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ABSTRACT

Diffusion models have emerged as a powerful tool for image generation and denoising. Typically,
generative models learn a trajectory between the starting noise distribution and the target data dis-
tribution. Recently (Liu et al., 2023b) designed a novel alternative generative model Rectified Flow
(RF), which aims to learn straight flow trajectories from noise to data using a sequence of convex
optimization problems with close ties to optimal transport. If the trajectory is curved, one must
use many Euler discretization steps or novel strategies, such as exponential integrators, to achieve
a satisfactory generation quality. In contrast, RF has been shown to theoretically straighten the tra-
jectory through successive rectifications, reducing the number of function evaluations (NFEs) while
sampling. It has also been shown empirically that RF may improve the straightness in two rectifica-
tions if one can solve the underlying optimization problem within a sufficiently small error. In this
paper, we make two key theoretical contributions: 1) we provide the first theoretical analysis of the
Wasserstein distance between the sampling distribution of RF and the target distribution. Our error
rate is characterized by the number of discretization steps and a new formulation of straightness
stronger than that in the original work. 2) under a mild regularity assumption, we show that for a
rectified flow from a Gaussian to any general target distribution with finite first moment (e.g. mix-
ture of Gaussians), two rectifications are sufficient to achieve a straight flow, which is in line with
the previous empirical findings. Additionally, we also present empirical results on both simulated
and real datasets to validate our theoretical findings.

1 INTRODUCTION

In recent years, diffusion models have achieved impressive performance across different multi-modal tasks including
image (Ho et al., 2022b; Balaji et al., 2022; Rombach et al., 2022), video (Ho et al., 2022a;c; Luo et al., 2023; Wang
et al., 2024; Zhou et al., 2022), and audio (Huang et al., 2023; Kong et al., 2020; Liu et al., 2023a; Ruan et al., 2023)
generation that leverages the score-based generative model (SGM) framework (Sohl-Dickstein et al., 2015; Ho et al.,
2020), which is a key component of large-scale generative models such as DALL-E 2 (Ramesh et al., 2022). The main
idea in this framework is to gradually perturb the data according to a pre-defined diffusion process, and then to learn
the reverse process for sample generation. Despite its success, the SGM framework incurs significant computational
costs because it requires numerous inference steps to generate high-quality samples. The primary reason is that SGM
generates sub-optimal or complicated flow trajectories that make the sampling step expensive. An alternative approach
to sampling in diffusion models involves solving the corresponding probability-flow ordinary differential equations
(ODEs) (Song et al., 2020b; 2023). This has led to the development of faster samplers, such as DDIM (Song et al.,
2020a), DPM solvers (Lu et al., 2022; Zheng et al., 2023), DEIS (Zhang & Chen, 2022), and Genie (Dockhorn et al.,
2022). However, these methods still require dozens of inference steps to produce satisfactory results.

To alleviate this computational bottleneck in the sampling stage, (Liu et al., 2023b) recently proposed rectified flow,
which aims to efficiently sample from the target distribution by iteratively learning the straight flow trajectories. To
elucidate further, rectified flow starts from a potentially curved flow model, similar to DDIM (Song et al., 2020a) or
other flow-based models (Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023), that transports
the noise distribution to the target distribution, and then applies the reflow procedure to straighten the trajectories of
the flow, thereby reducing the transport cost (Liu, 2022; Shaul et al., 2023b). Recent experimental studies in (Liu et al.,
2024; 2023b) have demonstrated that rectified flow can achieve high-quality image generation within one or two steps
just after 2-rectification procedures. (Lee et al., 2024) recently proposed an improved training routine for rectified
flow and also achieved impressive results just after 2-rectification procedures. However, despite the computational
advancements, a theoretical understanding of the convergence rate of rectified flow to the true data distribution and the
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effect of straightness on its computational complexity remains elusive. In this paper, we investigate these issues and
make the following contributions.

• Wasserstein convergence and effect of straightness: We establish a new bound for the squared 2-Wasserstein
distance between the sampled data distribution in rectified flow and the true target distribution that mainly
depends on the estimation error of the velocity (or drift) function and the discretization error induced by
the Euler discretization scheme. Our upper bound is characterized by a novel straightness parameters of
the flow that takes small values for near straight flows. Therefore, our result explains the rationale behind
the sufficiency of fewer discretization steps in the sampling stage under near-straight flows with rigorous
theoretical underpinning.

• Straightness of 2-rectified flow: We establish the first theoretical result to show that straight flows are prov-
ably achievable within only two rectification steps under mild regularity conditions. This result provides
theoretical justification to the empirical finding, commonly encountered both in simulations and real-world
data, that only two iterations of the RF procedure are often sufficient to produce straight flows. We also
study the geometry of the flow when the source and target distributions are Gaussians and simple mixtures of
Gaussians, respectively.

The rest of the paper is organized as follows: Section 2 provides some background on optimal transport and its
connection with rectified flow. In Section 3, we present the main convergence results for the continuous time and
discretized rectified flow under the 2-Wasserstein metric. We also introduce novel straightness parameters and study
their effect on the convergence rate. Section 4 focuses on establishing a general straightness result for 2-RF under a
very general setting and building geometric intuition for rectified flow under simpler but rather instructive examples.
In particular, Section 4.1 provides a general result that shows the straightness of 2-RF between standard Gaussian
and a target distribution withing a fairly general class of distributions that also includes general mixture of Gaussian
distributions. Section 4.2 focuses on the geometry of 1-RF for some simpler Gaussian mixture models that also helps to
build a geometric intuition for straightness phenomenon in 2-RF. In these special cases, we show that two rectifications
are sufficient to obtain a straight flow. Finally, we present supporting simulated and real data experiments in Section 5
to empirically validate our theoretical findings.

Notation. Let R denote the set of real numbers. We denote by Rd the d-dimensional Euclidean space, and for a vector
x ∈ Rd, we denote by ∥x∥2 the ℓ2-norm of x. We use Id to denote the d-dimensional identity matrix. For a positive
integer K, denote by [K] the set {1, 2, . . . ,K}.

For a random variable X we denote by Law(X) the probability distribution (or measure) of X . We write X ∼ ρ to
denote ρ = Law(X). Moreover, for an absolutely continuous probability distribution ρ with respect to the Lebesgue
measure λ over Rd, we denote by dρ

dλ the Radon-Nikodym derivative of ρ with respect to λ, i.e., the density of X with
respect to λ is ξ := dρ

dλ . For two distributions ρ1 and ρ2, we use W2(ρ1, ρ2) to denote the 2-Wasserstein distance
between ρ1 and ρ2. N(0, Id) denotes the standard gaussian distribution in Rd.

For a continuous and differentiable path {xt}t∈[0,1] ⊂ Rd and time varying functions ft : Rd → Rm, we denote by

ḟt(xt) the time derivative of ft(xt), i.e., ḟt(xt) =
dft(xt)

dt . Similarly, we use f̈t(xt) to denote d2ft(xt)
dt2 . For a vector

field v : Rd → Rd, we let ∇ · v be its divergence.

Throughout the paper, we will use standard big-Oh (respectively big-Omega) notation. In detail, for a sequence {an}
of real numbers and a sequence {bn} of positive numbers, an = O(bn) (respectively an = Ω(bn)) signifies that there
exists a universal constant C > 0, such that |an| ≤ Cbn (respectively |an| ≥ Cbn) for all n ∈ N.

2 BACKGROUND AND PRELIMINARIES

2.1 OPTIMAL TRANSPORT

The optimal transport (OT) problem in its original formulation as the Monge problem (Monge, 1781) is given by

inf
T

E [c(T (X0)−X0)] s.t. Law(T (X0)) = ρ1, Law(X0) = ρ0,

where the the infimum is taken over deterministic couplings (X0, X1) where X1 = T (X0) for T : Rd → Rd to min-
imize the c-transport cost. See, e.g., Villani (2009). The Monge problem was relaxed by Kantorovich (Kantorovich,
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1958) and the Monge-Kantorovich (MK) problem allowed for all (deterministic and stochastic) couplings (X0, X1)
with marginal laws ρ0 and ρ1 respectively. However, it is well-known that if ρ0 is an absolutely continuous probabil-
ity measure on Rd, both problems have the same optimal coupling that is deterministic, and hence, the optimization
could be restricted only to the set of deterministic mappings T . We consider an equivalent dynamic formulation
of the Monge and MK problems as finding a continuous-time process {Xt}t∈[0,1] from the collection of all smooth
interpolants X such that X0 ∼ ρ0 and X1 ∼ ρ1. For convex cost functions c, Jensens’s inequality gives that

E [c(X1 −X0)] = E
[
c

(∫ 1

0

Ẋtdt

)]
= inf

{Xt}t∈[0,1]∈X
E
[∫ 1

0

c
(
Ẋt

)
dt

]
where the infimum is indeed achieved when Xt = tX1 + (1 − t)X0, also known as the displacement interpolant,
which forms a geodesic in the Wasserstein space (McCann, 1997). When we restrict the processes to those induced by
the ODEs of the form dXt = vt(Xt)dt, the Lebesgue density of Xt, denoted by ξt, satisfies the continuity equation
(also known as the Fokker-Planck equation) given by ∂ξt

∂t +∇ · (vtξt) = 0, and the Monge problem can be recast as

inf
{vt}t∈[0,1],{Xt}t∈[0,1]

E
[∫ 1

0

c (vt(Xt)) dt

]
, s.t.

∂ξt
∂t

+∇ · (vtξt) = 0, ξ0 =
dρ0
dλ

and ξ1 =
dρ1
dλ

.

However, the dynamic formulation outlined above is challenging to solve in practice. When the cost function c = ∥·∥2,
this corresponds exactly to the kinetic energy objective introduced by (Shaul et al., 2023a), who demonstrate that the
displacement interpolant minimizes the kinetic energy of the flow, resulting in straight-line flow paths. Additionally,
(Liu, 2022) show that Rectified Flow, which iteratively learns the drift function vt for the displacement interpolant,
simplifies this complex problem into a series of least-squares optimization tasks. With each iteration of Rectified Flow,
the transport cost is reduced for all convex cost functions c.

2.2 RECTIFIED FLOW

In this section, we briefly introduce the basics of Rectified flow (Liu et al., 2023b; Liu, 2022), a generative model that
transitions between two distributions ρ0 and ρ1 by solving ordinary differential equations (ODEs). Let ρdata := ρ1 =
Law(X1) be the target data distribution on Rd and the linear-interpolation process be given by

Xt = tX1 + (1− t)X0, 0 ≤ t ≤ 1

where ρt = Law(Xt) and the starting distribution ρ0 is typically a standard Gaussian or any other distribution that is
easy to sample from. In the training phase, the procedure first learns the drift function v : Rd × [0, 1] → Rd as the
solution to the optimization problem

v = argminf

∫
E
[
∥Ẋt − f(Xt, t)∥22

]
dt = argminf

∫
E
[
∥(X1 −X0)− f(Xt, t)∥22

]
dt, (1)

where the minimization is over all functions f : Rd × [0, 1] → Rd. In practice, the initial coupling is usually an
independent coupling, i.e., (X0, X1) ∼ ρ0 × ρ1. The MMSE objective in (1) is minimized at

vt(x) := v(x, t) = E
[
Ẋt | Xt = x

]
= E [X1 −X0 | Xt = x] for t ∈ (0, 1). (2)

For sampling, (Liu et al., 2023b) show that the ODE

dZt = vt(Zt) dt, where Z0 ∼ ρ0 (3)

yields the same marginal distribution as Xt for any t, i.e., Law(Zt) = Law(Xt) = ρt, owing to the identi-
cal Fokker-Planck equations. We call Z = {Zt}t∈[0,1] the rectified flow of the coupling (X0, X1), denoted as
Z = Rectflow ((X0, X1)), and (Z0, Z1) the rectified coupling, denoted as (Z0, Z1) = Rectify ((X0, X1)).

The uniform lipschitzness of the drift function vt for all t ∈ [0, 1] is a sufficient condition for the rectified flow Z to be
unique (Murray & Miller, 2013, Theorem 1). Hence, the Rectflow procedure rewires the trajectories of the linear
interpolation process such that no two paths, corresponding to different initial conditions, intersect at the same time.
After solving the ODE (3), one can also apply another Rectflow procedure, also called Reflow or the 2-Rectified
flow, to the coupling (Z0, Z1) by learning the drift function

v
(2)
t (Z

(2)
t ) = E

[
Z1 − Z0 | tZ1 + (1− t)Z0 = Z

(2)
t

]
.
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This procedure can be done recursively, say K times, resulting the K-Rectified Flow procedure. Liu et al. (2023b)
shows that K-Rectified Flow couplings are straight in the limit of K → ∞. We give the formal definition of straight-
ness below.
Definition 2.1. (Straight coupling and flow) A coupling (X0, X1) is called straight or fully rectified when
E [X1 −X0 | tX1 + (1− t)X0] = X1 −X0 almost surely in t ∼ Unif([0, 1]).

Moreover, for a straight coupling (X0, X1), the corresponding rectified flow Z = Rectflow ((X0, X1)) has straight

line trajectories, and (X0, X1)
d
= (Z0, Z1) = Rectify ((X0, X1)), i.e., they both have the same joint distribution.

A flow that satisfies these properties is called a straight flow.

Straight flows are especially appealing because, in practice, solving the ODE (3) analytically is rarely feasible, neces-
sitating the use of discretization schemes for numerical solutions. However, for straight flows, the trajectories follow
straight lines, allowing for closed-form solutions without the need for iterative numerical solvers, which significantly
accelerates the sampling process.

Moreover, in practice, one is usually given samples from ρdata, and the drift function is estimated by empirically
minimizing the objective in (1) over a large and expressive function class F (for example, the class of neural networks).
Subseequently, the estimate v̂t is used to obtain the sampling ODE

dỸt = v̂t(Ỹt) dt, where Ỹ0 ∼ N(0, Id). (4)

Because the solution to the ODE (4) is typically not analytically available, one must rely on discretization schemes.
As proposed in Liu et al. (2023b), we apply the Euler discretization of the ODE to obtain our final sample estimates
as mentioned below:

Ŷti = Ŷti−1 + v̂ti−1(Ŷti−1)(ti − ti−1), for i ∈ [T ], (5)

where the ODE is discretized into T uniformly spaced steps, with ti = i/T . The final sample estimate, Ŷ1, follows
the distribution ρ̂data := Law(Ŷ1).

3 MAIN RESULTS ON WASSERSTEIN CONVERGENCE

3.1 CONTINUOUS TIME WASSERSTEIN CONVERGENCE

In this section, we study the convergence error rate of the final estimated distribution of the rectified flow. In particular,
we establish error rates in the 2-Wasserstein distance for the estimated distributions procured through the approximate
ODE flow (4). To this end, we make some useful assumptions on the drift function and its estimate that are necessary
for establishing error bounds:
Assumption 3.1. Assume that

(a) (Estimation error) There exists an εvl ≥ 0 such that max
0≤i≤T

EXti
∼ρti

∥vti(Xti)− v̂ti(Xti)∥
2
2 ≤ ε2vl.

(b) (Lipschitz condition) The drift function v̂t satisfies ∥v̂t(x)− v̂t(y)∥2 ≤ L̂ ∥x− y∥2 almost surely, for some
L̂ > 0.

Assumption 3.1(a) requires v̂t to be an accurate approximation of the original drift function vt for all the time points t ∈
{ti}i∈[T ]. Assumptions of this nature are standard in diffusion model literature (Gupta et al., 2024; Li et al., 2024b;a;
Chen et al., 2023), and they are indeed necessary to establish a reasonable bound on the error rate. Assumption 3.1(b)
is a standard Lipschitz assumption on the estimated drift function v̂t. In the literature concerning the score-based
diffusion models and flow-based models, similar Lipschitzness (and one-sided Lipschitzness) assumptions on the
estimated score functions of {Xti}i∈[T ] are common (Chen et al., 2023; Kwon et al., 2022; Li et al., 2024b; Pedrotti
et al., 2024; Boffi et al., 2024) requirement for theoretical analysis. In fact, v̂ is typically given by a neural network,
which corresponds to a Lipschitz function for most practical activations. Moreover, in the context of rectified flow
or flow-based generative models, the lipschitzness condition on the true drift function vt is particularly an important
requirement for the existence and uniqueness of the solution of the ODE (3) (Liu et al., 2023b; Boffi et al., 2024).
Therefore, it is only natural to consider a class of neural networks that satisfies the Lipschitzness property for the
training procedure.
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Below, we present our first theorem, which bounds the error between the actual data distribution ρ1 and the estimated
distribution by following the exact ODE (4).
Theorem 3.2. Let the condition of Assumption 3.1(b) hold, and also assume that ρ1 is absolutely continuous with
respect to the Lebesgue measure in Rd. Also, write b(t) = EXt∼ρt

∥vt(Xt) − v̂t(Xt)∥22 for t ∈ [0, 1], and ρ̃1 be the
distribution of Ỹ1. Then, almost surely,

W 2
2 (ρ̃1, ρ1) ≤ e1+2L̂

∫ 1

0

b(t) dt.

The bound displayed in Theorem 3.2 is indeed very similar to the bounds obtained in Kwon et al. (2022); Pedrotti
et al. (2024); Boffi et al. (2024), i.e., the bound essentially depends on the estimation error b(t) for all t ∈ [0, 1]. If
there exists and ε > 0 such that supt∈[0,1] b(t) ≤ ε2, then we have the bound on the squared 2-Wasserstein to be of
the order O(ε2). However, the requirement on b(t) is much more stringent than Assumption 3.1(a) which amounts to
bound on estimation error at the discre time points {ti}Ti=0. It is also worth mentioning that the Lipschitz assumption
on v̂ can be relaxed to the on-sided Lipschitzness condition: if

⟨v̂t(x)− v̂t(y), x− y⟩ ≤ L̂ ∥x− y∥22 for all t ∈ [0, 1],

almost surely, then the conclusions of Theorem 3.2 also hold true. Moreover, in this case, L̂ needs not be non-negative,
as required in Assumption 3.1(b). Finally, unlike Chen et al. (2023); Gupta et al. (2024), we do not require any second-
moment or sub-Gaussian assumption on Xt.
Remark 1. The absolute continuity requirement in Theorem 3.2 can be relaxed. If the density of ρ1 does not exist,
then one can convolve X1 with an independent noise Wη ∼ N(0, ηId) for a very small η > 0, and consider the
mollified distribution ρη1 := Law(X + Wη) as the target distribution. Note that ρη1 is absolutely continuous and
satisfies W 2

2 (ρ
η
1 , ρ1) ≤ η2d. Therefore, under the condition of Theorem 3.2, and using triangle inequality we have

W 2
2 (ρ̃1, ρ1) ≲ η2d+ e1+2L̂

∫ 1

0
b(t) dt.

3.2 STRAIGHTNESS AND WASSERSTEIN CONVERGENCE OF DISCRETIZED FLOW

In this section, we introduce a notion of straightness of the discretized flow (5), and study its effect on the Wasserstein
convergence error rate between true data distribution ρ1 and the sampled data distribution ρ̂data. As we will see in the
subsequent discussion, the straightness parameter of the ODE flow (3) plays an imperative role in the error rate, and
our analysis shows that a more straight flow requires fewer discretization steps to achieve a reasonable error bound.

New quantifiers for straightness of the flow. We focus the ODE flow (3) assuming a standard Gaussian initial
distribution, i.e.

dZt = vt(Zt)dt, Z0 ∼ N(0, Id).

Consider the random curve {α(t)}t∈[0,1] ⊂ [0, 1]×Rd, where α(t) := (t, Zt). The straightness of a twice-differential
parametric curve determined by its curvature at each time point t, measured by the rate of change of the tangent vector
α̇(t) = (1, vt(Zt)), which is essentially the acceleration of the particle at time t. To illustrate, consider the curve
α(t) = (t, t), for 0 ≤ t ≤ 1. The magnitude of the instantaneous acceleration is ∥α̈(t)∥2 = 0. That is, α(t) has no
curvature, i.e., it is straight. On the other hand, the curve given by α(t) = (sin t, cos t), for 0 ≤ t ≤ 1, has (constant)
curvature. Indeed the magnitude of the instantaneous acceleration is ∥α̈(t)∥2 = 1 for all t.

The above discussion motivates us to define two key quantities to measure the straightness of the flow Z:
Definition 3.3. Let Z = {Zt}t∈[0,1] be twice-differentiable flow following the ODE (3).

1. The average straightness (AS) parameter of Z is defined as

γ1(Z) :=

∫ 1

0

E ∥v̇t(Zt)∥22 dt.

2. Let 0 = t0 < t1 < . . . < tT = 1 be a partition of [0, 1] into T intervals of equal length. The piece-wise
straightness (PWS) parameter of the flow Z is defined as

γ2,T (Z) := max
i∈[T ]

1

ti − ti−1

∫ ti

ti−1

E ∥v̇t(Zt)∥22 dt.

5
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(a) N = 5 (b) N = 10

Figure 1: Flow of Zt = Z0 + (t, 50N−2 sin(2πNt))⊤ for
different choices of N .

The quantity γ1(Z) essentially captures the average
straightness of the flow along the time t ∈ [0, 1]. On the
other hand, γ2,T (Z) captures the degree of straightness
of Z for every interval [ti−1, tt] for all i ∈ [T ]. There-
fore, γ2,T (Z) captures a somewhat more stringent no-
tion of straightness. In addition, a small value of γ1(Z)
or γ2,T (Z) indicates that the flow is close to perfect
straightness. In fact, γ1(Z) = 0 or γ2,T (Z) = 0 im-
plies that the flow Z is a straight flow in the sense of
Definition 2.1. To formally state the claim, let

S(Z) :=

∫ 1

0

E ∥Z1 − Z0 − vt(Zt)∥22 dt.

This quantity was introduced in Liu et al. (2023b) to
quantify the degree of straightness of the flow Z . Specif-
ically, Liu et al. (2023b) showed that S(Z) = 0 if and only if Z is a straight flow. The next lemma compares the above
notions of straightness.

Lemma 3.4. The AS and PWS paramters satisfy γ2,T (Z) ≥ γ1(Z) ≥ S(Z). Moreover, S(Z) = 0 if and only if
γ1(Z) = γ2,T (Z) = 0.

The above lemma tells that a flow which is a near-straight flow in the notion of AS or PWS (i.e. γ1(Z) and γ2,T (Z)
are small), is also near-straight flow in terms of S(Z). Moreover, the second part of the above lemma shows that
γ1(Z) = 0 iff Z is straight, i.e, the notion of a perfectly straight flow in terms of AS aligns with that of a straight flow
of Liu et al. (2023b).

However, we argue that S(Z) could lead to a misleading notion of near-straightness that may conflict with our intuitive
perception of a near-straight flow. To elaborate, a flow Z could exist such that S(Z) could be close to zero but γ1(Z)
is well bounded away from 0. We illustrate this phenomenon through the following examples.

Example 1. Consider the velocity function vt(Zt) = 1
2πN (sin(2πNt), cos(2πNt))⊤, where N ∈ N and t ∈ [0, 1].

The path of the flow is a circle. In this case, S(Z) = O(N−2) → 0 as N → ∞. Therefore, S(Z) clearly fails to
capture the degree of curvature of Z for large N . However, γ2,T (Z) = γ1(Z) = 1, i.e., AS and PWS are able to
capture the departure of Z from straightness.

Example 2. Let N ∈ N and consider the ODE flow (3) with vt(Zt) = (1, 100πN−1 cos(2πNt))⊤. In this case,
we have Zt = Z0 + (t, 50N−2 sin(2πNt))⊤ and v̇t(Zt) = −(0, 200π2 sin(2πNt))⊤. Straightforward calculations
show that S(Z) = O(N−2), while γ2,T (Z) ≥ γ1(Z) = 2 × 104π4. Therefore, S(Z) can be arbitrarily close to
0 as N → ∞, whereas γ1(Z) and γ2,T (Z) remain bounded away from zero. We also observe in Figure1 that the
undulation of the flow is greater for N = 10 compared to N = 5, i.e. the curvature increase with N .

We are now ready to state our main result about Wasserstein convergence for the discretized ODE (5).

Theorem 3.5. Let Assumption 3.1 hold for the flow Z := {Zt}0≤t≤1 determined by the ODE (3), assuming a differ-
entiable velocity field v : Rd × [0, 1] → Rd. Then the estimate of the distribution ρ̂data obtained through the ODE (5)
satisfies

W 2
2 (ρ̂data, ρ1) ≤

27e4L̂

max{L̂2, 1}

(
γ2,T (Z)

T 2
+ ε2vl

)
,

almost surely.

The term involving the PWS parameters could be referred to as an error term due to discretization. More importantly,
the above Wasserstein error bound shows that T = Ω

(√
γ2,T (Z)/ϵ

)
is sufficient to achieve a discretization error

of the order O(ϵ). Therefore, Theorem 3.5 indicates that if the flow is a near-straight flow (i.e., γ2,T (Z) ≈ 0), then
accurate estimation of the data distribution can be achieved with a very few discretization steps. This phenomenon
indeed aligns with the empirical findings in Liu et al. (2023b); Lee et al. (2024); Liu et al. (2024) related to the rectified
flow. To further elaborate, Theorem 3.5 shows that if a flow enjoys better piece-wise straightness in each partitioning
interval, we need fewer discretization steps to achieve desirable accuracy compared to the case of a flow that deviates
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from straightness. This is also consistent with the empirical behacior of Perflow (Yan et al., 2024), a methodology
that has achieved state-of-the-art performance by further straightening the rectified flow in each interval [ti−1, ti] for
all i ∈ [T ]. In addition, it is worthwhile to point out that one can also obtain a Wasserstein error bound using the
AS parameter since this relates the error rate to the average notion of straightness that could be useful for practical
purposes as it does not depend on the coarseness of the partition. To this end, we have the elementary inequality
γ2,T (Z) ≤ Tγ1(Z) (see Appendix A.2.2) which immediately leads to the following corollary.

Corollary 3.6. Under the same conditions of Theorem 3.5, we have

W 2
2 (ρ̂data, ρ1) ≤

27e4L̂

max{L̂2, 1}

(
γ1(Z)

T
+ ε2vl

)
,

almost surely.

4 ONE RECTIFICATION LEADS TO STRAIGHT COUPLING IN MOST CASES

Although the trajectories of 1-Rectified flow are non-intersecting (becuase the drift function is Lipschitz continuous),
the algorithm is not guaranteed to return a straight flow, potentially requiring a large number of discretization steps
(or drift function evaluations) to generate high-quality samples. Liu et al. (2023b) show that repeatedly applying the
Rectified Flow procedure progressiveness reduces the curvature of the flow, producing a straight flow in the limit as the
number K of iteration in K-Rectified Flow increases. Liu (2022); Liu et al. (2024) empirically show that one needs at
least three applications of the rectified flow for a fair one-step generation quality. On the other hand, (Lee et al., 2024)
heuristically suggests that no more than two applications are required, though a formal theoretical justification remains
unproven. In this section, we will show that, under some mild regularity conditions, 1-Rectified Flow (1-RF) yields
straight coupling (or 2-RF generates straight flow) between the standard Gaussian distribution and a fairly broad class
of target distributions that also includes general mixtures of Gaussians, thus providing theoretical underpinning to the
numerical findings in prior literature.

4.1 A GENERAL RESULT FOR STRAIGHTNESS

In Section 3, we assumed that the learned velocities v̂t are Lipschitz funcitons, and argued that global Lipschitzness
is sufficient for the existence of unique solution to ODE (3). However, such conditions might be a bit too strong,
even in some simple cases. In fact, when X1 follows a general mixture of Gaussian distribution, the global Lipschitz
condition may not hold, or holds with a very large constant. In this section, we will work with somewhat more
pragmatic conditions on the true velocity functions vt. Consider the non-stochastic version of ODE (3), i.e.,

dZt = vt(Zt) dt, Z0 = z0. (6)

For clarity, we denote the solution of the above ODE as Zt(z0) in contrast to the solution Zt of the ODE (3), which
has a random starting point.

Definition 4.1. For a positive integer k, a function f : Rd → Rd is said to be Ck if it is k-times continuously
differentiable. Additionally, f is called a C1,1 function if f is a C1 function and its Jacobian is locally Lipschitz, i.e.,
for every x ∈ Rd, there exists δ > 0 and Lloc > 0 (which may depend on x) such that

max{∥x− x1∥2 , ∥x− x2∥2} ≤ δ ⇒ ∥∇xf(x1)−∇xf(x2)∥op ≤ Lloc ∥x1 − x2∥2 .

Assumption 4.2. We assume that the velocity function vt(·) is a C1,1 function for all t ∈ [0, 1].

Note that, if vt(·) is a C2 function, then it automatically satisfies Assumption 4.2. Therefore, global Lipschitzness is
not required for the above assumption. However, Assumption 4.2 is not necessarily a weaker assumption as a Lipschitz
function might not be a C1,1 function. Now we present a general result on straightness of Rectified Flow.

Theorem 4.3. Let the Assumption 4.2 hold, and also assume that the solution to the ODE (6) satisfies the non-explosive
condition

sup
t∈[0,1]

∥Zt(z0)∥2 <∞ for all initial values z0 ∈ Rd. (7)

Then the rectified coupling (Z0, Z1) := Rectify(X0, X1) is a straight coupling.
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Proof sketch. The main step in the proof is to show that the map Ht(z0) := (1 − t)z0 + Z1(z0) is invertible: this
will immediately yield the straightness condition in Definition 2.1. Towards that goal, we deploy the inverse function
theorem. First, borrowing tools from (Kunita, 1984), we establish the existence and uniqueness of ∇z0Z1(z0) under
Assumption 4.2 and Condition (7). Finally, we show that ∇z0Ht(z0) is invertible for all t outside a countable subset
of [0, 1], i.e., ∇z0Ht(z0) is invertible almost surely in t ∼ Unif([0, 1]). This observation allows us to apply the inverse
function theorem for almost all t and establish our claim. The detailed proof is deferred to Appendix A.3.1.

Non-explosivity. Now, we provide a sufficient condition for non-explosivity that is easier to check so that Theorem
4.3 can be of practical use.
Assumption 4.4 (Osgood type criterion (Osgood, 1898; Groisman & Rossi, 2007)). Let Zt(z0) ∈ Rd be the solution
of the ODE (6), where (z0, t) ∈ Rd × [0, 1]. There exists a non-negative locally-Lipschitz (or strictly increasing)
function h : R+ → R+ such that ∫ ∞

u0

1

h(u)
du > 1, for all u0 > 0, (8)

and ⟨Zt(z0), vt(Zt(z0))⟩ ≤ h(∥Zt(z0)∥22), for all (z0, t) ∈ Rd × [0, 1].

One sufficient condition is that supt∈[0,1] ⟨x, vt(x)⟩ ≤ h(∥x∥22) for all x ∈ Rd and for a positive locally-lipschitz (or
strictly increasing) function h satisfying (8). The above criterion ensures that ∥Zt(z0)∥2 is always finite for all t ∈ [0, 1]
(Groisman & Rossi, 2007), i.e., the solutions does not explode. To be precise, the integral in (8) quantizes the explosion
time of ∥Zt(z0)∥2, and condition (8) ensures that the explosion time falls outside [0, 1]. Moreover, as opposed to
condition (7), this can be easily checked for a large class of target distributions, e.g., a general mixture of Gaussians.
For example, for (X0, X1) ∼ N(0, Id) × ρ1 with ρ1 =

∑J
j=1 πjN(µj ,Σj), it follows that supt∈[0,1] ⟨x, vt(x)⟩ ≤

A ∥x∥22 + B ∥x∥2 for some A,B > 0 (see Appendix A.3.3). Therefore, h(u) = Au + B
√
u is a valid choice and it

also satisfies Assumption 4.4, as
∫∞
u0

(Au+B
√
u)−1 du = ∞ for all u0 > 0.

We are now ready to state the main result of this section.
Theorem 4.5. Let (X0, X1) ∼ N(0, Id)× ρ1 such that E ∥X1∥2 <∞. Also, let the condition in Assumption 4.4 hold
for ODE (6). Then, the resulting rectified coupling (Z0, Z1) := Rectify(X0, X1) is a straight coupling.

The above theorem gives a fairly general straightness guarantee for Rectified Flow starting from an independent
coupling that covers a large class of target distributions. Essentially, the first moment ensures that Assumption 4.2 is
satisfied. Therefore, coupled with Assumption 4.4, the conditions of Theorem 4.3 are satisfied, and hence, straightness
follows. As a result, when ρ1 is a general mixture of Gaussian, 1-RF yields straight coupling. The complete proof
is deferred to Appendix A.3.2. To the best of our knowledge, Theorem 4.5 is the first result demonstrating that 1-RF
produces a straight coupling with mild regularity assumptions, providing concrete theoretical support for empirical
findings in prior works. However, while a strong result, Theorem 4.5 does not shed any light on the geometrical aspect
of the evolution of the flow over time. In the rest of this section, we provide simple examples of RF for mixtures of
Gaussians to elucidate its geometrical aspects.

4.2 EXAMPLES WITH SIMPLE GAUSSIAN MIXTURES

Now we use illustrative examples like a Gaussian or a simple mixture of two Gaussians to study the geometric aspects
of rectified flow. While simple, these examples provide intuition and further insights into understanding the straight-
ness and geometry of rectified flow. We begin with the case of ρ0 = N(0, Id) and ρ1 = N(µ,Σ). We show that
the 1-Rectified flow obtains the optimal transport mapping (with respect to the squared distance cost function) and is
straight.
Theorem 4.6. Let (X0, X1) ∼ ρ0×ρ1 be an independent couping where ρ0 = N(0, Id) and ρ1 = N(µ,Σ) where µ ∈
Rd, and Σ is a d×d positive semi-definite matrix. The associated rectified coupling (Z0, Z1) = Rectify ((X0, X1))
is an optimal solution to the Monge problem, i.e., it minimizes E [c(Z0 − T (Z0))] where T (Z0) = Z1 amongst all
deterministic couplings T , for c = ∥·∥22 . Moreover, the coupling is given by Z1 = Σ1/2Z0 + µ.

The above theorem shows that for a simple Gaussian to Gaussian case, 1-RF generates a straight coupling and solves
the Monge problem. Moreover, it provides the exact form of the coupling. The rest of the section considers target
distributions that are multimodal. Consider a simple case of ρ0 = N(0, 1) and ρ1 = .5N(y, 1) + .5N(−y, 1). It
turns out that in this case, the flow induced by vt has an interesting geometric structure (see, for example, Figure A.1
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(b)). In particular, if z0 is positive (negative), then zt := Zt(z0) is also positive (negative) for all t. This follows from
a very fundamental fact. First, note that 1-RF generates a straight coupling (Theorem 4.5) in this case which is also
monotonically increasing, i.e., for (z0, z1) and (z′0, z

′
1) such that z0 < z′0, we must have that z1 < z′1. We formalize

this idea in the following lemma borrowed from (Liu et al., 2023b).
Lemma 4.7 (Lemma D.9; (Liu et al., 2023b)). A rectified coupling in R is straight iff it is deterministic and monotonic.

In fact, the vt function is Lipschitz in this case which further ensures that the solution to ODE (6) is unique. This
actually ensures that order is preserved for all {zt}t∈[0,1] in the aforementioned example. This is a simple consequence
of the Picard-Lindelof theorem, and the detailed proof is given in Appendix A.3.6 (Lemma A.2). We generalize this
phenomenon in Lemma 4.8, which shows that in one dimension, the map z0 7→ zt preserves the quantiles for all
t ∈ [0, 1].
Lemma 4.8. Let z0 ∈ R and write zt := Zt(z0). If the drift function vt(x) in ODE (3) is Lipschitz, then P(Zt ≤ zt)
is a constant depending z0 for all t.

The detailed proof is deferred to Appendix A.3.5, and additional experiments can be found in Appendix A.1.1. This
now paves the way for our next results.
Proposition 4.9. Consider (X0, X1) ∼ ρ0×ρ1, where ρ1 = πN(µ1, Id)+(1−π)N(µ2, Id) where µi ∈ Rd (i ∈ [2]),
and ρ0 = N(0, Id). Then, one application of rectified flow yields a straight coupling.

Proof sketch: The result is a direct consequence of Theorem 4.5. However, we present a more intuitive and instructive
proof sketch here. Our proof (Appendix Section A.3.7) proceeds by using a rotation to reduce the d dimensional target
distribution into another where the means of the two components of the Gaussian mixture are sparse with two non-zero
coefficients, one of which is equal (lets say coordinate 1). We then show that the ODE decouples the flow and it can
be analyzed coordinate-wise. Then we use Lemma 4.7 for the coordinates to prove straightness.

Finally, we come to the Gaussian mixture to Gaussian mixture setting.
Proposition 4.10. Consider µ01 = (0, a)⊤, µ02 = (0,−a)⊤ and µ11 = (a, a)⊤, µ12 = (a,−a)⊤ for some a > 0.
Let X0 ∼ 0.5N(µ01, I2) + 0.5N(µ02, I2) and X1 ∼ 0.5N(µ11, I2) + 0.5N(µ12, I2). Also, assume that X0, X1 are
independent. Then 1-RF yields a straight coupling.

The intuitive explanation is that even in this case, the flows along each coordinate decouples. The x−coordinate goes
through a translation, whereas the y−coordinate’s velocity function is uniformly Lipschitz, leading to a monotonic
coupling along y−direction. This, along with Lemma 4.7, shows that the flow along the y−axis is also monotonic;
hence, one rectification gives a straight coupling. The proof is deferred to the Appendix A.3.8.

5 EXPERIMENTS

In this section, we present numerical experiments for both synthetic and real data. We primarily explore the effect of
the number of discretization steps T and the straightness parameter γ2,T (Z) on the W2 distance between the target
distribution and the distribution of the generated samples after 1-rectification. Additional experiments can be found in
Appendix A.1.

Synthetic data. For simulated data, we consider the following two examples: 1) Flow from standard Gaussian to a
balanced mixture of Gaussian distributions in R2 with varying components, and 2) Flow from standard Gaussian to a
checker-board distribution (see Figure A.2) with varying components. We detail our findings for the Gaussian mixture
below and defer the Checkerboard example to Appendix A.1.2.

We choose the target distribution to be mixture of Gaussians with equal cluster probability and unit variance, where
the number of components K varies within {1, 2, 3, 4}. In all the cases, we show that the actual Wasserstein error is
closely characterized by γ2,T . To this end, we choose the all the means to have equal norm and similar separation as
they both affect the Lipschitz constant of the drift function1, which directly impacts the Wasserstein error as shown
in our analysis (see Theorem 3.5.) For K = 1, we set mean of the target distribution to be µ1 = (5, 0)⊤; for
K = 2: µ1 = (5, 0)⊤, µ2 = (0, 5)⊤; for K = 3: µ1 = (5, 0)⊤, µ2 = (0, 5)⊤, µ3 = (−5, 0)⊤; for K = 4:
µ1 = (− 5√

2
, 5√

2
)⊤, µ2 = ( 5√

2
,− 5√

2
)⊤, µ3 = (− 5√

2
,− 5√

2
)⊤, µ4 = ( 5√

2
, 5√

2
)⊤.

1An upper bound on the Lipschitz constant for a Gaussian mixture is given by L ≤ 2(1 +D×R), where D = maxi ∥µi∥ and
R = maxi,j ∥µi − µj∥.
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(a) (b) (c) (d)

Figure 2: Plots showing squared Wasserstein distance and γ2,T (Z) for the synthetic datasets. (a) shows the
W 2

2 (ρ̂data, ρ1) vs T (in log-log scale) for mixtures of Gaussians with varying components. (b) shows the straight-
ness parameter γ2,T (Z) vs T (in log-log scale) for the same respective distributions. (c) shows W 2

2 (ρ̂data, ρ1) vs T
(in log-log scale) for the second rectification on the Gaussian mixtures (d) shows the W 2

2 (ρ̂data, ρ1) vs T for the Fash-
ionMNIST dataset with varying components. We observe that the straightness of the flow decreases with increasing
number of mixture components.

We start with the independent coupling in each of the four cases and and train a feed-forward neural network to
estimate the drift function and generate the 1-rectified flow. Figure 2(a) shows that W2(ρ̂data, ρ1) decreases with
increasing number of discretization steps T , and the slope of the curve is approximately 2 (before it stabilizes), which
indeed validates the 1/T 2 dependence that we show in Theorem 3.5. Moreover, W2 distance is consistently larger
for the flow corresponding to a larger number of components, owing to a larger value of the straightness parameter
γ2,T (Z) as shown in Figure 2(b). Moreover, Figure 2(c), further validates our claim that the second rectified flow for
Gaussian mixtures produces a straight flow– the Wasserstein error even with a single discretization step is close to 0.

Real data. For the real data experiments, we consider the MNIST and FashionMNIST datasets. In both examples, we
train a UNet architecture-based network on training data to estimate the drift function and then evaluate the Wasserstein
distance of the generated samples from the test split of the data. We give details for the FashionMNIST dataset here
and defer MNIST to Appendix A.1.3.

To emulate the behavior of having different number of modes, we consider three subsets of the FashionMNIST dataset
consisting of the first 3 labels, the first 7 labels, and all 10 labels. We observe in Figure 2(d) that similar to the Gaussian
mixture example, the presence of a higher number of components negatively affects the Wasserstein distance, again
indicating that the flow becomes less straight with the increasing number of modes.

6 DISCUSSION AND FUTURE WORKS

Rectified Flow, a newly introduced alternative to diffusion models, is known for its ability to learn straight flow trajec-
tories from noise to data. Straight flows are desirable because they require fewer Euler discretization steps. Existing
works have established that 1-RF produces a straight coupling for many target distributions. To our knowledge, this
paper is the first to show that this is indeed true for a large class of source and target distributions that are “nice”.
We also provide the first analysis of the Wasserstein distance between the sampling distribution of RF and the target
distribution. We present empirical results on real and simulated datasets as a proof of concept for our theoretical
results.

Our analysis poses the natural question: are there source and target distributions where 1-RF does not give a straight
coupling? The simple examples we came up with are those for which the Monge map (or any deterministic coupling)
does not exist. However, under the knowledge Theorem 4.3, we conjecture that an even more general version of
Theorem 4.5 is possible. We suspect that if (X0, X1) is rectifiable for some initial choices of distributions, then the
1-RF flow will result in a straight coupling under very mild regularity conditions. In fact, we conjecture that 1-RF
(under certain regularity conditions) will result in the optimal coupling induced by the Monge map (if it exists), as it
is known that RF iteratively solves the OT problem (Liu, 2022). Although this is an interesting research direction, we
defer it to future research. Another direction of research could be to improve the dependence of the Lipschitz constant
L̂ in Theorem 3.5, or theoretically explore the generalization error described in Assumption 3.1(a).
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APPENDIX

A.1 MORE EXPERIMENTS

A.1.1 EXPERIMENTS RELATED LEMMA 4.8

In Figure A.1 (a) we show the trajectories (t, Zt) of n = 101 datapoints generated from source distribution ρ0 =
N(0, 1) and target distribution ρ1 = .5N(4, 1) + .5N(−10, 1). The blue, red, and green lines are the maximum,
median, and minimum of the n data points over time. One can see that the image of the same point at time t continues
to preserve the quantile for all t ∈ [0, 1]. This phenomenon also leads to interesting geometrical phenomena. For
example, Figure A.1 (b) shows that for transforming a Gaussian to a symmetric two-component mixture of Gaussians
.5N(10, 1) + .5N(−10, 1), all points above (below) the Zt = 0 line stay above (below).

(a) ρ1 = .5N(4, 1) + .5N(−10, 1) (b) ρ1 = .5N(10, 1) + .5N(−10, 1)

Figure A.1: (a) shows the flow of the minimum, median, and maximum values of a set of points, initially distributed
according to a standard Gaussian. (b) shows the flow of points from a standard Gaussian to a symmetric mixture of
two Gaussians and the black line represents y = 0.

A.1.2 CHECKCER BOARD EXAMPLE

We consider the checker-board distribution with 2, 5 and 8 components. We use training datasets of size 10,000 to
train a feed-forward neural network in order to learn the velocity drift function and evaluate W 2

2 (ρ̂data, ρ1) using POT
(Feydy et al., 2019) for different levels of discretization T over test data of size 5000. Figure A.2(d) also shows that
larger component size has a negative effect on the Wasserstein distance, i.e., which stems from the fact that a larger
number of components typically pushes the flow away from straightness.

(a) (b) (c) (d)

Figure A.2: (a) Checker-board distribution with 2 components. (b) Checker-board distribution with 5 components.
(c) Checker-board distribution with 8 components. (d) shows the W 2

2 (ρ̂data, ρ1) vs T (on log-log scale) for the
FashionMNIST dataset with varying components..
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Figure A.3: shows the plot of squared Wasserstein distance W 2
2 (ρ̂data, ρ1) vs T for the MNIST dataset with a varying

numbers of labels, and hence, conditional modes.

A.1.3 MNIST DATASET EXPERIMENT

For MNIST data, we construct 3-different datasets. The first one only contains the digits {0, 1, 2}, the second one
only contains {0, 1, 2, . . . , 6} and the final one contains {0, 1, 2, . . . , 9}. Essentially, these datasets contain multiple
modes which resembles the nature of the synthetic dataset examples discussed in the previous section. Figure A.3(a)
shows that the Wasserstein distance is larger when there is more number of components in the dataset. Essentially,
more components make the flow more non-straight, and hence convergence in Wasserstein is affected.

A.2 PROOFS OF SECTION 3

A.2.1 PROOF OF THEOREM 3.2

Let {ρt}t∈[0,1] and {ρ̃t}t∈[0,1] be distribution of the solution of (3) and (4) respectively. Let πt be the optimal coupling
between ρt and ρ̃t. Therefore, using Corollary 5.25 of Santambrogio (2015), we have

1

2

dW 2
2 (ρt, ρ̃t)

dt
=

∫
⟨x− y, vt(x)− v̂t(y)⟩ dπt(x, y)

=

∫
⟨x− y, vt(x)− v̂t(x)⟩ dπt(x, y) +

∫
⟨x− y, v̂t(x)− v̂t(y)⟩ dπt(x, y)

≤ 1

2

∫
∥x− y∥22 dπt(x, y) +

1

2

∫
∥vt(x)− v̂t(x)∥22 dπt(x, y) + L̂

∫
∥x− y∥22 dπt(x, y)

= (1/2 + L̂)W 2
2 (ρt, ρ̃t) +

b(t)

2
.

Solving the above differential inequality leads to the following inequality

W 2
2 (ρτ , ρ̃τ ) ≤W 2

2 (ρ0, ρ̃0) + e1+2L̂

∫ τ

0

b(t) dt.

The result follows by noting that W 2
2 (ρ0, ρ̃0) = 0 and setting τ = 1.

15



780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

A.2.2 PROOF OF LEMMA 3.4

Recall that S(Z) =
∫ 1

0
E ∥Z1 − Z0 − vt(Zt)∥22 dt. Also, note that Z1 − Z0 =

∫ 1

0
vu(Zu) du. Therefore, we have

S(Z) =

∫ 1

0

E
∥∥∥∥∫ 1

0

[vu(Zu)− vt(Zt)] du

∥∥∥∥2
2

dt

=

∫ 1

0

E
∥∥∥∥∫ 1

0

∫ u

t

v̇τ (Zτ ) dτ du

∥∥∥∥2
2

dt

=

∫ 1

0

E
∥∥∥∥∫ 1

0

∫ 1

0

v̇τ (Zτ ) dτ du

∥∥∥∥2
2

dt

≤
∫ 1

0

E
[∫ 1

0

|t− u|
∫ t∨u

t∧u

∥v̇τ (Zτ )∥22 dτ du
]
dt

≤
∫ 1

0

E
∫ 1

0

∫ 1

0

∥v̇τ (Zτ )∥22 dτ du

≤
∫ 1

0

E ∥v̇τ (Zτ )∥22 dτ = γ1(Z).

Moreover, note that

γ1(Z) =

T∑
i=1

(ti − ti−1).
1

ti − ti−1

∫ ti

ti−1

E ∥v̇τ (Zτ )∥22 dτ ≤ γ2,T (Z). (A.9)

This shows the desired inequality.

For the second part, first note that the ti − ti−1 = 1/T . Therefore,

γ1(Z) =
1

T

T∑
i=1

1

ti − ti−1

∫ ti

ti−1

E ∥v̇τ (Zτ )∥22 dτ ≥ γ2,T (Z)

T
.

The above inequality along with (A.9) tells that γ1(Z) = 0 iff γ2,T (Z) = 0.

Now, due to the inequality S(Z) ≤ γ1(Z), we have S(Z) = 0 if γ1(Z) = 0. For the other direction, let us assume
S(Z) = 0. This shows that vt(Zt) = Z1 − Z0 almost surely in t and (Z0, Z1). This shows that v̇t(Zt) = 0 almost
surely. Hence the result follows.

A.2.3 PROOF OF THEOREM 3.5

Recall that for a given partition 0 = t0 < t1 < . . . < tT = 1 of the interval [0, 1] of equidistant points {ti}0≤i≤T with
h := T−1, we follow the Euler discretized version of the of ODE (4) to obtain the sample estimates:

Ŷti = Ŷti−1
+ hv̂ti(Ŷti), Ŷ0 = Z0.

Before analyzing the discretization error, we introduce the following interpolation process for t ∈ [ti, ti+1] and each
i ∈ {0, . . . , T}:

d

dt
Ȳt = v̂ti(Ȳti), Ȳti = Ŷti . (A.10)

The above ODE flow gives us a continuous interpolation between Ŷti and Ŷti+1 . Coupled with the above flow equation
and the ODE flow (5), we have the following almost sure differential inequality for t ∈ [ti, ti+1]:

d

dt
∥Zt − Ȳt∥22 = 2

〈
Zt − Ȳt,

d

dt
Zt −

d

dt
Ȳt

〉
= 2

〈
Zt − Ȳt, vt(Zt)− v̂ti(Ȳti)

〉
≤ L̂∥Zt − Ȳt∥22 + ∥vt(Zt)− v̂ti(Ȳti)∥22/L̂

(A.11)
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Multiplying e−L̂(t−ti) on both sides of the above inequality and rearranging the terms leads to

e−L̂(t−ti)
d

dt
∥Zt − Ȳt∥22 − e−L̂(t−ti)L̂∥Zt − Ȳt∥22 ≤ e−L̂(t−ti)∥vt(Zt)− v̂ti(Ȳti)∥22/L̂.

⇔ d

dt
{e−L̂(t−ti)∥Zt − Ȳt∥22} ≤ e−L̂(t−ti)∥vt(Zt)− v̂ti(Ȳti)∥22/L̂ ≤ ∥vt(Zt)− v̂ti(Ȳti)∥22/L̂.

⇔ ∥Zti+1
− Ŷti+1

∥22 ≤ eL̂(ti+1−ti)∥Zti − Ŷti∥22 +
eL̂(ti+1−ti)

L̂

∫ ti+1

ti

∥vt(Zt)− v̂ti(Ȳti)∥22 dt.

Define ∆i := E∥Zti − Ŷti∥22. Using the above inequality we have

∆i+1

≤ eL̂h∆i +
eL̂h

L̂

∫ ti+1

ti

E∥vt(Zt)− v̂ti(Ŷti)∥22 dt

≤ eL̂h∆i +
3eL̂h

L̂


∫ ti+1

ti

E∥vt(Zt)− vti(Zti)∥22 dt︸ ︷︷ ︸
T1

+

∫ ti+1

ti

E∥vti(Zti)− v̂ti(Zti)∥22 dt︸ ︷︷ ︸
T2

+

∫ ti+1

ti

E∥v̂ti(Zti)− v̂ti(Ŷti)∥22 dt︸ ︷︷ ︸
T3

 .

(A.12)
Now we will bound each of the last three terms on the right-hand side of the above inequality.

Bounding T1. For the first term, we have

E∥vt(Zt)− vti(Zti)∥22 = E
∥∥∥∥∫ t

ti

d

dτ
vτ (Zτ ) dτ

∥∥∥∥2
2

≤ (t− ti)

∫ t

ti

E
∥∥∥∥ d

dτ
vτ (Zτ )

∥∥∥∥2
2

dτ

≤ h2γi,

(A.13)

where γi = 1
ti+1−ti

∫ ti+1

ti
E∥ d

dτ vτ (Zτ )∥22 dτ . This shows that T1 ≤ h3γi.

Bounding T2. The term T2 is bounded by hε2vl as E∥vti(Zti)− v̂ti(Zti)∥22 ≤ ε2vl (Assumption 3.1(a)).

Bounding T3. For the final term we will use that v̂ti is L̂-Lipschitz. This entails that T3 ≤ L̂h∆i. Plugging these
bounds in the recursion formula (A.12), we get

∆i+1 ≤ eL̂h(1 + 3L̂h)∆i + 3eL̂h(h3γi + hε2vl)/L̂.

Solving the recursion yields

∆T ≤ eTL̂h(1 + 3L̂h)T∆0 +
3h3

L̂

{
T∑

k=1

ekL̂h(1 + 3L̂h)k−1γT−k

}
+

3h

L̂

{
T∑

k=1

ekL̂h(1 + 3L̂h)k−1

}
ε2vl.

Recall that γ2,T (Z) := maxk γk. Note that ∆0 = 0 as Z0 = Ŷ0. Therefore, we have

∆T ≤ e4L̂

L̂2

(
γ2,T (Z)

T 2
+ ε2vl

)
.

Here we used the fact that
T∑

k=1

ekL̂h(1 + 3L̂h)k−1 ≤ e4L̂ − 1

1 + 3L̂h− e−L̂h
≤ e4L̂

3L̂h
.
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Therefore, we have

W 2
2 (ρ̂data, ρ1) ≤ ∆T ≤ e4L̂

L̂2

(
γ2,T (Z)

T 2
+ ε2vl

)
.

However, the above upper bound explodes for L̂ → 0. Therefore, we handle the case L̂ < 1 in a slightly different
manner.

Separately handling L̂ < 1 case: We recall the decomposition (A.11). We will only change the last inequality in that
decomposition, i.e., for α > 0 we get

d

dt
∥Zt − Ȳt∥22 = 2

〈
Zt − Ȳt,

d

dt
Zt −

d

dt
Ȳt

〉
= 2

〈
Zt − Ȳt, vt(Zt)− v̂ti(Ȳti)

〉
≤ α∥Zt − Ȳt∥22 + ∥vt(Zt)− v̂ti(Ȳti)∥22/α

(A.14)

Therefore, following exactly similar steps as before, we arrive at the following recursion:

∆i+1 ≤ eαh

(
1 +

3L̂2h

α

)
∆i +

3eαh

α
(h3γi + hε2vl).

Solving this yields

∆T ≤ eα+3L̂2/α − 1

1 + 3L̂2h/α− e−αh

(
3h3

α
.γ2,T (Z) +

3h

α
.ε2vl

)
Note that eα+3L̂2/α − 1 ≤ eα+3L̂/α − 1 as L̂ < 1. Additionally,

1 + 3L̂2h/α− e−αh ≥ 1− e−αh ≥ αhe−αh.

Setting α = 1, and using the above inequalities along with the fact that h ≤ 1, we get

eα+3L̂2/α − 1

1 + 3L̂2h/α− e−αh
≤ e2+4L̂

h
.

Finally, using the above inequality we have

W 2
2 (ρ̂data, ρ1) ≤ ∆T ≤ 27e4L̂

(
γ2,T (Z)

T 2
+ ε2vl

)
.

Combining this with previous upper bound we finally get the result.

A.3 PROOFS OF SECTION 4

A.3.1 PROOF OF THEOREM 4.3

If Assumption 4.2 holds, then by Theorem 5.2 of Kunita (1984), we know the solution Zt(z0) exists uniquely for
every z0 ∈ Rd. Next, Condition (7) ensures that the ODE is non-explosive (Kunita, 1984, Definiton 5.1, 5.5) within
t ∈ [0, 1]. Therefore, by Theorem 5.4 in Kunita (1984), we have z0 7→ Zt(z0) to be a C1 function for all t ∈ (0, 1],
i.e., Jz0

1 := ∇z0Z1(z0) exists. However, Jz0
1 might not be invertible. However, this is not a problem as we only

need almost sure invertibility of Ht(Z0) in (Z0, t) ∼ N(0, Id) × Unif([0, 1]) which we will show in the subsequent
discussion.

Showing straightness of 1-RF is equivalent to showing

E[Z1 − Z0 | tZ1 + (1− t)Z0]
a.s.
= Z1 − Z0.

Recall that, showing the above ultimately hinges on showing that the map

Ht(z0) := tZ1(z0) + (1− t)z0
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is a 1-to-1 map for all t ∈ [0, 1], where the map Z1 : Rd → Rd is defined in (6).

Showing 1-to-1: We will leverage the well-known Inverse Function Theorem (Hörmander, 2003, Theorem 1.1.7) to
show that Ht is a 1-to-1 map. In particular, we will show that for any choice of z0 ∈ Rd, the Jacobian ∇z0Ht(z0) =
t∇z0Z1(z0) + (1− t)Id has full rank.

Let Λz0
1 be the set of complex eigenvalues of Jz0

1 . The only cases when ∇z0Ht(z0) is singular is when

t ∈
{

1

1− λ
| λ ∈ Λz0

1

}
∩ [0, 1].

Therefore, Pt∼Unif([0,1]) [det(∇z0Ht(z0)) = 0] = 0. Now, we need to incorporate randomness in Z0. Note that

P(Z0,t)∼N (0,Id)⊗Unif([0,1])

[
det(∇z0Ht(z0)|z0=Z0

) = 0
]

=

∫
P (det(∇z0Ht(Z0)) = 0 | Z0 = z0) ρ0(z0) dz0

=

∫
P (det(∇z0Ht(z0)) = 0 | Z0 = z0) ρ0(z0) dz0

=

∫
P (det(∇z0Ht(z0)) = 0) ρ0(z0) dz0 = 0

This shows that Ht(Z0) is invertible almost surely in (Z0, t).

Showing straightness: Let E := {(Z0, t) | Ht(Z0) is invertible}. Then, we have

V (Z0, Z1) := EZ0,t ∥Z1 − Z0 − E{Z1 − Z0 | Ht(Z0)}∥2
= EZ0,t

[
∥Z1 − Z0 − E{Z1 − Z0 | Ht(Z0)}∥2 1E

]
= 0.

Therefore, (Z0, Z1) is a straight coupling.

A.3.2 PROOF OF THEOREM 4.5

We start by analyzing the velocity function. Recall that

vt(x) =


x
t +

(
1−t
t

)
st(x) , 0 < t < 1

E(X1)− x , t = 0

x , t = 1.

where st(x) is the (data) score function of (1 − t)X0 + tX1. Let ϕ denote the standard gaussian density function in
Rd.

Assumption 4.2: For t ∈ [0, 1) we have

st(x) = ∇x log

(∫ ∞

−∞
(1− t)−d/2ϕ

(
x− ty

1− t

)
ρ1(dy)

)

=

1
1−t

∫∞
−∞

(
ty−x
1−t

)
ϕ
(

x−ty
1−t

)
ρ1(dy)∫∞

−∞ ϕ
(

x−ty
1−t

)
ρ1(dy)

=
t

(1− t)2
.

∫∞
−∞ yϕ

(
x−ty
1−t

)
ρ1(dy)∫∞

−∞ ϕ
(

x−ty
1−t

)
ρ1(dy)

− x

(1− t)2
.

Therefore, vt(x) =
∫ ∞
−∞( y−x

1−t )ϕ(
x−ty
1−t ) ρ1(dy)∫ ∞

−∞ ϕ( x−ty
1−t ) ρ1(dy)

for t ∈ [0, 1).

19



988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

It is quite clear that v0(x) and v1(x) are C2 functions. Moreover, one can show that vt(x) is also C2 func-
tion for every t ∈ (0, 1) (∇x and

∫
are interchangeable due to moment condition). It suffices to show that

Ψ1(x) :=
∫∞
−∞ yϕ

(
x−ty
1−t

)
ρ1(dy) and Ψ2(x) :=

∫∞
−∞ ϕ

(
x−ty
1−t

)
ρ1(dy) are C2 functions and Ψ2 > 0. Note

that, Ψ2(x) = EX1∼ρ1
ϕ
(

x−tX1

1−t

)
> 0. Now, we will show that Ψ1(x) is C1. One can similarly show that it is also C2

by following a similar argument.

We define

D(x, y) := ∇x

[
yϕ

(
x− ty

1− t

)]
=

1

(1− t)2
y (ty − x)

⊤
exp

(
−
∥x− ty∥22
2(1− t)2

)
.

Note that if ∥y∥22 ≥ 4 ∥x∥22 /t, we have ⟨u,D(x, y)u⟩ ≤ t∥y∥2
2+∥y∥2∥x∥2

(1−t)2 exp(−t ∥y∥22 /4) for all u ∈ Sd−1, as

∥ty − x∥22 ≥ (t2/2) ∥y∥22 − ∥x∥22 ≥ (t2/4) ∥y∥22. In addition, the upper bound is integrable w.r.t ρ1(dy). For

∥y∥22 ≤ 4 ∥x∥22 /t, we have ⟨u,D(x, y)u⟩ ≤ t∥y∥2
2+∥y∥2∥x∥2

(1−t)2 ≤ 4∥x∥2
2+2t−1/2∥x∥2

2

(1−t)2 , and the upper bound is obviously
integrabel w.r.t ρ1(dy). Therefore, we have

∇Ψ1(x) =

∫ ∞

−∞
D(x, y) ρ1(dy).

The continuity also follows from generalized DCT. One can take a further derivative to show that Ψ1 is C2 function,
and follow the similar argument for Ψ2(x).

Non-explosive: For notational brevity, we write Xt instead of Xt(z0). Note that
d

dt
∥Xt∥22 = ⟨Xt, vt(Xt)⟩ ≤ h(∥Xt∥22).

Write Ut := ∥Xt∥22. Let Vt be a sequence of maps such that
d

dt
Vt = h(Vt); V0 = U0.

Due to Condition (8), we have Vt <∞. Next, we claim that Ut ≤ Vt for all t ∈ [0, 1].

Under local-lipschitz property: If not, then there exist times t0, t1 such that
Ut0 = Vt0 , and Ut > Vt for all t0 < t ≤ t1.

Define ∆(t) := Ut − Vt. Therefore, we have ∆(t0) = 0 and ∆(t) > 0 for all t ∈ (t0, t1]. Let w = Ut0 = Vt0 . Due to
local-Lipschitz property of h, there exists δw > 0 and Lw > 0 such that

|w1 − w| ∨ |w2 − w| < δw ⇒ |h(w1)− h(w2)| ≤ Lw |w1 − w2| .
Due to continuity of Ut and Vt at t = t0, there exists η > 0 such that t + η < t1 and for all η′ ≤ η we have
|Ut0+η′ − w| ∨ |Vt0+η′ − w| < δw. For , t ∈ [t0, t0 + η], we consider the ODE

∆̇(t) = U̇t − V̇t

= h(Ut)− h(Vt)

≤ Lw |Ut − Vt| (local-Lipshcitzness)
= Lw∆(t) (as ∆(t) > 0).

Therefore, by Gronwall’s lemma we have ∆(t) ≤ ∆(t0) exp(Lwt). This implies that ∆(t) ≤ 0 for t ∈ (t0, t0 + η],
which is a contradiction to the fact that ∆(t) > 0 for all t ∈ (t0, t1]. Hence, we have Ut ≤ Vt < ∞ for all t ∈ [0, 1].
This establishes the non-explosive property (Condition (7)) of the ODE.

Under strictly increasing property: In this case, we will show a stronger result, i.e., Ut < Vt for all t ∈ (0, 1]. If not,
let τ := inf{t > 0 : Ut ≥ Vt}. By definition, we have τ > 0 and Uτ ≥ Vτ . This implies that∫ τ

0

h(Ut)− h(Vt) dt ≥ 0 ⇒ ∃s ∈ (0, τ) such that h(Us) ≥ h(Vs).

Therefore, we have Us ≥ Vs, which contradicts the definition of τ . Hence, we have Ut < Vt for all t ∈ (0, 1].

Now the result follows by applying Theorem 4.3.
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A.3.3 1-RF YIELDS STRAIGHT COUPLING: GAUSSIAN TO A GENERAL MIXTURE OF GAUSSIAN

First, for notational brevity, we write ∥u∥Σ =
√
u⊤Σ−1u for a positive-definite matrix Σ. Let X0 ∼ N (0, Id) and

X1 ∼
∑K

i=1 πiN (µi,Σi). Let Xt = tX1 + (1− t)X0, then we have

vt(x) =
x

t
+

1− t

t
st(x) (A.15)

where, st(x) = ∇x log pt(x) is given by

st(x) =
∑
i

wi,t(x)Σ
−1
i,t (tµi − x) ,

Σi,t = (1− t)2Id + t2Σi and

wi,t(x) =

πi exp

(
−∥x−tµi∥2

Σi

2

)
∑

j πj exp

(
−∥x−tµj∥2

Σi

2

) .

For notational brevity, we define ψi(x, t) = πi exp

(
−∥x−tµi∥2

Σi

2

)
and δi(x, t) = Σ−1

i,t (tµi − x). Therefore, we have

vt(x) =
∑
i

wi,t(x)
(
Id − (1− t)Σ−1

i,t

) x
t
+ (1− t)

∑
i

wi,t(x)Σ
−1
i,t µi

Note that, if λ is an eigenvalue of Σi, then the corresponding eigenvalue of 1
t (Id − (1 − t)Σ−1

i,t ) is t2(1+λ)−1
(1−t)2+tλ2 ≤

(1+λ−1). Therefore,
∥∥ 1

t (Id − (1− t)Σ−1
i,t )
∥∥
op

≤ 1+
∥∥Σ−1

i

∥∥
op

=: Ai. Similar argument shows that
∥∥Σ−1

i,t

∥∥
op

≤ Ai.
Therefore, we have

⟨x, vt(x)⟩ ≤ (max
i
Ai)︸ ︷︷ ︸

A

∥x∥22 + (max
i
Ai ∥µi∥2)︸ ︷︷ ︸
B

∥x∥2 .

Therefore, Assumption 4.4 is satisfied with h(u) = Au + B
√
u which is strictly monotonic function and

∫∞
u0

(Au +

B
√
u)−1 du = ∞ for all u0 > 0. Moreover, we have E ∥X1∥2 < ∞. Therefore, by Theorem 4.5 we conclude that

1-RF yields a straight coupling.

A.3.4 PROOF OF THEOREM 4.6

Let X0 ∼ N (0, I) and X1 ∼ N (µ,Σ). Let Σt = t2Σ + (1 − t)2I . Then we have that Xt ∼ N (tµ,Σt),. Let the
density of Xt be ξt and the score st(x) = ∇x log ξt(x) = Σ−1

t (tµ− x). Therefore, by using (A.23), the drift is given
by:

v(x, t) =
x

t
+

1− t

t
Σ−1

t (tµ− x)

= (1− t)Σ−1
t µ+

1

t

(
I − (1− t)Σ−1

t

)
x

So the ODE we want to solve is given by:

dZt

dt
− 1

t

(
I − (1− t)Σ−1

t

)
Zt = (1− t)Σ−1

t µ (A.16)

Now we look at the structure of I − (1 − t)Σ−1
t . Let the eigendecomposition of Σ = UΛU⊤. We will assume Σ is

full rank. So,

I − (1− t)Σ−1
t = UΛtU

⊤
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where Λt

t = 1
t {I − (1− t)(t2Λ + (1− t)2I)−1}. This can also be written as:

λt,i =
1

t

{
1− 1− t

t2λi + (1− t)2

}
=

t(1 + λi)− 1

t2λi + (1− t)2
.

Substituting this into Equation (A.16), we have:

dZt

dt
− Udiag(λt,1, . . . , λt,d)U⊤Zt = (1− t)Σ−1

t µ.

So, we first get the integrating factors of each eigenvalue.

Ii(t) =
1√

(1 + λi)t2 − 2t+ 1

So we have:

UΛ′
tU

⊤Zt = UΛ′′
t U

⊤µ+ constant

where λ′t,i =
1√

(1+λi)t2−2t+1
and λ′′t,i =

t√
(1+λi)t2−2t+1

This yields,

Σ−1/2Z1 − Z0 = Σ−1/2µ

Z1 = Σ1/2Z0 + µ (A.17)

A.3.5 PROOF OF LEMMA 4.8

We recall the ODE Żt = vt(Zt) with Z0 = z0. As x 7→ vt(x) is uniformly Lipschitz, there exists a unique solution
{Zt}t∈[0,1] such that Z0 = z0. Moreover, the map Ht : z0 7→ zt is monotonically increasing. To see this, let us
assume z0 > z̃0, but zt < z̃t. Note that G(τ) := Hτ (z0)−Hτ (z̃0) is continuous in τ . Also, G(0) > 0 and G(t) < 0.
By the intermediate value property, there exists a t0 ∈ [0, 1] such that G(t0) = 0, i.e., zt0 = z̃t0 =: z0. This violates
the uniqueness condition of the ODE solution. Hence, Ht is monotonically increasing. By monotonicity, it follow that

P(Zt ≤ zt) = P(Ht(Z0) ≤ Ht(z0)) = P(Z0 ≤ z0).

This finishes the proof.

A.3.6 GAUSSIAN TO A MIXTURE OF TWO GAUSSIANS IN R2

Proposition A.1. Consider X̃0 ∼ N (0, I2) and X̃1 ∼ πN (µ̃1, Λ̃) + (1 − π)N (µ̃2, Λ̃) where Λ is a PSD diagonal

matrix in R2. Then, (Z̃0, Z̃1) = Rectify
(
X̃0, X̃1

)
is a straight coupling.

Proof. Let P be the ortho-normal matrix given by P =
[

µ̃2−µ̃1

∥µ̃2−µ̃1∥
R(µ̃2−µ̃1)
∥µ̃2−µ̃1∥

]
, where R =

[
0 −1
1 0

]
is the skew-

symmetric matrix for a 90-degree rotation. We rotate our space using the linear transformation P and obtain the
random variablesX0 = PX̃0 ∼ N (0, I) andX1 = PX̃1 ∼ πN (µ1,Λ)+(1−π)N (µ2,Λ), where µi = [xi yi]

⊤
=

Pµ̃i, Λ = P Λ̃P⊤. Also note that by the above construction of the transformation P , x1 = x2 := x.We first show that
(Z0, Z1) = Rectify(X0, X1) is straight and then argue that an invertible transformation does not hamper straightness.
Let Λt = t2Λ+ (1− t)2I , then, Xt ∼ ρt = πN (tµ1,Λt) + (1− π)N (tµ2,Λt) and the score of ρt, denoted by st is:

st(zt) =

2∑
i=1

wt,i(zt)Λ
−1
t (tµi − zt)
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where the quantity wt,1(zt) :=
1

1+exp(gt(zt))
, wt,2(zt) = 1− wt,1(zt), and

gt(z) = log
1− π

π
− 1

2

(
(z − tµ2)

TΛ−1
t (z − tµ2)− (zt − tµ1)

TΛ−1
t (z − tµ1)

)
= log

1− π

π
− 1

2

(
t(µ1 − µ2)

TΛ−1
t z + t2(µT

2 Λ
−1
t µ2 − µT

1 Λ
−1
t µ1)

)
= log

1− π

π
− 1

2

(
t(y1 − y2)

t2λ2 + (1− t)2
z + t2(µT

2 Λ
−1
t µ2 − µT

1 Λ
−1
t µ1)

)
(A.18)

Then, using (A.23), the drift is given by

vt(zt) =
zt
t
+

1− t

t
st(zt) (A.19)

=
(I − (1− t)Λ−1

t )

t
zt + (1− t)Λ−1

t

2∑
i=1

wi,t(zt)µi (A.20)

=
1

t
Λ̃tzt + (1− t)Λ−1

t

(
x∑2

i=1 wi,t(zt)yi

)
(A.21)

where we define Λ̃t := I − (1− t)Λ−1
t = I − (1− t)(t2Λ + (1− t)2I)−1.

Now we look at the structure of Λ̃t. We will assume Λ = diag(λi) is full rank, and Λt = diag(t2λi + (1− t)2).

The diagonal elements of Λ̃t

λ̃t,i =
1

t

(
1− 1− t

t2λi + (1− t)2

)
=

t(1 + λi)− 1

t2λi + (1− t)2

For now, we have:

dZt,1

dt
=

t(1 + λ1)− 1

t2λ1 + (1− t)2
Zt,1 +

1− t

t2λ1 + (1− t)2
x

Define the integrating factor I(t) = exp
(
−
∫ t

0
(1+λ1)u−1

(1+λ1)u2−2u+1

)
du = 1√

(1+λ1)t2−2t+1
.

Multiplying I(t) in both sides of the above ODE and integrating in t ∈ [0, 1] we get the following almost sure
inequality:

Z1,1√
λ1

− Z0,1 = x

∫ 1

0

1− t

((1 + λ1)t2 − 2t+ 1)3/2
dt = x

[
t√

(1 + λ1)t2 − 2t+ 1

]1
0

=
1√
λ1
x.

For the second coordinate, we have:

f(Zt,2) :=
dZt,2

dt
=

t(1 + λ2)− 1

t2λ2 + (1− t)2
Zt,2 +

1− t

t2λ2 + (1− t)2

2∑
i=1

wi,t(Zt,2)yi (A.22)

We check that |df(z)/dz| is bounded. Using the definition of gt in Equation (A.18)∣∣∣∣ ddz f(z)
∣∣∣∣ ≤ ∣∣∣∣ t(1 + λ2)− 1

t2λ2 + (1− t)2

∣∣∣∣+ |y1 − y2|
∣∣∣∣ 1− t

t2λ2 + (1− t)2
d

dz
(gt(z))

∣∣∣∣
≤ (1 + λ2) +

(1 + λ2)
2|y1 − y2|2

λ22

Therefore, z 7→ f(z) is uniformly Lipschitz, and henceforth, by Lemma A.2 the mapψ : Z0,2 7→ Z1,2 is monotonically
increasing.
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The above discussion entails that 1-rectified flow essentially sends Z0 through a map T : R2 → R2 such that

Z1 = T (Z0) =

(√
λ1Z0,1 + x
ψ(Z0,2)

)
where ψ is only defined through the ODE (A.22). Therefore, for any t ∈ [0, 1] we have the function

ht(w) := (1− t)w + tT (w) =

(
(1− t)w1 + t(

√
λ1w1 + x)

(1− t)w2 + tψ(w2)

)
to be an invertible function, which essentially leads to the following relationship between the two σ-fields of interest:

F (ht(Z0)) = F (Z0) (F (X) denotes the sigma-field generated by X)

for all t ∈ [0, 1]. Hence, we finally have

E[T (Z0)− Z0 | ht(Z0)] = E[T (Z0)− Z0 | Z0] = T (Z0)− Z0.

Now, since P is invertible,

vt(Z̃t) = E
[
X̃1 − X̃0 | tX̃1 + (1− t)X̃0 = Z̃t

]
= P−1E

[
PX̃1 − PX̃0 | tX̃1 + (1− t)X̃0 = Z̃t

]
= P−1E

[
PX̃1 − PX̃0 | tP X̃1 + (1− t)PX̃0 = PZ̃t

]
= P−1E [X1 −X0 | tX1 + (1− t)X0 = Zt] ∵ (Z0, Z1) is straight

= P−1 (X1 −X0)

= X̃1 − X̃0

Hence, (Z̃0, Z̃1) is also straight. This finishes the proof.

Lemma A.2. Consider an ODE of the form
dxt
dt

= ct ft (xt)

for t ∈ [0, 1] where xt ∈ R and ct > 0 for all t ∈ (0, 1].

(a) If ∂ft(x)
∂x > 0, i.e., ft(x) is an increasing function of x, then x1 is a monotonically increasing function of the

initial condition x0.

(b) If ft(x) is a uniformly Lipschitz function for all t ∈ [0, 1], then x1 is a monotonically increasing function of
the initial condition x0.

Proof. Part (a): Let x1t and x2t be two solutions to the ODE:

dxt
dt

= ctft(xt), t ∈ [0, 1],

corresponding to the initial conditions x10 and x20, respectively, with x10 < x20. We want to show that x11 < x21.

Define the difference between the two solutions:

∆xt = x2t − x1t .

Taking the derivative, we get:

d

dt
∆xt =

d

dt
(x2t − x1t ) = ct

(
ft(x

2
t )− ft(x

1
t )
)
.

24



1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

Since ∂ft(x)
∂x > 0, we have ft(x2t ) > ft(x

1
t ) for x2t > x1t , which implies:

d

dt
∆xt > 0, whenever ∆xt > 0.

Define t∗ := inf {t ∈ (0, 1] : ∆xt ≤ 0}. Due to inverse map theorem we have ∆xt∗ ≤ 0, and t∗ > 0 as ∆x0 > 0.
Also, note that ∫ t1

0

d

dt
∆xt dt = ∆xt∗ −∆x0 < 0.

The above inequality entails that there exists τ ∈ (0, t∗) such that d
dt∆xt < 0, which implies that

fτ (x
2
τ ) < fτ (x

1
τ )

=⇒ x2τ < x1τ
=⇒ ∆xτ < 0

This is again a contradiction to the definition of t∗ as τ < t∗. Therefore, we have ∆xt > 0 for all t ∈ [0, 1]. In
particular we have x21 > x11.

Part (b): If ft(x) is uniformly Lipschitz, then by Picard-Lindelof theorem, for any tuple (t0, x0), there exists only
solution {xt}t∈[0,1] passing through x0 at time t0.

Now, following the notation in part (a), let x1t ≤ x2t for some t. As Ht : x0 7→ xt is continuous, so is G(τ) :=
Hτ (x

2
0) −Hτ (x

1
0). However, G(0) > 0 and G(t) ≤ 0. By intermediate value property, there exists t0 ∈ (0, t], such

that G(t0) = 0 ⇒ x2t0 = x1t0 . This contradicts the uniqueness property of the ODE solution. therefore, we have
x2t > x1t for all t. Then the result follows by setting t = 1

A.3.7 PROOF OF PROPOSITION 4.9

Proof. Let X̃0, X̃1 ∈ Rd for d ≥ 2, where X̃0 ∼ N (0, I) and X̃1 ∼
∑2

i=1 πi N (µ̃i, σ
2I) with σ2 = 1 (for

simplicity). We start with the matrix M̃ = [µ̃1 µ̃2] and perform a QR decomposition: M̃ = Q̃R̃, where Q̃ ∈ Rd×2

is an orthonormal matrix that spans the subspace of µ̃1 and µ̃2.

Next, we extend Q̃ to a complete orthonormal basis for Rd using Q̃′ ∈ Rd×(d−2), which spans the orthogonal com-
plement of the column space of Q̃. We define Q =

[
Q̃ Q̃′

]⊤
. This projection guarantees that:

Qµ̃1 = (x1, y1, 0, . . . , 0)
⊤, Qµ̃2 = (x2, y2, 0, . . . , 0)

⊤

i.e., only the first two components are non-zero.

To equalize one of the components, we apply a rotation matrix R(θ) ∈ Rd×d, which rotates the first two components
while leaving the others unchanged:

R(θ) =

[
cos θ − sin θ 0
sin θ cos θ 0
0 0 Id−2

]
We set θ as:

θ = tan−1

(
y2 − y1
x1 − x2

)
This ensures that the second components of R(θ)Qµ̃1 and R(θ)Qµ̃2 are identical.

Finally, we define the overall transformation as P = R(θ)Q. This matrix P ∈ Rd×d is orthonormal (and hence,
invertible) since it is the product of two orthonormal matrices. The transformation P , not only makes the last d − 1
coordinates of the means identical but also reduces the effective dimension of the flow to two.

Now, we rotate our space using the linear transformation P and obtain the distributions X0 = PX̃0 ∼ N (0, I) and
X1 = PX̃1 ∼

∑2
i=1 πi N (µi,Σ), where µi = Pµ̃i, Σ = P Σ̃P⊤ = I . Also note that by the above construction of the

transformation P , µ1,k = µ2,k := ck. for all k ∈ [d]\ {1}. We first show that (Z0, Z1) = Rectify(X0, X1) is straight
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and then argue that an invertible transformation does not hamper straightness.
To proceed, we apply the Rectify procedure on (X0, X1) and obtain the following ODE:

vt(Zt) =
dZt

dt
=

(2t− 1)Zt

σ2
t

+
1− t

σ2
t

2∑
i=1

wi(Zt)µi

For k ∈ [d]\ {1}, we have that

dZt,k

dt
=

(2t− 1)Zt,k

σ2
t

+ ck

Hence, using (A.17) the final mapping is just a translation given by Z1,k = Z0,k + ck. However, for the first co-

ordinate, for gt(Zt,1) = log
(

π2

π1

)
− 1

2σ2
t

(
(Zt,1 − tµ2,1)

2 − (Zt,1 − tµ1,1)
2
)

, we have

dZt,1

dt
=

(2t− 1)Zt,1

σ2
t

+
1− t

σ2
t

(
µ1,1 + µ2,1 exp (gt(Zt,1))

1 + exp (gt(Zt,1))

)
The reasoning used to demonstrate straightness from this point forward is identical to that of Proposition A.1.

A.3.8 PROOF OF PROPOSITION 4.10

Proof. Consider µ01 = (0, a)⊤,µ02 = (0,−a)⊤ and µ11 = (a, a)⊤,µ12 = (a,−a)⊤ for some a > 0. Let

X0 ∼ 0.5N (µ01, I) + 0.5N (µ02, I), X1 ∼ 0.5N (µ11, I) + 0.5N (µ12, I).

In this case, the velocity functions in x and y-direction for 1-rectification turns out to be

ut(x) =
(2t− 1)x

σ2
t

+
(1− t)a

σ2
t

,

vt(y) =
(2t− 1) y

σ2
t

+
a

σ2
t

·
exp

(
− (y−a)2

2σ2
t

)
(1− 2t)− exp

(
− (y+a)2

2σ2
t

)
(1− 2t) + exp

(
− (y − (2t−1)a)2

2σ2
t

)
− exp

(
− (y + (2t−1)a)2

2σ2
t

)
exp

(
− (y−a)2

2σ2
t

)
+ exp

(
− (y+a)2

2σ2
t

)
+ exp

(
− (y − (2t−1)a)2

2σ2
t

)
+ exp

(
− (y + (2t−1)a)2

2σ2
t

) .

Next, we will take the derivative of vt(y) with respect to y. For notational brevity, let us define

e1(y) = exp

(
− (y − a)

2

2σ2
t

)
(1− 2t),

e2(y) = exp

(
− (y + a)

2

2σ2
t

)
(1− 2t),

e3(y) = exp

(
− (y − a(2t− 1))

2

2σ2
t

)
,

e4(y) = exp

(
− (y + a(2t− 1))

2

2σ2
t

)
.

Then we have∣∣∣∣dvt(y)dy

∣∣∣∣ ≤ 2t− 1

σ2
t

+
a2

σ4
t

· 4{e1(y)e2(y) + e2(y)e3(y) + e3(y)e4(y) + e4(y)e1(y)}
(
∑4

j=1 ej(y))
2

≤ 2 + 4a2.

We used the basic inequalities 4(ab + bc + cd + da) ≤ (a + b + c + d)2 and σ2
t ≥ 1/2 in the last step of the above

display.
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Figure A.4: 1-rectified flow in y-direction for GMM

This shows that vt(y) is uniformly Lipschitz. This entails that the map T : R → R that sends y0 to a point y1 ∈ R,
and defined through the ODE

d

dt
Yt = vt(Yt); Y0 = y0,

is an injective map due to the uniqueness of the solution of the above ODE. Also, we denote by Y y0

t the solution of
the above ODE.

To show the strict increasing property of T , let us consider the same ODE with Y0 = ỹ0 < y0. We also consider the
solution Y ỹ0

t . Consider the function Lt := Y y0

t − Y ỹ0

t , which is also continuous in t ∈ [0, 1]. To prove increasing
property, it is enough to show that L1 > 0. Let us assume that L1 ≤ 0. We already know L0 > 0, and hence by
Intermediate Value Property, we have there exists a τ ∈ (0, 1] such that Lτ = 0. This entails that there exists yτ ∈ R
such that Y y0

τ = Y ỹ0
τ = yτ . This shows that we have two different solutions of the ODE passing through (τ, yτ ),

which is a contradiction. This proves the coveted strict increasing property of T . Hence, we have a straight coupling
by similar argument as in previous section.

A.4 AUXILIARY RESULTS

A.4.1 CONNECTION BETWEEN SCORE AND DRIFT

Let X0 = Z ∼ N (0, I) and X1 = X ∼ ρdata. Let the density of Xt = tX +(1− t)Z be ξt. Then Tweedie’s formula
(Robbins (1992)) gives that E [tX | Xt = x] = x+ (1− t)2st(x) where st(x) = ∇ log ξt(x)

We have that

vt(x) = E[X − Z | Xt = x]

= E[
X −Xt

1− t
| Xt = x]

=
x+ (1− t)2st(x)

t(1− t)
− x

(1− t)
(applying Tweedie’s formula)

=
x

t
+

(
1− t

t

)
st(x) (A.23)

A.4.2 AUXILIARY RESULTS FOR GAUSSIAN MIXTURE TO GAUSSIAN MIXTURE FLOW

In this section, we will procure a formula of the drift function for 1-rectified flow from a Gaussian mixture to another
Gaussian mixture. Let X0 ∼ 1

K0

∑K0

i=1 N (µ0i, σ
2I), X1 ∼ 1

K1

∑K1

i=1 N (µ1i, σ
2I), and Xt = tX1 + (1− t)X0.
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vt(x) = E [X1 −X0 | Xt = x]

= E
[
X1 −Xt

1− t
| Xt = x

]
=

1

t(1− t)
(E [tX1 | Xt = x]− tx)

=
1

t(1− t)

(
1

K0

K0∑
i=1

p
(i)
t (x)

pt(x)
E
[
tX1 | X(i)

t = x
]
− tx

)

=
1

t(1− t)

(
1

K0

K0∑
i=1

p
(i)
t (x)

pt(x)

(
x− (1− t)µ0i + σ̃2

t s
(i)
t (x)

)
− tx

)
, where σ̃2

t = (1− t)2σ2

=
x

t
+

(1− t)σ2

t

(
1

K0

K0∑
i=1

p
(i)
t (x)

pt(x)

(
s
(i)
t (x)− µ0i

1− t

))

where p(i)t (x) = Law(tX1 + (1− t)N (µ0i, σ
2)) = 1

K1

∑K1

j=1 N (tµ1j + (1− t)µ0i︸ ︷︷ ︸
µ
(i)
tj

, σ2
t ), σ

2
t = (t2 + (1− t)2)σ2.

s
(i)
t (x) = ∇x log p

(i)
t (x) =

1

σ2
t

K1∑
j=1

w
(i)
j (x)µ

(i)
tj − x

 ,

where

w
(i)
j (x) =

exp

(
−
∥∥∥x−µ

(i)
tj

∥∥∥2

2σ2
t

)
∑

j exp

(
−
∥∥∥x−µ

(i)
tj

∥∥∥2

2σ2
t

)

A.4.3 GAUSSIAN TO A MIXTURE OF GAUSSIAN CASE

Let X0 ∼ N (0, I) and X1 ∼
∑

i πiN
(
µi, σ

2
i I
)
. Let Xt = tX1 + (1− t)X0, then using (A.23), we have

vt(x) =
x

t
+

1− t

t
st(x) (A.24)

where, st(x) = ∇x log pt(x) is given by

st(x) =
∑
i

wi,t(x)

(
tµi − x

σ2
i,t

)
,

σ2
i,t = (1− t)2 + t2σ2

i and

wi,t(x) =
πi exp

(
−∥x−tµi∥2

2σ2
i,t

)
∑

j πj exp
(

−∥x−tµj∥2

2σ2
i,t

)
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