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Abstract

Large reasoning models such as OpenAI o1 and001
DeepSeek-R1 have demonstrated remarkable002
performance in complex reasoning tasks. A003
critical component of their training is the in-004
corporation of reference-based reward systems005
within reinforcement learning (RL), where006
model outputs are evaluated against ground007
truth references. However, existing reward008
benchmarks focus on preference comparisons009
between responses rather than evaluating verifi-010
cation against ground truth references, leaving011
a critical gap in our ability to evaluate verifi-012
cation systems used in reasoning model train-013
ing. In this paper, we introduce VerifyBench014
and its challenging variant VerifyBench-Hard,015
two benchmarks specifically designed to assess016
reference-based reward systems. These bench-017
marks are constructed through meticulous data018
collection and curation, followed by careful019
human annotation to ensure high quality. Our020
comprehensive evaluation reveals that while021
larger model-based verifiers show promise on022
standard cases, all current systems demonstrate023
substantial room for improvement on challeng-024
ing instances. Through systematic analysis of025
performance patterns across reasoning tasks026
and error categories, we provide insights for ad-027
vancing reference-based reward systems. These028
benchmarks establish a standardized frame-029
work for improving verification accuracy, ul-030
timately enhancing reasoning capabilities in031
models trained via RL.032

1 Introduction033

In recent years, large language models (LLMs)034

have exhibited remarkable capabilities, signifi-035

cantly assisting humans across diverse practical do-036

mains (DeepSeek-AI et al., 2025b; Grattafiori et al.,037

2024; Yang et al., 2025). Reinforcement learning038

from human feedback (RLHF) has been crucial to039

this progress, with reward models playing a central040

role by evaluating and scoring model-generated041

responses to guide training. This approach has042
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Figure 1: The core distinction between VerifyBench
and existing reward benchmarks (Lambert et al., 2024;
Liu et al., 2024) is illustrated as follows. Upper panel:
Existing reward benchmarks assess the accuracy of a
reward system by comparing the ranking of two comple-
tions for the same question. Lower panel: In contrast,
our proposed VerifyBench evaluates the accuracy of a
reward system by determining the correctness of a sin-
gle completion using a reference answer.

led to the development of numerous benchmarks 043

(Lambert et al., 2024; Liu et al., 2024; Zhou et al., 044

2025) for systematic reward model evaluation, fo- 045

cusing primarily on pairwise preference judgments 046

between competing responses. 047

The emergence of specialized large reason- 048

ing models (LRMs) (DeepSeek-AI et al., 2025a; 049

Qwen Team, 2024; Kimi Team et al., 2025) such 050

as OpenAI’s o1(OpenAI, 2024) and DeepSeek- 051

R1(DeepSeek-AI et al., 2025a) has fundamentally 052

changed this landscape. These models achieve 053

unprecedented performance on reasoning tasks 054

through specialized reinforcement learning tech- 055

niques that differ from standard RLHF approaches. 056

A key distinction in training methodologies for 057

LRMs is their reliance on reference-based reward 058

systems, where rewards are assigned based on 059

alignment between model-generated responses and 060

authoritative reference answers. This approach has 061

been implemented variously across leading models, 062

with Deepseek-R1 (DeepSeek-AI et al., 2025a) em- 063
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ploys a rule-based reward to prevent reward hack-064

ing, whereas models like Seed1.5-Thinking (Seed065

et al., 2025) adopt model-based reward systems to066

generate more precise and robust signals.067

Despite the widespread adoption of reference-068

based reward systems in training state-of-the-art069

reasoning models, a significant gap exists in our070

ability to evaluate these systems systematically.071

Current benchmarks focus almost exclusively on072

preference-based evaluation, assessing rewards on073

their ability to rank competing responses correctly.074

This approach fails to capture the requirements of075

reference-based verification, where responses must076

be judged against objective ground truths rather077

than relative preferences. The absence of dedicated078

benchmarks for reference-based reward systems079

has limited researchers’ ability to assess, compare,080

and improve their verification methodologies effec-081

tively, potentially impeding progress in reasoning082

model development.083

To address this critical gap, we introduce Verify-084

Bench, a benchmark specifically designed to evalu-085

ate the accuracy of reference-based reward systems.086

VerifyBench differs fundamentally from existing087

reward benchmarks by focusing on absolute cor-088

rectness judgments rather than relative preference089

assessments. While traditional benchmarks ask re-090

ward models to determine which of two responses091

is better, VerifyBench challenges systems to verify092

whether a single response correctly aligns with a093

reference answer, more accurately reflecting the094

actual use case in reasoning model training.095

In this paper, we present VerifyBench, a bench-096

mark specifically designed to evaluate the accu-097

racy of reference-based reward systems. To create098

VerifyBench, we curated a diverse collection of in-099

structions paired with reference answers sourced100

from existing open datasets. Responses to these in-101

structions were generated by multiple open-source102

and proprietary LLMs. The correctness of each103

response was assessed using both automated model104

judgments and human evaluations. Each instance105

in VerifyBench was verified by at least two human106

annotators to ensure label consistency and reliabil-107

ity, thereby producing a high-quality benchmark108

for the evaluation of reward systems.109

Recognizing the need to differentiate between110

various verification techniques and to push the111

boundaries of current capabilities, we further112

developed VerifyBench-Hard, a more challeng-113

ing variant of our benchmark. This dataset fo-114

cuses on contentious cases where leading mod-115

els produce highly conflicting judgments, provid- 116

ing a more stringent test for reward system accu- 117

racy. VerifyBench-Hard samples were carefully 118

selected based on disagreement patterns among 119

high-performing models, then subjected to thor- 120

ough human annotation to ensure label quality. 121

Our contributions are summarized as follows: 122

1. To better reflect realistic reinforcement learn- 123

ing (RL) scenarios for reasoning models, we 124

construct VerifyBench, a benchmark derived 125

from existing models and datasets, to pro- 126

vide an objective evaluation of the accuracy 127

of reference-based reward systems. 128

2. We further develop VerifyBench-Hard, a more 129

challenging benchmark curated from cases ex- 130

hibiting high disagreement among multiple 131

models. This dataset contains a larger propor- 132

tion of difficult-to-verify samples, highlight- 133

ing substantial potential for improvement in 134

current models. 135

3. We conduct a comprehensive empirical anal- 136

ysis of model performance on both Verify- 137

Bench and VerifyBench-Hard, offering ac- 138

tionable insights to advance the accuracy of 139

reference-based reward systems and enhance 140

RL training in reasoning tasks. 141

2 Preliminaries 142

Reference-free Reward Models In reinforce- 143

ment learning (RL) for large language models 144

(LLMs), the reward model plays a crucial role by 145

approximating real-world reward signals associated 146

with model-generated outputs. A typical reward 147

model takes as input a user’s query q along with 148

the corresponding LLM-generated response r, and 149

produces a reward signal, formally defined as: 150

r = Rφ(q, r) (1) 151

where q represents the user’s query, r denotes the 152

response generated by the LLM, and φ encapsu- 153

lates either the learned parameters of the reward 154

model or the heuristic criteria used to evaluate the 155

quality of the response given q and r. 156

Evaluation of Reference-free Reward Models 157

Generally, reward models produce scalar outputs 158

whose scales can vary significantly across differ- 159

ent implementations, complicating direct numer- 160

ical comparisons. Consequently, current bench- 161

marks evaluate reward models using a pairwise 162

2



comparative approach. Formally, given a dataset D163

comprising tuples (q, rw, rl), where q represents a164

user’s query, and rw and rl denote two candidate165

responses with rw considered superior to rl, the166

accuracy of a reward model is quantified as the pro-167

portion of instances in which the model correctly168

assigns a higher score to rw than to rl. Mathemati-169

cally, this accuracy metric is defined as:170

Acc =
1

|D|
∑

(q,rw,rl)∈D

I [Rφ(q, rw) > Rφ(q, rl)]

(2)171

where I(·) is the indicator function, and Rφ denotes172

the reward model parameterized by φ.173

Reference-based Reward Models With the174

emergence of advanced reasoning models such175

as DeepSeek-R1, reference-based reward systems176

have been integrated into reinforcement learn-177

ing (RL) frameworks for large reasoning models178

(LRMs). These models require training on exten-179

sive datasets, which typically include authoritative180

reference answers. Consequently, the reward as-181

signment task shifts towards evaluating the align-182

ment between the model-generated outputs and183

their corresponding reference answers. Formally,184

this reward calculation can be expressed as:185

r = Rφ(q, gt, r) (3)186

where q denotes the user-issued query, gt denotes187

the ground-truth reference answer, r represents the188

model-generated response, and φ encapsulates ei-189

ther the learned parameters of the reward model190

or the established evaluation criteria used to assess191

the alignment among q, gt, and r.192

Evaluation of Reference-based Reward Models193

In this paper, we propose a reference-based reward194

benchmark designed to systematically evaluate re-195

ward models within reinforcement learning (RL)196

frameworks for large reasoning models (LRMs).197

Unlike traditional reward evaluation benchmarks,198

which rely on pairwise comparisons, our approach199

leverages explicit reference answers to directly as-200

sess the correctness of individual model-generated201

responses. Concretely, given a dataset D consisting202

of instances (q, gt, r, y), where q denotes the user-203

issued query, gt represents the ground-truth refer-204

ence answer, r is the model-generated response,205

and y is the binary correctness label assigned to the206

response, we evaluate the reward model by measur-207

ing its accuracy in correctly predicting these labels.208

Formally, the accuracy metric is defined as: 209

Acc =
1

|D|
∑

(q,gt,r,y)∈D

I [E(Rφ(q, gt, r)) = y]

(4) 210

where Rφ(q, gt, r) denotes the reward model pa- 211

rameterized by φ or defined by heuristic verifica- 212

tion rules, producing predictions indicative of the 213

correctness of response r relative to the provided 214

reference answer gt. The function E(·) represents 215

an operation (e.g., thresholding or discretization) 216

mapping continuous reward scores into discrete cor- 217

rectness predictions suitable for direct comparison 218

with the ground-truth labels y. 219

3 Benchmark Construction 220

In this paper, we introduce two benchmarks, 221

VerifyBench and VerifyBench-Hard, to evaluate 222

reference-based reward systems. The VerifyBench 223

benchmark is designed to reflect naturally dis- 224

tributed data, whereas VerifyBench-Hard com- 225

prises samples exhibiting high levels of disagree- 226

ment among models, thereby assessing a model’s 227

ability to provide reliable judgments in ambiguous 228

or challenging scenarios. 229

3.1 Construction of VerifyBench 230

Query Curation To emulate realistic reinforce- 231

ment learning (RL) scenarios involving reference- 232

based reward systems, we curate a comprehen- 233

sive collection of open-source reasoning prob- 234

lems paired with corresponding reference answers. 235

These problems encompass three primary cate- 236

gories, general reasoning, logical reasoning and 237

mathematical reasoning, and are aggregated from 238

41 distinct sources. A complete list of these data 239

sources is provided in Appendix B. 240

Answer Type Labeling To comprehensively 241

evaluate model performance across diverse an- 242

swer formats, we define four canonical an- 243

swer types: numerical values, algebraic expres- 244

sions, multiple-choice selections, and free-form 245

strings. Utilizing a general-purpose LLM Llama- 246

3.3-70B-Instruct (Grattafiori et al., 2024), we per- 247

formed automatic answer-type classification with 248

a prompt(Appendix C.1). Questions that fall out- 249

side these categories, such as proof-based or open- 250

ended prompts, were excluded from further analy- 251

sis. Following classification, we randomly sampled 252

2,000 instances per answer type, resulting in a final 253

candidate pool of 8,000 questions. 254
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Figure 2: Overview of the benchmark construction process. The upper section outlines the pipeline used to construct
VerifyBench, whereas the lower section details the pipeline for VerifyBench-Hard. The components highlighted by
black boxes denote the final entries included in the benchmark.

Completion Generation and Pre-annotation255

We subsequently employed 22 widely used open-256

source and proprietary models (see Appendix E) to257

generate single-shot completions for the curated set258

of 8,000 questions, resulting in a total of 176,000259

completions. To assign initial correctness labels,260

we utilized Llama-3.3-70B-Instruct (Grattafiori261

et al., 2024) within a prompt-based judgment frame-262

work. For each question, we randomly selected263

four completions, two labeled as correct and two la-264

beled as incorrect by the model, and retained them265

for subsequent human annotation.266

Human Annotation We conducted human anno-267

tation for the aforementioned questions and their268

associated completions. The annotation procedure269

comprised two primary tasks: (1) identifying the270

most appropriate answer type for each question271

based on its formulation and corresponding ground-272

truth answer, and (2) evaluating the correctness of273

each of the four completions. Each question was274

independently annotated by at least two annotators.275

If their annotations were consistent, the labeling276

was finalized; otherwise, a third annotator resolved277

disagreements to ensure consistency and finalize278

the labels.279

Benchmark Construction Following human an-280

notation, we identified notable biases in the mod-281

els’ predictions regarding both answer types and 282

completion correctness, leading to imbalanced 283

data distributions. To mitigate this issue, we per- 284

formed controlled downsampling to ensure uniform 285

category-level representation and balanced correct- 286

ness labels. Specifically, we retained 250 ques- 287

tions per answer type, resulting in a total of 1,000 288

questions. Each question is paired with exactly 289

two completions, one correct and one incorrect. 290

The resulting dataset, VerifyBench, thus comprises 291

2,000 well-balanced question-answer-completion- 292

correctness tuples. Detailed statistics for Verify- 293

Bench are provided in Table 1. 294

3.2 Construction of VerifyBench-Hard 295

To construct VerifyBench-Hard, we employed a 296

specialized data generation pipeline consisting of 297

the following key steps: 298

Completion Generation To construct the 299

dataset, we first generated single-turn completions 300

for the queries described in Section 3.1 using 301

a collection of 18 open-source models. Due to 302

the substantial volume of generations and the 303

associated computational costs, closed-source 304

models were excluded from this stage. In total, we 305

produced approximately 1.45 million completions. 306
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Statistics for VerifyBench and VerifyBench-Hard

Statistics VerifyBench VerifyBench-Hard

# of unique questions 1000 945
# of unique completions 2000 1000
# of correct completions 1000 291
# of wrong completions 1000 709

Statistics of Answer Type

# of Numeric Values 500 252
# of Expressions 500 88
# of Multi-choice 500 430
# of String 500 230

Statistics of Domain

# of General Reasoing 404 303
# of Logic Reasoning 498 315
# of Math Reasoning 1098 382

Table 1: Benchmark statistics of VerifyBench and
VerifyBench-Hard.

Difficulty Filtering Next, we employed five307

top-performing large models on VerifyBench308

(Llama-3.3-70B-Instruct (Grattafiori et al., 2024),309

Llama-4-Scout-17B-16E-Instruct (Meta AI, 2025),310

Qwen2.5-72B-Instruct (Qwen et al., 2025), Qwen3-311

30B-A3B, and Qwen3-32B (Yang et al., 2025)),312

which span a diverse range of model sizes and ar-313

chitectures, to evaluate the correctness of the gen-314

erated completions. Based on their judgments, we315

identified question-answer-completion tuples ex-316

hibiting model disagreement, specifically those for317

which two models’ assessments diverged from the318

other three. To ensure balanced and comprehen-319

sive representation, we applied stratified sampling320

across data domains and sources, ultimately select-321

ing 2,000 examples for human annotation.322

Human Annotation We subsequently subjected323

the selected samples to human annotation, focus-324

ing on two key aspects: identifying the answer type325

and determining the correctness of each comple-326

tion. Each instance was annotated independently327

by at least two annotators. In cases where both328

annotators agreed, the annotation was finalized;329

when disagreement occurred, a third annotator was330

consulted to resolve the conflict.331

Benchmark Construction Following human an-332

notation, we excluded samples identified as unsuit-333

able for inclusion in our benchmark. This filtering334

resulted in a final set of 1,000 question-answer-335

completion-correctness tuples. In contrast to Veri-336

fyBench, which enforces a balanced structure with337

one correct and one incorrect completion per ques-338

tion, VerifyBench-Hard is derived through natural339

sampling. We observed that larger models are more340

likely to erroneously accept incorrect answers as 341

correct, resulting in a natural skew towards incor- 342

rect completions within the dataset. Detailed statis- 343

tics for VerifyBench-Hard are provided in Table 1. 344

4 Evaluation Results 345

This section presents the evaluation results and 346

analyses of our proposed benchmark. Section 4.1 347

reports the primary evaluation outcomes. In Sec- 348

tion 4.2, we investigate the impact of reference 349

answers on the verification process. Section 4.3 350

provides a comparative analysis between our bench- 351

mark and existing reward benchmarks, as well as 352

the performance of several general-purpose reward 353

models on VerifyBench and VerifyBench-Hard. 354

4.1 Overall Performance 355

We evaluate the performance of various verification 356

approaches on both VerifyBench and VerifyBench- 357

Hard. For rule-based baselines, we adopt the 358

widely used math-verify (Kydlíček, 2025) method. 359

In the LLM-as-a-judge setting, we prompt LLMs to 360

perform verification; detailed prompt templates are 361

provided in Appendix C.2. Our evaluation yields 362

several key findings and insights: 363

Existing models perform well on VerifyBench: 364

The primary objective in constructing VerifyBench 365

is to establish a benchmark for the objective eval- 366

uation of reference-based reward systems. To this 367

end, we designed the dataset with a balanced dis- 368

tribution across diverse domains and answer types, 369

pairing each question with both a correct and an 370

incorrect completion. This structure facilitates a 371

rigorous and fair assessment of reward model per- 372

formance. Notably, state-of-the-art LLMs already 373

demonstrate strong performance on this bench- 374

mark: GPT-4o-mini achieves an average accuracy 375

of 92.85%, while Qwen3-32B reaches 95.8%, high- 376

lighting the high reliability of LLMs as verifiers in 377

this context. 378

VerifyBench-Hard is challenging: To more ef- 379

fectively differentiate the performance of various 380

models, we constructed VerifyBench-Hard by se- 381

lecting cases in which multiple LLMs exhibited 382

substantial disagreement in their verification out- 383

puts. Evaluation results demonstrate that model 384

performance on VerifyBench-Hard is significantly 385

lower than on VerifyBench. The highest accuracy 386

achieved is 72.4%, representing a 20% decrease 387

compared to performance on VerifyBench. This 388
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Model/Method
VerifyBench VerifyBench-Hard

Num Exp MC Str AVG Num Exp MC Str AVG

rule-based functions

math-verify 83.60 72.00 19.40 8.60 45.90 76.19 82.95 8.37 10.43 32.50

LLM-as-a-judge

OpenAI/gpt-4o-2024-11-20 94.80 90.20 96.80 90.80 93.15 71.43 65.91 75.35 71.30 72.60
OpenAI/gpt-4o-mini 95.80 89.80 95.80 90.00 92.85 69.05 72.73 74.19 72.17 72.30
meta-llama/Llama-4-Scout-17B-16E-Instruct 94.20 86.80 89.80 89.25 90.01 48.02 39.77 46.98 55.22 48.50
meta-llama/Llama-3.3-70B-Instruct 88.80 77.80 88.40 78.00 83.25 54.37 45.45 60.70 47.39 54.70
meta-llama/Llama-3.1-8B-Instruct 72.20 70.60 77.00 72.40 73.05 51.19 35.23 45.12 33.91 43.20
meta-llama/Llama-3.2-3B-Instruct 65.80 63.60 56.80 57.60 60.95 33.33 28.41 38.84 27.39 33.90
meta-llama/Llama-3.2-1B-Instruct 44.40 41.00 37.60 53.60 44.15 22.22 13.64 29.07 27.39 25.60
Qwen/Qwen3-235B-A22B 96.40 92.40 97.00 89.40 93.80 70.24 72.73 70.93 69.57 70.60
Qwen/Qwen3-30B-A3B 96.60 91.80 97.40 90.20 94.00 64.68 70.45 69.53 56.52 65.40
Qwen/Qwen2.5-72B-Instruct 95.40 89.80 95.60 88.60 92.35 70.63 60.23 61.40 56.09 62.40
Qwen/Qwen3-32B 97.60 94.00 99.00 92.60 95.80 69.05 81.82 68.14 77.83 71.80
Qwen/Qwen3-8B 96.40 93.00 96.20 90.40 94.00 68.65 78.41 73.02 66.52 70.90
Qwen/Qwen3-4B 95.20 91.60 93.60 87.60 92.00 71.03 62.50 75.58 71.74 72.40
Qwen/Qwen3-1.7B 83.20 81.00 80.60 79.60 81.10 48.81 38.64 60.93 41.74 51.50
microsoft/phi-4 92.60 86.40 93.00 85.40 89.35 59.52 57.95 54.19 57.39 56.60
01-ai/Yi-1.5-9B-Chat-16K 90.40 87.40 88.00 85.00 87.70 65.48 63.64 62.09 54.78 61.40
google/gemma-3-1b-it 55.40 56.20 43.00 56.00 52.65 32.14 19.32 33.72 40.87 33.70

Table 2: Overall performance(%) of VerifyBench and VerifyBench-Hard. Num stands for Numeric Values, Exp
stands for Expressions, MC stands for Multi-choice and Str stands for String.

performance gap underscores substantial opportu-389

nities for improvement in the precise verification390

capabilities of current LLMs.391

Small models still have potential for develop-392

ment: In real-world reinforcement learning sce-393

narios, the inference efficiency of the reward sys-394

tem critically impacts the overall training speed.395

Since verification typically involves generative396

computation, its computational cost is often compa-397

rable to that of generating rollouts. This raises an398

important practical question: Can smaller models399

effectively serve as verifiers? Our results indicate400

that small-parameter models perform significantly401

worse on VerifyBench. For instance, Qwen3-1.7B402

achieves an accuracy of 81.10%, whereas Llama-403

3.2-3B-Instruct lags behind at 60.95%. These find-404

ings suggest that enhancing the verification capa-405

bilities of compact models constitutes a promising406

and necessary research direction.407

4.2 Reference-answers Play an Important408

Role in Verification409

The benchmark proposed in this work fundamen-410

tally differs from existing reward benchmarks by411

explicitly incorporating reference answers, thereby412

aligning more closely with the training setups of413

contemporary reasoning LLMs. To isolate the im-414

pact of reference answers on verification perfor-415

mance, we conduct an ablation study in which416

Model
VerifyBench

w/ Ref w/o Ref

Llama-4-Scout-17B-16E-Instruct 90.01 73.95-16.06

Llama-3.3-70B-Instruct 83.25 75.00-8.25

Llama-3.1-8B-Instruct 73.05 64.10-8.95

Llama-3.2-3B-Instruct 60.95 55.35-5.60

Llama-3.2-1B-Instruct 44.15 44.50+0.35

Qwen3-235B-A22B 93.80 80.15-13.65

Qwen3-30B-A3B 94.00 78.25-15.75

Qwen2.5-72B-Instruct 92.35 77.30-15.05

Qwen3-32B 95.80 78.90-16.90

Qwen3-8B 94.00 75.75-18.25

Qwen3-4B 92.00 74.40-17.60

Qwen3-1.7B 81.10 62.10-19.00

Table 3: Evaluation results(%) about how including the
reference answer in the prompt influences the perfor-
mance of LLM-as-a-judge.

models are evaluated without reference answers 417

provided in the prompt; the prompt format used is 418

detailed in Appendix C.3. 419

Experimental results, summarized in Table 3, re- 420

veal a performance degradation of approximately 421

5–18% when reference answers are excluded. 422

These findings underscore the crucial role of refer- 423

ence answers in reasoning-oriented RL, suggesting 424

they provide a more reliable and informative super- 425

vision signal during reward modeling. 426
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Model RM-Bench Reward Bench
VerifyBench

Num Exp MC Str AVG

General Reward Models

Skywork/Skywork-Reward-Llama-3.1-8B 72.29 93.33 60.80 64.80 59.60 68.80 63.48
internlm/internlm2-20b-reward 72.06 92.16 65.60 64.80 61.20 70.00 65.40
Ray2333/GRM-llama3-8B-sftreg 71.33 88.50 64.80 58.40 58.80 67.60 62.40
internlm/internlm2-7b-reward 72.42 90.02 73.20 68.00 66.80 70.40 69.60

Domain-specific Reward Models

Qwen/Qwen2.5-Math-RM-72B 76.28 82.11 83.60 79.20 73.60 75.60 78.00
Qwen/Qwen2-Math-RM-72B 62.61 75.54 79.20 78.40 73.20 72.80 75.90

Table 4: The performance(%) of existing reward models on VerifyBench without access to reference answers, as
well as a comparison with existing reward benchmarks.

4.3 Performance of Vanilla Reward Models427

To enable a more comprehensive evaluation of428

existing reward models, we additionally assessed429

several reference-free reward models and bench-430

marked their performance on conventional pairwise431

reward evaluation datasets for comparison. No-432

tably, each question in our proposed VerifyBench433

consists of one correct and one incorrect comple-434

tion, enabling straightforward reformulation into435

standard pairwise evaluation instances. The experi-436

mental results are summarized in Table 4.437

Our experimental results show that VerifyBench438

introduces a level of challenge comparable to ex-439

isting reward benchmarks, with the absence of ref-440

erence answers. Reference-free reward models441

achieve sub-80% accuracy on VerifyBench, high-442

lighting its difficulty. Furthermore, domain-specific443

reward models exhibit inferior performance on gen-444

eral reward benchmarks compared to VerifyBench,445

validating the benchmark’s design objectives.446

5 Analysis447

5.1 Error Analysis448

To gain deeper insights from VerifyBench, we intro-449

duce a more fine-grained taxonomy for each answer450

type and analyze model performance across these451

subcategories. This detailed analysis helps identify452

specific reasoning tasks or answer formats where453

models are particularly error-prone. We subdivide454

the Numeric Values category into 8 subtypes, Ex-455

pressions into 5 subtypes, Multi-choice into 3 sub-456

types, and String into 2 subtypes. Table 5 presents457

the comparative performance of different models458

across these detailed categories.459

We further analyze subcategories within each460

major category that exhibit below-average accuracy.461

Answer Type Q32B g4o L70B L3B

Numeric Values 97.60 94.80 88.80 65.80
Integer 96.88-0.72 96.88 93.75 65.62-0.18

Constant 96.88-0.72 95.31 92.19 70.31
Float Number 98.39 96.77 90.32 61.29-4.51

Radical 98.39 95.16 87.10-1.70 75.81
Complex Number 96.77-0.83 96.77 85.48-3.32 59.68-6.12

Angle 96.77-0.83 96.77 93.55 66.13
Non-decimal number 100 93.55-1.25 88.71-0.09 64.52-1.28

Multiple Values 96.77-0.83 87.10-7.70 79.03-9.77 62.90-2.90

Expressions 94.00 90.20 77.80 63.60
Algebraic formula 91.54-2.46 84.62-5.58 67.69-10.11 56.92-6.68

Equation 87.50-6.5 78.12-12.08 70.31-7.49 60.94-2.66

Interval 96.09 94.53 82.81 60.94-2.66

Set 98.00 98.00 78.00 60.00-3.60

Matrix 96.09 94.53 86.72 75.78

Multi-choice 99.00 96.80 88.40 56.80
Single-choice 99.39 98.17 92.07 59.15
Multiple-choice 98.21-0.79 94.05-2.75 77.98-10.42 49.40-7.40

Finite state selection 99.40 98.21 95.24 61.90

String 92.60 90.80 78.00 57.6
Specific 93.60 93.31 81.69 59.01
Semantic 90.38-2.22 85.26-5.54 69.87-8.13 54.49-3.11

Table 5: Model performance(%) across the fine-grained
taxonomy on VerifyBench. Q32B stands for Qwen3-
32B, g4o stands for gpt-4o-2024-11-20, L70B stands
for Llama-3.3-70B-Instruct and L3B stands for Llama-
3.2-3B-Instruct.

The following error-prone subtypes are identified as 462

the most frequent sources of incorrect judgments: 463

• Numeric Values: Complex numbers and an- 464

swers containing multiple numerical values; 465

• Expressions: Algebraic formulas and equa- 466

tions; 467

• Multi-choice: Multi-answer choice prob- 468

lems; 469

• String: Strings requiring semantic consis- 470

tency verification. 471

We analyzed the samples most prone to errors 472

and identified a common underlying issue: models 473
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Figure 3: The performance(%) of RFT across different LLM judges which have various performance on VerifyBench.

frequently fail to fully comprehend the question474

or clearly recognize the intended objective. For475

instance, in cases involving multi-value answers,476

the ordering of values is typically irrelevant. How-477

ever, if the sequence of values in the model’s output478

differs from the golden answer, models often incor-479

rectly classify the response as erroneous. Similarly,480

errors within the Expressions category, particularly481

involving algebraic formulas and equations, pre-482

dominantly result from inadequate mathematical483

comprehension. Specifically, when a model out-484

puts an unsimplified expression, superficial textual485

discrepancies compared to the ground-truth answer486

can be significant. Rather than evaluating whether487

the expression is mathematically equivalent upon488

simplification, models prematurely deem the output489

incorrect, thereby leading to verification failures.490

5.2 Correlation Analysis491

We constructed VerifyBench and VerifyBench-492

Hard with the goal of improving the effectiveness493

of RL for reasoning models by enhancing the accu-494

racy of reference-based reward systems. To evalu-495

ate the practical utility of our benchmark, we per-496

formed a correlation analysis between VerifyBench497

and real-world RL performance.498

In our experiments, we applied rejection sam-499

pling to implement reference-based reward sys-500

tems. For each question in the GSM8K and MATH501

training sets, we generated 64 candidate comple-502

tions using Qwen2.5-Math-7B-Instruct (Yang et al.,503

2024) with a sampling temperature of 0.7. These504

responses were subsequently filtered by three ver-505

ifier models with varying performance levels on506

VerifyBench: Llama-3.1-8B-Instruct, Qwen3-4B,507

and Qwen3-1.7B. Only completions consistently508

verified as correct were retained to form the SFT509

training data. We conducted independent SFT train- 510

ing runs accordingly, with full hyperparameter con- 511

figurations provided in the Appendix D. 512

The resulting models were evaluated on mul- 513

tiple mathematical reasoning benchmarks, 514

including GSM8K (Cobbe et al., 2021), 515

MATH500 (Hendrycks et al., 2021; Light- 516

man et al., 2023), and SVAMP (Patel et al., 2021). 517

As shown in Figure 3, on GSM8K, MATH500, and 518

SVAMP, using Qwen3-4B, a verifier that achieves 519

higher accuracy on VerifyBench, consistently 520

outperforms Llama-3.1-8B-Instruct, a lower- 521

scoring verifier, under the same training steps. 522

This highlights the strong alignment between 523

VerifyBench and practical usage. Our benchmarks 524

serve as reliable tools to guide the development of 525

reward systems, leading to more effective training 526

and improved model performance. 527

6 Conclusion 528

In this paper, we present two dedicated benchmarks, 529

VerifyBench and VerifyBench-Hard, to evaluate 530

reference-based reward systems in the context of 531

reasoning-focused reinforcement learning. These 532

benchmarks were built with high-quality, carefully 533

curated data and extensive human annotation. Our 534

results reveal that current verifiers, especially those 535

with smaller model sizes, still face considerable 536

challenges in accurately assessing reasoning com- 537

pletions. Through detailed analysis, we provide in- 538

sights into the strengths and weaknesses of existing 539

systems and highlight opportunities for improve- 540

ment. The proposed benchmarks fill a critical gap 541

in the evaluation landscape, offering a principled 542

foundation for understanding verifier accuracy and 543

guiding the development of more effective reason- 544

ing models trained via reinforcement learning. 545
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Limitations546

Limited Data Domain In this paper, we utilize547

datasets exclusively from general reasoning, logical548

reasoning, and mathematical reasoning, which do549

not cover the full spectrum of reasoning types, such550

as commonsense reasoning. Consequently, our test551

sets may not adequately evaluate the quality of552

reward systems in out-of-domain scenarios.553

Bias from Human Annotation The construction554

of VerifyBench and VerifyBench-Hard involved ex-555

tensive human annotation. Although all annotators556

were trained and a double-checking strategy was557

employed, it remains challenging to entirely elim-558

inate annotation bias inherent in manual labeling559

processes.560

Reward Hacking Could Not Be Identified561

While our experiments demonstrate that rule-based562

reward systems perform worse than model-based563

approaches on both VerifyBench and VerifyBench-564

Hard, a critical issue remains unaddressed: reward565

hacking. Future research should focus on detecting566

and evaluating reward hacking phenomena.567

Proof Problems Excluded During annotation,568

our guidelines explicitly excluded proof-based569

questions. We believe such problems require more570

specialized verification methods, such as formal571

languages like Lean4. Consequently, proof ques-572

tions are not included in this study, and their verifi-573

cation remains an open research challenge.574

Binary Scoring System The benchmark con-575

structed in this paper employs a binary scoring576

system, where each completion is labeled as either577

correct or incorrect. However, real-world scenarios578

often involve more nuanced cases, such as partially579

correct reasoning processes or correct solutions580

to subproblems. Introducing a more fine-grained581

evaluation scheme could better capture these com-582

plexities.583

Ethical Considerations584

All human annotators involved in constructing the585

benchmarks were assigned reasonable workloads586

and fairly compensated for their contributions.587

Our annotation process involves minimal sub-588

jective preference. Human annotators performed589

the verification tasks following our detailed instruc-590

tions. The content of the annotations does not in-591

volve ethical issues and poses no ethical risks.592
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A Related Works846

A.1 Reward Systems for Reinforcement847

Learning848

Early reward models (RMs) (Christiano et al., 2023;849

Stiennon et al., 2022; Ouyang et al., 2022), trained850

to predict human preference rankings, typically851

treat the entire response as the evaluation unit.852

However, such outcome-level RMs lack insight into853

intermediate reasoning steps, making step-level er-854

ror correction infeasible (Xu et al., 2025b). To855

address this limitation, process-level RMs (Light-856

man et al., 2023; Setlur et al., 2024) have been857

introduced to assign scores at each reasoning step,858

thereby providing stepwise feedback. Despite their859

effectiveness, process-level RMs require extensive860

manual step-level annotations, resulting in expo-861

nential increases in data collection costs and train-862

ing complexity (Khalifa et al., 2025).863

Building on these advances, DeepSeek-864

R1 (DeepSeek-AI et al., 2025a) employs865

rule-based reward functions that leverage prede-866

fined, maintainable rules for pattern matching867

and logical validation, offering simplicity and868

efficiency. However, as task diversity expands,869

the manual creation of such rules faces significant870

challenges related to scalability and coverage,871

ultimately limiting its applicability in open-ended872

generation scenarios.873

More recently, DeepSeek-GRM (Liu et al., 2025)874

and ThinkPRM (Khalifa et al., 2025) have ex-875

plored integrating reasoning capabilities into RMs876

by developing generative reward models (GRMs).877

GRMs reformulate the scoring task as a token-878

generation problem: before outputting a numerical879

score, the model first generates a chain-of-thought880

(CoT) (Wei et al., 2023) that explicates its eval-881

uation criteria and rationale. This approach not882

only bridges the interpretability gap between black-883

box discriminative models and brittle rule-based884

systems but also substantially enhances test-time885

scaling capabilities.886

A.2 Evaluation of Reward Systems887

There are two primary approaches to evaluating888

reward systems. The first approach employs stan-889

dardized benchmarks that objectively assess reward890

system effectiveness by designing diverse tasks and891

datasets (Frick et al., 2024). The second approach892

examines the performance of reward systems when893

integrated directly into downstream optimization894

loops, such as Best-of-N selection (Nakano et al.,895

2022) or rejection sampling fine-tuning (Zelikman 896

et al., 2024; Xiong et al., 2025), to measure their 897

impact on generation quality and alignment. 898

Reward system benchmarks can be further cate- 899

gorized into outcome-level (Liu et al., 2024; Lam- 900

bert et al., 2024) and process-level (Lightman et al., 901

2023; Zheng et al., 2024) suites. In constructing 902

these benchmarks, researchers generate multiple 903

responses to the same prompt by varying model 904

architectures or hyperparameters. During the man- 905

ual annotation phase, outcome-level benchmarks 906

require annotators to compare or assign multi-point 907

scores to complete responses, emphasizing overall 908

preference. In contrast, process-level benchmarks 909

provide fine-grained gold verdicts by requiring step- 910

by-step correctness labels for each reasoning step. 911

Beyond benchmark-based evaluation, practi- 912

cal applications of reward systems serve as an- 913

other common assessment method. In the Best- 914

of-N (BoN) paradigm, WebGPT (Nakano et al., 915

2022) introduced using a reward model to score 916

N candidate answers and select the top-ranked 917

response. Subsequent work has framed reward 918

models as downstream rankers—for example, Self- 919

Consistency in chain-of-thought models (Wang 920

et al., 2023), where the reward model identi- 921

fies the most coherent solution among candidates. 922

Unlike Best-of-N, rejection sampling fine-tuning 923

(RFT) (Zelikman et al., 2024; Xiong et al., 2025) 924

samples multiple trajectories from the current pol- 925

icy, scores them using a reward model, and re- 926

tains only the highest-scoring examples as sil- 927

ver supervision for further fine-tuning. This ap- 928

proach has proven particularly effective at boot- 929

strapping reasoning capabilities without requiring 930

full preference-learning pipelines. 931

B Data Source 932

Table 7 provides a comprehensive overview of all 933

datasets used in constructing VerifyBench, detail- 934

ing their respective licenses and the number of sam- 935

ples drawn from each. All data usage strictly com- 936

plies with the terms and conditions stipulated by 937

the original sources. 938

C Prompts 939

C.1 Prompt for Answer Type Classification 940

We present the prompt we used to generate answer 941

types in Figure 4. 942
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C.2 Prompt for LLM-as-a-judge943

We present the prompt we used in LLM-as-a-judge944

evaluation with a reference answer in Figure 5.945

C.3 Prompt for LLM-as-a-judge without946

Reference947

We present the prompt we used in LLM-as-a-judge948

evaluation with a reference answer in Figure 6.949

D Experimental Details950

Training. For the rejection sampling fine-tuning951

experiments, we used Llama-3.1-8B (Grattafiori952

et al., 2024) as the base model for SFT. The learn-953

ing rate was set to a constant value of 1e-5. Train-954

ing was conducted using the Megatron-LM frame-955

work, with a global batch size of 256 and a context956

length of 4096. To accelerate training, we packed957

the training samples and trained for one epoch in958

total. All training experiments were conducted on959

32 Ascend H910B-64G GPUs.960

Evalution. For evaluation, we used the961

vLLM(Kwon et al., 2023) framework for inference.962

To reduce evaluation variance, we set the tempera-963

ture to 0.7 and sampled each test example 16 times,964

then computed the average accuracy. All inference965

were conducted on 8 NVIDIA A100-80G.966

E LLM Usage967

We list all the LLMs we used to generate comple-968

tions for curated question.969

Series Model

OpenAI gpt-4o-2024-11-20
gpt-4o-mini

anthropic claude-3.7-sonnet

deepseek-math deepseek-math-7b-instruct (Shao et al., 2024)
deepseek-math-7b-rl (Shao et al., 2024)

DeepSeek DeepSeek-V3 (DeepSeek-AI et al., 2025b)
DeepSeek-R1 (DeepSeek-AI et al., 2025a)
DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI et al., 2025a)
DeepSeek-R1-Distill-Qwen-32B (DeepSeek-AI et al., 2025a)

gemma-3 gemma-3-1b-it (Gemma Team et al., 2025)
gemma-3-4b-it (Gemma Team et al., 2025)
gemma-3-12b-it (Gemma Team et al., 2025)

Llama-3 Llama-3.3-70B-Instruct (Grattafiori et al., 2024)
Llama-3-8B-Instruct (Grattafiori et al., 2024)

Qwen2.5 Qwen2.5-7B-Instruct (Qwen et al., 2025)
Qwen2.5-72B-Instruct (Qwen et al., 2025)

Qwen2.5-Math Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024)
Qwen2.5-Math-7B-Instruct (Yang et al., 2024)
Qwen2.5-Math-72B-Instruct (Yang et al., 2024)

QwQ QwQ-32B (Qwen Team, 2024)

Yi-1.5 Yi-1.5-9B-Chat-16K (AI et al., 2025)
Yi-1.5-34B-Chat (AI et al., 2025)

Table 6: LLMs used in this paper.

F Examples of VerifyBench 970

We provide some examples of VerifyBench with 971

four different answer types in Figure 7, 8, 9 and 10. 972
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Domain Source License # of Questions

general_reasoning

BBH (Suzgun et al., 2022) MIT 4520
BBEH (Kazemi et al., 2025) Apache 2.0 6511
MMLU_pro (Wang et al., 2024) Apache 2.0 2000
natural_reasoning (Yuan et al., 2025) CC-BY-NC 4.0 10000

logic_reasoning

AbductionRules (Young et al., 2022) MIT 1000
anlg (Bhagavatula et al., 2020) / 1000
anli (Nie et al., 2020) CC-BY-NC 4.0 1000
ARLSAT (Zhong et al., 2021) MIT 230
bAbI15 (Weston et al., 2015) / 1000
bAbI16 (Weston et al., 2015) / 1000
BoardgameQA (Kazemi et al., 2023) CC-BY-4.0 1000
clutrr (Sinha et al., 2019) CC-BY-NC 4.0 1000
FOLIO (Han et al., 2024) CC-BY-SA-4.0 134
hellaswag (Zellers et al., 2019) MIT 1000
logicbenchBQA (Parmar et al., 2024) MIT 1000
logicbenchMCQA (Parmar et al., 2024) MIT 1000
LogiQA (Liu et al., 2020) / 1000
MultiLogiEval (Patel et al., 2024) MIT 1000
NeuLRabductive (Xu et al., 2025a) / 1000
NeuLRdeductive (Xu et al., 2025a) / 1000
NeuLRinductive (Xu et al., 2025a) / 1000
ProntoQA (Saparov and He, 2023) Apache 2.0 500
ProofWriter (Tafjord et al., 2021) / 1000
ReClor (Yu et al., 2020) / 500
tablebench (Wu et al., 2025) Apache 2.0 886

math_reasoning

AIME24 MIT 30
AIME25 MIT 30
asdiv-a (Miao et al., 2021) CC-BY-NC 4.0 1218
Math Odyssey (Fang et al., 2024) MIT 389
GPQA_diamond (Rein et al., 2023) MIT 198
gsm8k (Cobbe et al., 2021) MIT 1319
math401 (Yuan et al., 2023) / 392
mathematics (Saxton et al., 2019) Apache 2.0 3360
MATH(Hendrycks et al., 2021) MIT 5000
OlympiadBench-EN (He et al., 2024) MIT 675
SVAMP (Patel et al., 2021) MIT 1000
NuminaMath-CoT (Li et al., 2024) Apache 2.0 20000
orca-math-word-problems (Mitra et al., 2024) MIT 10000
ArtOfProblemSolving self-curated 7997
stackmathqa (Zhang, Yifan, 2024) CC-BY-4.0 10000
DeepMath-103K-RL (He et al., 2025) MIT 20000

Table 7: The datasets we used and the number of samples drawn from each, including the license information of
these datasets.
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You are a professional LLM evaluator and now you are tasked with identifying the type of 
answer that corresponds to a problem, here is what is required of you:
1. I will give you a problem and the corresponding solution, you need to analyze the problem 
carefully and understand what objective you need to get for that problem;

2. Please choose the most appropriate type for the target (i.e. final answer) to the problem, 
based on the objective of the give problem, the types available to you include:
A Numeric values
A1 Integers(whole numbers), e.g. 2, 351, etc.
A2 Numerical values containing constants, e.g. 2\pi, etc.
A3 Fractions/Float numbers/Proportions, e.g. \frac{1}{2}, 3.123, 1:2, etc.
A4 Numerical values containing radicals, e.g. \sqrt{3}
A5 Complex numbers, e.g. 3+4i
A6 Angles, e.g. 120^\circ
A7 Non-decimal numbers (not base 10 numeric values), e.g. 1234_8
A8 Multiple values with no order between them, e.g. 1,-2, 1 and 2, etc.
B Mathematical expressions
B1 Algebraic formulas, e.g. ax+b, etc.
B2 Equations or systems of equations, e.g. ax+b=0, etc.
B3 intervals, including concatenation and intersection of intervals, e.g. (1,2] (1,2) \cup (3,4), 
etc.
B4 A set, a collection of elements, e.g. {1,2,3}, (1,2,3), etc.B5 a matrix or vector, e.g. 
\begin{pmatrix} -7 \\ 16 \\ 5 \end{pmatrix}, (1, 2) etc.
C Multiple-choice questions
C1 Single-choice questions, choose one correct option from multiple choices
C2 Multiple choice, select multiple correct choices from multiple options
C3 Finite state selection, choose one correct state from a finite number of states, e.g. 
True/False, yes/no, valid/invalid, etc.
D String
D1 Specific natural language representation, more concerned with whether a particular word 
or expression is mentioned correctly or not
D2 Semantically consistent natural language representations, where the answer is difficult to 
be expressed in a single unified word, and there is a preference for comparing the semantic 
consistency of answers
E Other cases not categorized by the above categories

3. Please analyze carefully and output the serial numbers of the corresponding answer 
categories, you need to output your reasons for making such a classification. Your output 
should be in the format of a legal json in {"explanation": "xxx", "type": "xx"}, where 
'explanation' is your reasoning, 'type' is the serial number of the final corresponding answer 
category, and you can output more than one serial number, separated by ‘,’.

4. You only need to care about the type of the final answer.
Question:{question}
Answer:{answer}

Prompt for Answer Type Classification

Figure 4: Prompt for answer type classification.
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Given the following math problem and the reference answer. Judge the correctness of the 
answers given later, with some ability to generalize and match the form and format of the 
answer results. The following specific requirements are followed when judging:

1. Judge only whether the final result of the reference answer and the answer to be judged 
agree; do not consider whether there are any errors in the process. Don't verify the 
correctness of the answer by yourself, please only refer to the reference answer for the 
correctness of the answer.
2. The reference answer and the answer to be judged only need to be essentially the same, 
ignoring irrelevant details such as units, symbols, whether or not to approximate, and the form 
of expression in the answer. The two answers are considered to be consistent if they are 
equivalently transformable.
3. All your analysis answer must be in English.
4. Please analyze the judged answer and try to compare it with the reference answer. 
At the end of all analysis, give the result of the judgment on an extra line at the end of the 
answer in the form "Final Judgment: Yes/No".

Problem: {question}
Reference Answer: {answer}
Solution to be evaluated: {completion}

Prompt for llm-as-a-judge

Figure 5: Prompt for LLM-as-a-judge evaluation.

Given the following math problem, please judge the correctness of the answers given later. 
The following specific requirements are followed when judging:

1. All your analysis answer must be in English.
2. Please analyze the math problem and the answer and try to tell whether the given 
completion is a correct answer. At the end of all analysis, give the result of the judgment on 
an extra line at the end of the answer in the form ”Final Judgment: Yes/No”.

Prompt for llm-as-a-judge without a Reference Answer

Figure 6: Prompt for LLM-as-a-judge evaluation without reference answers.
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Question:
How many positive and negative integers is $12$ a multiple of?

Reference Answer:

We want to find the number of positive and negative integers that divide $12$.
The positive integers that divide $12$ are the positive divisors of $12$. The divisors of 
$12$ are the integers that divide $12$ without leaving a remainder.
We can find the divisors of $12$ by listing pairs of integers that multiply to $12$.
$1 \times 12 = 12$
$2 \times 6 = 12$
$3 \times 4 = 12$
So the positive divisors of $12$ are $1, 2, 3, 4, 6, 12$. There are $6$ positive divisors of 
$12$.

The negative integers that divide $12$ are the negative divisors of $12$. These are the 
negative integers that divide $12$ without leaving a remainder.
The negative divisors of $12$ are $-1, -2, -3, -4, -6, -12$. There are $6$ negative divisors 
of $12$.

The total number of integers that divide $12$ is $6$ (positive divisors) $+ 6$ (negative 
divisors) $= 12$.
Alternatively, we can find the prime factorization of $12$.
$12 = 2^2 \cdot 3^1$.
The number of positive divisors is $(2+1)(1+1) = 3 \cdot 2 = 6$.
The number of negative divisors is also $6$.
Therefore, the total number of integers that divide $12$ is $6 + 6 = 12$.

The positive integers that divide $12$ are $1, 2, 3, 4, 6, 12$. There are 6.
The negative integers that divide $12$ are $-1, -2, -3, -4, -6, -12$. There are 6.

The number of positive integers that divide $12$ is 6.
The number of negative integers that divide $12$ is 6.

Final Answer: The final answer is $\boxed{6}$

Completion:

The number $12$ is a multiple of $-12, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6,$ and $12,$ for a total 
of $\boxed{12}$ integers.

Golden Label:  False

Figure 7: An data example from VerifyBench with answer type: Numeric Values.
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Question:
Consider two lines parameterized by:
\[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ -3 
\end{pmatrix}
\]
and
\[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} + u \begin{pmatrix} 1 \\ -1 
\end{pmatrix}
\]
Determine the coordinates of their intersection point.

Reference Answer:

Okay, so I have to find the intersection point of two lines given in parametric form. The first line is 
parameterized as:

\[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ -3 
\end{pmatrix}
\]

<omitted>
\[
-x = 11 \implies x = -11
\]
\[
y = -(-11) + 9 = 20
\]

Thus, the coordinates of the intersection point are \(\boxed{(-11, 20)}\).

Completion:

For the first line, \[ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + t 
\begin{pmatrix} 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 + 2t \\ 2 - 3t \end{pmatrix} \] For the second line, 
\[ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} + u \begin{pmatrix} 1 \\ -1 
\end{pmatrix} = \begin{pmatrix} 4 + u \\ 5 - u \end{pmatrix} \] Setting equal the parametric equations for 
\(x\) and \(y\): \[ 1 + 2t = 4 + u \quad \text{(1)} \] \[ 2 - 3t = 5 - u \quad \text{(2)} \] From equation (1), 
solve for \(u\): \[ u = 1 + 2t - 4 = - 3 + 2t \quad \text{(3)} \] Substitute \(u\) from equation (3) into equation 
(2): \[ 2 - 3t = 5 - (-3 + 2t) \] \[ 2 - 3t = 8 - 2t \] \[ -t = 6 \] \[ t = -6 \] Substitute \(t = -6\) back into \(u\)'s 
equation: \[ u = -3 + 2(-6) = -3 - 12 = -15 \] Plug \(t = -6\) into the parameterization for the first line: 
\[ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 + 2(-6) \\ 2 - 3(-6) \end{pmatrix} = 
\begin{pmatrix} 1 - 12 \\ 2 + 18 \end{pmatrix} = \begin{pmatrix} -11 \\ 20 \end{pmatrix} \] So, the 
intersection point is \( \boxed{\begin{pmatrix} -11 \\ 20 \end{pmatrix}} \).

Golden Label:  True

Figure 8: An data example from VerifyBench with answer type: Expression.
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Question:
Given that point $P$ lies on the circle $C: x^{2}-6x+y^{2}-6y+14=0$, and the line $AB: x+y-2=0$, then 
which of the following statements is true? A: Line $AB$ intersects circle $C$. B: Line $AB$ is disjoint from 
circle $C$. C: The distance from point $P$ to line $AB$ is greater than $\frac{1}{2}$. D: The distance from 
point $P$ to line $AB$ is less than $5$.

Reference Answer:
To analyze the relationship between circle $C$ and line $AB$, we first need to rewrite the equation of 
circle $C$ in its standard form and calculate the distance from the center of $C$ to line $AB$. 1. **Circle 
Equation Transformation**: Given equation of circle $C$ is $x^{2}-6x+y^{2}-6y+14=0$. To rewrite it in 
standard form, we complete the square for $x$ and $y$ terms: - For $x$: $x^{2}-6x = (x-3)^{2} - 9$ - For 
$y$: $y^{2}-6y = (y-3)^{2} - 9$ Substituting these into the circle's equation, we get: $(x-3)^{2} + (y-3)^{2} - 
9 - 9 + 14 = 0$ Simplifying, we find: $(x-3)^{2} + (y-3)^{2} = 4$ This shows that circle $C$ has a center at 
$C(3,3)$ and a radius $r=2$. 2. **Distance from Center to Line**: The distance $d$ from the center of 
the circle $(3,3)$ to line $AB$ (given by $x+y-2=0$) can be calculated using the formula for the distance 
from a point to a line: $d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$ For line $AB$, $A=1$, $B=1$, 
$C=-2$, and substituting $(x_0, y_0) = (3,3)$, we get: $d = \frac{|3 + 3 - 2|}{\sqrt{1^2 + 1^2}} = 
\frac{4}{\sqrt{2}} = 2\sqrt{2}$ Since $2\sqrt{2} > r = 2$, line $AB$ does not intersect circle $C$, making 
statement A false and B true. 3. **Analysis of Statements C and D**: - The maximum distance from a 
point on the circle to the line is $2\sqrt{2} + r = 2\sqrt{2} + 2$. - The minimum distance is $2\sqrt{2} - r = 
2\sqrt{2} - 2$. Since the minimum distance from point $P$ to line $AB$ is $2\sqrt{2} - 2$, which is 
greater than $\frac{1}{2}$, statement C is true. And since the maximum distance is $2\sqrt{2} + 2$, 
which is less than $5$, statement D is also true. Therefore, the correct choices are $\boxed{BCD}$.

Completion:
To analyze the problem, let's break it down step by step. --- ### Step 1: Rewrite the equation of the circle 
\( C \) The given equation of the circle is: \[ x^2 - 6x + y^2 - 6y + 14 = 0. \] Complete the square for both 
\( x \) and \( y \): \[ x^2 - 6x = (x - 3)^2 - 9, \quad y^2 - 6y = (y - 3)^2 - 9. \] Substitute these into the 
equation: \[ (x - 3)^2 - 9 + (y - 3)^2 - 9 + 14 = 0. \] Simplify: \[ (x - 3)^2 + (y - 3)^2 = 4. \] This is the equation 
of a circle with center \( (3, 3) \) and radius \( 2 \). --- ### Step 2: Analyze the line \( AB \) The equation of 
the line \( AB \) is: \[ x + y - 2 = 0. \] Rewriting it: \[ y = -x + 2. \] --- ### Step 3: Determine the relationship 
between the circle and the line To check whether the line \( AB \) intersects the circle \( C \), calculate the 
distance from the center of the circle \( (3, 3) \) to the line \( AB \). The formula for the distance from a 
point \( (x_1, y_1) \) to a line \( ax + by + c = 0 \) is: \[ \text{Distance} = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + 
b^2}}. \] Here, the line \( AB \) is \( x + y - 2 = 0 \), so \( a = 1 \), \( b = 1 \), \( c = -2 \), and the point is \( (3, 
3) \). Substituting: \[ \text{Distance} = \frac{|1(3) + 1(3) - 2|}{\sqrt{1^2 + 1^2}} = \frac{|3 + 3 - 2|}{\sqrt{2}} 
= \frac{|4|}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}. \] The radius of the circle is \( 2 \). Since the distance 
from the center of the circle to the line (\( 2\sqrt{2} \)) is greater than the radius (\( 2 \)), the line \( AB \) 
does **not** intersect the circle. Therefore, **statement B** ("Line \( AB \) is disjoint from circle \( C \)") 
is true. --- ### Step 4: Analyze the distance from point \( P \) to line \( AB \) Point \( P \) lies on the circle 
\( C \), so its distance to the center \( (3, 3) \) is exactly \( 2 \) (the radius of the circle). The maximum 
possible distance from \( P \) to the line \( AB \) is the distance from the center \( (3, 3) \) to the line \( AB 
\) plus the radius, which is: \[ 2\sqrt{2} + 2. \] The minimum possible distance from \( P \) to the line \( AB 
\) is the distance from the center \( (3, 3) \) to the line \( AB \) minus the radius, which is: \[ 2\sqrt{2} - 2. \] 
Numerically: \[ 2\sqrt{2} \approx 2.828, \quad 2\sqrt{2} - 2 \approx 0.828, \quad 2\sqrt{2} + 2 \approx 
4.828. \] Thus, the distance from \( P \) to the line \( AB \) is always greater than \( \frac{1}{2} \) and less 
than \( 5 \). Therefore, both **statement C** and **statement D** are true. --- ### Final Answer: The 
true statements are: - **B**: Line \( AB \) is disjoint from circle \( C \). - **C**: The distance from point 
\( P \) to line \( AB \) is greater than \( \frac{1}{2} \). - **D**: The distance from point \( P \) to line \( AB \) 
is less than \( 5 \).

Golden Label:  True

Figure 9: An data example from VerifyBench with answer type: Multi-choice.
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Question:
Vlad numbered the squares of a chessboard (from 1 to 64) in some order. Gosha did the same with his 
chessboard, but the numbering turned out to be different. Can it be that the squares on Vlad's board are 
connected by a knight's move if and only if the squares on Gosha's board with the same numbers are 
connected by a king's move?

Reference Answer:
To solve this problem, we will perform a proof by contradiction. 1. Assume that it is possible that the 
cells on Vlad's chessboard connected by a knight's move are precisely those same-numbered cells 
connected by a king's move on Gosha's chessboard. 2. Let's examine a corner cell on the chessboard, for 
example, cell \( A1 \) on Vlad's chessboard. A knight starting in cell \( A1 \) has only two possible moves, 
which are to cells \( B3 \) and \( C2 \). 3. Consider the connectivity due to the king's move. A king 
positioned at any corner cell like \( A1 \) can move to the three adjacent cells (in Vlad's case) or up to 
eight adjacent cells in the middle. Therefore, a king's movement from \( A1 \) can go to cells like \( B1 \), 
\( B2 \), and \( A2 \). 4. Let's map this to Gosha's cell numbering. Assume, - Cell \( A1 \) (Vlad) = Cell \( X 
\) (Gosha) - Cell \( B3 \) and Cell \( C2 \) (Vlad) = Cells \( Y \) and \( Z \) (Gosha), respectively. Here, cells 
\( Y \) and \( Z \) are where the knight can move directly from cell \( X \) in Vlad's grid. 5. According to 
our assumption, in Gosha's grid, the corresponding cell moves (cells \( X \) to \( Y \) and \( Z \)) must be 
achievable by a king's move. However, for any corner cell (like \( X \)), a king only has three adjacent cells 
and thus clearly cannot reach two cells (\( Y \), \( Z \)) in one move if those cells are not adjacent. 6. This 
contradiction shows our initial assumption is incorrect, because it is impossible for cells connected by a 
knight's move to be the same as cells connected by the king's move. Conclusion: \[ \boxed{\text{No, it 
cannot happen.}} \]

Completion:

No, it is not possible for the squares on Vlad's chessboard to be connected by a knight's move if and only if 
the squares on Gosha's chessboard with the same numbers are connected by a king's move.

### Reasoning:

1. **Knight's Move Properties**:
- A knight's move on a chessboard is an "L"-shaped move: two squares in one direction and one square in 
a perpendicular direction (or vice versa).
- A knight's move always connects squares of opposite colors (e.g., from a white square to a black square 
or vice versa).

2. **King's Move Properties**:
- A king's move allows movement to any of the 8 surrounding squares (horizontally, vertically, or 
diagonally).
- A king's move can connect squares of the same color or opposite colors.

<omitted>

5. **Conclusion**:
- No matter how Vlad and Gosha number their chessboards, the condition that a knight's move on Vlad's 
board corresponds exactly to a king's move on Gosha's board cannot be satisfied. The fundamental 
differences in the movement rules of the knight and the king make this impossible.

Golden Label:  True

Figure 10: An data example from VerifyBench with answer type: String.
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