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ABSTRACT

Vision-language models like CLIP have excelled in zero-shot inference by train-
ing on vast image-text datasets. However, relying solely on category names dur-
ing inference limits their performance. Prior work introduced category descrip-
tions generated by large language models (LLMs), aiming to enhance recognition
and interpretability, albeit with challenges in capturing distinctions between fine-
grained classes. We introduce Pairwise Attribute Contrasting (PAC), a zero-shot
inference framework for vision-language models. PAC prompts LLMs to provide
specific visual attributes that distinguish category pairs. To aggregate the pairwise
comparisons into a single classification, PAC uses a voting procedure. Specifi-
cally, for each test image, all pairwise classifiers are first applied using their own
pair-specific attributes to compute image-text similarities. A category receives a
vote when it exhibits higher image-text similarity compared to the other class in
the pair. Finally, the category that receives the highest vote becomes the final pre-
diction. PAC shows consistent improvement on 18 benchmark datasets over other
strong baselines across various model architectures. We further provide an effi-
cient implementation by only computing text embeddings for unique attributes of
a category, which significantly reduces the computation complexity compared to
naively computing text embeddings for all attributes.

1 INTRODUCTION

Vision-language models, trained using contrastive approaches like CLIP (Radford et al., 2021),
LiT (Zhai et al., 2022), and ALIGN (Jia et al., 2021) have recently achieved remarkable success.
These models are typically trained on internet-scale datasets containing image-text pairs, such as
LAION (Schuhmann et al., 2021). Thanks to the scale and diversity of training data, these models
excel in conducting zero-shot inference across diverse downstream classification tasks while main-
taining a high level of classification accuracy.

Unlike conventional deep neural networks, zero-shot classification involves a procedure where the
similarity between test images and text prompts containing each category name is computed in the
feature embedding space, and the category with the highest similarity is selected. In the standard
zero-shot process, the sole reliance on category names to represent candidate categories often limits
performance, as it heavily depends on the model’s understanding of these names. Consequently, this
approach tends to overlook other valuable information that could potentially enhance the recognition
process. To mitigate this, prior work (Menon & Vondrick, 2022) leverages large language models
(LLMs) to write category descriptions and average the image-text similarities over these descriptions
in prediction. These descriptors generated by LLMs not only enhance the recognition performance
but also offer a degree of interpretability regarding the model’s prediction.

However, this method does not account for the inherent semantic similarities between categories and
does not offer sufficient discriminative information between classes. When simply asking LLMs to
write category descriptions, LLMs can generate general and similar descriptions for different cate-
gories that are closely related in meaning, as illustrated in Figure1(a). Thus, when using descriptions
from LLMs as part of the text prompt, the model can still struggle to distinguish between such sim-
ilar classes, which limits its performance on tasks like fine-grained classification.
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Siamese
 Eye color:  bright blue almond-shaped eyes.

Coat Texture:  short, sleek and glossy coat. 

Body Shape:  slender and muscular body.

Facial Structure:  triangular face.       

Ears:  large pointed ears.

Siamese
 blue eyes. 
 point coloration.
 long, slender body.
 large ears.
 short tail.

(a) Descriptor (b) Pairwise Attribute Contrasting

Sphynx
 almond-shaped eyes.
 hairless.
 long, slender body.
 large ears.
 short tail.

Sphynx
 Eye color:  yellow or green rounded eyes.

Coat Texture:  hairless or fine, downy coat. 

Body Shape:  medium-sized, sturdy body.

Facial Structure:  rounded face.       

Ears:  medium-sized, wide-based ears.

Figure 1: Comparison between Descriptor approach and PAC. The descriptor approach (Menon
& Vondrick, 2022) queries LLMs for object features but can lead to repetitive features (highlighted in
the same color) for similar categories like Siamese and Sphynx cats. These redundant features hinder
vision-language models from effectively distinguishing closely related categories. In contrast, PAC
prompts LLMs to offer unique visual features, empowering models to leverage more discriminative
information and enhance their performance in such cases.

In this paper, we present Pairwise Attribute Contrasting (PAC), a zero-shot inference framework for
vision-language models. PAC addresses the aforementioned issue by prompting LLMs to provide
specific visual attributes for distinguishing two categories at a time, rather than seeking general
category descriptions from LLMs as in prior work (Menon & Vondrick, 2022). This way, LLMs can
use their knowledge to explicitly generate pair-specific visual attributes to distinguish each pair of
categories (Figure1(b)). When comparing different categories, LLM may vary the visual attributes it
highlights. For instance, when comparing Sphynx and Siamese cats, LLM may emphasize attributes
like eye color and facial structure, however, when distinguishing Sphynx cats from American Pit
Bull Terriers, it utilizes muzzle length and tail length due to similarities in other features.

As the visual attributes provided by LLMs can vary when the same category is compared to different
categories (as shown in Fig. 2), the conventional similarity-based zero-shot inference method (Rad-
ford et al., 2021) is not directly applicable to PAC. Hence, we redefine the prediction process as
a voting procedure. When given a test image, PAC calculates image-text similarities for all pairs
of categories using the corresponding pair-specific attribute descriptions from LLMs. Each class
receives a vote when it exhibits higher image-text similarity compared to the other class in the pair.
The class with the most votes becomes the prediction for the test image (see details in Fig. 3).

We conducted extensive evaluations of PAC on 18 benchmarking datasets for zero-shot evaluation of
vision-language models. PAC consistently outperforms strong baseline methods by a large margin
across various vision-language model architectures on the majority of these datasets. Moreover, as
the pairwise mechanism in PAC results in quadratic complexity, we provide an efficient implemen-
tation which only computes text embeddings for unique attributes for each category. This approach
significantly reduces computation complexity versus the naive approach of computing text embed-
dings for all attributes (details in Section 4.2).

2 RELATED WORK

Vision-Language Models. Vision-language models, which are trained on internet-scale image-text
pairs, have achieved remarkable success in recent years. Models such as CLIP (Radford et al., 2021)
have consistently demonstrated impressive zero-shot inference capabilities across various datasets.
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Furthermore, the field has seen the emergence of other noteworthy models such as ALIGN (Jia et al.,
2021), LiT (Zhai et al., 2022), FLAVA (Singh et al., 2022), FLORENCE (Yuan et al., 2021), and
CoCa (Yu et al., 2022). In this work, our primary focus lies in enhancing the zero-shot performance
of these vision-language models. To maintain consistency with prior studies and ensure the avail-
ability of extensive performance evaluations, we adopt CLIP as our primary model for assessment,
given its well-established reputation for excellence in the field.

Prompt Engineering for Vision-Language Models. Previous research has explored methods to
improve the performance of Vision-language models without the need for extensive fine-tuning on
downstream datasets. These efforts have primarily followed two major directions: prompt tun-
ing (Zhou et al., 2022b;a; Shu et al., 2022; Huang et al., 2022; Rao et al., 2022; Yang et al., 2023)
and prompt crafting (Menon & Vondrick, 2022; Allingham et al., 2023; Novack et al., 2023). The
key distinction between these two approaches lies in their methodologies. Prompt tuning involves
the learning of contextual tokens, which are subsequently integrated into the prompts used for infer-
ence, which typically requires a training phase, either in supervised fashion (Zhou et al., 2022b;a;
Rao et al., 2022; Yang et al., 2023; Rao et al., 2022; Yang et al., 2023) or unsupervised fashion (Shu
et al., 2022; Huang et al., 2022). In contrast, prompt crafting involves the direct manipulation of
text prompts, offering the advantage of not requiring any form of training. Moreover, it provides a
certain level of interpretability in the process. ChiLS (Novack et al., 2023) focuses on improving
coarse label scenarios by generating sub-classes from an existing hierarchy or by using LLMs. Our
focus is instead on improving fine-grained scenarios.ZPE (Allingham et al., 2023) employs a scor-
ing method involving weighted ensemble techniques with hand-crafted templates. In contrast, the
Descriptor-based approach (Menon & Vondrick, 2022) relies on large language models to generate
category descriptions, enriching their contextual understanding. Our method, PAC, falls under the
category of prompt crafting and the key difference from prior work is the introduction of a novel
pairwise attribute contrasting paradigm, which utilizes LLM-generated specific attribute descrip-
tions for each category pair. This contrasts with previous methods like Menon & Vondrick (2022),
which use more general descriptions.

3 APPROACH

3.1 PRELIMINARIES

In the context of zero-shot image classification with vision-language models like CLIP (Radford
et al., 2021), the primary objective is to assign one of the N possible categories to a test image
x, based on the knowledge of those category names. The essence of this task lies in establishing
meaningful connections between the test images and the textual domain. The conventional method-
ology involves comparing image-text similarities in the feature embedding space and subsequently
selecting the category with the highest similarity score.

A recent method (Menon & Vondrick, 2022) extends the usage of category names to category de-
scriptions. Concretely, it begins by projecting the query image into a feature representation Ix.
It then queries an LLM to generate K descriptions for each category i. These descriptions are
encoded into text embeddings T i

1, T
i
2, ...T

i
K . To obtain the similarity score for a particular cate-

gory, the model computes the average similarity between Ix and each of these text embeddings:
si = 1

K

∑K
j=1 T

i
j · Ix. Among all N categories, the one with the maximum similarity score is

predicted as the final class: ŷ = argmaxi si.

3.2 PAIRWISE ATTRIBUTE CONTRASTING

Let us take a look at some of the descriptions produced by the LLM for two distinct categories:
Siamese cat and Sphynx (Fig. 1 left). While there are two descriptions unique to each category
(e.g., blue eyes vs almond-shaped eyes), there are also three which are same for both (e.g., large
ears). Relying on those three descriptions will not give us anything useful to know whether an
image belongs to Siamese or Sphynx.

We introduce our method - Pairwise Attribute Contrasting (PAC) - to solve this very problem. Our
objective is to generate a set of descriptions of a category that are useful in separating it from every
other category, in a pairwise fashion.
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Monkshood vs Daffodil
Petal Shape:

Monkshood: Spiked, helmet-shaped petals
Daffodil: Trumpet-shaped, flared petals

Flower Color:
Monkshood: deep purple or blue
Daffodil: yellow or white

Leaf Shape:
Monkshood: palmate, deeply lobed leaves
Daffodil: Linear, strap-like leaves

Monkshood vs Geranium
Flower Shape:

Monkshood: Spiky, helmet-shaped blooms
Geranium: Rounded, cup-shaped flowers

Flower Color:
Monkshood: deep purple or blue
Geranium: vibrant pink or red blossoms

Leaf Texture:
Monkshood: smooth, glossy leaves
Geranium: crinkled, textured foliage

BMW M3 Coupe vs Audi S4 Sedan
Wheel Design:

BMW M3: multi-spoke black alloy wheels
Audi S4: Five-spoke silvery alloy wheels

Grille Design:
BMW M3: wide, low-profile double kidney grille
Audi S4: single-frame chrome grille

Headlight Shape:
BMW M3: Round and compact headlights
Audi S4: Sleek and angular headlights

BMW M3 Coupe vs BMW X5 SUV 
Body Style:

BMW M3: sleek, two-door sports car
BMW X5: Robust, four-door SUV

Grille Design:
BMW M3: wide, low-profile double kidney grille
BMW X5: tall, vertical double kidney grille

Roofline:
BMW M3: Sloping, coupe-like roofline
BMW X5: single or dual exhaust outlets

Figure 2: Example of Pair-specific Attribute Descriptions.When comparing the same category
to different categories, shared attributes (e.g., flower color and grille design, highlighted in the
same color) exist, but other attributes vary (highlighted in various colors). This enables the vision-
language model to employ distinct visual attributes tailored for distinguishing specific category
pairs, rather than relying solely on general descriptions.

Specifically, instead of prompting LLMs with inquiries which are about a category in isolation,
e.g., What are useful features for distinguishing a category name in a photo? (as done by the
previously described method Menon & Vondrick (2022)), PAC explicitly requests LLMs to provide
visual attributes capable of distinguishing pairs of categories:

Q: What visual attributes can differentiate between {category i}
and {category j}?

A:
- Attribute 1:

- Category i: Description for Attribute 1
- Category j: Description for Attribute 1

- Attribute 2:
- Category i: Description for Attribute 2
- Category j: Description for Attribute 2

...

We probe the LLM in this way to generate the pair-specific attribute descriptions for all possible
category pairs in the dataset. Importantly, it’s worth noting that the visual attributes (and their corre-
sponding descriptions) may vary when pitching the same category against two different ones. This
allows vision-language models to leverage visual attributes specifically tailored for distinguishing a
pair of categories, instead of general descriptions. For example, as shown in Figure 2, petal shape
and leaf shape are used to differentiate Monkshood and Daffodil (two types of flowers) but are not
used to differentiate Monkshood and Geranium. Similarly, wheel design and headlight shape are
used to differentiate BMW M3 and Audi S4 but not used to differentiate BMW M3 and Audi X5.

To conduct zero-shot classification with a vision-language model, we need to transform the pair-
specific attribute descriptions into text prompts. We adopt the format {category_name} with (
{attribute_name} {description}) to construct the prompt for each attribute description. This
format is determined based on a single dataset and maintained consistently across all evaluation
datasets. The only exception is for datasets with coarse labels, where we omit {attribute_name}
from the text prompt. This adjustment is made because the attribute names generated by an LLM
tends to be overly generic in such cases. For further insights into alternative template choices, please
refer to Section 4.2.
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(Beagle, Pug)

Beagle with (coat color tricolor coat)

Beagle with (ear shape droppy ears)
Pug with (coat color light brown)

Pug with (ear shape folded ear)

(Ragdoll, Samoyed)

Ragdoll with (eye color blue eyes)

Ragdoll with (fur length long silky fur)
Samoyed with (eye color brown eye)

Samoyed with (fur length fluffy coats)

...

...

...

... T

Text Embedding

Text Embedding

…

…

…

… Test Image x

Test Image x

Ragdoll

Beagle
...

Binary Classifiers

...

Beagle
Pug

Ragdoll
Samoyed

...
27.45 16.72

20.51 18.63

...

T

vote

…

…

…

…

argmax

argmax

avg avg

avgavg

Figure 3: Pipeline of Pairwise Attribute Contrasting (PAC) for zero-shot classification. For each
pair of categories (two categories are denoted in yellow and green), PAC leverages pair-specific
attribute descriptions from an LLM and computes the text-image similarities between the image
embedding and each text embedding. The binary classifier averages these similarities within each
category and votes for the category with the higher averaged similarity. In this example, the first
classifier favors Beagle because it exhibits greater similarity over Pug (20.51 vs. 18.63), while the
second classifier votes for Ragdoll for the same reason. The votes from all binary classifiers are
aggregated, and the category with the highest vote becomes the final prediction.

3.3 PAC FOR MULTI-CLASS CLASSIFICATION

The previous section described the process of creating the dataset of attribute descriptions for all
pairs of categories in the dataset. Now, to classify an image as belonging to one of the categories,
we take inspiration from the One-Versus-One (1v1) SVM framework in classic machine learning lit-
erature (Cortes & Vapnik, 1995; Burges, 1998; Sain, 1996). In 1v1 SVM, multiple binary classifiers
are trained, one for each pair of categories, allowing them to effectively distinguish between those
categories. Similarly, in our PAC formulation, we view the final classification problem as a series of
one-versus-one binary classification problems.

Specifically, we create a binary classifier for every category pair ci and cj in the dataset, whose goal
is to predict whether the test image x is more likely to be category ci or cj . The prediction for a
category pair, ŷij , is made as follows:

ŷij =

{
ci, if s(ci, Ix) > s(cj , Ix)

cj , otherwise
(1)

where s(c, Ix) is a similarity function defined as follows:

s(c, Ix) =
1

K

∑
a∈A(c)

ϕ(a, Ix) (2)

where A(c) denotes the set of text embeddings corresponding to the K attribute descriptions for
category c, and ϕ(·) computes the cosine similarity. The final category prediction is decided through
a majority voting mechanism. The category corresponds to ŷij receives a vote and the category that
receives the most vote will be selected as the prediction ŷ for image x:

ŷ = ck, where k = argmax
m

 N∑
i=1

N∑
j=1,j ̸=i

1{ŷij = cm}

 (3)
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Voting Procedure

Beagle
 Pug Beagle

Sphynx

Ragdoll

Ragdoll

Binary Classifiers

Ragdoll 31

Beagle Sphynx

Persia Ragdoll

Ragdoll 
Samoyed

... ...

Samoyed  19

Sphynx  8

Beagle  6

...

Prediction

20.51

14.58

16.42

...
10.07

16.3726.52

27.45 18.63

This whole pipeline is described in Fig. 3, where we see
the process of classifying an image of Ragdoll (a breed of
cat). The process consists of many binary classifications,
of which we have shown two. In (i) Beagle vs Pug and
(ii) Ragdoll vs Samoyed, Beagle and Ragdoll win out re-
spectively and each gets a vote. However, across all the
pair ups, Ragdoll wins the most and is ultimately given
out as the (correct) prediction, as shown in the right figure.

3.4 REDUCING COMPUTATION COMPLEXITY

As one may notice, the introduction of pair-specific attributes involves the computation of text
embeddings and image-text similarities for each pair of categories in the dataset. Considering
N categories and K attribute descriptions per pair, the total number of operations is given by(
N
2

)
K = N ·(N−1)

2 K, resulting in quadratic complexity with respect to N . In contrast, descriptor-
based approaches demand N ·K operations.

We optimize the computational efficiency of PAC by avoiding redundant computations of text em-
beddings and image-text similarities for attributes that are present across multiple pairs. As depicted
in Figure 2, when a category is compared to the other N−1 categories, some attributes can be shared
(e.g., flower color in the top example and grille design in the bottom example). We aggregate unique
attributes for each category across different pairs and compute text embeddings and similarities only
once for each attribute. During prediction with the binary classifier for pair ci and cj , we utilize
the text embeddings specific to this pair. We show in Section 4.2 that this practice significantly
reduces the computation overhead compared to naively computing text embeddings and image-text
similarities for every attribute.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the Pairwise Attribute Contrasting (PAC) ap-
proach through a comprehensive set of experiments conducted across 18 datasets, spanning multi-
ple vision-language model architectures. We categorize the datasets into two groups: fine-grained
datasets and ImageNet variations. For all of our experiments, we use gpt-3.5-turbo as our LLM to
generate pair-specific attributes. We also include results using other LLMs in Appendix A.1.

Fine-grained Datasets. Following zero-shot evaluation protocols from prior work (Radford et al.,
2021; Allingham et al., 2023), we consider 11 fine-grained datasets for evaluation: Caltech-101 (Fei-
Fei et al., 2004), CIFAR-10/100 (Krizhevsky et al., 2009), Stanford-Cars (Krause et al., 2013),
Describable Textures Dataset (Cimpoi et al., 2014), EUROSAT (Helber et al., 2019), FOOD-
101 (Bossard et al., 2014), Oxford-Flowers (Nilsback & Zisserman, 2008), Oxford-Pets (Parkhi
et al., 2012), RESISC-45 (Cheng et al., 2017), and SUN397 (Xiao et al., 2016). We further consider
CUB-200 (Wah et al., 2011) and PLACES-365 (Zhou et al., 2017) as used by Menon & Vondrick
(2022). These together sum to 13 fine-grained datasets for evaluation.

ImageNet-Family. We further consider evaluation on ImageNet (Russakovsky et al., 2015)
and its variations including: ImageNet-V2 (Recht et al., 2019), ImageNet-Sketch (Wang et al.,
2019), ImageNet-Rendition (Hendrycks et al., 2021a), and ImageNet-Adversarial (Hendrycks et al.,
2021b), which together form 5 datasets for evaluation.

Baseline Methods. We compare PAC with state-of-the-art methods that aim to improve the zero-
shot accuracy of vision-language models. These include standard CLIP (Radford et al., 2021),
descriptor-based techniques (Menon & Vondrick, 2022), and the ZPE approach (Allingham et al.,
2023). The descriptor-based method utilizes LLMs to extract informative text descriptions for object
recognition, while ZPE introduces a novel scoring mechanism that combines multiple handcrafted
prompt templates through a weighted averaging procedure. Following previous research (Menon &
Vondrick, 2022; Allingham et al., 2023), we conduct our evaluation with different model architec-
tures from CLIP (Radford et al., 2021).

6



Under review as a conference paper at ICLR 2024

FOOD-101 DESCRIBABLE TEXTURES OXFORD-PETS

ViT-B/16 ViT-L/14 ViT-L/14@336 ViT-B/16 ViT-L/14 ViT-L/14@336 ViT-B/16 ViT-L/14 ViT-L/14@336

CLIP (Radford et al., 2021) 85.61 91.79 92.23 43.72 51.33 52.39 81.88 88.25 88.20
Descriptor (Menon & Vondrick, 2022) 88.50 92.44 93.26 45.59 54.36 54.95 86.92 92.23 91.69
Descriptor* (gpt-3.5 re-implementation) 88.31 92.95 93.71 47.12 55.85 56.96 87.47 91.37 91.52
PAC (Ours) 89.04 93.33 94.05 47.61 56.43 57.18 87.95 93.02 92.96

CUB-200 EUROSAT PLACES-365
ViT-B/16 ViT-L/14 ViT-L/14@336 ViT-B/16 ViT-L/14 ViT-L/14@336 ViT-B/16 ViT-L/14 ViT-L/14@336

CLIP (Radford et al., 2021) 56.35 63.08 63.41 43.36 41.48 44.80 38.27 39.00 39.58
Descriptor (Menon & Vondrick, 2022) 57.75 63.46 65.26 48.82 48.66 48.74 40.34 40.55 41.18
Descriptor* (gpt-3.5 re-implementation) 57.23 63.96 65.29 47.53 49.18 48.36 41.76 41.52 41.97
PAC (Ours) 58.13 63.96 65.34 49.53 50.57 51.71 41.14 41.60 42.14

OXFORD-FLOWERS STANFORD-CARS RESISC-45
ViT-B/16 ViT-L/14 ViT-L/14@336 ViT-B/16 ViT-L/14 ViT-L/14@336 ViT-B/16 ViT-L/14 ViT-L/14@336

CLIP (Radford et al., 2021) 64.41 73.54 73.68 62.24 74.44 75.35 58.31 65.08 65.92
Descriptor* (gpt-3.5 re-implementation) 70.35 75.85 75.28 63.41 74.71 76.25 58.85 64.98 65.62
PAC (Ours) 70.97 76.25 76.69 63.53 75.46 77.12 59.35 66.16 66.57

Table 1: Zero-shot Classification Accuracy without Hand-crafted Templates. CLIP base-
lines are evaluated using class names only and Descriptor uses the format {category} which
(is/has/etc) {descriptor}. Likewise, our approach PAC uses the format {category} with ({attribute}
{description}) in its pairwise attribute contrasting procedure.

CALTECH CARS C10 C100 DTD EURO FOOD FLOWERS PETS RESISC SUN

CLIP (Radford et al., 2021) 82.82 64.17 89.10 65.90 45.64 51.60 88.66 71.23 88.91 65.44 63.87
ZPE (Allingham et al., 2023) 85.54 64.62 89.30 66.63 46.28 53.82 88.61 70.17 88.72 64.22 64.70
PAC (Ours) 86.29 64.83 89.81 67.51 49.46 57.91 89.22 72.56 89.88 65.06 67.17

Table 2: Zero-shot Classification Accuracy on Fine-grained Datasets with CLIP ViT-B/16. Re-
sults are obtained with hand-crafted prompt templates. CLIP baselines are evaluated using the aver-
age of hand-crafted prompt templates. ZPE designs a weighting mechanism across a large pool of
247 hand-craft templates, while our approach PAC is evaluated over the top-10 templates found by
ZPE to reduce computation overhead.

4.1 RESULTS

PAC outperforms Descriptor-based Techniques. To ensure a fair comparison with prior
work (Menon & Vondrick, 2022), we conduct experiments without relying on any dataset-specific
hand-crafted prompt templates. In this context, Menon & Vondrick (2022) employs text prompts in
the format {category_name} which (is/has/etc) {descriptor}, establishing connections
between category names and descriptions. Similarly, PAC uses the format {category_name}
with ( {attribute_name} {description}). Importantly, these standardized text prompts are
applicable across all datasets, marking a distinction from the dataset-contextualized hand-crafted
prompt templates in other studies (Radford et al., 2021; Zhai et al., 2022).

Table 1 demonstrates the significant advantages of our approach, PAC, over the previous
method (Menon & Vondrick, 2022) across multiple CLIP visual encoder architectures. Even with
the best-performing model (ViT-L/14@336), PAC consistently achieves significant improvements.
For instance, on Describable Textures and EUROSAT datasets, PAC demonstrates an absolute ac-
curacy improvement of 2.23% and 2.97% over reported results in Menon & Vondrick (2022). We
further reimplement the descriptor approach using gpt-3.5-turbo for fair comparison and PAC can
still outperform it by a large margin on most datasets. These findings underscore the effectiveness
of our pairwise attribute contrasting approach.

PAC also outperforms existing baselines on fine-grained datasets. We further conduct evalua-
tions on 11 fine-grained datasets. We extend our comparision to include ZPE (Allingham et al.,
2023), a score-based ensemble mechanism based on an extensive set of 247 hand-crafted prompt
templates. To demonstrate that PAC is also compatible with hand-crafted templates with mini-
mal computational overhead, we simply select the top-10 hand-crafted templates with the highest
weights as determined by ZPE and ensemble over these templates for each attribute description by
averaging the corresponding text embeddings.

As shown in Table 2, with CLIP ViT-B/16 architecture, PAC consistently outperforms the CLIP and
ZPE baselines except on RESISC. Notably, for the Flowers, DTD, EUROSAT, and SUN397 datasets,
PAC exhibits a substantial improvement of 2-3% in absolute accuracy, surpassing other approaches
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IMAGENET FAMILY FINE-GRAINED ALL

CLIP (Radford et al., 2021) 45.91 59.36 55.15
CLIP ResNet-50 ZPE (Allingham et al., 2023) 46.28 59.64 55.46

PAC (Ours) 47.94 61.31 57.13
CLIP (Radford et al., 2021) 51.35 62.33 58.90

CLIP ResNet-101 ZPE (Allingham et al., 2023) 51.65 62.66 59.21
PAC (Ours) 52.76 64.46 60.80
CLIP (Radford et al., 2021) 60.85 70.67 67.29

CLIP ViT-B/16 ZPE (Allingham et al., 2023) 61.21 71.15 67.73
PAC (Ours) 62.51 72.70 69.51
CLIP (Radford et al., 2021) 72.45 77.40 75.85

CLIP ViT-L/14 ZPE (Allingham et al., 2023) 72.74 77.67 76.13
PAC (Ours) 73.46 78.59 76.99

Table 3: Zero-shot Classification Accuracy across Different Visual Encoders. We evaluate PAC
over four different CLIP visual encoders on 5 ImageNet variations and 11 fine-grained datasets. PAC
consistently outperforms existing approaches across datasets with different visual encoders.

by a significant margin. These results underscore the effectiveness of PAC, when applied alongside
hand-crafted prompt templates.

PAC consistently improves over existing baselines across multiple architectures. Finally, we
present evaluations of PAC with other CLIP architectures on ImageNet family formed by 5 ImageNet
variations (ImageNet-val, ImageNet-V2, ImageNet-Sketch, ImageNet-Rendition and ImageNet-
Adversarial) and fine-grained datasets as shown in Table 3 (11 of them). Due to space limitations, we
report the average accuracy of each group and the overall average accuracy across these 16 datasets.
The accuracy on individual datasets can be found in Appendix A.2.

In Table 3, we also present the evaluation results obtained using various visual encoders, namely
ResNet-50, ResNet-101, ViT-B/16, and ViT-L/14 within the CLIP framework. PAC consistently
outperforms existing approaches by a substantial margin across all dataset categories and achieves
impressive average performance improvements. Specifically, when employing the aforementioned
encoder architectures, PAC demonstrates average accuracy improvements of 1.98%, 1.59%, 1.78%,
and 0.86%, respectively. These results demonstrate that the performance gains achieved by PAC can
generalize to different visual encoders and datasets spanning various contexts.

4.2 ABLATION STUDY

Formulation of Text Prompts. We present the results of employing different formulations to con-
vert pair-specific attribute descriptions into text prompts, as outlined in Table 4. It’s worth noting that
the ideal formulation may vary from one dataset to another. While customizing the formulation for
each dataset could potentially improve PAC’s performance, we maintain a consistent choice. We use
the same formulation initially adopted for Oxford-Pets when evaluating on multiple datasets. Given
the absence of a validation set in zero-shot classification scenarios, this approach to text prompt
formulation selection ensures the integrity of our evaluation process and upholds fairness.

The only exception is for datasets with coarse labels such as EUROSAT (Helber et al., 2019) and
RESISC (Cheng et al., 2017) because the attribute names found by LLMs are typically too generic
and do not make a lot of sense. Therefore, we simply remove {attribute_name} from the for-
mulation and all other parts remain the same. We include few examples of pair-specific attribute
descriptions of such datasets in Appendix A.3.

Computation Complexity. As discussed in Section 3.4, PAC’s inference process involves pairwise
binary classification, resulting in quadratic complexity with respect to the number of categories.
Our efficient implementation only computes text embeddings and image-text similarities for unique
attributes of each category, which leads to a substantial reduction in computational complexity. As
illustrated in the right figure, this approach significantly reduces the computational cost compared to
naively computing text embeddings for every attribute. In comparison to descriptors, PAC does use
slightly more attributes for each category. However, this also implies that PAC’s method of querying
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CALTECH DTD FLOWERS PETS

{category_name} which has {description} 87.27 55.31 77.76 92.25
{category_name} which has {attribute} {description} 87.17 55.79 78.50 92.42
{category_name} with {description} 87.42 55.42 76.48 92.75
{category_name} with {attribute} {description} 87.48 56.27 75.60 92.69
{category_name} ({description}) 87.32 57.65 76.97 91.25
{category_name} ({attribute} {description}) 86.93 57.39 78.06 90.76
{category_name} with ({description}) 86.76 56.01 75.97 92.12
{category_name} with ({attribute} {description}) 86.73 56.32 76.24 92.85

Table 4: Ablation Study: Different Text Prompt Formulations. Results are produced with CLIP
ViT-L/14 architecture. Although the optimal formulation may vary between datasets, we keep the
formulation found on Oxford-Pets to ensure fairness of evaluation.

pair-specific attribute descriptions aggregates more discriminative information for each category.
Experimental results substantiate the advantages of PAC in this regard.
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PAC Naive PAC Efficient DescriptorEvaluation on Coarse Label Datasets. While
the primary motivation behind PAC is to
address model confusion among fine-grained
classes, it is intriguing to explore how PAC per-
forms on datasets with coarser labels1, a chal-
lenge also addressed by CHiLS (Novack et al.,
2023). Specifically, categories of these datasets
can usually be further classified into other sub-
classes. For example, Bottle category in Office-
Home can be further classified into water bottle,
wine bottle, etc. CHiLS (Novack et al., 2023)
leverages existing hierarchies or LLMs to convert coarse category names into a list of subclasses and
perform standard zero-shot inference across all subclasses. The final predicted subclass is inversely
mapped to original coarse class as the final prediction.

As shown in Table 5, it is interesting to see that PAC can even outperform CHiLS on some of
these datasets. We speculate that PAC’s method of querying LLMs, which involves asking for pair-
specific attribute descriptions, implicitly broadens the context of categories. In the case of coarse
labels, these attributes may prove to be even more effective than subclass names, as this still relies
on the model’s understanding of subclass names (examples are provided in Appendix A.3).

OFFICEHOME FOOD-101 EUROSAT RESISC45

CLIP Radford et al. (2021) 88.8 93.9 62.1 72.6
CHiLS (Novack et al., 2023) 88.8 93.8 62.4 72.7
PAC (ours) 89.6 94.2 65.2 71.5

Table 5: Results on Datasets with Coarse Labels. Results are produced with CLIP ViT-L/14@336
architecture. PAC can even ourperform CHiLS on some datasets with coarse labels.

5 CONCLUSION AND FUTURE WORK

We introduced Pairwise Attribute Contrasting (PAC), a framework designed to enhance the zero-
shot classification performance of vision-language models. PAC leverages Large Language Models
(LLMs) to generate pair-specific attribute descriptions and reformulates the inference as a pairwise
binary classification voting problem. Experimental results validate PAC’s effectiveness across vari-
ous datasets. PAC does entail additional computational complexity. As such, we propose an efficient
implementation that is significantly faster than the naive approach. Future research could explore
alternative strategies for attribute selection from LLMs to further reduce computational costs.

1Note that Food-101, EUROSAT, and RESISC45 datasets have typically been characterized as fine-grained
datasets in prior literature (Radford et al., 2021; Allingham et al., 2023). However, they are described as having
coarse-label classes by CHiLS (Novack et al., 2023). In our opinion, these classes lean more towards the
coarse-label side, as their categories often have the potential for further classification into subclasses.
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Reproducibility Statement. To ensure reproducibility, we provide sufficient details on how we
query LLMs for pair-specific attribute descriptions in Section 3.2 and Appendix A.1. We also thor-
oughly discuss how we formulate text prompts and examples of few alternatives in Table 4. Since
we evaluate on open-sourced vision-language models, these models should be generally available to
the public. Therefore, we believe our work can be successfully reproduced by the community. We
will also release our code upon acceptance.
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A APPENDIX

A.1 DETAILS OF PROMPTING LLMS

We use the OpenAI backend gpt-3.5-turbo as our LLM for all experiments. As discussed in Sec-
tion 3.2, we use the following prompt to query GPT-3.5:

Q: What visual attributes can differentiate between {category A}
and {category B}?

A:
- Attribute 1:

- Category i: Description for Attribute 1
- Category j: Description for Attribute 1

- Attribute 2:
- Category i: Description for Attribute 2
- Category j: Description for Attribute 2

...

For each pair, we ask for 5 distinct attributes with descriptions. To better format the outputs from
LLMs, we provide one example in the desired format:

For example, given Abyssinian and Sphynx:
- Fur Length:

- Abyssinian: Short, dense coat
- Sphynx: Hairless or very little hair

- Eye Shape:
- Abyssinian: Almond-shaped eyes
- Sphynx: Large round eyes

The knowledge in this tiny example is also returned by GPT-3.5 with the above query without pro-
viding formatting examples. In other words, we do not manually inject any knowledge even through
this tiny example. We also experiment with other choices of LLMs such as gpt-3.5-turbo-16k and
gpt-4 yet do not observe significantly better results with these more advanced models, as shown
in Table A. We also experimented with legacy GPT-3 models such as text-davinci-002 and text-
davinci-003, however, these models perform worse in formatting pair-specific attributes with the
desired format. We speculate this is because of the auto-regressive training approach. Considering
the cost of these models are even higher ($0.02 / 1K tokens versus $0.0015 / 1K tokens for gpt-
3.5-turbo) and will be deprecated in early 2024, we use gpt-3.5-turbo as the default choice for our
approach.

CIFAR-10 DTD PETS FLOWERS FOOD

gpt-3.5-turbo 95.49 56.64 94.43 78.48 93.59
gpt-3.5-turbo-16k 95.34 57.44 94.73 79.34 93.51
gpt-4 95.32 57.87 94.41 79.78 93.56

Table A: Results of PAC with pair-specific attributes using different LLMs.

A.2 ZERO-SHOT ACCURACY ON INDIVIDUAL DATASETS

We report average evaluation results over 5 ImageNet variations and 11 fine-grained classes in Ta-
ble 3. In this section, we provide zero-shot accuracy of PAC using different visual encoder architec-
tures on individual datasets.

CALTECH CARS C10 C100 DTD EURO FOOD FLOWERS PETS RESISC SUN

RN50 80.16 54.77 73.93 42.02 43.67 31.44 80.07 67.53 85.93 54.18 60.73
RN101 84.66 61.90 81.58 50.36 45.95 30.63 83.80 67.91 86.10 55.27 60.86
ViT-B/16 86.29 64.83 89.81 67.51 49.46 57.91 89.22 72.56 89.88 65.06 67.17
ViT-L/14 89.15 76.52 95.49 77.17 57.39 60.84 93.59 78.76 94.43 71.00 70.12

Table B: Results of PAC on individual fine-grained datasets with different CLIP backbones.
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IMAGENET-VAL IMAGENET-V2 IMAGENET-SKETCH IMAGENET-ADVERSARIAL IMAGENET-RENDITION

RN50 59.83 58.93 35.57 24.76 60.63
RN101 62.15 62.06 41.26 29.77 68.54
ViT-B/16 68.1 67.68 48.44 50.69 77.62
ViT-L/14 75.03 74.4 59.17 71.03 87.68

Table C: Results of PAC on ImageNet variations with different CLIP backbones.

A.3 PAIR-SPECIFIC ATTRIBUTE DESCRIPTIONS FOR COARSE LABELS

We present some examples from EuroSat (Helber et al., 2019) and RESISC (Cheng et al., 2017), both
of which have been recognized by CHiLS (Novack et al., 2023) as datasets characterized by coarse
labels. In these datasets, class names often encompass multiple subclasses, leading to challenges in
constructing informative text prompts.

As depicted in Figure A, while most category descriptions are meaningful, some attribute names,
like “presence of hoops” and “presence of seating” may not be suitable for inclusion in text prompts
because they tend to disrupt the natural flow of a sentence when integrated into the prompt. Addi-
tionally, attributes like “texture” are typically not employed to describe categories related to beach
and harbor scenes. Consequently, when devising text prompts for categories within these datasets,
we intentionally omit attribute names, as detailed in Section 4.2.

Annual Crop Land vs Shrubland
Vegetation Density:

Annual Crop Land: dense, uniform crop coverage
Shrubland: sparse, scattered shrub growth

Canopy Height:
Annual Crop Land: low, uniform height
Shrubland: varied, taller shrub growth

Color:
Annual Crop Land: vibrant, cultivated green
Daffodil: mixed vegetation colors

Annual Crop Land vs Road
Land Type:

Annual Crop Land: flat, cultivated fields
Road: paved, linear pathway

Surroundings:
Annual Crop Land: fields, farmland
Road: buildings, infrastructure

Texture:
Annual Crop Land: soft soil, potentially muddy
Road: smooth, hard surface

Airport vs Basketball Court
Flooring:

Airport: large, expensive space
Basketball Court:  relatively small, confined area

Presence of Hoops:
Airport: no hoops or nets
Basketball Court: hoop with nets

Presence of Seating:
Airport: numerous seating areas
Basketball Court: limited or no seating areas

Beach vs Harbor
Water Presence:

Beach: adjacent to open water
Harbor: sheltered water area

Structures:
Beach: no man-made structures
Harbor: docks, piers and buildings

Texture:
Beach: soft, fine-grained sand
Harbor: no sand or coarse gravel

Figure A: Example of Pair-specific Attribute Descriptions on Datasets with coarse labels.
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