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Abstract. Skeleton-based Temporal Action Segmentation (STAS) aims
to densely segment and classify human actions in long, untrimmed skele-
tal motion sequences. Existing STAS methods primarily model spatial
dependencies among joints and temporal relationships among frames
to generate frame-level one-hot classifications. However, these methods
overlook the deep mining of semantic relations among joints as well as
actions at a linguistic level, which limits the comprehensiveness of skele-
ton action understanding. In this work, we propose a Language-assisted
Skeleton Action Understanding (LaSA) method that leverages the lan-
guage modality to assist in learning semantic relationships among joints
and actions. Specifically, in terms of joint relationships, the Joint Rela-
tionships Establishment (JRE) module establishes correlations among
joints in the feature sequence by applying attention between joint texts
and differentiates distinct joints by embedding joint texts as positional
embeddings. Regarding action relationships, the Action Relationships
Supervision (ARS) module enhances the discrimination across action
classes through contrastive learning of single-class action-text pairs
and models the semantic associations of adjacent actions by contrast-
ing mixed-class clip-text pairs. Performance evaluation on five public
datasets demonstrates that LaSA achieves state-of-the-art results. Code
is available at https://github.com/HaoyuJi/LaSA.

Keywords: Video Understanding · Skeleton-based Action
Segmentation · Language-Assisted Learning · Attention · Contrastive
Learning

1 Introduction

Human Activity Recognition (HAR) is a critical field in computer vision, find-
ing applications in healthcare services [5], surveillance systems [6], industrial
assembly [37], interactive robotics [39], and virtual reality [23]. Temporal Action
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Fig. 1. Comparison of conventional skeleton-based action segmentation architecture
and language-assisted skeleton action understanding (LaSA) architecture. The conven-
tional architecture (a) solely employs spatio-temporal modeling of skeleton features
to output frame-level representations, supervised with cross-entropy. The Joint Rela-
tionships Establishment (JRE) module (b) in LaSA utilizes joint texts to generate
joint position embeddings and attention matrices, establishing dependencies among
joints. Additionally, the Action Relationships Supervision (ARS) module (c) leverages
single-class action-text and mixed-class clip-text contrastive losses to enhance inter-
class discrimination and semantic correlations between adjacent actions.

Segmentation (TAS) stands as a challenging advanced task within HAR, aim-
ing to classify each frame of untrimmed temporal action sequences [8]. Presently,
the field of TAS is predominantly divided into two categories: Video-based meth-
ods (VTAS) and Skeleton-based methods (STAS), contingent upon whether the
input features are derived from video RGB or skeleton data [24,25,51].

Skeleton-based temporal action segmentation approaches have recently
attracted widespread research attention, owing to their ability to offer more
semantically refined representations of motion [24,25] and robustness against
background interference, appearance discrepancies, and diverse viewing condi-
tions [24,34,51,57]. Current STAS methodologies predominantly leverage spatio-
temporal modeling to establish spatial relationships among joints and tempo-
ral relationships across frames, thereby facilitating meaningful frame-level clas-
sification representations. Spatially, dependencies among joints are primarily
constructed using Graph Convolutional Networks (GCN) [12,15,24,25,54] or
Attention mechanisms [29,43]. Temporally, long-range sequential relationships
among frames are primarily established through Temporal Convolutional Net-
works (TCN) [12,15,24,25] or Attention mechanisms [43].

Although existing research has encoded meaningful joint relationships and
temporal dependencies among actions for classification, there has been limited
exploration into leveraging linguistic priors to enhance representation learning.
Specifically, graph or attention-based joint relationships may not fully capture
the semantic dependencies among joints [21], while one-hot encoding supervi-
sion shown in Fig. 1(a) fails to distinguish the similarity and dissimilarity of
actions in the category space [35,49]. Inspired by language prompts in some
literature [20,35,46,49,50], we recognize that linguistic definitions encapsulate
rich prior knowledge, including establishing connections and distinctions among
joints and enhancing fine-grained similarities and differences among actions. For
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instance, in the context of joints, the association between “left hand” and “right
hand,” “left elbow,” and “head” varies, which cannot be explicitly provided by
prior graphs. Similarly, in the realm of actions, elucidating the similarities (e.g.,
hand movements close to the head) and differences (variations in motion pat-
terns) between actions such as “drink water” and “brushing teeth” is crucial, an
aspect that one-hot encoding fails to capture. Therefore, these linguistic priors
can offer fine-grained guidance for representation learning.

This paper introduces a Language-assisted Skeleton Action Understanding
(LaSA) network to enhance skeleton-based action segmentation capabilities.
Drawing inspiration from current language supervision [20,49,50] and benefiting
from advancements [4,7,35] in Large Language Models, LaSA utilizes language
modality to foster the understanding of relationships among joints and actions. In
the context of Joint Relationships Establishment (JRE), as depicted in Fig. 1(b),
attention matrices from joint textual embeddings are utilized to establish cor-
relations, promoting semantic-level feature fusion across joints. Subsequently,
during the fusion of spatio-temporal features, joint textual embeddings serve
as positional embeddings to underscore semantic distinctions among joints. As
for Action Relationships Supervision (ARS), illustrated in Fig. 1(c), contrastive
learning is applied between single-class action sequence features and their cor-
responding action textual embeddings to enhance clustering and discrimination
across action classes. Moreover, temporal semantic associations between adjacent
actions are reinforced through contrastive learning between clip sequence fea-
tures encompassing multiple adjacent actions and the sequential textual descrip-
tions of these actions. Importantly, during inference, the ARS module is not
utilized, thus incurring no additional computational cost.

To evaluate the effectiveness of LaSA, we evaluated its performance on five
public datasets: MCFS-22 [30], MCFS-130 [30], PKU-MMD (X-sub) [27], PKU-
MMD (X-view) [27], and LARa [33]. Experimental results demonstrate that
the proposed LaSA achieves state-of-the-art (SOTA) performance. The contri-
butions of this work are summarized as follows: (i) LaSA is the first study to
apply language-assisted learning to skeleton-based action segmentation, leverag-
ing linguistic priors to enhance the understanding of relationships among joints
and actions. (ii) We establish relationships among joints using language knowl-
edge, leveraging attention matrices and position embeddings generated from
joint text to delineate correlations and distinctions across joints. (iii) We utilize
language supervision to establish relationships among actions, employing con-
trastive learning with action-text pairs and clip-text pairs to discern different
actions and uncover semantic correlations between adjacent actions.

2 Related Works

Temporal Action Segmentation. Video-based action segmentation utilizes
RGB [42] or optical flow [38] features extracted from videos. Early methods
favored Recurrent Neural Networks (RNN) for temporal modeling [9,40]. Subse-
quently, TCN and various optimized versions [11,19,22,26] have gained promi-
nence due to their effectiveness in capturing long-term temporal relationships.
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Additionally, some TCN-based models enhance effectiveness through exploration
of receptive field combinations [13,14], boundary-aware methods [16,48], multi-
scale fusion strategies [41], and diffusion models [28]. On the other hand, various
forms of Transformers [2,3,10,45,56] have been utilized for action segmentation,
enabling adaptive context capturing through attention mechanisms.

Skeleton-based action segmentation utilizes skeleton sequences [32] obtained
from motion capture devices [36] or pose estimation algorithms [58]. Current
methods typically combine GCN and TCN for spatial and temporal mod-
eling [12,15]. Moreover, some methods further explore the distinction [25]
and decoupling [24] of spatial and temporal aspects. Various forms of atten-
tion [29,43] are also employed to model spatio-temporal correlations of features.
Furthermore, some methods primarily explore processing strategies, such as tra-
jectory primitives and geometric features [52], latent action composition [55],
motion interpolation and action synthesis [51]. In comparison to these methods,
our approach leverages linguistic priors within joints and actions to augment
understanding of skeleton action sequences, providing more granular guidance.

Language Prompt Learning on Action Understanding. Advancements
in Natural Language Processing (NLP), particularly LLM like GPT-3 [4] and
BERT [7], have significantly influenced the development of multi-modal repre-
sentation learning in computer vision. Models such as CLIP [35] and ALIGN [17]
employ contrastive learning to align textual and visual information effectively,
enhancing semantic understanding in downstream tasks. For action recognition,
ActionCLIP [46] and GAP [49] utilize CLIP and motion description texts to facil-
itate learning in video and skeleton-based tasks, respectively. LA-GCN [50] con-
structs graphs using language texts to aid learning connections between actions
and joints. In action segmentation, Bridge-Prompt [20] temporally models clip
features contrasted with prompt text, while UnLoc [53] fuses video and category
text information for modeling. Inspired by these methods, our LaSA introduces
language prompt learning into skeleton-based action segmentation, providing
detailed guidance in joint and action aspects through language modality.

3 Method

In skeleton-based action segmentation, skeleton sequences X serve as input, gen-
erating categorical label sequences Y . Here, X ∈ R

C×T×V , where T , V and
C denotes the number of frames, joints and channels, respectively. Meanwhile,
Y ∈ R

Q×T , where Q signifies the number of action classes.
In this section, we introduce the architectural design of the proposed LaSA

method, as depicted in Fig. 2. LaSA aims to leverage linguistic knowledge from
a pre-trained text model to enhance the learning of relationships among joints
and actions, thereby improving action segmentation performance.

3.1 Preliminary

In this section, we present the spatial and temporal modeling methods of the
backbone of LaSA, with the specific structure based on DeST [24].
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Fig. 2. Overview of the LaSA architecture. LaSA takes skeleton sequences as input,
and after initial spatial feature modeling, establishes semantic relationships among
joints through joint text embeddings. Upon completion of overall modeling, contrastive
supervision is applied to the sequence representation using action and clip text features
to enhance the discrimination and correlation among actions. The blue background
section represents the architecture during inference, while the green background section
denotes additional architecture employed during training.

Multi-scale GCN for Spatial Modeling. For spatial modeling, we adopt
a multi-scale GCN inspired by MS-G3D [31] and DeST [24] to capture spa-
tial dependencies among joints. Initially, we define a k-adjacency matrix Ak ∈
{0, 1}V ×V , connecting joints at a distance of k as follows:

Ak
ij =

{
1, if d(αi, αj) = k or i = j

0, otherwise
(1)

where d(αi, αj) represents the shortest distance between joints αi and αj . Sub-
sequently, we concatenate all adjacency matrices from 0 to the maximum scale
K to form the multi-scale adjacency matrix AMS ∈ {0, 1}V ×KV :

AMS = [(D̃1)− 1
2 A1(D̃1)− 1

2 ] ⊕ · · · ⊕ [(D̃K)− 1
2 AK(D̃K)− 1

2 )] (2)

where ⊕ represents concatenation along the second dimension. D̃k is a diagonal
matrix normalizing Ak, with D̃k

ii =
∑

j(A
k
ij) + α, where α = 0.001. Given the

sequence features Fs ∈ R
C×T×V , the multi-scale spatial features Fgcn obtained

after multi-scale GCN can be represented as:

Fgcn = ReLU[(AMS + B)FsWs] (3)

where B ∈ R
V ×KV is a trainable matrix which can adaptively learn the rela-

tionships between joints. Ws ∈ R
1×1×KC×C represents the convolution operator

for channel adjustment.

Linear Transformer for Temporal Modeling. Unlike TCN, which cap-
tures features within a fixed temporal receptive field, the attention mechanism
in transformer can adaptively model dependencies among all frames. However,



Language-Assisted Skeleton Action Understanding 405

due to the high dimensionality of the temporal features of action segmentation
sequences Ft ∈ R

C×T , the memory requirements for global attention in conven-
tional transformers are prohibitively high, leading to the necessity of using only
local window attention [3,56]. In order to leverage global attention, we adopt
the linear former [18,47] used in [24] as our temporal modeling method, which
reduces the complexity of attention from O(n2) to O(n), enabling global tem-
poral modeling. Formally, the linear former layer can be computed as follows:

Ft+1 = ReLU[φ(Qt)(φ(Kt)TVt) · Wt + Ft] (4)

Here, Qt, Kt, and Vt are transformed from Ft through a linear layer
WQt,WKt,WV t ∈ R

C×Ct , where Wt ∈ R
Ct×C is a linear layer for channel adjust-

ment, and φ(·) denotes the sigmoid activation function.

3.2 Language-Assisted Joint Relationships Establishment

Generation of Spatial Text Features. Initially, we utilize GPT4 [1] to gener-
ate textual descriptions for each joint Pjv, such as: “Left elbow: the bending joint
between the upper and lower parts of the left arm.” These joint descriptions for
V joints are input into the text encoder of CLIP [35], consisting of an embedding
layer and 12 transformer layers, yielding joint text embeddings Ej ∈ R

C0×V .

Establishment of Spatial Feature Correlations. As depicted in Fig. 3, we
utilize the attention matrix generated from joint embeddings Ej to guide the
fusion of the multi-scale graph-modeled features Fgcn, resulting in features Fls:

Fls = Softmax(QjK
T
j )Vj · Wj + Fgcn (5)

where Qj and Kj are transformed from Ej through WQj ,WKj ∈ R
C0×Cj , and

Vj is transformed from Fgcn. Wj is a 1x1 convolutional kernel for channel adjust-
ment. The attention matrix, derived from joint embeddings Ej , orchestrates the
formation of spatial correlations within Fgcn at a granular linguistic level.

Establishment of Spatial Feature Differences. After establishing spatial
correlations, the features Fls ∈ R

C×T×V are obtained. To distinguish features
across joints, inspired by positional embeddings in attention mechanisms [44], we
convolve and expand joint embeddings Ej ∈ R

C0×V into positional embeddings
E′

j ∈ R
C×T×V , which are then added to Fls.

Integration of Spatio-Temporal Features. Additionally, as depicted in the
latter part of Fig. 3, we adopt methods from [24] for spatio-temporal fusion. Spa-
tial features are adjusted dimensionally via convolution to Fj ∈ R

L×T×V , then
split along channels into spatial sub-features Fjt ∈ R

V ×T , convolved spatially
to F ′

jt ∈ R
C×T . The first spatial sub-feature undergoes temporal modeling via

linear former to F ′
t , followed by spatio-temporal attention fusion before the next

linear former layer to obtain Ft ∈ R
C×T :

Ft = Softmax(QjtK
T
jt)Vjt · Wjt + F ′

t (6)

where Qjt is derived from F ′
jt, and Kjt and Vjt are derived from F ′

t .
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Fig. 3. The implementation of the JRE module within spatial-temporal modeling.
After multi-scale graph spatial modeling, JRE utilizes an attention matrix generated
from joint text embeddings to assist further integration of spatial features. Then posi-
tional text embeddings are incorporated to differentiate distinct joint features, facili-
tating subsequent attention fusion between spatial sub-features and temporal features.

3.3 Language-Assisted Action Relationship Supervision

The Generation of Action and Clip Text Features. For action text gen-
eration, we employ GPT4 [1] to generate descriptive text for each action Pan,
such as “Clapping: Bringing the hands together repeatedly to express approval
or appreciation.” Subsequently, we match the corresponding action text for each
action segment of ground truth, resulting in N action texts. As for clip text
generation, we extract a set of adjacent action labels from one ground truth clip
to form a label group LG, for example, LGm = [Standing,Bowing,Reading].
We then use LG to generate textual descriptions for clips Pcm, which include
the total number of action segments, their sequential order, and their names.
For instance, “This clip contains three actions. Firstly, the human is standing.
Secondly, the person is bowing. Thirdly, the action is reading.” We extract a
total of M clip texts with equal intervals and certain overlap. Finally, N action
texts and M clip texts are input into the text encoder of CLIP [35], resulting in
action text embeddings Ea ∈ R

C0×N and clip text embeddings Ec ∈ R
C0×M .

Enhancing Inter-action Discrimination. To enhance the discrimination of
different actions, we propose a supervised approach leveraging contrastive learn-
ing between action segments and their corresponding textual descriptions, as
illustrated in Fig. 4. Initially, we segment the representations FR into N action
segments based on the boundaries of each action segment in each ground truth,
resulting in features F ′

a1 ∈ R
C×Ta1 , F ′

a2 ∈ R
C×Ta2 , · · · F ′

aN ∈ R
C×TaN . Subse-

quently, through convolution and mean pooling, we transform each F ′
an into

action features Fan ∈ R
C0 , and then aggregate all N action features into

Fa ∈ R
C0×N . We then construct action-text pairs between action features Fa

and action embeddings Ea, facilitating contrastive learning supervision. This is
achieved by computing cosine similarity sim(·) between Fan and Ean ∈ R

C0

along the N-dimensional directions, forming a similarity matrix:

Sa(Fa, Ea) =

⎡
⎢⎣

sim(Fa1, Ea1) · · · sim(Fa1, EaN )
...

. . .
...

sim(FaN , Ea1) · · · sim(FaN , EaN )

⎤
⎥⎦ (7)
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Fig. 4. The implementation of the ARS module for supervision over representations.
ARS primarily employs contrastive learning supervision using single-class action text
and mixed-class clip text to supervise the feature representations before prediction.
This approach enhances both inter-action discrimination and correlations between adja-
cent actions. Notably, the ARS module is utilized only during training.

Subsequently, applying softmax functions along the rows/columns of
Sa(Fa, Ea), we generate ST

a (Fa, Ea) and SV
a (Fa, Ea) ∈ R

N×N respectively, based
on textual and action similarities. Simultaneously, we define a similarity matrix
SGT
a ∈ R

N×N based on the ground truth, where positive pairs have similarity
scores of 1 and negative pairs have scores of 0. We employ the Kullback-Leibler
(KL) divergence, which was applied in [20,49], to maximize the similarity :

DKL(U‖W ) =
1

N2

N∑
i=1

N∑
j=1

Uij log
(

Uij

Wij

)
(8)

where U , W ∈ R
N×N . The contrastive loss for action-text pairs is defined as:

Laction =
1
2
[DKL(ST

a ‖SGT
a ) + DKL(SV

a ‖SGT
a )] (9)

Enhancing Adjacent Action Correlations. To improve the semantic cor-
relations between adjacent actions, we employ contrastive learning supervision
between clips containing several adjacent action segments and their correspond-
ing clip texts, as illustrated in Fig. 4. Initially, we segment representations to M
clips based on the boundaries of M clips in the ground truth boundaries, yielding
features F ′

c1 ∈ R
C×Tc1 , · · · F ′

cM ∈ R
C×TcM . Similarly, through convolution and

mean pooling, we obtain aggregated features of M clips Fc ∈ R
C0×M . Subse-

quently, akin to the previous method, we construct clip-text pairs between clip
features Fc and clip embeddings Ec for contrastive learning supervision, forming
a similarity matrix Sc(Fc, Ec) and contrastive loss Lclip.

In addition, both contrastive supervision methods mentioned above are exclu-
sively applied during training and omitted during inference. This choice arises
from the necessity of ground truth guidance for segmenting actions and clip
features during training, rendering them unsuitable for inference scenarios. Fur-
thermore, this supervision method has effectively bolstered the inference capacity
of the backbone, allowing for the removal of this structure during inference to
reduce memory consumption and enhance inference efficiency.

3.4 LaSA: Overall Framework

The overall framework of LaSA, as depicted in Fig. 5, commences with spatial-
temporal modeling ST of the input X ∈ R

C×T×V , yielding feature representa-
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Fig. 5. The overall framework of LaSA. It encompasses a spatial-temporal compo-
nent, followed by a multi-stage action segmentation branch and a multi-stage boundary
regression branch. Multiple loss functions are applied to supervise the network.

tions FST
R ∈ R

C×T . Subsequently, FST
R are fed into two distinct heads to obtain

class predictions Y ST
cls ∈ R

Q×T and boundary predictions Y ST
b ∈ R

1×T . Y ST
c is

then input into the action segmentation branch Tasb for refined category predic-
tion, while Y ST

b is input into the boundary regression branch Tbrb [16] for further
boundary prediction. Both branches consist of multiple stages, each comprising
multiple layers, with linear former layers in Tasb and TCN layers in Tbrb.

For contrastive learning between action-text pairs, we apply it to supervise
the representation of spatial-temporal modeling ST and each stage in the action
segmentation branch Tasb. However, for clip-text pairs, since the Tasb branch is
detached from boundary prediction, temporal semantic relations between adja-
cent actions are not required. Therefore, we only utilize it to supervise the feature
representation of ST .

For the supervision of predictions from ST and Tasb, we employ frame-level
classification cross-entropy loss Lcls and smoothness loss Lsmo [11]. The loss
function Lasb is defined as:

Lasb = Lcls + γLsmo = − 1
T

T∑
t=1

log(ŷt,ĉ) + γ
1

TC

T∑
t=1

C∑
c=1

[log(
ŷt−1,c

ŷt,c
)]2 (10)

where ŷt,ĉ denotes the predicted probability of ground truth label ĉ at time t,
and the weight γ for smoothness loss is set to 0.15. For the boundary regression
branch Tbrb, we utilize binary logistic regression loss Lbrb [16] in each stage:

Lbrb = − 1
T

T∑
t=1

(yt log(ŷt) + (1 − yt) log(1 − ŷt)) (11)

where yt is the ground truth label (1 for the boundary frame and 0 for others),
and ŷt is the predicted boundary probability for the t-th frame. The contrastive
losses are Laction and Lclip. Thus, the overall loss function is as follows:

L =
∑

ST +Tasb

Lasb + λ1

∑
ST +Tbrb

Lbrb + λ2

∑
ST +Tasb

Laction + λ3

∑
ST

Lclip (12)

where λ1, λ2, and λ3 are the loss weights set to 0.1, 0.8, and 0.5 by default.
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4 Experiment

4.1 Datasets and Evaluation Metrics

Datasets. We evaluated the LaSA on MCFS-22 [30], MCFS-130 [30], PKU-
MMD (X-sub and X-view) [27], and LARa [33] datasets. MCFS [30] consists of
motion-centered figure skating data, categorized into 22 and 130 action classes
for MCFS-22 and MCFS-130, respectively. PKU-MMD [27] consists of 52 action
categories representing human daily behaviors, with distinct X-sub and X-view
benchmarks for dataset partitioning. LARa [33] encompasses warehouse activ-
ities with 8 action categories. Evaluation was conducted using five-fold cross-
validation for MCFS and single validation for PKU-MMD and LARa datasets.

Evaluation Metrics. We employ frame-wise accuracy (Acc), segmental edit
score, and segmental F1 score at Intersection over Union (IoU) thresholds of
10%, 25%, 50% (denoted as F1@{10, 25, 50}). Acc provides a direct metric but
does not penalize over-segmentation errors. Segmental edit and F1 scores offer a
more comprehensive evaluation, effectively penalizing over-segmentation errors.

4.2 Implementation Details

In LaSA, the ST and Tasb each comprises one stage, while the Tasb comprises
two stages, each with 10 temporal modeling layers. The channel dimension for
spatial or temporal modeling is C = 64, while for the text encoder, C0 = 512.
Training is performed on a single RTX 3090 GPU using the Adam optimizer.
For MCFS-22 and MCFS-130, we employ a batch size of 1 and a learning rate
of 0.0005, training for 300 epochs. For PKU-MMD and LARa, the batch size is
4, with a learning rate of 0.001, training for 300 and 120 epochs, respectively.

4.3 Comparisons with the State-of-the-Art

Quantitative Comparison. Our model is compared with state-of-the-art
video-based and skeleton-based action segmentation methods on MCFS-22 [30],
MCFS-130 [30], PKU-MMD (X-sub) [27], PKU-MMD (X-view) [27], and
LARa [33] datasets, as shown in Tables 1 and 2. Across almost all evaluation
metrics on these five datasets, our method achieves state-of-the-art performance,
with particularly notable improvements in segment-level metrics, highlighting its

Fig. 6. Visualization of representation space. Each point represents an action segment
feature, which is colored based on its class labels. As observed, in comparison to the
previous SOTA, LaSA generates a more distinctly structured semantic feature space.
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Table 1. Comparison with the state-of-the-art on MCFS-22 and MCFS-130 datasets.
Bold and underline indicate the best and second-best results in each column.

Dataset MCFS-22 MCFS-130

Metric Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
VTAS MS-TCN [11] 75.6 74.2 74.3 69.7 59.5 65.7 54.5 56.4 52.2 42.5

ETSN [26] 77.0 79.8 81.4 77.6 66.8 64.6 64.6 64.5 61.0 52.3

ASRF [16] 75.5 77.3 83.3 80.1 69.2 65.6 65.6 66.7 62.3 51.9

ASFormer [56] 78.7 82.3 82.8 77.9 66.9 67.5 69.1 68.3 64.0 55.1

MS-GCN [12] 75.5 72.6 75.7 70.5 57.9 64.9 52.6 52.4 48.8 39.1

STAS SFA+ETSPNet [12] 81.4 80.8 82.1 78.3 68.6 - - - - -

ID-GCN+ASRF [12] 78.1 81.6 86.4 83.4 73.0 67.1 68.2 68.7 65.6 56.9

IDT-GCN [12] 79.9 84.5 88.0 84.9 74.9 68.6 70.2 70.7 67.3 58.6

DeST-TCN [24] 78.7 82.3 86.6 83.5 73.2 70.5 73.8 74.0 70.7 61.8

DeST-Former [24] 80.4 85.2 87.4 84.5 75.0 71.4 75.8 75.8 72.2 63.0

LaSA 80.8 86.7 89.3 86.2 76.3 72.6 79.3 79.3 75.8 66.6

Table 2. Comparison with the state-of-the-art on PKU-MMD (X-sub), PKU-MMD
(X-view) and LARa datasets. † indicates our implemented results.

Dataset PKU-MMD (X-sub) PKU-MMD (X-view) LARa

Metric Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
MS-TCN [11] 65.5 – – – 46.3 58.2 56.6 58.6 53.6 39.4 65.8 – – – 39.6

MS-TCN++† [22] 66.0 66.7 69.6 65.1 51.5 58.4 56.7 58.7 53.2 38.7 71.7 58.6 60.1 58.6 47.0

ETSN† [26] 68.4 67.1 70.4 65.5 52.0 60.7 57.6 62.4 57.9 44.3 71.9 58.4 64.3 60.7 48.1

ASRF† [16] 67.7 67.1 72.1 68.3 56.8 60.4 59.3 62.5 58.0 46.1 71.9 63.0 68.3 65.3 53.2

MS-GCN [12] 68.5 – – – 51.6 65.3 58.1 61.3 56.7 44.1 65.6 – – – 43.6

CTC [51] 69.2 – 69.9 66.4 53.8 – – – – – – – – – –

DeST-TCN [24] 67.6 66.3 71.7 68.0 55.5 62.4 58.2 63.2 59.2 47.6 72.6 63.7 69.7 66.7 55.8

DeST-Former [24] 70.3 69.3 74.5 71.0 58.7 67.3 64.7 69.3 65.6 52.0 75.1 64.2 70.3 68.0 57.7

LaSA 73.5 73.4 78.3 74.8 63.6 69.5 67.8 72.9 69.2 57.0 75.3 65.7 71.6 69.0 57.9

significant potential in action segmentation. Furthermore, we observe a positive
correlation between performance improvement and the number of action classes.
Specifically, concerning the F1@50 metric, our model outperforms the previous
state-of-the-art method DeST [24] by 0.2% on LARa (8 classes), by 1.3% on
MCFS-22 (22 classes), by 4.9% (X-sub) and 5% (X-view) on PKU-MMD (52
classes), and by 3.6% on MCFS-130 (130 classes). This clearly indicates that
LaSA can better utilize language priors to enhance discrimination and cluster-
ing across different actions, thus exhibiting stronger performance on datasets
with a larger number of classes compared to previous methods. Visualization in
Fig. 6 of action segment feature spaces further demonstrates the enhancement of
action discriminability and clustering afforded by language-assisted learning.

Qualitative Comparison. In Fig. 7, we further present qualitative results.
Compared to LaSA, the previous method DeST [24] exhibits certain bound-
ary shift errors (Fig. 7a), and action category prediction errors (Figures 7b, 7c,
7d). On the other hand, MS-GCN [12] shows more errors in action category pre-
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Fig. 7. Qualitative results of action segmentation on the MCFS-130, MCFS-22, PKU-
MMD (X-sub), and PKU-MMD (X-view) datasets. Different colors represent distinct
action classes. Red boxes highlight segmentation errors in other methods compared to
LaSA, underscoring the greater potential of LaSA for action segmentation.

Table 3. Impact of joint relationships establishment module.

JRE Module MCFS-130 PKU-MMD (X-sub)

Attention Embedding Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
� � 72.0 77.6 78.7 74.9 65.9 72.8 71.6 77.5 74.2 62.9

� � 72.2 79.0 79.1 75.5 66.1 73.3 72.8 78.2 74.8 63.5

� � 72.2 78.2 78.3 75.1 65.9 73.2 72.3 77.9 74.4 63.3

� � 72.6 79.3 79.3 75.8 66.6 73.5 73.4 78.3 74.8 63.6

diction (Figures 7a, 7b, 7d), and some over-segmentation errors (Figure 7c). In
contrast, our method utilizes language priors to establish joint and action rela-
tionships, improving inter-action discrimination and semantic relations between
adjacent actions. This leads to more accurate predictions of action categories
and boundaries, yielding segmentation results closer to ground truth.

4.4 Ablation Studies

Impact of Joint Relationships Establishment Module. To validate the
effectiveness of the JRE module, we evaluated LaSA with the inclusion of its
language-assisted joint position embeddings and joint attention matrices, as
shown in Table 3. The results indicate that performance is lowest when the
attention and embeddings of the JRE module are not utilized. The attention
mechanism of the JRE module assists in establishing joint correlations, while the
position embeddings enhance differences among joints. Therefore, incorporating
either attention alone or embeddings alone improves performance. Combining
both mechanisms fully establishes joint relationships, resulting in the highest
performance and demonstrating the effectiveness of the JRE module.

Impact of Action Relationships Supervision Module. To validate the
effectiveness of the ARS module, we evaluated LaSA with the inclusion of its
contrastive learning for action-text pairs and clip-text pairs, as shown in Table 4.
Performance is lowest when the ARS module is not utilized. Contrastive learning
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Table 4. Impact of action relationships supervision module.

ARS Module MCFS-130 PKU-MMD (X-sub)

Action-Text Clip-Text Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
� � 71.4 77.0 77.2 73.6 64.2 71.3 70.9 75.1 71.4 59.4

� � 71.9 78.4 78.7 75.5 65.6 73.4 72.9 78.1 74.5 63.2

� � 72.0 76.8 77.7 74.2 65.0 72.4 72.1 76.4 73.0 60.3

� � 72.6 79.3 79.3 75.8 66.6 73.5 73.4 78.3 74.8 63.6

Table 5. Influence of language text prompts. Detail denotes description texts, Name
denotes name texts, and Simple signifies “The joint/action of {Name}”.

Text Prompts Type MCFS-130 PKU-MMD (X-sub)

Joint Action Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
Detail Detail 72.6 79.3 79.3 75.8 66.6 73.5 73.4 78.3 74.8 63.6

Simple Detail 71.9 78.1 78.7 75.4 65.9 73.6 72.7 78.0 74.7 63.2

Detail Simple 71.6 78.4 78.8 75.0 66.0 72.5 72.3 77.3 73.9 63.1

Simple Simple 71.4 78.2 78.8 75.2 65.9 73.3 73.1 78.2 74.7 63.0

Name Detail 71.7 79.0 79.0 76.0 66.5 73.5 73.1 78.1 75.0 63.4

Detail Name 72.5 79.1 79.0 75.5 66.2 73.5 73.2 78.3 74.8 63.5

Name Name 72.2 78.3 79.3 75.6 66.0 73.3 73.2 78.3 74.7 63.3

for action-text pairs in the ARS module enhances discrimination and clustering
among different actions, while contrastive learning for clip-text pairs establishes
correlations between adjacent actions. Therefore, incorporating either mecha-
nism alone improves performance. Combining both mechanisms fully enhances
relationships across actions, resulting in the highest performance and demon-
strating the effectiveness of the ARS module.

Influence of Language Text Prompts. We explored three types of textual
prompts for actions and joints: names of the action/joint Name, sentences with
names Simple: “The action/joint is {Name}”, and descriptive texts Detail,
such as “Hopping: jumping on one foot repeatedly.” The results shown in Table
5 indicate that when applying Name to either or both action and joint texts,
the performance is moderate. However, when applying Simple to either or both,
the performance is poorest, possibly because the sentence “The action/joint is”
compresses distances between different action/joint classes in the text space.
Performance is highest with Detail applied to both, showcasing the effective-
ness of detailed descriptions in positioning and distinguishing classes in space.
Consequently, we adopted Detail as the textual prompt for actions and joints.

Influence of Attention Methods in JRE Module. We evaluated different
attention methods in LaSA to assess the impact of textual priors on attention, as
shown in Table 6. For the generation of attention matrices, using only features Fj

without incorporating textual embeddings Ej yields poor performance. However,
introducing joint textual embeddings Ej through various means during atten-
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Table 6. Influence of attention methods in JRE module. Fj denotes action features
split from representations, while Ej denotes action embeddings from text encoder.

Attention Methods MCFS-130 PKU-MMD (X-sub)

Query Key Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
Fj Fj 72.2 78.6 78.8 75.2 66.0 73.4 72.9 78.2 74.1 62.9

Ej + Fj Ej + Fj 72.0 78.6 79.0 75.3 66.0 73.3 71.9 77.5 74.1 63.4

Ej Fj 72.5 78.8 79.2 75.7 66.3 73.6 73.3 78.3 74.7 63.3

Ej Ej + Fj 72.5 78.9 79.4 75.7 66.4 73.9 73.5 78.3 75.0 63.7

Ej Ej 72.6 79.3 79.3 75.8 66.6 73.5 73.4 78.3 74.8 63.6

Table 7. Influence of clip features in ARS module. ⊕ indicates comparisons within
separate matrices, while + denotes comparisons within the same matrix.

Clip Features MCFS-130 PKU-MMD (X-sub)

Split Method Acc Edit F1@{10,25,50} Acc Edit F1@{10,25,50}
Split 32 clips/video 72.1 78.4 78.3 74.9 65.6 73.5 71.8 76.6 73.9 62.9

Equally 48 clips/video 71.7 77.6 77.8 74.3 64.6 72.9 73.2 77.8 74.5 63.2

2 actions/clip 72.6 79.3 79.3 75.8 66.6 73.5 73.4 78.3 74.8 63.6

Split by 3 actions/clip 72.7 78.4 79.5 76.0 67.0 73.5 73.2 78.5 75.7 63.4

Boundaries 2+3 actions/clip 72.0 78.1 78.3 74.6 66.0 73.4 72.3 77.7 74.4 63.4

2⊕3 actions/clip 72.4 78.7 79.1 75.4 66.6 73.1 72.6 77.8 74.3 63.2

tion matrix generation leads to varying degrees of performance improvement.
Notably, optimal performance was achieved when employing mutual attention
between Ej alone or between Ej and Fj+Ej . Thus, we adopted mutual attention
between textual embeddings Ej alone to establish inter-joint correlations.

Influence of Clip Features in ARS Module. We evaluated various clip seg-
mentation methods to determine the optimal approach, as shown in Table 7. Two
methods were explored: average segmentation and segmentation based on ground
truth action boundaries. For average segmentation, we divided one sequence into
32 or 48 clips. For segmentation along action boundaries, we select M clips con-
taining either 2 actions or 3 actions for separate contrastive learning or combine
them together in different ways. The results indicate that segmentation along
action boundaries outperforms average segmentation, as it captures more com-
plete action information. Among them, contrastive learning with clips contain-
ing only 2 or 3 actions achieves near-optimal performance with minimal memory
usage. Therefore, we selected segmentation along action boundaries with 2-action
clips for contrastive learning as the final approach.

5 Conclusion

In this study, we propose a Language-assisted Skeleton Action Understanding
(LaSA) network, which utilizes language modality to assist in establishing con-
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nections and distinctions among joints, and enhancing inter-action discrimina-
tion and adjacent action correlations. Our model achieves state-of-the-art per-
formance on five challenging datasets. However, it still exhibits some category
prediction errors and boundary prediction offsets, leaving room for performance
improvement. Future work should incorporate finer-grained motion descriptions
for action supervision, providing temporal and spatial subdivision guidance.
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