical system
is said to exhibt time-reversal symmetry if there is an invertible transformation I' that reverses the
direction of time: i.e., dT'(x)/dt = —F(T'(x)). For the discrete-time MDP setting, the T-symmetry

can be extended as learning a pair of ODE forward dynamics F'(s,a) — $ and reverse dynamics

G(s',a) — —3, and require them to satisfy F'(s,a) = —G(s’, a) [16], where the time-derivative of
state § = % is approximated as s’ — s.

Based on this intuition, TSRL [16] constructed an encoder-decoder structured T-symmetry enforced
dynamics model (TDM) for representation learning, which embeds a pair of latent ODE forward and
reverse dynamics to enforce T-symmetry. TSRL achieves impressive performance under small-sample
settings, and its variant has been successfully deployed for real-world industrial control [3], but it
still has some limitations. First, TSRL only uses the learned encoder from TDM to derive the latent
representations, without fully exploiting the rich dynamics-related information for downstream policy
learning. Second, its representation learning scheme uses both state and action as inputs, forcing
TSRL to involve policy-induced actions during policy optimization, which inevitably requires adding
a conservative action-level behavioral constraint as in TD3+BC [7] to stabilize training. Moreover,
involving action as an input for representation learning is also prone to capturing biased behaviors
in the behavioral policy, which could impede learning fundamental, distribution-agnostic dynamics
patterns in data. Please refer to Appendix A for a more detailed comparison and discussion.

3 Offline RL via T-symmetry Enforced Latent State-Stitching

We now present our proposed method, TELS, which comprises a T-symmetry enforced inverse
dynamics model (TS-IDM) integrated with an effective offline policy optimization procedure operated
in latent state space (illustrated in Figure 1). TS-IDM overcomes multiple drawbacks of TDM in
TSRL [16], which not only extracts the generalizable, T-symmetry preserving representations from
the limited data, but also can be seamlessly used as an execute-policy for optimal action extraction.

3.1 T-symmetry enforced inverse dynamic model

As illustrated in Figure 1, if inspecting the input and output of our proposed TS-IDM, it functions
similarly to an inverse dynamics model that takes current and next state (s, s’) as input and outputs
the predicted action a. However, TS-IDM’s architecture is special in several aspects. In its interior,
it comprises a state encoder ¢4(s) = z, and a corresponding decoder 15(zs) = §; a latent inverse
dynamics model h;,,, (25, 25 ) = 2z, followed by an action decoder ¥, (2,) = a; and most importantly,
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Figure 1: Overview of T-symmetry Enforced Latent State-Stitching (TELS) framework.

a pair of T-symmetry enforced latent ODE forward and reverse dynamics predictors A rq(2s, 2q) =
Zs and hy5(2s, 24) = —Zs. In the following content, we will dive into the design intuitions and
learning objectives of these components.

Encoding and decoding. As previously discussed, constructing an informative and well-structured
latent space is critical for sample-efficient offline policy optimization. To this end, we introduce a
state encoder ¢5(s) = z, to map a state s into corresponding latent representation z, and also a state
decoder ¢5(z5) = s to reconstruct the original state from its latent embedding, ensuring that the
learned latent representations remain faithful to the original state space and avoid excessive distortion.

We then construct a latent inverse dynamics model Ay, (25, 25/) = 24, Which infers the latent action
2z, from the latent state transitions (zs, 25 ). By inferring actions from state transitions, the learned
latent space implicitly encodes the underlying dynamics of the environment. Moreover, the inverse
dynamic model h;,, can be integrated with a pair of latent ODE dynamic models to derive the
T-symmetry property of the system, which we will introduce in more detail shortly. Finally, to
ensure that the inferred actions are both meaningful and interpretable, we employ an action decoder
Ya(zq) = G to map the latent action back to its original action space. We can thus formulate the
reconstruction loss for the states and actions as follows:

Em(&a’s') = |[¥s(ps(s)) — 5”% + [Ya(Pino(2s, 257)) — a||§ 3

reconstruction loss of states reconstruction loss of actions

Latent ODE forward and reverse dynamics. Drawing inspiration from previous research that
integrates physics-informed insights into dynamical systems modeling [32, 33, 31, 16], we embed
a pair of latent ODE forward and reverse dynamics hyy,q(zs, za) = Zs and hpys(2sr, 2a) = —Zs
to separately capture the forward and reverse time evolution in the latent states. We are interested
in modeling ODE systems because it encourages learning parsimonious models helpful to uncover
fundamental properties from the data that can maximally promote generalization [32, 33]. Note that
based on the chain rule, we can derive the supervision signal for the latent dynamics models with
Zs = % = dzs % = Vszs - § = Vs5(s) - § to enforce the ODE property. Therefore, we introduce
the following training losses for A f,,q and hyys:

bagn(3,8") = [[(Vs25)3 = 253 + |(Vsr 25 ) (=5) = (=25) 13
latent ODE forward dynamics latent ODE reverse dynamics

=[|Vsos(s)s — hfwd(ZSvZa)H% + HVS/QSS(S/)(_é) — hrys(zs, Za)H%v (€]

where the latent action z, is obtained from the latent inverse dynamics model h;y, (25, 257 ).

ODE property enforcement on state decoder. Note that in {4, (s, s"), we actually implicitly
enforced the ODE property on the state encoder ¢, the same should also apply to the state decoder
15 to ensure compatibility with the T-symmetry formalism, i.e. the time-derivative of the state

encoder %t(s) and decoder WST(tzS) should behave in the same way as Z; and §. Similar to the
previous treatment on the state encoder, as § = dwzing‘) = d¢jz(25) . % = V.. ¥s(zs) - 25, wWe can

use the following objective to enforce the ODE property for the state decoder 1),:
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Again, the latent action z, is obtained from /., (25, 25/ )-

Notably, the ODE property enforcement in Eq. (5) is not considered in the T-symmetry enforced
dynamics model (TDM) proposed by TSRL [16]. In other words, TDM only enforces the ODE
properties for encoders but not for decoders. This can cause inconsistency between the learned
dynamics and the underlying ODE structure, leading to inaccurate or misaligned ODE representations.

T-symmetry enforcement. To further regularize the learned latent representations, we incorpo-
rate the extended version of T-symmetry [16] by requiring A iq(2s, 24) = —hrvs(2s7, 24), which
corresponds to the following T-symmetry consistency loss:

gT—sym(zsv Za) - ||hfwd(zs» Za) + hrvs (Zs + hfwd(Zm Za)7 Za)”% (6)

where we use the fact that zy = 25 + 25 = 25 + hpwd(%s, 2a) and Rpys(2s + hpwal(2s, Za)s Za) =
—%s = —hjfwa(zs, zq) to further couple the learning process of hf,,q and h,,s. Moreover, given a
latent state-action pair (zs, 2, ), the above T-symmetry consistency loss can also serve as an evaluation
metric to assess their agreement with the learned TS-IDM. A large T-symmetry loss indicates that the
latent state-action representation (zs, z,) induced by some (s, s’) may not satisfy the fundamental
dynamics pattern, making it more likely to be a problematic or non-generalizable sample.

Overall learning objective. Finally, the complete training loss function of TS-IDM is as follows:

L1s.ipm = Z [frec + B+ (bagn + Lode + lrsym) | (8, a, 8") @)
(s,a,s’)ED

where [ is a hyperparameter that balances extracting fundamental dynamics properties and ensuring
the interpretability of the learned representation. Note that we use the same 3 for Layn, £oge, and
{1.sym terms, this is to ensure that the ODE property and T-symmetry regularization are enforced in
the same scale for state encoder ¢4, decoder v, latent inverse dynamics h;,,,,, latent ODE forward
and reverse dynamics hf,,q and h,..s, as all of them are strongly coupled. This forms a strongly
consistent, T-symmetry preserving ODE system to capture the fundamental dynamics properties in
the offline dataset, while also helping reduce unnecessary hyperparameters of the learning process. In
Appendix B.3, we provide detailed results on the impact of 5 on the learning process of TS-IDM.

3.2 Latent space offline policy optimization

Once we have learned TS-IDM, we can extract three highly useful components from it to facilitate
sample-efficient downstream offline policy optimization, including: 1) a state encoder ¢(s) that
provides an ideal, well-behaved latent space for state-stitching; 2) T-symmetry consistency as an
additional regularizer to prevent erroneous generalization when learning a guide-policy in the latent
state space; and 3) the TS-IDM itself can serve as an execute-policy as in POR [20] to extract
optimized action given a learned guide-policy.

Latent state-value functions learning. Based on the state encoder ¢ (s) from the learned TS-
IDM, we can convert the entire offline policy optimization process into the latent state space, which
enjoys both a stable learning process and generalizability due to more compact and well-behaved
representations. Specifically, we can use a similar expectile regression loss as in Eq. (1) to learn a
state-value function V' (z;), but in the latent state space:

min E ey [ L5 (197 (65(5) = V (64(5)) | ®)

T-symmetry regularized guide-policy optimization. A key benefit of learning within the T-
symmetry preserving latent space is that, as T-symmetry captures what is essential and invariant about
the dynamical system, it can provide generalizable information even for OOD samples beyond the
offline dataset. This naturally favors learning a reward-maximizing guide-policy 7, in the latent space,
which can enjoy more effective state-stitching. Moreover, different from POR [20], by leveraging the
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T-symmetry consistency term {1.qm(-) in Eq. (6) as an additional regularizer, we can prevent 7, from
outputting problematic and non-generalizable latent next state, thereby further enhancing logical
state-wise OOD generalization. In TELS, we provide two instantiations for guide-policy optimization,
depending on the choice of using deterministic policy m4(z;) or stochastic policy 7, (zs |25):

- Deterministic policy:

max Es ) | AoV (g (2)) = 0l (Mg (20)) = 8'l} = Cragm (2o hivs (209 (2))) | ©)

Tg

- Stochastic policy:

max E(s,s)~D [exp(a Az, 25)) log mg (250 | 25) — lrsym (Zss Mivs (2, 7rg(-|zs))] (10)

where z5 = ¢4(8), 25 = ¢s(8'), and A(zs, z5/) = r+V (24) =V (zs). For the deterministic policy
mg(2s), we optimize the guide-policy by maximizing the latent state-value function V' weighted by a
normalization term )\, together with two extra regularization terms. The first regularizes the next
state decoded from the guide-policy using state decoder s should not deviate too much from the
next state s’ in the dataset. The second term regularizes the guide-policy induced latent state-action
pair (i.e., (zs, 24) = (25, Pinw(2s, T4(25)))) to comply with the T-symmetry consistency specified
in the learned TS-IDM. For the stochastic guide-policy m4(zs |25), we adopt a similar AWR-style
objective as in Eq. (2), while also incorporating the T-symmetry consistency regularization as in the
deterministic version. In our experiments, we find that the deterministic version objective Eq. (9)
works well for the MuJoCo locomotion tasks, while the stochastic version Eq. (10) works better for
more complex Antmaze tasks [17], potentially due to more stochastic nature of the task environment.

Action inference. After learning the guide-policy 74, we can further use it to extract the optimized
action for control. To do this, we can simply use the optimized latent next state 2, obtained from
guide-policy 74 (z5) or my(-|2,) as the goal state, and plug it into the learned latent inverse dynamics
model h;py (25, 2s7) in TS-IDM to replace zg. The final action can be extracted by decoding the
resulting latent action from h;,,,, using the action decoder v, :

a* = '(/]a (hznv (Zsa 7Tg(zs))) (1 1)

Note that there is no training process needed for this stage. Moreover, throughout our policy optimiza-
tion process, actions are completely not involved, allowing TELS to directly bypass the conservatism
issue caused by the action-level regularization. Please refer to Algorithm 1 in Appendix C for the
complete training and inference procedure of TELS.

4 [Experiments

In this section, we present the evaluation results of TELS on the D4RL benchmark tasks [17]
against behavior cloning (BC), and existing offline RL methods: TD3+BC [7], CQL [8], IQL [34],
DOGE [15], POR [20], model-based methods MOPO [35] and COMBO [36], diffusion-based method
IDQL [37], and TSRL [16], the current SOTA method in small-sample settings. To demonstrate the
effectiveness of TELS in solving real-world tasks, we also validate TELS in a real-world industrial
control environment, which is a data center (DC) cooling control testbed built by a recent work [38].
Moreover, we conduct additional experiments to further evaluate the OOD generalizability of TELS
on a challenging task, and the strengths of the representations learned with TS-IDM in improving
small-sample performance. More results and implementation details can be found in Appendix B, C.

4.1 Comparative evaluation on small-sample setting

Evaluation on D4RL benchmarks. In Table 1, we evaluate TELS against baseline methods on
challenging reduced-size D4RL datasets (Sk~100k samples, about 0.5~10% of their original sizes)'.
These small-sample tasks are particularly challenging for offline RL algorithms, as the data only
sparsely cover the state-action space and require strong OOD generalization capability for algorithms
to achieve reasonable performance. Results on full D4RL datasets can be found in Appendix B.1.

'We use the same reduced-size MuJoCo datasets from the TSRL paper [38], and randomly sub-sample 100k
Antmaze datasets for experiments. We use the original Adroit datasets for evaluation, as they are already small.
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Table 1: Normalized scores on reduced-size D4RL datasets (averaged over the final 10 evaluations with 5 seeds)

Task Size (ratio) BC TD3+BC ~ MOPO  COMBO CcQL 1QL DOGE IDQL POR TSRL TELS
Hopper-m 10k(1%)  297+117  40.1+18.6  55+23 302+280 43.14246 46765 442+102 4424121 464+17 620437 773 +10.7
Hopper-mr 10k (25%) 121453 7346.1 68+03 106+13.1 23+19 134431 179445 217470 174462 218482 432435
Hopper-me 10k (0.5%) 2784107 178479  58+58 139+220 299445 343487 505+252 432444 37.9+61 509486 1009+ 68
Halfcheetah-m 10k (1%) 264+73  164+102  -LI+41 165+24 358+38 299+0.12 362+34 36415  333+£32 384431  408+0.6
Halfcheetah-mr 10k (5%) 143478 179495  117+£52 118+153 81+94 227464 234436 267+1.0  275£36 281435 332+10
Halfcheetah-me 10k (0.5%)  19.149.4  154+107 -LI+14 52+61 265+10.8 105488 267+66  388+19 347426 3994211 407+ 12
Walker2d-m 10k (1%) 1584141 74130 31+47  36+11 188188 225438 45.1+102 3174142 222436 4974106  62.4+53
Walker2d-mr 10k 3.3%)  1.4+1.9 57458  33+27 424156 85+219 107+£119 13.5+84 1224105 148442 2601113 548+6.0
Walker2d-me 10k (0.5%)  21.7+82 79491  06=27 01+01 191+144 265+86 353+ 1016 21.8+145 201486 464+174 87.4=133
Antmaze-u 10k(1%) 4474421 07+12 0.0 0.0 55+23 65.1+194 563+244 675+124 61+73 761+156 887+77
Antmaze-u-d 10k(1%)  24.1+£222 1627+ 164 0.0 0.0 05+0.0 346+185 417+189 5514368 421+142 5224221 60.9+169
Antmaze-m-d 100k (10%) 0.0 0.0 0.0 0.0 0.0 48459 0.0 9.0 £3.4 0.0 0.0 472+173
Antmaze-m-p 100k (10%) 0.0 0.0 0.0 0.0 0.0 125+ 54 0.0 9.4+ 147 0.0 0.0 629+ 17.8
Antmaze-1-d 100k (10%) 0.0 0.0 0.0 0.0 0.0 3.6+4.1 0.0 16.1 + 8.4 0.0 0.0 39.8 + 14.1
Antmaze-l-p 100k (10%) 0.0 0.0 0.0 0.0 0.0 35441 0.0 9.7 £8.5 0.0 0.0 473 +13.1
Pen-human 5k (100%) 34.4 8.4 9.7 27.7 375 715 426+163 6794173 64.1+£253 801+ 181 77.4+172
Hammer-human 5k (100%) 15 20 02 0.2 44 14 12402 27413 02401 02403  36+15
Door-human 5k (100%) 05 0.5 0.2 03 9.9 43 SL1£02 105415 01+01  05+£03 118+ 16
Relocate-human 5k (100%) 0.0 0.3 0.2 0.3 0.2 0.1 0.1£02  02£01  01+01  01£01 0302
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Figure 2: Performance of TELS against baselines under different data sizes

As shown in Table 1, most baselines fail to learn reasonable policies under small datasets, especially in
the challenging 100k Antmaze-medium/large datasets. For example, conventional offline RL methods
like TD3+BC and CQL perform poorly on small datasets, primarily due to their over-conservative
data-related policy constraints. Model-based methods also perform badly due to insufficient samples
to learn accurate dynamics models and the use of problematic model rollout data. Baselines that
have generalization promotion designs, such as DOGE and TSRL, perform slightly better but still
fail miserably in the challenging Antmaze-m/l1 tasks, as they still adopt conservative action-level
constraints to stabilize policy learning. Recent diffusion-based methods like IDQL, although perform
well on large datasets, struggle to learn when given limited data. By contrast, TELS dominates the
chart and outperforms all other baselines in all tasks, sometimes by a large margin. This is attributed
to the leverage of fundamental, data distribution-agnostic T-symmetry property for policy learning,
which greatly improves the OOD generalization performance. This is evident when observing the huge
performance difference between POR and TELS, as the former shares a similar policy optimization
procedure but does not use the T-symmetry enforced representation and policy regularization.

We also evaluate the performance of the algorithms across different dataset sizes in Figure 2. The
results show that TELS can robustly maintain reasonable performance even with only 5k samples,
surpassing all the other methods, while most baseline methods suffer from significant performance
drop when training samples are decreased.

Evaluation on real-world industrial control test environment. To further demonstrate the effec-
tiveness of TELS in solving real-world industrial control tasks, we deploy TELS in a real-world DC
cooling control testbed [38] and compare against CQL, IQL, and TSRL. This testbed comprises 22
servers with oscillating server loads and an Air-Cooling Unit (ACU) for cooling control. A small
historical operational dataset (43k real-world samples collected over 61 days) with 105 state-action
features is used for policy learning. The goal is to improve the energy efficiency of the DC’s cooling
systems (minimizing the Air-side Cooling Load Factor (ACLF), calculated as the ratio of energy
consumption of ACU to servers), while satisfying thermal safety constraints (no overheating). We
follow the same real-world experiment setup as in [38] and present the details in Appendix D.

As shown in Table 2, under a similar server energy consumption level (around 40 kWh), TELS learns
the best control policy, achieving 20.17% ACLF while maintaining zero thermal safety violations.
CQL learns a naive policy that achieves lower ACLF but with significant thermal safety violations.
This shows TELS’s effectiveness in solving real-world complex industry control tasks.
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Table 2: Evaluation results in the real-world DC cooling control testbed (6-hour length experiments)

Testbed CQL IQL TSRL TELS
Server energy consumption (kWh) 41.44 39.80 40.30 40.61
ACU energy consumption (kWh) 4.16 16.27 10.95 8.19
Energy efficiency measure: ACLF (the lower the better) 10.3% 40.89% 27.16% 20.17% |

Percentage of thermal safety violation (the lower the better)  40.99%  0.00%  0.00% 0.00%
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Figure 3: Left: Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the red cross
denotes the start point, the yellow star denotes the goal locations, and the red shaded areas denote the data
deletion regions. Right: Visualization of the training dataset and policy rollout trajectories generated by trained
policies from various algorithms under varying deletion ratios.

4.2 Analysis and ablation of TELS

OOD generalization capability. To further examine the OOD generalizability of TELS, we
construct a very challenging task based on the reduced-size 100k Antmaze-m-d dataset, as illustrated
in Figure 3. Specifically, we randomly remove samples within 5 critical regions along the critical
paths from the start to the goal locations. This task requires extremely strong OOD generalization
capability to solve, as the vital information for the optimal trajectory is extremely scarce or completely
OOD. We train IQL, POR, and TELS on the remaining data and plot their policy rollouts over 20
episodes for performance evaluation and behavior analyses (due to page limit, we also include results
for IDQL, DOGE, TSRL in Appendix B.2). As shown in Figure 3, IQL can only achieve some
success when the deletion ratio is 0%, and POR fails to reach the goal in all cases. By contrast,
TELS consistently learns optimal policy even with 70% and 100% deletion rates. It can effectively
utilize the limited information provided in the sparse remaining data samples at the boundaries of the
deletion areas for policy learning. These highlight the extraordinary OOD generalization capability
of TELS in extremely challenging low-data regimes.

Effectiveness of the learned representations. To verify the effectiveness of the learned latent
representation in TS-IDM, we use TS-IDM’s state encoder ¢;(s) as the representation learning
module on top of two conventional offline RL methods: IQL and TD3+BC. Figure 4 (left) reveals
significant performance improvements and variance reduction when IQL and TD3+BC are trained
within the latent state space induced by ¢(s), suggesting that TS-IDM indeed learns compact
and generalizable representations that benefit policy learning. To further evaluate the quality of
TS-IDM’s representations, in Figure 4 (right), we replace TS-IDM in TELS with other representation
learning methods, including autoencoder (“AE-rep”), variational autoencoder (‘“VAE-rep”) [39],
and contrastive learning method SimCLR (“Contras-rep”) [40]. The results show that the TS-IDM
representation achieves substantially better performance as compared to AE, VAE, and contrastive
representations, due to the information-rich and well-behaved latent space learned in TS-IDM.

Ablations on the design components of TS-IDM. To examine the impact of each component in
TS-IDM, we evaluate various variants of TS-IDM, starting with a vanilla latent inverse dynamics
model with encoder and decoders, denoted as “ ¢/1+ h;p,”, gradually adding latent forward and
reverse dynamics “hgya, hrvs”» ODE property enforcement “/oq4.”, and eventually the T-symmetry
consistency loss “/1.gm”, resulting in the full TS-IDM. Results on 10k datasets are shown in Table 3.
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Figure 4: Left: Performance of IQL and TD3+BC on 10k datasets with or  Figure 5: Impact of £1gym
without using the representation from TS-IDM. Right: The performance of on policy optimization.
TELS with different representation models on 10k datasets.

We observe that the naive autoencoder-based inverse dynamics model fails to provide reasonable
representations. Incorporating dynamics-related information via latent dynamics is helpful, but
the performance gain remains mild. Enforcing
ODE properties on decoders greatly enhances
the quality of learned representations. Lastly, Hopper-me Halfcheetah-me Walker2d-me
enforcing T-symmetry consistency proves tobe ¢ /y+ by, 172470 297436 245+ 10.1

the strongest performance improvement factor, 1+ hgwa, fires 355+73 313+ 11 33.6+£92

which great_ly enhances the quality of the learped 1 I ﬁ;d: ) %é 9i ﬁg; 43;(1)13 i i% %8711 113?31
representations for downstream policy learning. >

Table 3: Ablation on the design components of TS-IDM.

Ablations on regularizer terms in policy optimization. We also conduct ablation experiments in
Figure 5 to validate the effectiveness of the T-symmetry consistency regularizer term {1.qy, during the
guide-policy optimization process of TELS. The results demonstrate that incorporating this term can
effectively enhance performance while reducing variance, highlighting the importance of utilizing
T-symmetry consistency regularization to promote OOD generalization and learning stability.

5 Related Work

Offline RL faces unique challenges in mitigating the risk of OOD exploitation. Evaluating value
functions in OOD regions often results in inaccurate estimates, which can lead to severe value
overestimation and misguiding policy learning. To mitigate this, most offline RL methods leverage
data-related regularizations to stabilize the learning process. These include explicit behavior constraint
techniques that penalize action divergence [0, 4, 7, 41], value regularization schemes to discourage
policies from selecting OOD actions via modifying Bellman update [8, 9, 10, 11] or introducing
uncertainty penalities [42, 43, 10], and in-sample learning methods [44, 12, 13, 14], which stabilize
training by only using in-sample data for value and policy learning. While these methods perform
reasonably well on datasets with sufficient state-action coverage, they often struggle in small-sample
settings where exploiting OOD generalization is vital for achieving good performance. Recently,
leveraging expressive model architectures such as Transformers and diffusion models [45, 46, 47, 48,
37,49, 50, 51] have gained popularity in offline RL, due to their strong capability to fit complex data
distributions. However, these models are overly heavy and require extensive amounts of data to learn,
making them hardly usable for the small-sample setting.

6 Conclusion

We propose a highly sample-efficient offline RL algorithm that learns an optimized policy within
the latent space regulated by the fundamental T-symmetry property. Specifically, we develop a T-
symmetry enforced inverse dynamics model, TS-IDM, to construct a well-behaved and generalizable
latent space, effectively mitigating the challenges of OOD generalization. By learning a T-symmetry
regularized guide-policy within this latent space, we can obtain the reward-maximizing next state
to serve as the goal state input in the learned TS-IDM for optimal action extraction. Through
extensive experiments, we show that TELS achieves strong OOD generalization capability and SOTA
small-sample performance. Moreover, we empirically show that TS-IDM can also function as a
representation learning model to provide informative representations and enhance the performance
of existing methods under the small-sample setting. One potential limitation of TELS is that strong
ODE and T-symmetry property regularizations, although helpful for capturing fundamental patterns
in data, sometimes could limit the model’s expressive power (see Appendix B.3). Future studies can
explore improved designs to perfectly balance fundamental pattern extraction and model expressivity.
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Appendix
A Additional Discussion on Related Works

In this section, we present a detailed discussion of the connections and differences between our
proposed method, TELS with TSRL [16], POR [20], and conventional model-based approaches [52,
35, 53, 36, 54, 2].

T-symmetry
enforcement

State-action Latent ODE forward State and action State encoder Latent inverse Latent ODE forward ~ State and action
\ encoder and reverse dynamics decoders dynamics and reverse dynamics decoders

AN
(a) T-symmetry enforced dynamic model (TDM) in TSRL (b) Our proposed T-symmetry enforced inverse dynamic model (TS-IDM)

J

Figure 6: Comparison of the architecture between TDM in TSRL and our proposed TS-IDM in TELS.

Connection and differences with TSRL. As illustrated in Figure 6, both TSRL and TELS leverage
the T-symmetry consistency enforcement to construct the latent space. Specifically, in Figure 6 (a),
TSRL employs a T-symmetry-enforced dynamics model (TDM), which models system dynamics by
incorporating paired latent ODE forward and reverse dynamics to enforce T-symmetry. In contrast,
Figure 6 (b) illustrates our proposed T-symmetry-enforced inverse dynamics model (TS-IDM), which
integrates T-symmetry constraints into both forward and reverse dynamics while incorporating an
inverse dynamics model. We emphasize the main differences between TELS and TSRL as follows:

* Architecture: As presented in Figure 6 (a), TDM jointly encodes state-action pairs to form the
latent space, which may capture behavioral biases from the dataset (e.g., expert-specific action
patterns) and impede learning fundamental, distribution-agnostic dynamics patterns in data. In
contrast, Figure 6 (b) illustrates that TS-IDM overcomes these limitations by adopting a state-only
modeling approach, focusing on the underlying latent state variations. Additionally, the only
useful component of the learned TDM for downstream policy learning is its encoder ¢(s,a),
wasting the dynamics-related information captured by the model. In contrast, TS-IDM trains an
inverse dynamics model within the T-symmetry-enforced latent space, which can be reused as an
execute-policy to extract optimal actions.

* Detailed model design: As shown in Figure 6 (a), TDM only enforces the ODE property for its
encoder but not the decoder, which could lead to inconsistency between the learned dynamics
and the underlying ODE structure, resulting in inaccurate or misaligned ODE representations. To
address this problem, we introduce the loss term £,4. in Eq. (5) specifically to achieve this goal.
This design is very important as it can greatly enhance the coupling among the different elements
in the model and results in a more stable learning process.

* Training procedure: In TSRL, the TDM encoder and decoders must be pre-trained before joint
training on other components to avoid stability issues. In contrast, our proposed TS-IDM does
not require pre-training; all components can be learned jointly in a single stage. Additionally,
TDM requires adding L1-norm regularization to the parameters of the latent forward and reverse
dynamics models to stabilize the learning process. This is unnecessary in TS-IDM (see Eq. (7)), as
the design of our proposed TS-IDM enables strongly coupled and consistent relationships among
all its internal components. The learning curves of TS-IDM can be found in Appendix F.

* Policy optimization: Since TDM requires both state and action as inputs to derive the latent
representations, it is constrained to Q-function maximization for policy optimization. Consequently,
TSRL adopts the TD3+BC framework as its backbone for policy optimization, which inherently
suffers from over-conservative action-level constraints, particularly in small dataset settings. In
contrast, TELS performs policy optimization entirely within the compact and generalizable latent
state space derived from TS-IDM, enabling state-level optimization that avoids the limitations of
action-space constraints.
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Table 4: Normalized scores on full-size D4RL datasets (averaged over the final 10 evaluations with 5 seeds).

Task | BC TD3+BC MOPO COMBO CQL QL DOGE IDQL POR TSRL | TELS (ours)
Hopper-m ‘ 529 59.3 28.0 97.2 58.5 66.3 98.6 + 2.1 63.1 78.6 7.2 86.7+8.7 ‘ 943 +28
Hopper-mr ‘ 18.1 60.9 67.5 89.5 95.0 94.7 76.2£17.7 82.4 98.9 + 2.1 78.74+28.1 ‘ 99.5+23
Hopper-me | 525 98.0 23.7 111.1 105.4 91.5 102.7+£ 5.2 105.3 90.0 £+ 12.1 959+184 | 1054 +£85

Halfcheetah-m | 42.6 48.3 423 54.2 44.0 474 453+ 0.6 49.7 48.8 £ 0.5 482407 | 443+04
Halfcheetah-mr | 55.2 44.6 53.1 55.1 455 442 42.8 +0.6 45.1 43.54+0.9 422435 | 41101
Halfcheetah-me | 55.2 90.7 63.3 90.0 91.6 86.7 78.7£8.4 94.4 94.7+£2.2 920+1.6 | 87.1+29
Walker2d-m | 753 83.7 17.8 81.9 725 78.3 86.8 + 0.8 80.2 81.1 £23 775445 | 81351
Walker2d-mr | 26.0 81.8 39.0 56.0 712 73.9 87.3 +2.3 79.8 76.6 + 6.9 66.1£120 | 86.0 +3.3
Walker2d-me | 107.5 110.1 44.6 103.3 108.8 109.6 110.4+1.5 111.6 109.1 £ 0.7 109.843.12 | 110.7 £ 1.4
Antmaze-u | 65.0 78.6 0.0 80.3 84.8 85.5 97.0 + 1.8 93.8 90.6 + 7.1 814+192 | 9454103
Antmaze-u-d | 45.6 71.4 0.0 573 434 66.7 63.5+93 62.0 713+£121  765+£29.7 | 79.7+15.3
Antmaze-m-d | 0.0 0.0 0.0 0.0 54.0£11.7  74.6£3.2 77.6£6.1 86.6 79.24£3.1 0.0 | 824+45
Antmaze-m-p | 0.0 0.0 0.0 0.0 65.2+£4.8 70.4£5.3 80.6+6.5 83.5 84.6 £5.6 0.0 | 867457
Antmaze-1-d ‘ 0.0 0.0 0.0 0.0 31.6+9.5 45.6£7.6 36.4 £9.1 56.4 73.4 £8.5 0.0 ‘ 417+ 142
Antmaze-1-p ‘ 0.0 0.0 0.0 0.0 18.8+15.3  43.5+45 48.2+8.1 57.0 580+ 124 0.0 ‘ 60.7 +13.3
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Connection and differences with POR. As discussed in Section 2, while both POR and TELS
share similarities in utilizing a state-stitching approach in state space for policy optimization, they
exhibit the following fundamental differences:

* Original state-space vs. latent state-space optimization: POR relies on policy optimization in
the original state space, which inherently requires sufficient state-action coverage for valid state-
stitching. In contrast, TELS mitigates this limitation by constructing a compact and generalizable
latent space via TS-IDM.

* Unregularized T-symmetry vs. T-symmetry regularized policy optimization: POR optimizes
the guide-policy solely through an AWR formulation [28, 29], constraining 7, to stay close to
the dataset via state-stitching as in Eq. (2), but lacks additional regularization to ensure gen-
eralizable state transitions. In contrast, TELS enforces an additional T-symmetry consistency
regularization {1.ym, Which plays a critical role in preventing 7, from outputting problematic and
non-generalizable latent next states, thereby enhancing its OOD generalizability.

Differences from model-based approaches. We emphasize that our proposed TELS framework
fundamentally differs from MBRL methods [52, 35, 53, 36, 54, 2, 55]. Conventional MBRL methods
prioritize learning forward dynamics models to predict future states and generate rollouts for policy
learning. In contrast, our proposed TS-IDM is primarily designed for state representation learning
and action extraction via inverse dynamics, rather than for data generation. Furthermore, as evidenced
by Table 1, in the small-sample setting, limited data samples are insufficient for the model-based
approach to learn an accurate dynamics model, causing high approximation errors during model
rollouts, which significantly deteriorates policy learning performance.

B Additional Results

B.1 Evaluation on the full datasets

We also evaluate the performance of TELS on the original full datasets of D4RL tasks, and the results
are presented in Table 4. Our proposed method achieves comparable or better performance than
existing offline RL methods. Note that although TSRL also adopts a similar T-symmetry regularized
representation learning scheme as ours, it performs poorly in Antmaze medium and large datasets.
Primarily due to its use of the conservative TD3+BC backbone for policy optimization.

Moreover, we observe that as the dataset size increases and its state-action space coverage broadens,
the stringent T-symmetry regularization in the TS-IDM can be proportionally reduced. Since the
dataset can provide enough information for policy learning, it relieves the need to extract fundamental
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Table 5: TELS performance on 10k datasets across various TS-IDM with different 3.
B =10 =1 B8=0.1

|
Hopper-m | 773+54 773+107 614+56
Hopper-mr | 153+6.6 432 £ 3.5 19.7 £34
Hopper-me \ 37.6 £179 1009 £6.8 64.7+£33

Halfcheetah-m ‘ 3294+23 408 +0.6 41.2+1.1
Halfcheetah-mr | 8.6 & 1.8 332+ 1.0 34.0+22
Halfcheetah-me ‘ 75422 40.7 +£1.2 395+ 2.1
Walker2d-m ‘ 37.2+179 624 +53 54.6+82
Walker2d-mr ‘ 17.1£2.9 548+ 6.0 39.2+8.6
Walker2d-me ‘ 204 +104 874+133 447+98
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Figure 7: The learning curves for training TS-IDM on 10k dataset with different 5 hyperparameter.

features within the data. Consequently, we balance this trade-off by prioritizing model expressiveness
over strict generalization guarantees (i.e., deploying a lower 3 in Eq. (7)). For instance, in the
Antmaze full dataset setting, we use the regularization hyperparameter 8 = 0.01 to train the TS-IDM.
Additional ablation studies analyzing the impact of 3 are detailed in Appendix B.3.

B.2 Additional OOD generalizability validation experiments

We further investigate the generalization capabilities of DOGE [15], IDQL [37], and TSRL [16] under
the variation deletion degrees in the Antmaze environment. Specifically, we train each algorithm on
the modified dataset after the deletion operation. We then evaluate their behaviors by visualizing
rollouts over 20 evaluation episodes.

As illustrated in Figure 8, only IDQL occasionally succeeds in reaching the goal under the 0%
deletion setting, while both DOGE and TSRL fail consistently. As the deletion ratio increases to 70%
and 100%, none of the three methods achieves meaningful policy learning. These results highlight the
inherent challenges of this setting, which requires both a compact yet expressive latent representation
space and a highly generalizable policy capable of operating with extremely sparse and limited data.
While TSRL integrates TDM to distill underlying patterns from the dataset, the scarcity of available
data undermines its action-level constraints approach, preventing it from deriving a viable policy.

B.3 Additional ablation experiments

Impact of T-symmetry regularization on TS-IDM. To investigate the impact of T-symmetry
regularization strength controlled by the hyperparameter 5 in Eq. (7), we conduct additional ablation
experiments by varying the value of [ to assess how T-symmetry regularization influences the
representation learning quality and downstream policy’s performance. Specifically, we train TS-
IDM on reduced-size 10k D4RL MuJoCo datasets with 8 = {0.1, 1,10}, representing different
T-symmetry regularization strengths. The learning curves of TS-IDM’s overall learning loss “Lrs.ipm”
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Figure 8: Left: Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the red cross
denotes the start point, the yellow star denotes the goal locations, and the red shaded areas denote the data
deletion regions. Right: Visualization of the training dataset and policy rollout trajectories generated by trained
policies from various algorithms under varying deletion ratios.

in Eq. (7) are presented in Figure 7. The final policy learning performances with different TS-IDM
models are presented in Table 5.

From Figure 7, we observe that choosing a proper 3 value impacts the learning quality of TS-IDM.
A large 3 (e.g., 8 = 10) could impose overly strong regularization and hurt model expressiveness,
which is reflected in the high learning loss at convergence. However, when the regularization strength
is lowered, maintaining a proper scale of 3 is important to ensure both the quality and generalizability
of the learned representations. As we can see in Figure 7, in the Hopper and Walker2d tasks, choosing
B = 1 provides the lowest “Lrs 1pm” loss; whereas in the Halfcheetah task, “Lrspy” is the lowest
when choosing 8 = 0.1. If we check the final policy’s performance under different TS-IDMs in
Table 5, we can see a clear correlation with what we have observed in Figure 7. TELS achieves the
highest score on Hopper and Walker2d tasks when 3 = 1, but the scores are higher for Halfcheetah
tasks when 8 = 0.1. This matches exactly with the learning performance of TS-IDM under different
[ values. The strong correlation between TS-IDM’s learning performance and the final policy’s
performance of TELS shows that we can select the best 5 hyperparameter values by simply looking
at TS-IDM’s training loss and using the one that provides the lowest training loss. This avoids the
need to perform potentially unsafe online policy evaluations or unstable offline policy evaluations,
which is favorable in real-world deployments.

Impact of regularizer terms 7 in policy optimization.
The hyperparameter 1 governs the strength of regulariza-
tion in TELS, balancing exploration and adherence to dataset
states during policy updates. To evaluate the robustness of
TELS, we test multiple 7 values (n = {1,5, 10}) to examine &0
its sensitivity to the state-level behavioral constraint in Eq. 404
(9). Higher n) values impose stronger constraints on the guide- 201 [I
policy, requiring generated states s’ to align closely with
dataset states. As shown in Figure 9, TELS demonstrates 0

Halfcheetah-me Walker2d-me

100 +

n=1
mm n=5
80 s n=10

Normalized Score

consistent robustness across 7 settings, achieving reliable ] . )
performance under varying constraint strengths. Figure 9: TELS with various 7.

Impact of each component in TS-IDM for policy optimization. To validate the impact of the
T-symmetry regularizer {1.¢y, in Eq. (10), we conduct ablation studies on 100k-sample Antmaze tasks.
From the evaluation results presented in Table 6, the naive auto-encoder based inverse dynamics model
“¢ /1 + hin,” fails to form a reasonable latent space, yielding 0 average normalized scores across all
Antmaze tasks. The introduction of latent dynamics models “hf,,q” and “h,.,;” provides marginal
improvements by capturing partial system dynamics yet remains insufficient for effective policy
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Table 6: Ablations on the components of TS-IDM in Antmaze tasks.
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Figure 10: Left: Impact of /r.qym on policy optimization with 100k Antmaze datasets. Right: Performance of
TELS with different representation models on Antmaze 100k datasets.

learning. Notably, enforcing ODE properties on decoders and applying T-symmetry consistency
emerge as the most significant factors driving performance improvements, substantially enhancing
the reliability of learned representations for downstream guide-policy optimization.

Impact of T-symmetry regularizer term in stochastic policy optimization. We further conduct
ablation experiments in Figure 10 (left) to validate the effectiveness of the T-symmetry consistency
regularization term {1y, during the stochastic guide-policy optimization process of TELS. The
results demonstrate that in stochastic policy optimization schemes, integrating this term signifi-
cantly improves performance while reducing variance, underscoring the critical role of T-symmetry
consistency regularization in enhancing OOD generalization and training stability.

Effectiveness of learned representations for stochastic policy optimization. As illustrated in
Figure 10 (right), we evaluate TELS across diverse representation learning approaches in Antmaze
tasks. The results demonstrate that baseline models struggle to construct meaningful latent spaces
as task complexity increases and data scarcity intensifies (with only 100k usable samples). In
contrast, TS-IDM uniquely learns a compact, well-structured latent space that remains informative
and generalizable, providing a more reliable latent space for policy learning.

C Implementation Details

C.1 Implementation details of TS-IDM

* Network structure. For all MuJoCo locomotion and Antmaze tasks, we deployed 3-layer feed-
forward neural networks for the state encoder ¢, latent inverse dynamics model h;,,,,, forward
and reverse dynamics models h ¢,q and A, and decoder models 1, and 1), for the latent states
and actions. The activation function is ReL.U and uses Adam optimizer to update the parameters.
We present the hyperparameters details of training TS-IDM in Table 7, including the details of the
structure we have implemented as well as the deployed hyperparameters.

* ODE property enforcement on ¢, and v;. We adopt a similar approach to TSRL [16] to
train the ODE enforced forward and reverse dynamic models. Specifically, we compute the
time-derivative of the state encoder ¢4(s) by calculating its jacobian matrix through vmap ()
function in Functorch 2. This allows us to derive the supervision values d(bjg(s) -$and d¢5§f ). (—$)

for the forward dynamics model and reverse dynamics model respectively as in Eq. (4). This

approach implicitly enforces the ODE property on the state encoder ¢, as the encoder is required
to produce state representations that satisfy the ODE constraints. Unlike TSRL, which enforces

ODE properties only on the encoders and not on the decoders, our method further regularizes the

Zhttps://pytorch.org/functorch/stable/functorch.html

18



669
670

671

672

673

674

676
677

Table 7: Hyperparameters of TS-IDM.

| Hyperparameters | Value
State encoder hidden units 512 x 256
State encoder activation function ReLU
Latent forward model hidden units 256 x 256
Latent forward model activation function | ReLU
Latent reverse model hidden units 256 x 256
Latent reverse model activation function | ReLU
TS-IDM latent inverse model hidden units 1024 x 1024
Architecture Latent inverse model activation function ReLU
Latent inverse model dropout True
Latent inverse model dropout rate 0.1
State decoder hidden units 256 x 512
State decoder activation function ReLU
Action decoder hidden units 512 x 512
Action decoder activation function ReLLU
Optimizer type Adam
Weight of lrec 1
Learning rate 3e-4
Batch size 256
Training epoch 1000
State normalize True
1 (MuJoCo locomotion 10k setting)
0.1 (MuJoCo Antmaze 10k& 100k setting)
Hyperparameters . 0.1 (MuJoCo locomotion full dataset setting)
ypep Weight of 3 0.01 (MuJoCo Antmaze full dataset setting)g
0.01 MuJoCo adroit-human task)
0.01 (Real-world DC cooling control testbed task)
0  (MuJoCo locomotion 10k setting)
Weight decay le-5 MuJoCo locomotion&Antmaze full dataset setting)
le-5 (MuJoCo adroit-human tasks)
le-5 (Real-world DC cooling control testbed task)

Table 8: Structure and training parameters of guide-policy optimization.

| Hyperparameters | Value
Value network hidden units 1024 x 1024
Guide-policy | Value network activation function ReLU
structure Policy network hidden units 1024 x 1024
Policy network hidden units ReLU
Optimizer type Adam
Training Target Value network moving average | 0.05
Perparameters | Batch size 256
Training steps 100000
State normalize True

state decoder 5. Specifically, 1), is trained to decode the predicted latent state variables generated
by hfwa(2s, 2a) = Zs and hyys(2s, 2q) = —Z, ensuring that it also satisfies the ODE constraints

dis(z

in Eq. (5). To achieve this, we apply the same approach to compute = =) and train the state

decoder accordingly.

C.2 Implementation details of T-symmetry regularized guide-policy

* Network structure. For all D4RL MuJoCo-v2 and Antmaze-v1 tasks, we deployed 2-layer
feed-forward neural networks for the guide-policy 7, and the value function V. The activation
function is ReLU and uses Adam optimizer to update the parameters. The parameter details are
presented in Table 8.
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Algorithm 1 Offline RL via T-symmetry Enforced Latent State-Stitching (TELS).

Require: Offline dataset D.

: //TS-IDM learning

: Learning the state encoder ¢, state decoder v, action decoder 14, latent inverse dynamics h;n., latent
forward and reverse dynamics hf,q and h,s using the TS-IDM learning objective Eq. (7).

3: Initialize Vi, Vy/, 7o

4: // Policy training

5: fort=1,---, M training steps do

6:  Sample transitions (s,7,s’) ~ D and compute their representations (zs, z,/) using the state encoder ¢s.

7

8

9

N —

Use (zs, 7, z5) to update the latent state-value function V' using Eq.(8).

: Use (zs, 2¢) to update the latent guide-policy 7, using Eq. (9) or (10).
: end for

10: // Evaluation

11: Get initial state s from environment

12: while not done do

13:  Get optimized next state z., using guide-policy 7.

14:  Extract action a using Eq. (11).

15: end while

» Hyperparameters for policy optimization. Under both small-sample and full datasets settings,
we employ a deterministic policy update strategy for MuJoCo locomotion tasks, as defined in
Eq. (9), with learning rates of 1e-4 for both value and policy functions. The normalization term
A is computed as Ao = o/[>", |V (¢s(s;))|/N], where a controls the trade-off between value
maximization and policy regularfzation and N denotes the number of samples in the training batch.
For Antmaze tasks, we utilize a stochastic policy optimization strategy, as outlined in Eq. (10),
with learning rates of 1e-3 for value and policy functions.

Full dataset setting: We set (7, a, 7)) = (0.7,0.01, 10) for all MuJoCo locomotion tasks and Adorit
tasks, for all MuJoCo Antmaze tasks, we deploy (7, &) = (0.9, 10) as the training parameters.

Small-sample setting: For Halfcheetah and Walker2d tasks, we set (7, «,7) = (0.5,0.01,5) and
incorporate policy dropout to mitigate overfitting. These tasks share identical state and action
dimensions (17 states and 6 actions), enabling the use of the same parameter set for guide-policy
training. In contrast, Hopper tasks with a smaller state-action space (11 states and 3 actions) are
comparatively simpler given the same amount of training data (e.g., 10k samples). Consequently, we
adopt a more aggressive learning strategy for Hopper, setting (7, a,77) = (0.7, 0.1, 10) to prioritize
value maximization. For Antmaze tasks, we use an identical set of parameters (7, «) = (0.9, 10)
as in the full dataset setting to train the guide-policy. For the real-world DC cooling control testbed
task, we find using the (7, «, ) = (0.5,0.01, 5) can derive the best performance.

Training resources. To train a TS-IDM, we utilize one NVIDIA GeForce RTX 4090 with an AMD
Ryzen 9 7950X 16-Core Processor and 16GB of memory for approximately 30 minutes, running on
Ubuntu 22.04.2 LTS 64-bit. We employ the same resource configurations for approximately 6 hours
for the guide-policy training.

D Detailed Experiment Setups

Reduced-size dataset generation. To create reasonably reduced-size D4RL datasets for a fair
comparison, we use the identical small samples as in the TSRL paper [16] for the locomotion tasks
training. For Antmaze tasks, we adopt a similar approach by randomly sub-sampling trajectories from
the original dataset to construct smaller training datasets. Specifically, for the “Antmaze-umaze” tasks,
we randomly sample 10k data points for training, and for the “Antmaze-medium” and “Antmaze-large”
tasks, we utilize 100k random samples as the training dataset of TELS.

The rationale behind this adjustment is the “medium” and “large” environments are significantly
more expansive than the “umaze” environment. Sampling only 10k data points would likely result
in trajectories that lack the fundamental information necessary to describe the task. Therefore, we
relax the small-sample constraints for these environments to ensure that the reduced datasets at least
contain enough successful trajectories for effective training.
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Figure 11: The layout illustration of the real-world DC cooling control testbed environment (figure from [38]).

Experiment setups for OOD generalization tasks in Antmaze. In Section 4.2, we conduct a
more challenging scenario to verify the OOD generalizability of the algorithm. Specifically, based
on the 100k “Antmaze-medium-diverse-v2” dataset, we manually selected five critical intervals and
erased the data points within these intervals by randomly deleting them. The selection of intervals
was determined based on the XY-axis coordinates. In this dataset, the first two dimensions of the
state represent the vertical and horizontal coordinates, respectively. Based on this information, we
randomly deleted 70% and 100% of the data in the chosen intervals. We then trained IQL [12],
DOGE [15], IDQL [37], POR [20], TSRL [16], and TELS using this modified dataset to evaluate
their performance.

Experiment details of real-world industrial control test environment. We adapted the figure
from [3] to illustrate the layout structure of the real-world DC cooling control testbed. As shown in the
figure D, the testbed comprises 22 server units and an inter-rack air conditioning unit (ACU) positioned
between Rack 1 and Rack 2, supplemented by 24 temperature and humidity sensors (organized into
six monitoring sets) to capture spatial thermal dynamics within the environment. Notably, the ACU
employs compressor-driven cooling, with fan operation and compressor workload constituting the
primary sources of energy expenditure. The thermal regulation is achieved by modulating the ACU’s
entering air temperature (EAT) setpoint to maintain the rack exhaust temperature (CAT) below a
predefined safety threshold. The energy-saving objective is to improve the energy efficiency of the
DC’s cooling systems (minimizing the ACLF) while satisfying thermal safety constraints.

We leverage a dataset of 43k real-world operational samples recorded at 2-minute intervals over
61 days with 105 state-action features. During the training process, we utilize the identical reward
function and follow the same experimental protocols outlined in [3]. To ensure rigorous benchmarking,
we adopt the same challenging thermal constraint (set the CAT threshold as 22°C) for comparative
evaluation of TELS performance.

Experiment setups for various representation learning. To validate the effectiveness of the
representations learned by TS-IDM, we integrate it as the representation module in two offline RL
frameworks (IQL and TD3+BC), verifying the usability of the learned latent space as illustrated in
Figure 4 (left). Specifically, we process the original states s and next states s’ from the dataset using
the pre-trained state encoder ¢, of TS-IDM to derive the latent representations: ¢s(s) — z5 and
¢s(s") = zg. Then, train IQL and TD3+BC within the latent space to evaluate their performance
under the small-sample setting.

Furthermore, in Figure 4(right), we benchmark TELS against three established representation learning
baselines (“AE-rep”, “Contras-rep” and “VAE-rep”) to rigorously assess TS-IDM’s representation
quality. Implementation details for all baseline models are provided below:

* “AE-rep”: We implement a naive autoencoder-based inverse dynamics framework, consisting of a
state encoder and decoders ¢ and v, to construct the latent state space. As in TELS, the inverse
dynamics model h;,,, is built within this latent space, serving as the execute-policy. For a fair
comparison, we use the same network parameters for the encoder, decoder, and inverse dynamics
model as in TS-IDM. The “AE-rep” model is trained with a reconstruction loss to capture the
essential features of the input, and the inverse dynamics model is simultaneously trained on the
latent representations to predict actions.

* “VAE-rep”: The variational autoencoder (VAE) [39] is built based on the “AE-rep” model by
introducing additional KL divergence loss terms. Specifically, the encoder outputs parameters of
a Gaussian distribution in the latent space, and the latent representations are sampled using the
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reparameterization trick. The VAE is trained using a combined loss function that includes both the
reconstruction loss and the KL divergence loss, which regularizes the latent space to follow a prior
distribution. The inverse dynamic model is trained simultaneously with the VAE, sharing the latent
space and optimizing for both the reconstruction of the input data and the prediction of actions.

* “Contras-rep”: We utilize the NT-Xent loss (Normalized Temperature-Scaled Cross Entropy Loss)
used in SimCLR [40] within the latent representation space on top of the “AE-rep” model. The
overall loss function combines the contrastive loss with the reconstruction loss, ensuring that the
latent space not only captures the structure of the data but also learns semantically meaningful
representations that are robust to variations. The inverse dynamic model is trained simultaneously
within the latent space to predict actions.

E Border Impact

While training reinforcement learning (RL) agents on large-scale offline datasets has been extensively
studied, real-world applications often face prohibitive data scarcity and collection costs. This
necessitates offline RL methods that achieve reliable performance in small-sample regimes. To
address this challenge, we introduce a highly sample-efficient offline RL algorithm to learn high-
performing policies from extremely limited data. We empirically validate its efficacy through
deployment on a real-world data center cooling control testbed, establishing its practical viability.
Our approach highlights a promising pathway for advancing sample-efficient offline RL in resource-
constrained settings. A potential limitation is the inherent risk of unreliable or unsafe actions within
historical datasets, which may mislead policy learning.

F Learning Curves

The following are the learning curves of TS-IDM and the T-symmetry regularized guide-policy
optimization in TELS on the reduced-size D4RL MuJoCo and Antmaze datasets. We evaluate the
policy with 10 episodes over 5 random seeds.
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Figure 12: Learning curves of the overall and each individual loss terms in TS-IDM for Hopper tasks.
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Figure 13: Learning curves of the overall and each individual loss terms in TS-IDM for Halfcheetah tasks.
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Figure 14: Learning curves of the overall and each individual loss terms in TS-IDM for Walker2d tasks.
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Figure 15: Learning curves of policy optimization in TELS for DARL MuJoCo and Antmaze tasks with reduced-
size datasets. We evaluate the policy within 10 episodes over 5 random seeds.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We introduce the contributions and scope in the abstract and introduction.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limitations of our work in Section 6.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This is not a theoretical paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explained our problem settings in Section 4 and implementation details in
Appendix C.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: For anonymity reasons, we have not made our code public. Upon acceptance,
we will release our code on GitHub.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and model details are specified in Appendix C and the experi-
ment setup details are presented in Appendix D.

Guidelines:

* The answer NA means that the paper does not include experiments.
» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We presented the standard error in the reported results and learning curves,
with an average of over five random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have presented the training resources requirement in Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We read and followed the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work in Appendix E.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: N/A
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: N/A
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: N/A
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: N/A
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data

collector.
Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: N/A
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.L.M) for what should or should not be described.
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