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Abstract

Offline reinforcement learning (RL) has achieved notable progress in recent years. However,
most existing offline RL methods require a large amount of training data to achieve reasonable
performance and offer limited generalizability in out-of-distribution (OOD) regions due to
conservative data-related regularizations. This seriously hinders the usability of offline RL
in solving many real-world applications, where the available data are often limited. In this
study, we introduce TELS, a highly sample-efficient offline RL algorithm that enables state-
stitching in a compact latent space regulated by the fundamental time-reversal symmetry
(T-symmetry) of dynamical systems. Specifically, we introduce a T-symmetry enforced
inverse dynamics model (TS-IDM) to derive well-regulated latent state representations that
greatly facilitate OOD generalization. A guide-policy can then be learned entirely in the
latent space to optimize for the reward-maximizing next state, bypassing the conservative
action-level behavioral regularization adopted in most offline RL methods. Finally, the
optimized action can be extracted using the learned TS-IDM, together with the optimized
latent next state from the guide-policy. We conducted comprehensive experiments on both
the D4RL benchmark tasks and a real-world industrial control environment, TELS achieves
superior sample efficiency and OOD generalization performance, significantly outperforming
existing offline RL methods in a wide range of challenging small-sample tasks.
Keywords: sample efficiency, representation learning, fundamental symmetry for dynamic
modeling, offline reinforcement learning

1. Introduction

Offline reinforcement learning (RL) has seen rapid progress in recent years. It bypasses
the reliance on environment interactions as in online RL methods, directly utilizing pre-
collected offline data for policy learning, thus being ideal for many real-world tasks that
lack high-fidelity simulators or have environment interaction restrictions (Levine et al., 2020;
Fujimoto et al., 2018; Zhan et al., 2022). However, offline RL is also known to be prone
to value overestimation, caused by extrapolation error when evaluating out-of-distribution
(OOD) samples and amplified through the interactive dynamic programming procedure in
RL (Kumar et al., 2019; Fujimoto et al., 2019). In the past few years, quite a few offline
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RL methods have been proposed, which commonly adopt the pessimism principle using
strategies such as adding explicit or implicit policy constraints to prevent the selection of
OOD actions (Kumar et al., 2019; Fujimoto et al., 2019; Fujimoto and Gu, 2021), penalizing
value function on unseen samples (Kumar et al., 2020; Bai et al., 2021; Lyu et al., 2022),
or adopting in-sample learning to implicit regularize policy optimization (Kostrikov et al.,
2022; Xu et al., 2023). What’s in common with these methods is the use of some kind of
action-level constraints to avoid OOD exploitation. Although this could stabilize offline value
and policy learning, it inevitably leads to over-conservatism and crippled OOD generalization
performance (Li et al., 2022; Cheng et al., 2023). Most of the existing offline RL methods
only perform well when trained in sufficiently large amounts of offline data with reasonable
state-action space coverage (e.g., 1 million samples for simple D4RL tasks (Fu et al., 2020)).
This forms a stark contrast to the reality of most real-world scenarios, where the historical
data are often limited and scaling up data collection can be rather costly (Zhan et al., 2022;
Cheng et al., 2023). Hence although offline RL is initially proposed to solve a wide range of
real-world tasks, we still haven’t seen too many practical deployments to date.

In this paper, we find that enabling state-stitching in a coherent, fundamental symmetry-
enforced latent space can actually lead to a surprisingly strong sample-efficient offline RL
algorithm. We refer to our method as Offline RL via T-symmetry Enforced Latent State-
Stitching (TELS). Specifically, we introduce a T-symmetry enforced inverse dynamics model
(TS-IDM) to not only learn well-behaved T-symmetry consistency representations that
greatly alleviate the difficulty of OOD generalization but can also facilitate effective action
inference. Within the learned latent state space, we can optimize a T-symmetry regularized
guide-policy to output the next state that maximizes the reward, bypassing the conservative
action-level behavioural constraints as used in typical offline RL algorithms. Lastly, the
optimized action can be easily extracted by plugging the output of the guide-policy as
the goal state in the learned T'S-IDM. The resulting algorithm achieves amazing sample
efficiency and OOD generalization capability, significantly outperforming existing offline RL
algorithms in a wide range of challenging reduced-size D4RL benchmark datasets, even using
as few as 1% of the original samples. Our method greatly pushes the performance limit of
offline RL under low data regimes, offering a new opportunity to tackle many previously
unsolvable real-world tasks.

2. Offline RL via T-symmetry Enforced Latent State-Stitching

We now present our proposed method, TELS, which comprises a T-symmetry enforced
inverse dynamics model (T'S-IDM) integrated with an effective offline policy optimization
procedure operated in latent state space (illustrated in Figure 1). TS-IDM overcomes
multiple drawbacks of TDM in TSRL (Cheng et al., 2023), which not only extracts the
generalizable, T-symmetry preserving representations from the limited data, but also can be
seamlessly used as an execute-policy for optimal action extraction.

2.1. T-symmetry enforced inverse dynamic model

As illustrated in Figure 1, if inspecting the input and output of our proposed T'S-IDM, it
functions similarly to an inverse dynamics model that takes current and next state (s, s)
as input and outputs the predicted action a. However, T'S-IDM’s architecture is special in
several aspects. In its interior, it comprises a state encoder ¢4(s) = z; and a corresponding
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Figure 1: Overview of T-symmetry Enforced Latent State-Stitching (TELS) framework.

decoder 14(z5) = §; a latent inverse dynamics model hjpy (25, 25) = 2, followed by an action
decoder 1,(2,) = @; and most importantly, a pair of T-symmetry enforced latent ODE
forward and reverse dynamics predictors hpya(2s, 2a) = Zs and hpys(2s, 2a) = —Zs. In the
following content, we will dive into the design intuitions and learning objectives of these
components.

Encoding and decoding. As previously discussed, constructing an informative and
well-structured latent space is critical for sample-efficient offline policy optimization. To this
end, we introduce a state encoder ¢4(s) = zs; to map a state s into corresponding latent
representation z,, and also a state decoder ¥s(zs) = s to reconstruct the original state from
its latent embedding, ensuring that the learned latent representations remain faithful to the
original state space and avoid excessive distortion.

We then construct a latent inverse dynamics model hjny (25, 25/) = 24, which infers the
latent action z, from the latent state transitions (zs, z¢). By inferring actions from state
transitions, the learned latent space implicitly encodes the underlying dynamics of the
environment. Moreover, the inverse dynamic model h;y,, can be integrated with a pair of
latent ODE dynamic models to derive the T-symmetry property of the system, which we
will introduce in more detail shortly. Finally, to ensure that the inferred actions are both
meaningful and interpretable, we employ an action decoder 1,(z,) = @ to map the latent
action back to its original action space. We can thus formulate the reconstruction loss for
the states and actions as follows:

brec(s,a,8") = |[9hs(¢s(s)) — 3”% + [a(hino(2s, 251)) — a||% (1)

Vv
reconstruction loss of states reconstruction loss of actions

Latent ODE forward and reverse dynamics. Drawing inspiration from previous
research that integrates physics-informed insights into dynamical systems modeling (Brunton
et al., 2016; Champion et al., 2019; Huh et al., 2020; Cheng et al., 2023), we embed a pair
of latent ODE forward and reverse dynamics A fyq(2s, 2a) = Zs and hpys(2s, 2a) = —Zs to
separately capture the forward and reverse time evolution in the latent states. We are
interested in modeling ODE systems because it encourages learning parsimonious models
helpful to uncover fundamental properties from the data that can maximally promote
generalization (Brunton et al., 2016; Champion et al., 2019). Note that based on the
chain rule, we can derive the supervision signal for the latent dynamics models with

Zs = % = ‘ff; . % = Vszs - § = Vsos(s) - § to enforce the ODE property. Therefore, we
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introduce the following training losses for A f,,q and fy..:

Layn (s, s') = [(Vszs5)$ — ZSH% +[[(Vsrzs ) (—8) — <_28)“%
latent ODE forward dynamics latent ODE reverse dynamics

=[Vss(8)8 = hud(zs, za) 13 + [V ds(s)(=8) = hros(2s1, 2a) |3, (2)

where the latent action z, is obtained from the latent inverse dynamics model hjn, (2, 25)-
ODE property enforcement on state decoder. Note that in £4y,(s, s’), we actually
implicitly enforced the ODE property on the state encoder ¢s, the same should also

apply to the state decoder s to ensure compatibility with the T-symmetry formalism,
i.e. the time-derivative of the state encoder %t(s) and decoder dwzigzs) should behave in
the same way as Z; and §. Similar to the previous treatment on the state encoder, as
§ = dwzl(tzs) = dwjz(zs) . % = V.. ¢s(zs) - 25, we can use the following objective to enforce the
ODE property for the state decoder Vs

Eode(sa 5/) = ||st¢s(zs) “Zs — 3”% + ||vzs/¢s(zs’) : (_Z.s) - (_S)H%
enforce ODE of 95 on h g enforce ODE‘gf s on hypys
=(| V., ¥s(2s) - hfwd(zs’ Za) — 3”% + ||vz5/¢5(zs’) “hros(2s5 2a) + 5”% (3)

Again, the latent action z, is obtained from hjp, (25, 25 ).

Notably, the ODE property enforcement in Eq. (3) is not considered in the T-symmetry
enforced dynamics model (TDM) proposed by TSRL (Cheng et al., 2023). In other words,
TDM only enforces the ODE properties for encoders but not for decoders. This can cause
inconsistency between the learned dynamics and the underlying ODE structure, leading to
inaccurate or misaligned ODE representations.

T-symmetry enforcement. To further regularize the learned latent representations,
we incorporate the extended version of T-symmetry (Cheng et al., 2023) by requiring
hfwd(Zss Za) = —hros(Zs, 2a), which leads to the following T-symmetry consistency loss:

gT-sym(Z& Za) = ||hfwd(257 Za) + hrvs(zs + hfwd(287 Za): za)”% (4)

where we use the fact that zy = 25 + 25 = 25 + hpwa(2s, 2a) and hpys(2s + hrwd(2s, 2a), 2a) =
—%s = —h fwd(zs, zq) to further couple the learning process of hfwqa and hy,s. Moreover,
given a latent state-action pair (zs, 2,), the above T-symmetry consistency loss can also
serve as an evaluation metric to assess their agreement with the learned TS-IDM. A large
T-symmetry loss indicates that the latent state-action representation (zs, z,) induced by
some (s, s") may not satisfy the fundamental dynamics pattern, making it more likely to be
a problematic or non-generalizable sample.

Overall learning objective. Finally, the complete training loss function of T'S-IDM
is as follows:

ETS—IDM = Z |:€rec + /8 : (gdyn + eode + eT—sym)] (37 a, S/) (5)
(s,a,8")€D

where (8 is a hyperparameter that balances extracting fundamental dynamics properties and
ensuring the interpretability of the learned representation. Note that we use the same 3
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for Layn, Lode, and l1_gym terms, this is to ensure that the ODE property and T-symmetry
regularization are enforced in the same scale for state encoder ¢, decoder 1, latent inverse
dynamics Ay, latent ODE forward and reverse dynamics h g and hyys, as all of them are
strongly coupled. This forms a strongly consistent, T-symmetry preserving ODE system
to capture the fundamental dynamics properties in the offline dataset, while also helping
reduce unnecessary hyperparameters of the learning process. In Appendix D.3, we provide
detailed results on the impact of 8 on the learning process of T'S-IDM.

2.2. Latent space offline policy optimization

Once we have learned TS-IDM, we can extract three highly useful components from it
to facilitate sample-efficient downstream offline policy optimization, including: 1) a state
encoder ¢(s) that provides an ideal, well-behaved latent space for state-stitching; 2) T-
symmetry consistency as an additional regularizer to prevent erroneous generalization when
learning a guide-policy in the latent state space; and 3) the TS-IDM itself can serve as an
execute-policy to extract optimized action given a learned guide-policy.

Latent state-value functions learning. Based on the state encoder ¢4(s) from
the learned T'S-IDM, we can convert the entire offline policy optimization process into the
latent state space, which enjoys both a stable learning process and generalizability due to
more compact and well-behaved representations. Specifically, we can use a similar expectile
regression loss as in Eq. (10) to learn a state-value function V(zs) in the latent state space:

min B, )p L3 (r 79V (65(5)) = V (65(5))) | (6)

T-symmetry regularized guide-policy optimization. A key benefit of learning
within the T-symmetry preserving latent space is that, as T-symmetry captures what is
essential and invariant about the dynamical system, it can provide generalizable information
even for OOD samples beyond the offline dataset. This naturally favors learning a reward-
maximizing guide-policy 7, in the latent space, which can enjoy more effective state-stitching.
Moreover, by leveraging the T-symmetry consistency term ¢1_gym(-) in Eq. (4) as an additional
regularizer, we can prevent m, from outputting problematic and non-generalizable latent
next state, thereby further enhancing logical state-wise OOD generalization. In TELS, we
provide two instantiations for guide-policy optimization, depending on the choice of using
deterministic policy m4(2,) or stochastic policy mgy(2s|2s):

- Deterministic policy:

H}%X IE(s,s’)~D [)‘av(ﬂg(%)) - 77H77Z)8(7Tg(758)) - 5/||§ — lrosym (25, hivs (2, Wg(ZS)))}
(7)

- Stochastic policy:

max B¢, oyop [exp(a - A(zs, 251)) log mg(2s | 2s) — 1osym (25, Pivs(2s, 7Tg(~|zs))} (8)
Tg

where z; = ¢5(8), zs = ¢s(8'), and A(zs,29) =7+ 7V (2¢) — V (25). For the deterministic
policy 7,4(2s), we optimize the guide-policy by maximizing the latent state-value function V'
weighted by a normalization term A, together with two extra regularization terms. The
first regularizes the next state decoded from the guide-policy using state decoder s should
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not deviate too much from the next state s’ in the dataset. The second term regularizes
the guide-policy induced latent state-action pair (i.e., (zs, za) = (2s, hino(2s, Tg(25)))) to
comply with the T-symmetry consistency specified in the learned T'S-IDM. For the stochastic
guide-policy 7y (25 |2s), we adopt a similar AWR-style objective as in Eq. (11), while also
incorporating the T-symmetry consistency regularization as in the deterministic version.
In our experiments, we find that the deterministic version objective Eq. (7) works well for
the MuJoCo locomotion tasks, while the stochastic version Eq. (8) works better for more
complex Antmaze tasks (Fu et al., 2020), potentially due to the more stochastic nature of
the task environment.

Action inference. After learning the guide-policy 74, we can further use it to extract
the optimized action for control. To do this, we can simply use the optimized latent next
state 2z}, obtained from guide-policy my(zs) or m4(:|2s), and plug it into the learned latent
inverse dynamics model hjp, (25, 2¢) in TS-IDM to replace zy. The final action can be
extracted by decoding the resulting latent action from h;,, using the action decoder 1, :

a* = Yq (hiny (25, 7g(25))) (9)

Note that there is no training process needed for this stage. Moreover, throughout our
policy optimization process, actions are completely not involved, allowing TELS to directly
bypass the conservatism issue caused by the action-level regularization. Please refer to
Algorithm 1 in Appendix E for the complete training and inference procedure of TELS.

3. Experiments

In this section, we present the evaluation results of TELS on the DARL benchmark tasks (Fu
et al., 2020) against behavior cloning (BC), and existing offline RL methods: TD3+BC
(Fujimoto and Gu, 2021), CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), DOGE (Li
et al., 2022), POR (Xu et al., 2022a), model-based methods MOPO (Yu et al., 2020) and
COMBO (Yu et al., 2021), diffusion-based method IDQL (Hansen-Estruch et al., 2023),
and TSRL (Cheng et al., 2023), the current SOTA method in small-sample settings. More
results and implementation details can be found in Appendix D, E.

3.1. Comparative evaluation on small-sample setting

Evaluation on D4RL benchmarks. In Table 1, we evaluate TELS against baseline
methods on challenging reduced-size D4RL datasets (5k~100k samples, about 0.5~10% of
their original sizes).

As shown in Table 1, most baselines fail to learn reasonable policies under small datasets,
especially in the challenging 100k Antmaze-medium/large datasets. For example, conven-
tional offline RL methods like TD34BC and CQL perform poorly on small datasets, primarily
due to their over-conservative data-related policy constraints. Model-based methods also
perform badly due to insufficient samples to learn accurate dynamics models and the use
of problematic model rollout data. Baselines that have generalization promotion designs,
such as DOGE and TSRL, perform slightly better but still fail miserably in the challenging
Antmaze-m/1 tasks, as they still adopt conservative action-level constraints to stabilize policy
learning. Recent diffusion-based methods like IDQL, although perform well on large datasets,
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Table 1: Normalized scores on reduced-size D4RL datasets (averaged over the final 10 evaluations
with 5 seeds)

Task Size (ratio)  BC TD3+BC MOPO COMBO  CQL QL DOGE  IDQL POR TSRL TELS
Hopper-m 10k (1%) 2074117 4014186 55423 3024280 4314246 467465 442+ 102 4424121 464+ 17 620437  77.3 £ 10.7
Hopper-mr 10k (25%) 121453 73560 68+03 106+ 131 23£19 134431 179445 207470 174462 218482  43.2 + 3.5
Hopper-me 10k (05%) 2784107 178479  58+58 130+220 209445 343487 505 +252 432444 379+ 61 500486  100.9 + 6.8
Halfcheetah-m 10k (1%) 24173 1644102 11+ 41 165+ 24 358438 2094012 362434  364k15 33332 384431  40.8 + 0.6
Halfcheetah-mr 10k (5%) 14.3+7.8 17.9+9.5 1.7+ 5.2 11.8 £ 15.3 8.1+9.4 22.7+6.4 23.4 + 3.6 26.7+£1.0 27.5+3.6 28.14+3.5 33.2 + 1.0
Halfcheetah-me 10k (0.5%) 19.14+9.4 15.4410.7 -1+ 14 5.2 £+ 6.1 26.5+10.8 10.5+8.8 26.7 £ 6.6 38.8+1.9 34.7+2.6 39.9+421.1 40.7 + 1.2
Walker2d-m 10k (1%) 15.8+14.1 7.4+13.1 3.1 +£4.7 3.6 £1.1 18.8+18.8 22.5+3.8 45.1 +10.2  31.7+14.2 22.2+3.6 49.7+10.6 62.4 + 5.3
Walker2d-mr 10k (3.3%) 1.44+1.9 5.745.8 3.3+ 27 4.2 +£15.6 8.5+2.19 10.74+11.9 13.5 + 8.4 12.2410.5 14.844.2 26.0+£11.3 54.8 + 6.0
Walker2d-me 10k (0.5%) 21.748.2 7.949.1 0.6 + 2.7 0.1 £0.1 19.1+14.4 26.54+8.6 35.3 £11.6 21.8+14.5 20.1+8.6 46.4+17.4 87.4 + 13.3
Antmaze-u 10k (1%) 44.7 + 42.1 0.7+ 1.2 0.0 0.0 55+ 23 6514194 563+ 244 67.5+12.4 6.1 +73 76.1 £ 15.6 88.7 + 7.7
Antmaze-u-d 10k (1%) 24.1 £ 222 16.27 +£ 164 0.0 0.0 0.5+ 0.1 34.6 +£18.5 41.7 +18.9 55.1 + 36.8 42.1 +£14.2 52.2 4+ 22.1 60.9 + 16.9
Antmaze-m-d 100k (10%) 0.0 0.0 0.0 0.0 0.0 18459 0.0 9.0 £34 0.0 00  472+17.3
Antmaze-m-p 100k (10%) 0.0 0.0 0.0 0.0 00 125454 0.0 94+ 147 0.0 0.0 62.0 + 17.8
Antmazeld 100k (10%) 0.0 0.0 0.0 0.0 0.0 36+ 4.1 0.0 16.1 + 8.4 0.0 0.0 39.8 + 14.1
Antmazelp 100k (10%) 0.0 0.0 0.0 0.0 0.0 35+ 41 0.0 0.7 485 0.0 0.0 47.3 + 13.1
Pen-human 5k (100%) 34.4 8.4 9.7 27.7 37.5 71.5 42.6 + 16.3 67.9 +£17.3 64.1 £25.3 80.1 + 18.1 774 £ 172
Hammer-human 5k (100%) 15 2.0 0.2 02 4.4 14 12402 27413 02401 02403 36415
Door-human 5k (100%) 0.5 0.5 02 03 9.9 43 41402 105415 01401 05403 118+ 1.6
Relocate-human 5k (100%) 0.0 03 02 03 0.2 0.1 01402 02401 01+01 01+£01  03+02
125
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Figure 2: Performance of TELS against baselines under different data sizes

struggle to learn when given limited data. By contrast, TELS dominates the chart and
outperforms all other baselines in all tasks, sometimes by a large margin. This is attributed
to the leverage of fundamental, data distribution-agnostic T-symmetry property for policy
learning, which greatly improves the OOD generalization performance.

We also evaluate the performance of the algorithms across different dataset sizes in
Figure 2. The results show that TELS can robustly maintain reasonable performance even
with only 5k samples, surpassing all the other methods, while most baseline methods suffer
from significant performance drop when training samples are decreased.

Evaluation on real-world industrial control test environment. To further
demonstrate the effectiveness of TELS in solving real-world industrial control tasks, we
deploy TELS in a real-world DC cooling control testbed (Zhan et al., 2025b) and compare
against CQL, IQL, and TSRL. This testbed comprises 22 servers with oscillating server
loads and an Air-Cooling Unit (ACU) for cooling control. A small historical operational
dataset (43k real-world samples collected over 61 days) with 105 state-action features is
used for policy learning. The goal is to improve the energy efficiency of the DC’s cooling
systems (minimizing the Air-side Cooling Load Factor (ACLF), calculated as the ratio of
energy consumption of ACU to servers), while satisfying thermal safety constraints (no
overheating). We follow the same real-world experiment setup as in (Zhan et al., 2025b)
and present the details in Appendix F.



CHENG WU LI HE Xu SuN LIN L1 ZHAN

Table 2: Evaluation results in the real-world DC cooling control testbed (6-hour length experiments)

Testbed CQL IQL TSRL TELS
Server energy consumption (kWh) 41.44 39.80 40.30 40.61
ACU energy consumption (kWh) 4.16 16.27 10.95 8.19
Energy efficiency measure: ACLF (the lower the better) 10.3% 40.89% 27.16% 20.17% |

Percentage of thermal safety violation (the lower the better) 40.99% 0.00% 0.00% 0.00%

Data with various deletion ratios  Policy rollouts: IQL Policy rollouts: POR Policy rollouts: TELS

20  Deletion o
ratio: 0%  $%

100k Antmaze-m-d dataset
with multiple deletion areas

Y-coordinate

20  Deletion
ratio: 70% 3’

Y-coordinate

¥ : Startpoint
v : End point
ZZ7 : Deletion area

Y-coordinate

o 5 10 15 2 o s 10 15 o 5 10 15 2 o 5 1 15 2
X-coordinate X-coordinate X-coordinate X-coordinate

Figure 3: Left: Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the
red cross denotes the start point, the yellow star denotes the goal locations, and the red shaded areas
denote the data deletion regions. Right: Visualization of the training dataset and policy rollout
trajectories generated by trained policies from various algorithms under varying deletion ratios.

As shown in Table 2, under a similar server energy consumption level (around 40 kWh),
TELS learns the best control policy, achieving 20.17% ACLF while maintaining zero thermal
safety violations. CQL learns a naive policy that achieves lower ACLF but with significant
thermal safety violations. This shows TELS’s effectiveness in solving real-world complex
industry control tasks.

3.2. Analysis and ablation of TELS

OOD generalization capability. To further examine the OOD generalizability of TELS,
we construct a very challenging task based on the reduced-size 100k Antmaze-m-d dataset,
as illustrated in Figure 3. Specifically, we randomly remove samples within 5 critical regions
along the critical paths from the start to the goal locations. This task requires extremely
strong OOD generalization capability to solve, as the vital information for the optimal
trajectory is extremely scarce or completely OOD. We train IQL, POR, and TELS on the
remaining data and plot their policy rollouts over 20 episodes for performance evaluation
and behavior analyses (due to page limit, we also include results for IDQL, DOGE, TSRL in
Appendix D.2). As shown in Figure 3, IQL can only achieve some success when the deletion
ratio is 0%, and POR fails to reach the goal in all cases. By contrast, TELS consistently
learns optimal policy even with 70% and 100% deletion rates. It can effectively utilize the
limited information provided in the sparse remaining data samples at the boundaries of the



SHORT TITLE

60 ) 2 100
g £ 100 S
[e] o o
(s} o » 80
% 40 g ® 8
o 60
[ [T .
N N o
= = © 40
[ © 40 IS
€ I =
o = | | o 20
o o 20 | =
z z ol
0 0- o e Hopper-me Walker2d-me
Hopper-me  Halfcheetah-me Walker2d-me Hopper-me  Halfcheetah-me Walker2d-me -
3 w/olr-sym e with fr—sym
N (QL(with TS-IDM repre) B TD3+BC(with TS-IDM repre) AE-rep BN Contras-rep
[ 1aLw/oTS-IDMrepre) 1 TD3+BC(w/o TS-IDM repre) WEN VAE-rep  WEEN TS-IDM-rep

Figure 5: Impact of
lr1-gym on policy opti-
mization.

Figure 4: Left: Performance of IQL and TD3+4BC on 10k datasets
with or without using the representation from TS-IDM. Right: The
performance of TELS with different representation models.

deletion areas for policy learning. These highlight the extraordinary OOD generalization
capability of TELS in extremely challenging low-data regimes.

Effectiveness of the learned representations. To verify the effectiveness of
the learned latent representation in TS-IDM, we use TS-IDM’s state encoder ¢4(s) as
the representation learning module on top of two conventional offline RL methods: IQL
and TD3+BC. Figure 4 (left) reveals significant performance improvements and variance
reduction when IQL and TD3+BC are trained within the latent state space induced by ¢4(s),
suggesting that TS-IDM indeed learns compact and generalizable representations that benefit
policy learning. To further evaluate the quality of TS-IDM’s representations, in Figure 4
(right), we replace TS-IDM in TELS with other representation learning methods, including
autoencoder (“AE-rep”), variational autoencoder (“VAE-rep”) (Kingma and Welling, 2014),
and contrastive learning method SimCLR, (“Contras-rep”) (Chen et al., 2020). The results
show that the TS-IDM representation achieves substantially better performance as compared
to AE, VAE, and contrastive representations, due to the information-rich and well-behaved

latent space learned in TS-IDM.
Ablations on regularizer terms in policy optimization. We also conduct ablation

experiments in Figure 5 to validate the effectiveness of the T-symmetry consistency regularizer
term f1_gym during the guide-policy optimization process of TELS. The results demonstrate
that incorporating this term can effectively enhance performance while reducing variance,
highlighting the importance of utilizing T-symmetry consistency regularization to promote
OOD generalization and learning stability.

4. Conclusion

We propose a highly sample-efficient offline RL algorithm that learns an optimized policy
within the latent space regulated by the fundamental T-symmetry property. Specifically, we
develop a T-symmetry enforced inverse dynamics model, TS-IDM, to construct a well-behaved
and generalizable latent space, effectively mitigating the challenges of OOD generalization.
By learning a T-symmetry regularized guide-policy within this latent space, we can obtain
the reward-maximizing next state to serve as the goal state input in the learned TS-IDM for
optimal action extraction. Through extensive experiments, we show that TELS achieves
strong OOD generalization capability and SOTA small-sample performance. Moreover,
we empirically show that TS-IDM can also function as a representation learning model to
provide informative representations and enhance the performance of existing methods under
the small-sample setting.



CHENG Wu L1 HE XU SuN LIN Liu ZHAN

References

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit
Agrawal. Is conditional generative modeling all you need for decision-making? arXiv
preprint arXiv:2211.15657, 2022.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based
offline reinforcement learning with diversified g-ensemble. Advances in neural information
processing systems, 34:7436-7447, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and
Zhaoran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement
learning. In International Conference on Learning Representations, 2021.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without
off-policy evaluation. Advances in Neural Information Processing Systems, 34:4933-4946,
2021.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the
national academy of sciences, 113(15):3932-3937, 2016.

Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L. Brunton. Data-driven
discovery of coordinates and governing equations. Proceedings of the National Academy
of Sciences, 116(45):22445-22451, 2019.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement
learning via sequence modeling. Advances in neural information processing systems, 34:
15084-15097, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597-1607. PMLR, 2020.

Peng Cheng, Xianyuan Zhan, Wenjia Zhang, Youfang Lin, Han Wang, Li Jiang, et al. Look
beneath the surface: Exploiting fundamental symmetry for sample-efficient offline rl.
Advances in Neural Information Processing Systems, 36, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets
for deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement
learning. Advances in Neural Information Processing Systems, 34, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, pages 1587-1596,
2018.

10



SHORT TITLE

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052-2062.
PMLR, 2019.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey
Levine. Idql: Implicit g-learning as an actor-critic method with diffusion policies. arXiv
preprint arXiw:2304.10573, 2023.

In Huh, Eunho Yang, Sung Ju Hwang, and Jinwoo Shin. Time-reversal symmetric ode
network. Advances in Neural Information Processing Systems, 33:19016-19027, 2020.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. In Advances in Neural Information Processing Systems,
pages 12519-12530, 2019.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion
for flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:
Model-based offline reinforcement learning. In Neural Information Processing Systems
(NeurIPS), 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR 2014 :
International Conference on Learning Representations (ICLR) 2014, 2014.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement
learning with fisher divergence critic regularization. In International Conference on
Machine Learning, pages b774-5783. PMLR, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. In International Conference on Learning Representations, 2022.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing
off-policy g-learning via bootstrapping error reduction. In Advances in Neural Information
Processing Systems, pages 11761-11771, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning
for offline reinforcement learning. In Neural Information Processing Systems (NeurIPS),
2020.

Jeroen SW Lamb and John AG Roberts. Time-reversal symmetry in dynamical systems: a
survey. Physica D: Nonlinear Phenomena, 112(1-2):1-39, 1998.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643,
2020.

Jianxiong Li, Xianyuan Zhan, Haoran Xu, Xiangyu Zhu, Jingjing Liu, and Ya-Qin Zhang.
When data geometry meets deep function: Generalizing offline reinforcement learning. In
The Eleventh International Conference on Learning Representations, 2022.

11



CHENG Wu L1 HE XU SuN LIN Liu ZHAN

Tenglong Liu, Yang Li, Yixing Lan, Hao Gao, Wei Pan, and Xin Xu. Adaptive advantage-
guided policy regularization for offline reinforcement learning. In Forty-first International
Conference on Machine Learning, volume 235, pages 31406 — 31424. PMLR, 2024.

Tenglong Liu, Jianxiong Li, Yinan Zheng, Haoyi Niu, Yixing Lan, Xin Xu, and Xianyuan
Zhan. Skill expansion and composition in parameter space. In The Thirteenth International
Conference on Learning Representations, 2025.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqging Lu. Mildly conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 35:1711-1724,
2022.

Liyuan Mao, Haoran Xu, Xianyuan Zhan, Weinan Zhang, and Amy Zhang. Diffusion-dice:
In-sample diffusion guidance for offline reinforcement learning. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024a.

Liyuan Mao, Haoran Xu, Weinan Zhang, and Xianyuan Zhan. Odice: Revealing the mystery
of distribution correction estimation via orthogonal-gradient update. In The Twelfth
International Conference on Learning Representations, 2024b.

Gerhard Neumann and Jan Peters. Fitted g-iteration by advantage weighted regression.
Advances in neural information processing systems, 21, 2008.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
conditioned rl with latent states as actions. Advances in Neural Information Processing
Systems, 36, 2024.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted
regression: Simple and scalable off-policy reinforcement learning. arXiv preprint
arXivw:1910.00177, 2019.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based
offline reinforcement learning. Advances in neural information processing systems, 35:
16082-16097, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang.
Offline reinforcement learning with reverse model-based imagination. Advances in Neural
Information Processing Systems, 34:29420-29432, 2021.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. arXiw preprint arXiv:2208.06193, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiw:1911.11361, 2019.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua M Susskind, Jian Zhang, Ruslan Salakhut-
dinov, and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning.
In International Conference on Machine Learning, pages 11319-11328. PMLR, 2021.

12



SHORT TITLE

Haoran Xu, Jiang Li, Jianxiong Li, and Xianyuan Zhan. A policy-guided imitation approach
for offline reinforcement learning. In Advances in Neural Information Processing Systems,
2022a.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized g-learning for safe
offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2022b.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan,
and Xianyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value
regularization. In The Eleventh International Conference on Learning Representations,
2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. In Neural
Information Processing Systems (NeurIPS), 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. Advances in neural
information processing systems, 34:28954-28967, 2021.

Xianyuan Zhan, Haoran Xu, Yue Zhang, Xiangyu Zhu, Honglei Yin, and Yu Zheng. Deepther-
mal: Combustion optimization for thermal power generating units using offline reinforce-
ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

Xianyuan Zhan, Xiangyu Zhu, Peng Cheng, Xiao Hu, Ziteng He, Hanfei Geng, Jichao Leng,
Huiwen Zheng, Chenhui Liu, Tianshun Hong, Yan Liang, Yunxin Liu, and Feng Zhao.
Data center cooling system optimization using offline reinforcement learning. In The
Thirteenth International Conference on Learning Representations, 2025a.

Xianyuan Zhan, Xiangyu Zhu, Peng Cheng, Xiao Hu, Ziteng He, Hanfei Geng, Jichao
Leng, Huiwen Zheng, Chenhui Liu, Tianshun Hong, et al. Data center cooling system
optimization using offline reinforcement learning. International Conference on Learning
Representations, 2025b.

Yinan Zheng, Ruiming Liang, Kexin ZHENG, Jinliang Zheng, Liyuan Mao, Jianxiong Li,
Weihao Gu, Rui Ai, Shengbo Eben Li, Xianyuan Zhan, and Jingjing Liu. Diffusion-based
planning for autonomous driving with flexible guidance. In The Thirteenth International
Conference on Learning Representations, 2025.

13



CHENG WU LI HE Xu SuN LIN L1 ZHAN

Appendix A. Additional Discussion on Related Works

In this section, we present a detailed discussion of the connections and differences between
our proposed method, TELS with TSRL (Cheng et al., 2023), POR (Xu et al., 2022a), and
conventional model-based approaches (Janner et al., 2019; Yu et al., 2020; Kidambi et al.,
2020; Yu et al., 2021; Wang et al., 2021; Zhan et al., 2022).

T-symmetry
enforcement

wr_ -7
””””””””” @—a
[ . )

State-action Latent ODE forwar_d State and action state encoder Latent inverse Latent ODE forward State and action
\_ encoder and reverse dynamics decoders JAN dynamics and reverse dynamics decoders

J
(a) T-symmetry enforced dynamic model (TDM) in TSRL (b) Our proposed T-symmetry enforced inverse dynamic model (TS-IDM)

Figure 6: Comparison of the architecture between TDM in TSRL and our proposed TS-IDM in
TELS.

Connection and differences with TSRL. As illustrated in Figure 6, both TSRL and
TELS leverage the T-symmetry consistency enforcement to construct the latent space. Specif-
ically, in Figure 6 (a), TSRL employs a T-symmetry-enforced dynamics model (TDM), which
models system dynamics by incorporating paired latent ODE forward and reverse dynamics
to enforce T-symmetry. In contrast, Figure 6 (b) illustrates our proposed T-symmetry-
enforced inverse dynamics model (T'S-IDM), which integrates T-symmetry constraints into
both forward and reverse dynamics while incorporating an inverse dynamics model. We
emphasize the main differences between TELS and TSRL as follows:

e Architecture: As presented in Figure 6 (a), TDM jointly encodes state-action pairs
to form the latent space, which may capture behavioral biases from the dataset (e.g.,
expert-specific action patterns) and impede learning fundamental, distribution-agnostic
dynamics patterns in data. In contrast, Figure 6 (b) illustrates that TS-IDM overcomes
these limitations by adopting a state-only modeling approach, focusing on the underlying
latent state variations. Additionally, the only useful component of the learned TDM for
downstream policy learning is its encoder ¢(s, a), wasting the dynamics-related information
captured by the model. In contrast, TS-IDM trains an inverse dynamics model within the
T-symmetry-enforced latent space, which can be reused as an execute-policy to extract
optimal actions.

e Detailed model design: As shown in Figure 6 (a), TDM only enforces the ODE property
for its encoder but not the decoder, which could lead to inconsistency between the learned
dynamics and the underlying ODE structure, resulting in inaccurate or misaligned ODE
representations. To address this problem, we introduce the loss term /lyq. in Eq. (3)
specifically to achieve this goal. This design is very important as it can greatly enhance
the coupling among the different elements in the model and results in a more stable
learning process.
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e Training procedure: In TSRL, the TDM encoder and decoders must be pre-trained
before joint training on other components to avoid stability issues. In contrast, our
proposed TS-IDM does not require pre-training; all components can be learned jointly in a
single stage. Additionally, TDM requires adding L1-norm regularization to the parameters
of the latent forward and reverse dynamics models to stabilize the learning process. This
is unnecessary in T'S-IDM (see Eq. (5)), as the design of our proposed TS-IDM enables
strongly coupled and consistent relationships among all its internal components. The
learning curves of TS-IDM can be found in Appendix H.

e Policy optimization: Since TDM requires both state and action as inputs to derive
the latent representations, it is constrained to Q-function maximization for policy opti-
mization. Consequently, TSRL adopts the TD34+BC framework as its backbone for policy
optimization, which inherently suffers from over-conservative action-level constraints,
particularly in small dataset settings. In contrast, TELS performs policy optimization
entirely within the compact and generalizable latent state space derived from TS-IDM,
enabling state-level optimization that avoids the limitations of action-space constraints.

Connection and differences with POR. As discussed in Section B, while both POR
and TELS share similarities in utilizing a state-stitching approach in state space for policy
optimization, they exhibit the following fundamental differences:

e Original state-space vs. latent state-space optimization: POR relies on policy
optimization in the original state space, which inherently requires sufficient state-action cov-
erage for valid state-stitching. In contrast, TELS mitigates this limitation by constructing
a compact and generalizable latent space via TS-IDM.

e Unregularized T-symmetry vs. T-symmetry regularized policy optimization:
POR optimizes the guide-policy solely through an AWR formulation (Neumann and Peters,
2008; Peng et al., 2019), constraining 7, to stay close to the dataset via state-stitching as
in Eq. (11), but lacks additional regularization to ensure generalizable state transitions. In
contrast, TELS enforces an additional T-symmetry consistency regularization {1_gym, which
plays a critical role in preventing 7, from outputting problematic and non-generalizable
latent next states, thereby enhancing its OOD generalizability.

Differences from model-based approaches. We emphasize that our proposed TELS
framework fundamentally differs from MBRL methods (Janner et al., 2019; Yu et al., 2020;
Kidambi et al., 2020; Yu et al., 2021; Wang et al., 2021; Zhan et al., 2022; Rigter et al.,
2022). Conventional MBRL methods prioritize learning forward dynamics models to predict
future states and generate rollouts for policy learning. In contrast, our proposed TS-IDM
is primarily designed for state representation learning and action extraction via inverse
dynamics, rather than for data generation. Furthermore, as evidenced by Table 1, in the
small-sample setting, limited data samples are insufficient for the model-based approach to
learn an accurate dynamics model, causing high approximation errors during model rollouts,
which significantly deteriorates policy learning performance.
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Appendix B. Preliminaries

Offline RL. We consider the standard Markov decision process (MDP) setting (Sutton
and Barto, 2018), which is represented as a tuple M = {S, A, r, P, p,7}, and a dataset D,
which consists of trajectories T = {so, ag, $1,a1, ..., S7,ar}. Here S and A denote the state
and action spaces, r(s,a) is a scalar reward function, P(s'|s,a) and p denote the transition
dynamics and initial state distribution respectively, and v € (0, 1) is a discount factor. Our
goal is to learn a policy m(a|s) based on dataset D by maximizing the expected return in
the MDP: E[> 72" - r(se, ar)]-

Offline policy optimization in the state space. Instead of adopting conservative
action-level constraints for offline policy learning, Policy-guided Offline RL (POR) (Xu
et al., 2022a) proposes an alternative scheme, which decomposes the conventional reward-
maximizing policy into a guide-policy and an execute policy. The guide-policy only works
in the state space to find the optimal next state that maximizes the state-value function,
and the execute-policy is learned as an inverse dynamics model (Xu et al., 2022a) or a
goal-conditioned imitative policy (Park et al., 2024). Such methods only need to learn a
state-only value function V' using the IQL-style expectile regression (Kostrikov et al., 2022),
or the sparse value learning objective as discussed in (Xu et al., 2023). We present the
former as follows:

V= arg‘fnin E(srs)~D [L§ (r(s) +AV(s") — V(s))] (10)

where LT (x) = |7 —I(z < 0)|2? is the asymmetric expectile regression loss and V' denotes the
target value network. Based on the learned state-value function, we can learn a guide-policy
m¢(s'|s) to serve as a prophet by telling which state the agent should (high reward) and
can (logical generalization) go to, without being constrained to state-action transitions
seen in the dataset. This can be achieved by leveraging an advantage weighted regression
(AWR) objective (Neumann and Peters, 2008; Peng et al., 2019) to maximize the value while
implicitly constraining 7y to s — s’ transitions observed in the dataset (i.e., state-stitching):

Ty = argmax E . ¢)up [exp(a - A(s, ")) logmy(s | s)] (11)

Tg

where the advantage A(s,s’) =r +~V(s") — V(s) serves as the behavior cloning weight,
and « is the temperature parameter to prioritize value maximization over state-wise imitation.

For the execute-policy 7w, POR employs a supervised learning framework and trains
e by: maxy, B 4 o)~p[log e (a | s,s")]. During evaluation phase, given the current state
s, we can sample the optimized next state s’ from my(s|s), and get final action simply as
a* =7 (a|s,mg(s]s)).

Time-reversal symmetry for generalizable offline RL. Recently, leveraging
fundamental, universally held symmetries of dynamics such as T-symmetry discovered in
classical and quantum mechanics (Lamb and Roberts, 1998; Huh et al., 2020) has been
shown to be a promising approach to enhance the generalization of offline RL (Cheng
et al., 2023; Zhan et al., 2025a). Specifically, if we model the system dynamics with
measurements x as a set of non-linear first-order differential equations (ODEs) expressed
as CC%‘ = F(x), a dynamical system is said to exhibt time-reversal symmetry if there is an
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invertible transformation I' that reverses the direction of time: i.e., dI'(x)/dt = —F(I'(x)).
For the discrete-time MDP setting, the T-symmetry can be extended as learning a pair of
ODE forward dynamics F(s,a) — $ and reverse dynamics G(s’,a) — —$, and require them
to satisfy F(s,a) = —G(s',a) (Cheng et al., 2023), where the time-derivative of state § = %
is approximated as s’ — s.

Based on this intuition, TSRL (Cheng et al., 2023) constructed an encoder-decoder
structured T-symmetry enforced dynamics model (TDM) for representation learning, which
embeds a pair of latent ODE forward and reverse dynamics to enforce T-symmetry. TSRL
achieves impressive performance under small-sample settings, and its variant has been
successfully deployed for real-world industrial control (Zhan et al., 2025a), but it still
has limitations. First, TSRL only uses the learned encoder from TDM to derive the
latent representations, without fully exploiting the rich dynamics-related information for
downstream policy learning. Second, its representation learning scheme uses both state and
action as inputs, forcing TSRL to involve policy-induced actions during policy optimization,
which inevitably requires adding a conservative action-level behavioral constraint as in
TD3+4BC (Fujimoto and Gu, 2021) to stabilize training. Moreover, involving action as an
input for representation learning is also prone to capturing biased behaviors in the behavioral
policy, which could impede learning fundamental dynamics patterns in data.

Appendix C. Related Work

Offline RL faces unique challenges in mitigating the risk of OOD exploitation. Evaluating
value functions in OOD regions often results in inaccurate estimates, which can lead to
severe value overestimation and misguiding policy learning. To mitigate this, most offline RL
methods leverage data-related regularizations to stabilize the learning process. These include
explicit behavior constraint techniques that penalize action divergence (Wu et al., 2019;
Kumar et al., 2019; Fujimoto and Gu, 2021; Liu et al., 2024), value regularization schemes
to discourage policies from selecting OOD actions via modifying Bellman update (Kumar
et al., 2020; Xu et al., 2022b; Bai et al., 2021; Lyu et al., 2022) or introducing uncertainty
penalities (Wu et al., 2021; An et al., 2021; Bai et al., 2021), and in-sample learning
methods (Brandfonbrener et al., 2021; Kostrikov et al., 2022; Xu et al., 2023; Mao et al.,
2024b), which stabilize training by only using in-sample data for value and policy learning.
While these methods perform reasonably well on datasets with sufficient state-action coverage,
they often struggle in small-sample settings where exploiting OOD generalization is vital
for achieving good performance. Recently, leveraging expressive model architectures such
as Transformers and diffusion models (Chen et al., 2021; Wang et al., 2022; Ajay et al.,
2022; Janner et al., 2022; Hansen-Estruch et al., 2023; Mao et al., 2024a; Zheng et al., 2025;
Liu et al., 2025) have gained popularity in offline RL, due to their strong capability to fit
complex data distributions. However, these models are overly heavy and require extensive
amounts of data to learn, making them hardly usable for the small-sample setting.

Appendix D. Additional Results
D.1. Evaluation on the full datasets

We also evaluate the performance of TELS on the original full datasets of D4RL tasks, and
the results are presented in Table 3. Our proposed method achieves comparable or better
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Table 3: Normalized scores on full-size D4RL datasets (averaged over the final 10 evaluations with 5

seeds).

Task | BC TD3+BC MOPO COMBO  CQL QL DOGE IDQL  POR TSRL | TELS (ours)
Hopper-m | 529 59.3 28.0 97.2 58.5 663  98.6+21 631 78672 86787 | 943+ 28
Hopper-mr | 18.1 60.9 67.5 89.5 95.0 94.7 76.2417.7 824  98.9 £ 2.1 7874281 | 99.5+ 2.3
Hopper-me | 52.5 98.0 23.7 1111 105.4 91.5 1027+ 5.2 1053 90.0+ 121 9594184 | 105.4 + 85

Halfcheetab-m | 42.6 483 42.3 54.2 44.0 47.4 453+ 0.6 497 488+ 05  482+0.7 | 443 +0.4
Halfcheetah-mr | 55.2 44.6 53.1 5.1 45.5 44.2 428 406 451 435409 422435 | 4L1+0.1
Halfcheetah-me | 55.2 90.7 63.3 90.0 91.6 86.7 T8TH84 944 947422 920416 | 871429
Walker2d-m | 75.3 83.7 17.8 81.9 725 783  86.8+ 0.8 802 8L1+23 775+45 | 813+5.1
Walker2d-mr | 26.0 81.8 39.0 56.0 77.2 739  87.3+23 798  766+69  661+12.0 | 86.0 + 3.3
Walker2d-me | 1075 110.1 44.6 103.3 108.8 1096 1104415 111.6 1091 +0.7 109.8+3.12 | 110.7 + 1.4
Antmaze-u | 65.0 78.6 0.0 80.3 84.8 855  97.0+ 1.8 938 906+ 71 8L4+19.2 | 945+ 103
Antmaze-u-d | 45.6 1.4 0.0 57.3 43.4 66.7 635+9.3 620 713+ 121 765+ 207 | 79.7 + 15.3
Antmazem-d | 0.0 0.0 0.0 0.0 5404117 74.6+3.2  TT.6461  86.6  79.2+3.1 0.0 | 824+45
Antmaze-m-p | 0.0 0.0 0.0 0.0 652+4.8 704453  80.6£65 835 846 £5.6 0.0 | 86.7+5.7
Antmaze-l-d | 0.0 0.0 0.0 0.0 316495 45.647.6 364 £9.1 564  73.4 8.5 0.0 | 4174142
Antmaze-lp | 0.0 0.0 0.0 0.0 18.8+153 435445 482481 570 580 + 124 00 | 60.7+13.3

Table 4: TELS performance on 10k datasets across various TS-IDM with different /.

| B=10 =1 f=0.1
Hopper-m | 77.3+£54 77.3 +£10.7 61.4+56
Hopper-mr | 153 +£6.6 43.2+3.5  19.7 +34

Hopper-me ‘ 376 £179 100.9 + 6.8 64.7 = 3.3
Halfcheetah-m ‘ 329 £ 2.3 408 £06 41.2 + 1.1
Halfcheetah-mr ‘ 8.6 £1.8 33.2 £ 1.0 34.0 + 2.2
Halfcheetah-me ‘ 7.5 £ 2.2 40.7 £1.2 39.5 + 2.1
Walker2d-m ‘ 372+£79 624 +£5.3 546 £82
Walker2d-mr ‘ 17.14+2.9 54.8 £ 6.0 39.2 £38.6
Walker2d-me ‘ 20.4 + 104 87.4 +£13.3 44.7+9.8

performance than existing offline RL methods. Note that although TSRL also adopts a
similar T-symmetry regularized representation learning scheme as ours, it performs poorly in
Antmaze medium and large datasets. Primarily due to its use of the conservative TD3+BC
backbone for policy optimization.

Moreover, we observe that as the dataset size increases and its state-action space coverage
broadens, the stringent T-symmetry regularization in the T'S-IDM can be proportionally
reduced. Since the dataset can provide enough information for policy learning, it relieves
the need to extract fundamental features within the data. Consequently, we balance this
trade-off by prioritizing model expressiveness over strict generalization guarantees (i.e.,
deploying a lower /3 in Eq. (5)). For instance, in the Antmaze full dataset setting, we use the
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Figure 7: The learning curves for training TS-IDM on 10k dataset with different § hyperparameter.

regularization hyperparameter 5 = 0.01 to train the TS-IDM. Additional ablation studies
analyzing the impact of 8 are detailed in Appendix D.3.

D.2. Additional OOD generalizability validation experiments

We further investigate the generalization capabilities of DOGE (Li et al., 2022), IDQL (Hansen-
Estruch et al., 2023), and TSRL (Cheng et al., 2023) under the variation deletion degrees in
the Antmaze environment. Specifically, we train each algorithm on the modified dataset
after the deletion operation. We then evaluate their behaviors by visualizing rollouts over
20 evaluation episodes.

As illustrated in Figure 8, only IDQL occasionally succeeds in reaching the goal under
the 0% deletion setting, while both DOGE and TSRL fail consistently. As the deletion
ratio increases to 70% and 100%, none of the three methods achieves meaningful policy
learning. These results highlight the inherent challenges of this setting, which requires
both a compact yet expressive latent representation space and a highly generalizable policy
capable of operating with extremely sparse and limited data. While TSRL integrates TDM
to distill underlying patterns from the dataset, the scarcity of available data undermines its
action-level constraints approach, preventing it from deriving a viable policy.

D.3. Additional ablation experiments

Ablations on the design components

of TS-IDM. To examine the impact of Table 5: Ablation on the design components of

each component in TS-IDM, we evaluate T5-IDM.

various variants of T'S-IDM, starting with a Hopper-me Halfcheetah-me Walker2d-me
vanilla latent inverse dynamics model with — ¢/¥+ hinw 172470  297+36 2454101

encoder and decoders, denoted as “ ¢/1¥+ T+ Dywa; hros 355+ 73 - 3L3E 1L 336+ 9.2

3 : 4 loge 6144237 312412 585+ 181
hiny”, gradually adding latent forward and 4 4 ;.  100.9 £ 6.8 40.7 + 1.2 87.4 +13.3

reverse dynamics “hewd, hrvs , ODE prop-
erty enforcement “l,q.”, and eventually the T-symmetry consistency loss “l1_¢ym”, resulting
in the full TS-IDM. Results on 10k datasets are shown in Table 5. We observe that the
naive autoencoder-based inverse dynamics model fails to provide reasonable representations.
Incorporating dynamics-related information via latent dynamics is helpful, but the perfor-
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Figure 8: Left: Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the
red cross denotes the start point, the yellow star denotes the goal locations, and the red shaded areas
denote the data deletion regions. Right: Visualization of the training dataset and policy rollout
trajectories generated by trained policies from various algorithms under varying deletion ratios.

mance gain remains mild. Enforcing ODE properties on decoders greatly enhances the
quality of learned representations. Lastly, enforcing T-symmetry consistency proves to be
the strongest performance improvement factor, which greatly enhances the quality of the
learned representations for downstream policy learning.

Impact of T-symmetry regularization on TS-IDM. To investigate the impact
of T-symmetry regularization strength controlled by the hyperparameter 5 in Eq. (5),
we conduct additional ablation experiments by varying the value of  to assess how T-
symmetry regularization influences the representation learning quality and downstream
policy’s performance. Specifically, we train TS-IDM on reduced-size 10k D4RL MuJoCo
datasets with 8 = {0.1,1, 10}, representing different T-symmetry regularization strengths.
The learning curves of TS-IDM’s overall learning loss “Lrgpm” in Eq. (5) are presented in
Figure 7. The final policy learning performances with different TS-IDM models are presented
in Table 4.

From Figure 7, we observe that choosing a proper [ value impacts the learning quality
of TS-IDM. A large 5 (e.g., 5 = 10) could impose overly strong regularization and hurt
model expressiveness, which is reflected in the high learning loss at convergence. However,
when the regularization strength is lowered, maintaining a proper scale of § is important to
ensure both the quality and generalizability of the learned representations. As we can see in
Figure 7, in the Hopper and Walker2d tasks, choosing 8 = 1 provides the lowest “Lrs.1pMm”
loss; whereas in the Halfcheetah task, “Lrg.ipy” is the lowest when choosing g = 0.1. If
we check the final policy’s performance under different TS-IDMs in Table 4, we can see
a clear correlation with what we have observed in Figure 7. TELS achieves the highest
score on Hopper and Walker2d tasks when S = 1, but the scores are higher for Halfcheetah
tasks when 8 = 0.1. This matches exactly with the learning performance of TS-IDM under
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different 5 values. The strong correlation between TS-IDM’s learning performance and the
final policy’s performance of TELS shows that we can select the best § hyperparameter
values by simply looking at TS-IDM’s training loss and using the one that provides the lowest
training loss. This avoids the need to perform potentially unsafe online policy evaluations or
unstable offline policy evaluations, which is favorable in real-world deployments.

Impact of regularizer terms n in policy opti-
mization. The hyperparameter n governs the strength
of regularization in TELS, balancing exploration and
adherence to dataset states during policy updates. To
evaluate the robustness of TELS, we test multiple n
values (n = {1,5,10}) to examine its sensitivity to the
state-level behavioral constraint in Eq. (7). Higher n
values impose stronger constraints on the guide-policy,
requiring generated states s’ to align closely with dataset
states. As shown in Figure 9, TELS demonstrates con-  Figure 9: TELS with various 7.
sistent robustness across 7 settings, achieving reliable performance under varying constraint
strengths.
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Impact of each component in TS-IDM for policy optimization. To validate the
impact of the T-symmetry regularizer {1_¢ym in Eq. (8), we conduct ablation studies on
100k-sample Antmaze tasks. From the evaluation results presented in Table 6, the naive
auto-encoder based inverse dynamics model “¢/1) + hjn,” fails to form a reasonable latent
space, yielding 0 average normalized scores across all Antmaze tasks. The introduction of
latent dynamics models “hy,,q” and “h;,s” provides marginal improvements by capturing
partial system dynamics yet remains insufficient for effective policy learning. Notably,
enforcing ODE properties on decoders and applying T-symmetry consistency emerge as
the most significant factors driving performance improvements, substantially enhancing the
reliability of learned representations for downstream guide-policy optimization.

Impact of T-symmetry regularizer term in guide-policy optimization with
stochastic policy instantiation. We further conduct ablation experiments in Figure 10
(left) to validate the effectiveness of the T-symmetry consistency regularization term fr_gym
during the stochastic guide-policy optimization process of TELS. The results demonstrate
that in stochastic policy optimization schemes, integrating this term significantly improves
performance while reducing variance, underscoring the critical role of T-symmetry consistency
regularization in enhancing OOD generalization and training stability.

Effectiveness of learned representations for guide-policy optimization with
stochastic policy instantiation. As illustrated in Figure 10 (right), we evaluate TELS
across diverse representation learning approaches in Antmaze tasks. The results demonstrate
that baseline models struggle to construct meaningful latent spaces as task complexity
increases and data scarcity intensifies (with only 100k usable samples). In contrast, TS-
IDM uniquely learns a compact, well-structured latent space that remains informative and
generalizable, providing a more reliable latent space for policy learning.
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Table 6: Ablations on the components of TS-IDM in Antmaze tasks.

‘Antmaze-m-d Antmaze-m-p Antmaze-1-d  Antmaze-l-p

¢/7/J+ him; 0 0 0 0
T+ hpwd, Neos 23.6 + 184 30.4 + 9.3 144 + 5.6 7.8 + 3.4
T+ Yode 34.1 + 15.7 48.7 £ 13.3 20.1 +£ 8.9 22.6 + 16.7
T+ lTsym 47.2 £17.3 62.9 £17.8 39.8 + 14.1 47.3 +£ 13.1
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Figure 10: Left: Impact of {1.gym on policy optimization with 100k Antmaze datasets. Right:
Performance of TELS with different representation models on Antmaze 100k datasets.

Appendix E. Implementation Details
E.1. Implementation details of TS-IDM

e Network structure. For all MuJoCo locomotion and Antmaze tasks, we deployed
3-layer feed-forward neural networks for the state encoder ¢g, latent inverse dynamics
model hjp,, forward and reverse dynamics models A t,,q and hyys, and decoder models 1)
and 1, for the latent states and actions. The activation function is ReLU and uses Adam
optimizer to update the parameters. We present the hyperparameters details of training
TS-IDM in Table 7, including the details of the structure we have implemented as well as
the deployed hyperparameters.

e ODE property enforcement on ¢, and v,. We adopt a similar approach to
TSRL (Cheng et al., 2023) to train the ODE enforced forward and reverse dynamic
models. Specifically, we compute the time-derivative of the state encoder ¢;(s) by cal-
culating its jacobian matrix through vmap() function in Functorch '. This allows us to
derive the supervision values dqﬁ;—g@ - § and %S(,sl) - (—$) for the forward dynamics model
and reverse dynamics model respectively as in Eq. (2). This approach implicitly enforces
the ODE property on the state encoder ¢4 as the encoder is required to produce state
representations that satisfy the ODE constraints. Unlike TSRL, which enforces ODE
properties only on the encoders and not on the decoders, our method further regularizes
the state decoder . Specifically, ¥, is trained to decode the predicted latent state

variables generated by hjfuq(2s,2a) = Zs and hyys(2y,24) = —%s ensuring that it also
satisfies the ODE constraints in Eq. (3). To achieve this, we apply the same approach to
dyps(zs)

compute —3=* and train the state decoder accordingly.

1. https://pytorch.org/functorch/stable/functorch.html
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Table 7: Hyperparameters of TS-IDM.

‘ Hyperparameters ‘ Value
State encoder hidden units 512 x 256
State encoder activation function ReLU
Latent forward model hidden units 256 x 256
Latent forward model activation function | ReLU
Latent reverse model hidden units 256 x 256
Latent reverse model activation function | ReLU
TS-IDM latent inverse model hidden units 1024 x 1024
Architecture Latent inverse model activation function | ReLU
Latent inverse model dropout True
Latent inverse model dropout rate 0.1
State decoder hidden units 256 x 512
State decoder activation function ReLU
Action decoder hidden units 512 x 512
Action decoder activation function ReLU
Optimizer type Adam
Weight of £ec 1
Learning rate 3e-4
Batch size 256
Training epoch 1000
State normalize True
1 (MuJoCo locomotion 10k setting)
0.1 (MuJoCo Antmaze 10k&100k setting)
Hyperparameters Weight of 3 0.1 (MuJoCo locomotion full dataset s@ting)
0.01 (MuJoCo Antmaze full dataset setting)
0.01 (MuJoCo adroit-human task)
0.01 (Real-world DC cooling control testbed task)
0  (MuJoCo locomotion 10k setting)
Weight decay le-5 (MuJoCo locomotion& Antmaze full dataset setting)
le-5 (MuJoCo adroit-human tasks)
le-5 (Real-world DC cooling control testbed task)

Table 8: Structure and training parameters of guide-policy optimization.

‘ Hyperparameters ‘ Value
Value network hidden units 1024 x 1024
Guide-policy | Value network activation function ReLLU
structure Policy network hidden units 1024 x 1024
Policy network hidden units ReLU
Optimizer type Adam
Training Target Value network moving average | 0.05
Perparameters | Batch size 256
Training steps 100000
State normalize True

E.2. Implementation details of T-symmetry regularized guide-policy

e Network structure. For all D4RL MuJoCo-v2 and Antmaze-v1 tasks, we deployed
2-layer feed-forward neural networks for the guide-policy 7, and the value function V.
The activation function is ReLU and uses Adam optimizer to update the parameters. The
parameter details are presented in Table 8.
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Algorithm 1 Offline RL via T-symmetry Enforced Latent State-Stitching (TELS).

Require: Offline dataset D.
1: / / TS-IDM learning
2: Learning the state encoder ¢, state decoder 1, action decoder 1),, latent inverse dynamics h;y,.,
latent forward and reverse dynamics hfyq and hy,s using the TS-IDM learning objective Eq. (5).

3: Initialize Vy, Vi, 7,

4: / / Policy training

5: for t =1,--- , M training steps do

6:  Sample transitions (s,r,s’) ~ D and compute their representations (zs, z,/) using the state
encoder ¢s.

7 Use (25,7, 25) to update the latent state-value function V using Eq.(6).

8:  Use (zs,2s) to update the latent guide-policy 7, using Eq. (7) or (8).

9: end for

10: / / Evaluation

11: Get initial state s from environment

12: while not done do

13:  Get optimized next state z}, using guide-policy ,.
14:  Extract action a using Eq. (9).

15: end while

e Hyperparameters for policy optimization. Under both small-sample and full
datasets settings, we employ a deterministic policy update strategy for MuJoCo lo-
comotion tasks, as defined in Eq. (7), with learning rates of le-4 for both value and policy
functions. The normalization term A is computed as Ao = a/[>_,. [V(¢s(s:))|/N], where
« controls the trade-off between value maximization and policy regularization and N
denotes the number of samples in the training batch. For Antmaze tasks, we utilize a
stochastic policy optimization strategy, as outlined in Eq. (8), with learning rates of le-3
for value and policy functions.

e Full dataset setting: We set (7,«,n) = (0.7,0.01, 10) for all MuJoCo locomotion tasks
and Adorit tasks, for all MuJoCo Antmaze tasks, we deploy (7,a) = (0.9,10) as the
training parameters.

e Small-sample setting: For Halfcheetah and Walker2d tasks, we set (7, , ) = (0.5,0.01, 5)
and incorporate policy dropout to mitigate overfitting. These tasks share identical state
and action dimensions (17 states and 6 actions), enabling the use of the same parameter
set for guide-policy training. In contrast, Hopper tasks with a smaller state-action space
(11 states and 3 actions) are comparatively simpler given the same amount of training
data (e.g., 10k samples). Consequently, we adopt a more aggressive learning strategy for
Hopper, setting (7, a,n) = (0.7,0.1,10) to prioritize value maximization. For Antmaze
tasks, we use an identical set of parameters (7, ) = (0.9,10) as in the full dataset setting
to train the guide-policy. For the real-world DC cooling control testbed task, we find
using the (7, ,n) = (0.5,0.01,5) can derive the best performance.

Training resources. To train a TS-IDM, we utilize one NVIDIA GeForce RTX 4090
with an AMD Ryzen 9 7950X 16-Core Processor and 16GB of memory for approximately 30
minutes, running on Ubuntu 22.04.2 LTS 64-bit. We employ the same resource configurations
for approximately 6 hours for the guide-policy training.
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Figure 11: The layout illustration of the real-world DC cooling control testbed environment.

Appendix F. Detailed Experiment Setups

Reduced-size dataset generation. To create reasonably reduced-size DARL datasets for
a fair comparison, we use the identical small samples as in the TSRL paper (Cheng et al.,
2023) for the locomotion tasks training. For Antmaze tasks, we adopt a similar approach by
randomly sub-sampling trajectories from the original dataset to construct smaller training
datasets. Specifically, for the “Antmaze-umaze” tasks, we randomly sample 10k data points
for training, and for the “Antmaze-medium” and “Antmaze-large” tasks, we utilize 100k
random samples as the training dataset of TELS.

The rationale behind this adjustment is the “medium” and “large” environments are
significantly more expansive than the “umaze” environment. Sampling only 10k data points
would likely result in trajectories that lack the fundamental information necessary to describe
the task. Therefore, we relax the small-sample constraints for these environments to ensure
that the reduced datasets at least contain enough successful trajectories for effective training.

Experiment setups for OOD generalization tasks in Antmaze. In Section 3.2,
we conduct a more challenging scenario to verify the OOD generalizability of the algorithm.
Specifically, based on the 100k “Antmaze-medium-diverse-v2” dataset, we manually selected
five critical intervals and erased the data points within these intervals by randomly deleting
them. The selection of intervals was determined based on the XY-axis coordinates. In
this dataset, the first two dimensions of the state represent the vertical and horizontal
coordinates, respectively. Based on this information, we randomly deleted 70% and 100% of
the data in the chosen intervals. We then trained IQL (Kostrikov et al., 2022), DOGE (Li
et al., 2022), IDQL (Hansen-Estruch et al., 2023), POR (Xu et al., 2022a), TSRL (Cheng
et al., 2023), and TELS using this modified dataset to evaluate their performance.

Experiment details of real-world industrial control test environment. We
adapted the figure from (Zhan et al., 2025a) to illustrate the layout structure of the real-world
DC cooling control testbed. As shown in the figure F, the testbed comprises 22 server
units and an inter-rack air conditioning unit (ACU) positioned between Rack 1 and Rack 2,
supplemented by 24 temperature and humidity sensors (organized into six monitoring sets)
to capture spatial thermal dynamics within the environment. Notably, the ACU employs
compressor-driven cooling, with fan operation and compressor workload constituting the
primary sources of energy expenditure. The thermal regulation is achieved by modulating
the ACU’s entering air temperature (EAT) setpoint to maintain the cold aisle temperature
(CAT) below a predefined safety threshold. The energy-saving objective is to improve the
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energy efficiency of the DC’s cooling systems (minimizing the ACLF) while satisfying thermal
safety constraints.

We leverage a dataset of 43k real-world operational samples recorded at 2-minute intervals
over 61 days with 105 state-action features. During the training process, we utilize the
identical reward function and follow the same experimental protocols outlined in (Zhan et al.,
2025a). To ensure rigorous benchmarking, we adopt the same challenging thermal constraint
(set the CAT threshold as 22°C) for comparative evaluation of TELS performance.

Experiment setups for various representation learning. To validate the effective-
ness of the representations learned by TS-IDM, we integrate it as the representation module
in two offline RL frameworks (IQL and TD3+BC), verifying the usability of the learned
latent space as illustrated in Figure 4 (left). Specifically, we process the original states s and
next states s’ from the dataset using the pre-trained state encoder ¢4 of TS-IDM to derive
the latent representations: ¢4(s) — zs and ¢s(s') — zg. Then, train IQL and TD3+BC
within the latent space to evaluate their performance under the small-sample setting.

Furthermore, in Figure 4(right), we benchmark TELS against three established repre-
sentation learning baselines (“AE-rep”, “Contras-rep” and “VAE-rep”) to rigorously assess
TS-IDM’s representation quality. Implementation details for all baseline models are provided
below:

e “AE-rep”: We implement a naive autoencoder-based inverse dynamics framework, con-
sisting of a state encoder and decoders ¢5 and 1, to construct the latent state space. As
in TELS, the inverse dynamics model h;,, is built within this latent space, serving as
the execute-policy. For a fair comparison, we use the same network parameters for the
encoder, decoder, and inverse dynamics model as in TS-IDM. The “AE-rep” model is
trained with a reconstruction loss to capture the essential features of the input, and the
inverse dynamics model is simultaneously trained on the latent representations to predict
actions.

e “VAE-rep”: The variational autoencoder (VAE) (Kingma and Welling, 2014) is built based
on the “AE-rep” model by introducing additional KL divergence loss terms. Specifically,
the encoder outputs parameters of a Gaussian distribution in the latent space, and the
latent representations are sampled using the reparameterization trick. The VAE is trained
using a combined loss function that includes both the reconstruction loss and the KL
divergence loss, which regularizes the latent space to follow a prior distribution. The
inverse dynamic model is trained simultaneously with the VAE, sharing the latent space
and optimizing for both the reconstruction of the input data and the prediction of actions.

e “Contras-rep”: We utilize the NT-Xent loss (Normalized Temperature-Scaled Cross
Entropy Loss) used in SimCLR (Chen et al., 2020) within the latent representation space
on top of the “AE-rep” model. The overall loss function combines the contrastive loss
with the reconstruction loss, ensuring that the latent space not only captures the structure
of the data but also learns semantically meaningful representations that are robust to
variations. The inverse dynamic model is trained simultaneously within the latent space
to predict actions.
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Appendix G. Broader Impact

While training reinforcement learning (RL) agents on large-scale offline datasets has been
extensively studied, real-world applications often face prohibitive data scarcity and collection
costs. This necessitates offline RL methods that achieve reliable performance in small-sample
regimes. To address this challenge, we introduce a highly sample-efficient offline RL algorithm
to learn high-performing policies from extremely limited data. We empirically validate its
efficacy through deployment on a real-world data center cooling control testbed, establishing
its practical viability. Our approach highlights a promising pathway for advancing sample-
efficient offline RL in resource-constrained settings. A potential limitation is the inherent
risk of unreliable or unsafe actions within historical datasets, which may mislead policy
learning.

Appendix H. Learning Curves

The following are the learning curves of T'S-IDM and the T-symmetry regularized guide-
policy optimization in TELS on the reduced-size D4RL MuJoCo and Antmaze datasets. We
evaluate the policy with 10 episodes over 5 random seeds.
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Figure 12: Learning curves of the overall and each individual loss terms in TS-IDM for Hopper tasks.
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Figure 13: Learning curves of the overall and each individual loss terms in TS-IDM for Halfcheetah
tasks. 29
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Figure 14: Learning curves of the overall and each individual loss terms in T'S-IDM for Walker2d

tasks.
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Figure 15: Learning curves of policy optimization in TELS for D4ARL MuJoCo and Antmaze tasks
with reduced-size datasets. We evaluate the policy within 10 episodes over 5 random seeds.
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