
Why do recurrent neural networks suddenly learn? Bifurcation mechanisms in
neuro-inspired short-term memory tasks

Udith Haputhanthri * 1 Liam Storan * 1 Yiqi Jiang * 1 Adam Shai 2 Orhun Akengin 1 Mark J. Schnitzer † 1 3

Fatih Dinc † 1 Hidenori Tanaka † 4 5

Abstract
Recurrent neural networks (RNNs) are regularly
studied as in silico models of biological and arti-
ficial computation. Training RNNs requires up-
dating many synaptic weights, making the learn-
ing process complex and high-dimensional. In
order to uncover learning mechanisms, we inves-
tigated the sudden accuracy jumps in RNNs’ loss
curves. Across several short-term memory tasks,
we identified an initial search phase with accuracy
plateaus, followed by rapid acquisition of skills.
Studying attractor landscapes during learning re-
vealed high-dimensional bifurcations as the links
between these phases. Next, we introduced the
temporal consistency regularization (TCR), a bio-
logically plausible learning rule that incentivizes
formation of memory-subserving attractors. In di-
verse short-term memory tasks, TCR accelerated
(online) training, promoted robust attractors, and
enabled networks initialized in a chaotic regime to
train efficiently. Our analyses lead to testable pre-
dictions for system neuroscientists and highlight
the need to study high-dimensional dynamical
system theory to uncover learning mechanisms in
biological and artificial networks.

1. Introduction
Recurrent neural networks (RNNs) play a crucial role
in both biological and artificial neural systems, enabling
complex associative computations and memory formation
[1, 2, 3, 4, 5, 6]. To study their computational principles,
dynamical systems theory has emerged as an indispens-
able tool [7, 8, 9, 10, 11, 12], allowing a large body of
neuroscience work to utilize RNNs as trainable dynami-
cal systems and study attractor formation in neural circuits

*Equal contribution †Supervisors. 1Stanford University, Stan-
ford, CA, USA 2Principles of Intelligent Behavior in Biological
and Social Systems, Berkeley, CA, USA 3Howard Hughes Medi-
cal Institute, Stanford, CA, USA 4Harvard University, Cambridge,
MA, USA 5NTT Research, Sunnyvale, CA, USA. Correspondence
to: Hidenori Tanaka <hidenori tanaka@fas.harvard.edu>.

Mechanistic Interpretability Workshop 2024, Vienna, Austria.
Copyright 2024 by the author(s).

[2, 4, 5, 13, 14, 15, 16, 17, 18, 19, 20, 21]. However, given
the high-dimensional and often chaotic nature of brain dy-
namics [22, 23], the dynamical system modeling of bio-
logical RNNs is often a challenging task [24, 25] (though
see [26, 27, 28] for promising developments). Therefore,
systematic and carefully designed studies are needed to ex-
tract the fundamental principles of learning processes and
computational mechanisms.

A recent promising direction has focused on modeling non-
linear dynamical systems via interpretable, mathematically
tractable RNN architectures [29, 30, 31, 32]. This approach
primarily relies on the assumption that many real-world
tasks can be performed with relatively simple attractor land-
scapes [7, 8] (though also see [33]), which can often be
visualized to explain the substrate of computations in RNNs
[34, 35, 36]. Yet, one of the primary challenges in training
RNNs lies in the fact that weight initialization often fails
to place the network in a weight subspace with the desired
attractor landscapes. Consequently, the learning process
must navigate through bifurcations [37, 38], which are crit-
ical yet underexplored events characterized by qualitative
changes in the network’s dynamics. These bifurcations of-
ten manifest as spikes or jumps in learning curves [37] and
are essential for the network to converge to functional solu-
tions. To date the harmful effects of bifurcations, such as
exploding gradients, have received considerable attention
[39, 40, 41, 42]. However, the constructive role of bifurca-
tions in guiding high-dimensional RNNs to train effectively
in a general setting remains largely unexplored.

In this work, we conduct a thorough scientific investiga-
tion on the sudden learning phenomenon observed in RNNs
and identify the crucial and constructive role of necessary
bifurcations in learning dynamics. We identify two dis-
tinct regimes emerging during the training of RNNs, search
and comprehension. The transitions between these phases,
i.e., bifurcations, emerge as sudden changes in the loss
functions and are characterized by changes in the distinct
qualitative properties of attractor landscapes, which are the
building blocks of computation in short-term memory tasks.
Inspired by these observations, we propose the temporal
consistency regularization (TCR), a spatiotemporally local
mechanism incentivizing attractor formation. We find that

1

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

TCR accelerates training by shortening the search phase, and
can facilitate online learning of cue-associated fixed-points.
Surprisingly, TCR enables training of chaotic networks, a
feat that was considered rather infeasible with the back-
propagation through time algorithm and led to the birth of
new paradigms such as reservoir computing [43, 44] and
FORCE [26, 27].

Though prior work studied the bifurcation mechanisms dur-
ing learning [37, 45] (though still in the context of how
to avoid them [37, 46]) our analysis extends beyond the
limited architectures and specific bifurcations studied by
earlier studies and offers a more nuanced interpretation, e.g.,
bifurcations are not simple inconveniences that need to be
mitigated. Overall, our work constitutes a rigorous system-
atic study of learning and computation in high-dimensional
dynamical systems, connects formations of attractors to
computation in artificial neural networks, and has direct im-
plications for learning in biological networks and explaining
skill acquisition in artificial networks.

2. Results
2.1. Training recurrent neural networks on a short-term

memory task
To illustrate the emergence of bifurcations during net-
work training with a simple example, we start our anal-
ysis with the piece-wise linear recurrent neural networks
(PLRNNs):

x[t] = Ax[t− 1] +Wϕ(x[t− 1]) + Cs[t] + h, (1)

where x[t] ∈ RN are the activities of N neurons, r[t] =
ϕ(x[t]) their firing rates with the ϕ(.) non-linearity, A ∈
RN×N a diagonal matrix of neuronal decay rates, W ∈
RN×N the recurrent connectivity matrix, s[t] ∈ RK is the
external input, C ∈ RN×K input weights, and h ∈ RN

the biases. Here, piece-wise linear specifically refers to the
RELU non-linearity, i.e., ϕ(z) = max(0, z).

The delayed addition task is a simple short-term memory
task that produces a sudden jump in the accuracy during
training (Fig. 1, Appendix S1.2). In the delayed addi-
tion task, there are two channels providing inputs to the
network (Fig. 1A). The first channel, u1(t), contains con-
tinuously valued “cues”, whereas the second channel is
mainly zero (u2(t) = 0), except for two pulses at distinct
times (u2(t1) = u2(t2) = 1). The output of the task cor-
responds to the the sum of the two cues at times t1 and t2,
i.e., ô(t) = u1(t1) + u1(t2), which should be returned at
the end of the trial t = T . Notably, in order to perform the
task accurately, the networks should be able to hold two
numbers in short-term memory.

When we trained PLRNNs to perform this task, we observed
two phases of learning, namely, the search phase and the
rapid comprehension phase (Fig. 1B). During the search

phase, the network did not show a significant performance
improvement in either the training or the test sets. Yet, at
epoch 120, the network entered the rapid comprehension
phase, in which the training performance abruptly improved.
Our goal for the rest of this work is to understand and facili-
tate the mechanisms behind such abrupt transitions.

2.2. Bifurcations emerge during the learning
To study the mechanism of abrupt changes during training,
we turn to the dynamical system theory, which establishes
that the parameter space is divided into several subspaces
with qualitatively distinct properties [36]. Going from one
subspace to another requires the system to go through qual-
itative changes in its attractor landscape, i.e., bifurcations.
Traditionally, bifurcations are studied in the context of low-
dimensional dynamical systems, often as the few number of
system parameters is varied, not trained [36]. In contrast,
in recurrent neural networks, the high-dimensional weight
parameters, W ∈ RN×N , establish the attractor landscapes,
which in turn define the breadth of computations that can be
carried out by the state variables, x(t) ∈ RN .

To operationalize the identification of attractor landscapes
supported by a particular weight matrix, W , we utilized a
slightly modified version of the energy minimization ap-
proach [8]:

x∗ ∈ arg min
x∈N (x0)

E(x) = arg min
x∈N (x0)

∣∣∣∣∣∣∣∣∂x[t]∂t

∣∣∣∣∣∣∣∣2
2

, (2)

in which the “kinetic energy” of neural trajectories is mini-
mized in the neighborhoods, {N (x0)}, of few pre-defined
state variables, {x0}, to identify states with locally minimal
speeds (x∗, Figure S1). In this work, we sample x0 from
transient neural activities (Appendix S1.5). This architecture
and attractor agnostic approach is well-suited for identifying
not only fixed points and the centers of limit cycles – ele-
ments of traditional bifurcations with specific names (e.g.,
Hopf bifurcation) [36] – but a general class of slow points
in RNNs with thousands of parameters [8].

In this work, we define “high-dimensional bifurcations” as
qualitative changes in the arrangement of these slow-point
landscapes. This definition includes broader sets of phenom-
ena compared to the traditional definition of bifurcations
[36]. Yet, it captures the essence of the phenomena we study
in this work, since (approximate) attractors are slow points
by definition and their re-arrangement qualitatively changes
the network dynamics. New terminology may need to be
developed in future studies of high-dimensional dynamical
systems, which is out of scope here.

Using this approach, we identified the slow points of the
PLRNNs and visualized their time evolution as the training
progressed (Fig. 1C). As expected, we observed a sudden
shift in the neural activities and the overall attractor structure

2

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Figure 1: Bifurcations subserve the sudden accuracy jumps during the learning of the delayed addition task. A In the delayed
addition task, the network receives signals from two channels: the first channel has continuously valued random signals, the second
channel is zero for almost all times, but has two binary pulses at times t1 and t2. During these pulse times, the network needs to memorize
the “cue” values presented in the first channel and must output their sum at the end of the trial (t = T). B The fraction of correct trials as
a function of number of training epochs. The training and testing curves both show two phases, with a sudden transition at the epoch 120.
C Top three principal components of the network’s activations over multiple trials (blue), neural trajectories during a single trial (green),
and kinetic energy minima corresponding to slow points (red). A bifurcation at epoch 120 is marked by the emergence of a new attractor
structure, which causes a structural and qualitative change in the slow point landscape and separates the two phases. For B-C, we used a
representative unregularized network with N = 40 neurons trained over 500 epochs to perform the delayed addition task with T = 40.

around epoch 120 (Fig. 1C), signalling a bifurcation. This
shift was then followed by a rapid increase in both training
and testing accuracies. Notably, the slow point landscape
right after the bifurcation exhibited the same qualitative
behavior as the further trained network (Fig. 1C, epochs
120 vs 500), suggesting that the bifurcation propelled the
network into the “right” weight subspace. Though this obser-
vation alone cannot explain why the network performance
suddenly started improving, as we discuss in Section 2.4, it
is an important step forward.

2.3. Hidden and/or explicit bifurcations lead to
irregularities in the training curves

In the previous section, we considered a network that was
already initialized close to the bifurcation boundary. Conse-
quently, the search phase was relatively brief (120 epochs).
The bifurcation corresponded to a jump in the loss function
and had lasting effects on training performance, resulting
in a sustained decrease. We categorize such bifurcations
as “explicit bifurcations.” However, as we demonstrate in
this section, not all bifurcations lead to sustained decreases
in the loss function, i.e., may be “hidden” due to the lack
of sustained effects on the training curves, for example,
emerging as small spikes that are quickly recovered.

To study the hidden bifurcations, we considered a second
network that spent around 2500 epochs in the search phase
and had a small spike in the learning curve which did not
improve or hurt the network performance (Fig. 2A, red
rectangle). Yet, it was not clear whether this was a self-
correcting behavior or a necessary event towards the final
solution. Therefore, as a first test, we computed the sin-
gular value decomposition of the instantaneous gradient1

and the current weight matrix, W (t), at the training epoch
t. As expected, although there was no visible change in
the network performance after recovering from the spike
(Fig. 2A, red rectangle), the instantaneous gradient became
unstable, exhibiting sudden changes (Fig. 2B, red rectangle).
Surprisingly, the weight matrix had rapid, but continuous
and sustained, changes (Fig. 2C, red rectangle); ruling out a
self-recovery explanation.

Next, we verified that the spike in the training curve indeed
was linked to a hidden bifurcation by studying the qualita-
tive changes in the slow point landscape (Fig. 2D, Epoch
800). Interestingly, even though this hidden bifurcation

1Throughout this work, we use the word “instantaneous gra-
dient” to refer to the quantity W (t) −W (t − 1), which may be
different from the exact gradient as we use the ADAM optimizer.

3

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Figure 2: Hidden and explicit bifurcations drive weight restructuring and attractor formation during learning. A Small spikes
during the search phase may indicate a hidden bifurcation, followed by a sharp decrease in train/test loss post-search phase. B,C Instability
in the singular values of the gradient (B) and the weight matrix (C) is an indicator of the bifurcation process. D,E New attractor geometries
form in activity space after hidden (Epoch 800) and explicit (Epoch 2500) bifurcations. F Correlation between weights at two distinct time
points during training shows high correlation until bifurcations, indicating significant restructuring of the weight matrix during the hidden
and explicit bifurcations. For all panels, we used an unregularized network (N = 40) performing the delayed addition task with T = 40.

did not immediately improve the performance, it served as
a step towards finding the desired attractor structure (See
green rectangles in Figs. 2A-C, and Fig. 2E), and not as a
detour that needed to be traced back. Specifically, in this
case, the bifurcation at epoch 800 marked the emergence of
a second “arm” of slow points (Fig. 2D) that subsequently
bifurcated into a plane-like structure (Fig. 2E). Common to
both bifurcations were the sudden emergence of instabilities
in the instantaneous gradient and the continual changes in
the weight matrices (Figs. 2B, C), but the former was hidden
in the sense that no immediate sustained changes were visi-
ble in the training curve (Fig. 2A). When we visualized the
changes in the weight matrix throughout the training (Fig.
2F), we observed the emergence of a block diagonal struc-
ture: The network experienced minimal changes in weight
values between bifurcations, but instantaneous adjustments
during bifurcation events. After the final bifurcation was
reached, the weights were gradually (but still rapidly) up-

dated, corresponding to the jump in the loss values.

Thus far, we have demonstrated on two illustrative examples
(Figs. 1 and 2) that passing through the bifurcations may be
reflected by the sudden drops in the training curves, with
a transition enabled by a qualitative shift in the networks’
attractor landscapes. This is signalled by the rapid fluctu-
ations of the gradient and sudden changes in the weight
matrix (Figs. 2B, C). To generalize beyond these examples,
we confirmed the sustained changes in the weight matrices
and the rapid fluctuations in the gradients by averaging over
several networks (Fig. S2). We also visually confirmed the
qualitative changes in the slow point landscapes during the
loss jumps for multiple networks (data not shown).

Overall, our analysis in this section provided a more nu-
anced view of our discussion in Fig. 1, where the search
phase had concluded swiftly. Specifically, a network initial-
ized far from the desired bifurcation boundary can undergo

4

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Figure 3: Bifurcations are gateways between weight subspaces with distinct attractor landscapes. A Schematic of the training
process as a dynamical trajectory in the weight space. The training passes through several weight subspaces separated by bifurcations and
settles in one with a desirable attractor landscape. B We computed the cosine similarity between the instantaneous update and the optimal
update directions, which is used to measure the quality of the learning signal at a given epoch. The curve shows the better alignment of
the model weight updates towards the final weight matrix after the bifurcation. C The slope of the neural activities, calculated as the
change between the activities at the end and the start of the trials, as a function of training epochs. During the bifurcation, the fraction of
ramping units with high absolute slopes increased dramatically. In these plots, ∆Epochs = 0 corresponds to the final bifurcation, where
the search phase concludes and the comprehension phase begins. For B and C, we trained 20 networks on the delayed addition task with
N = 40 and T = 40 for 3000 epochs, all but one successfully solved the task. Lines: means. Shaded regions: s.e.m. over 19 networks.

intermediary hidden bifurcations (Fig. 2), traversing the
solution landscape until the desired attractor landscape is
reached. Although the loss function may appear flat, the
gradient can experience regions of instability, signaling qual-
itative changes in the slow point landscape and indicating
bifurcations. Notably, after bifurcations, the weight matri-
ces did not revert back to their original states; rather, the
networks progressed through the bifurcations.

2.4. Characterizing learning dynamics in search and
comprehension phases

The training process of the PLRNNs often starts from a
randomly initialized weight subspace, which does not neces-
sarily include the “right” attractors that can facilitate solving
the task at hand. During training, the weights are updated
such that the RNN bifurcates into a particular weight sub-
space with desired attractor landscapes (Fig. 3A). In this
section, we return to investigate the differences in the learn-
ing speeds between the search and comprehension phases
(Fig. 1B) by studying a key change during bifurcations: the
increased quality of the learning signal.

To assess the quality of the gradient-based learning sig-
nals, we analyzed the weight changes in the PLRNNs at
each training step. Specifically, we measured the align-
ment of the instantaneous weight change, W (t+1)−W (t),
with the optimal learning direction, Wf −W (t), where Wf

represents the final weights of the fully trained network
(Fig. 3A). We computed this alignment, quantified via the
cosine similarity, over twenty networks and plotted as a
function of number of training epochs in Fig. 3B. Notably,
though the alignment was small earlier in the training, it was
above chance level across the both training phases (data not
shown). Thus, as a first step, we found that the learning sig-

nal from the ADAM-based gradient descent was beneficial
in both phases.

Next, since the gradient alignment remained low before
the bifurcation, we inferred that the weight updates were
suboptimal for driving the network through the beneficial
bifurcations into the desired weight subspace (Fig. 3A and
B). In contrast, the learning signal quality was much higher
in the comprehension phase (Fig. 3B), implying that gradi-
ent is effective for fine-tuning the task-subserving structures
once a desired attractor landscape is reached (Fig. 3B).
Taken together, the facts that gradient is an effective fine-
tuner, but not necessarily a good “attractor finder,” ties back
to our question at the end of Section 2.1 and provides an
explanation for the different training speeds observed in
search vs rapid comprehension phases.

2.5. Memory neurons with slowly varying activities
shorten the search phase

As the gradient remained suboptimal during the search
phase, we next investigated what factors played a role in the
learning efficiency. Specifically, we searched for the factors
that predicted the onset of the beneficial bifurcations.

The most consistent and effective predictor we observed was
the emergence of ramping “memory neurons” (Fig. 3C).
This observation aligned with our expectations, as neurons
with steadily increasing or decreasing activity have been
known to be associated with short-term memory processes
and time-keeping [30, 47, 48]. Our goal, then, is to de-
sign a learning algorithm that incentivizes the emergence
of these neurons, thereby transforming these correlational
observations (Fig. 3C) into a causal relationship.

Towards this goal, we first investigated the emergence of

5

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Figure 4: Enforcing time consistency in memory neurons promotes attractor formation. We trained 10 PLRNNs on the delayed
addition task with T = 40, where Nreg = 20 out of N = 40 neurons were regularized with λTCR = 1. A TCR increased the number of
networks passing the search phase. Dotted line: an example network. Solid lines: means. Shaded areas: s.e.m. over 10 networks. B We
plotted the attractor landscape of an example network, corresponding to the (i) - (iv) stages in A. The network undergoes a bifurcation
facilitated by TCR, in which a second arm is created on the slow-point landscape (red crosses). C Increasing TCR regularization speeds
up the training during the search phase. The comparisons were performed with two-sided Wilcoxon signed-rank tests (∗∗p < 10−2).

slowly varying ramping units in greater detail by study-
ing a recently proposed manifold attractor regularization
(MAR). Although MAR has been developed specifically for
PLRNNs and incentivizes only a certain type of attractor
structure [30], we were able to extract generalizable insights
(Appendix S1.3 for methodological details). Specifically,
designing a plane attractor (by hand) in a subset of units
abolished the search phase for the delayed addition task (Fig.
S3), in which networks may use plane attractors for keeping
the memory of the two cues. The units in this subset, termed
the “memory neurons” (the rest termed the “computation
neurons”), had the same ramping properties we observed
in Fig. 3C (Fig. S4). As expected, explicitly enforcing
the presence of such units enhanced the memory of cues in
PLRNNs (Fig. S5) and promoted faster training by selecting
a closer bifurcation point to the initial weights (Fig. S6).
Consequently, we were able to establish a causal and ex-
plainable relationship between the slowly varying ramping
units and the enhanced memory capabilities in PLRNNs,
confirming and expanding the prior literature with a mecha-
nistic explanation [30]. Though prior work has shown that
slow-units arise due to MAR and lead to better training, our
analysis here illuminates the reason why: Enforcing slow
units accelerate the search phase by incentivizing faster bi-
furcations towards the desired attractor landscapes.

In addition to memory neurons, we tested different values
of the weight decay and the training batch sizes as potential
predictors of shorter search phases. Orders of magnitude
variations in weight decay had little-to-no effects on the du-
ration of the search phase (Fig. S7), yet suboptimal weight
decay values led to decreased final performances of the
learned networks (Fig. S7). Therefore, even though it is
an important part of the optimization process, weight de-
cay did not provide an actionable insight to further probe
the learning signal quality in the search phase. In contrast,

when we trained PLRNNs with different numbers of batch
sizes, we observed a clear trend of decreased search phase
with lower batch sizes, i.e., increased stochasticity (Fig. S8).
Yet, perturbing the synaptic weights randomly before the
bifurcation without the aid of the gradient did not lead to
the beneficial bifurcations (data not shown). Thus, bringing
these observations together, we concluded that introducing
greater variability to the training process, e.g., addition of a
secondary objective instead of an absolute minimization of
the task loss, may facilitate faster transitions to the desired
bifurcation boundaries.

2.6. Temporal consistency incentivizes rapid formation
of robust attractors

So far, we established that the emergence of slow units
increases the memory capabilities, which can be explic-
itly enforced to improve training efficiency in PLRNNs
performing the delayed addition task (Fig. S6, [30]). In-
spired by this observation, we now propose the temporal
consistency regularization (TCR), a (potentially) biologi-
cally plausible mechanism that is agnostic to the network
architecture and the specific properties of the desired attrac-
tor landscapes:

LTCR =
1

T

T∑
t=1

Nreg∑
i=1

(xi[t]− xi[t− 1])2 (3)

In words, TCR encourages slow time dynamics for a subset
(Nreg out of N) of the neurons, which we term as “memory
neurons.” As we show in the rest of this section, regularizing
the task training with TCR, i.e., L = Ltask + λTCRLTCR,
incentivizes attractor formation and leads to superior and
robust short-term memory capabilities.

As a first step, we once again considered the PLRNNs in
Eq. (1), which were trained to perform delayed addition

6

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Figure 5: Enforcing temporal con-
sistency allows training chaotically
initialized lfRNNs to perform an ev-
idence accumulation task. A An il-
lustration of the evidence accumula-
tion task. B The differences between
network outputs are modulated based
on the coherence of the evidence. C-
D We trained chaotically initialized
lfRNNs (N = 50, Nreg = 25, τ =
10ms, ∆t = 8ms, and g = 4) for
30, 000 epochs to solve the evidence
accumulation task. C The evolution
of the mean squared error between the
(scaled) coherence of trials and the
differences in output channels plotted
as a function of training epochs. Solid
lines: means. Error bars: s.e.m. over
20 networks. D The training speed
during the search phase as a function
of temporal consistency regulariza-
tion strength. The comparisons were
performed with two-sided Wilcoxon
signed-rank tests (∗p < 0.05,∗∗p <
10−2, and ∗∗∗p < 10−3).

tasks with T = 40 (Fig. 4). Compared to unregularized net-
works, training PLRNNs with TCR led to shortened search
phase and faster convergence (Fig. 4A). Using the energy
minimization analysis (following Eq. (2)), we confirmed
that the faster convergence was indeed due to the emer-
gence of attractor structures (Fig. 4B). Moreover, notably,
higher values of λTCR resulted in faster training during the
search phase (Fig. 4C and Fig. S9), signalling the direct
involvement of TCR in shortening the search phase.

As a second step, we asked whether TCR can achieve rapid
convergence on par with enforcing optimal solutions. Given
that MAI/MAR establishes a plane attractor in the network
(Appendix S1.3), a feasible solution for the delayed addition
task, we can consider the search phase durations of networks
with MAR as approximate upper bounds. As expected,
the convergence speeds with TCR were generally slower;
however, the difference decreased with increasing values
of λTCR (Fig. S9). Notably, following a grid search over
hyperparameters, we found that 6 out of 10 networks could
complete the search phase in fewer than 100 epochs of
training (Fig. S10), indicating that TCR may perform almost
as well as MAR when optimized (Fig. S9).

As the final step, to test the robustness of the attractors incen-
tivized by TCR, we trained PLRNNs with and without TCR,
otherwise using the same hyperparameters, on delayed addi-
tion tasks. Then, during test trials, we injected random and
constant inputs to memory and computation neurons of the

regularized networks, and to the same number of randomly
selected neurons of the unregularized networks (See Ap-
pendix S1.9). We plotted the changes in the performances in
Fig. S11. Our results indicated that the regularized networks
were robust to random noise injected into memory neurons
(Fig. S11A) and constant noise injected to either types (Fig.
S11B). In contrast, the performance of the unregularized
networks abruptly degraded in both cases (Fig. S11). Thus,
we confirmed that TCR not only leads to faster search phase,
but also identifies robust attractor landscapes.

2.7. Rapid learning in chaotic leaky firing rate RNNs
with fixed time-scales

So far, we have shown that networks trained with tempo-
ral consistency regularization can be as effective as those
trained with an optimal regularization for the particular
architecture and task [30]. To illustrate the network- and
task-agnostic nature of TCR, we next focused on leaky firing
rate RNNs (lfRNNs) [28, 49]:

τ
dr(t)

dt
= −r(t) + tanh(Wr(t) + Cs(t) + h). (4)

Here, τ ∈ R is the pre-defined, non-trainable, neuronal
decay time, other components are defined similar to Eq. (1),
and with x(t) = Wr(t) +Cs(t) + h. For our purposes, we
set h = 0, as our tasks of interest can be trained without
biases. In practice, we discretize Eq. (4) with a time step
∆t (Appendix S1.1).

7

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Figure 6: Temporal consistency fa-
cilitates online learning of cue-
associated fixed-points. A The train-
ing procedure starts with a randomly
initialized chaotic RNN. A rectangu-
lar pulse is applied through a ran-
domly initialized, non-trainable input
weight matrix to the network. For a
pre-defined duration after the pulse
offset, the freeze-in training takes
place. B We visualized the final out-
put of a fully trained network with 25
distinct, cue-associated fixed-point at-
tractors. C The maximum eigenval-
ues of the Jacobian matrices became
non-positive (attractive fixed-points)
after as little as 12 epochs of train-
ing. D We visualized 10 out of 25
cue-associated fixed-points. Pulses
are shown during a very short dura-
tion (red dotted lines), and drive the
transitions between fixed-points.

Next, we trained lfRNNs to perform the evidence accumula-
tion tasks (Figs. 5 and S12). In the evidence accumulation
task, there are two input and two output channels to the net-
work (Fig. 5A). While the pulses in the input channels are
sampled from a binomial distribution for each time point,
the network is tasked to indicate which input channel re-
ceived more pulses, i.e., evidence, by outputting a pulse
in the respective output channel. Higher coherence of the
evidence, i.e., when higher fraction of the total evidence was
presented predominantly in one of the channels, corresponds
to an easier task (Fig. 5B).

As a first test, we confirmed that even unregularized lfRNNs
can solve this task when initialized with Xavier initialization,
though TCR still increased the speed with which the search
phase was concluded (Fig. S12). Surprisingly, TCR showed
its true value when lfRNNs were initialized in a chaotic
regime (controlled by a parameter, g, see Appendix S1.1),
where recurrent connections are notoriously hard to train
[26, 27, 43, 44]. Specifically, even after 30,000 epochs of
training, none of the 20 unregularized networks were able to
undergo the right bifurcations (Fig. 5C). For these networks,
the errors plateaued on a particular value, similar to the loss
curve plateaus of the delayed addition task (Figs. 1 and
2). This was only overcome by networks trained with TCR
(applied to Nreg = 25 out of N = 50 neurons), where 14
out of 20 networks bifurcated and were able to solve the task.
Moreover, increasing the TCR strength, λTCR, increased the
training speed (until saturated) during the search phase (Fig.
5D), similar to the delayed addition task (Fig. 4C).

Finally, we provided additional evidence for the generality
of our findings so far with two experiments: i) we trained
long short-term memory (LSTM) networks on the delayed
addition tasks (Fig. S13), and ii) we trained chaotically

initialized lfRNNs on the 3-bit flip flop tasks (Fig. S14). In
both cases, in line with our results so far, TCR led to faster
training during the search phases.

2.8. Cue-associated fixed points with online freeze-in
learning

In essence, TCR forces the derivative of network activities
towards zero for a subset of neurons. Discretization of this
term leads to an error signal that is simply the difference
between current and previous neural activities, which can be
applied as a local and online rule (Appendix S1.11):

∆W [t] = −λTCR (r[t]− r[t−∆t]) r[t−∆t]T , (5)

where ∆W [t] stands for the changes in the recurrent weights.
We applied this rule to learn cue-associated fixed-points,
which arose rapidly through online training starting with a
randomly connected chaotic lfRNNs (Fig. 6A). Since online
learning freezes the network in time, but only locally, we
named this paradigm freeze-in training.

Using the freeze-in training, we trained 25 distinct fixed-
point attractors, each of which was associated with a cue
(Fig. 6B). Notably, training converged quickly, leading to
an attractive dynamics around the fixed-points (Appendix
S1.11, Fig. 6C). Though the attractive fixed-points were
achievable by cue inputs, their existence was not dependent
on them since the network was trained to remain in the
fixed-points long after the cue offset (Fig. 6D). Here, the
cues were used only to create the associations.

Overall, using an online version of temporal consistency,
we were able to train cue-associated fixed-point attractors
into the network without making use of any global learning
signals or explicit supervision.

8

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

3. Discussion
In this work, we performed high-dimensional bifurcation
analyses of RNNs during learning and introduced the tempo-
ral consistency as a biologically plausible and local learning
rule. These findings lead to several biological and computa-
tional insights that we summarize below.

Analysis of learning mechanisms in task-trained RNNs:
In this work, we studied the bifurcation mechanisms as
RNNs were learning to perform short-term memory tasks.
Prior work performed similar analyses in dynamical system
reconstruction problems by primarily focusing on specific
attractor structures [30, 37]. Here, we studied short-term
memory tasks that had sparse learning signals due to the
delay period with little-to-no meaningful input or output
signals. In our studies, we had not assigned any particular
attractor structure or architectures to the networks. Instead,
our methodology allowed the attractor landscapes to be
found during the task-training, which we reverse-engineered
to extract mechanistic insights on the emergence of attrac-
tors subserving short-term memory.

Use of energy minimization for detecting bifurcations:
Our goal in this work has been to study bifurcations in a gen-
eralized setting, which stands in contrast to previous work
that used semi-analytical methods to study the (traditional,
e.g., fixed-points and k-cycles) bifurcations in PLRNNs
[37]. To study bifurcations in high-dimensional systems, we
operationalized slow-point analysis (Eq. (2)) to study the
qualitative changes in the kinetic energy landscape, a well-
suited method for exploring a broad range of bifurcations in
RNNs. With the help of this methodology, we were able to
identify the bifurcations in the delayed addition task (Figs. 1
and 2), which did not manifest through changes in the num-
ber of fixed points or limit cycles [36, 37, 45]. Therefore,
our findings illustrate the importance of studying a broad
class of high-dimensional bifurcations to reverse-engineer
the learning dynamics in RNNs.

New mechanistic insights into the learning signal quality:
Our findings provided evidence for the common sense as-
sumption, a generalization of intuition gained from studying
low-dimensional dynamical systems [36], that the weight
space consists of multiple subspaces with different geome-
tries of the attractor structure (Fig. 3). We found that gradi-
ent updates drive the network towards the optimal weights
rapidly only if the network dynamics are already in the right
subspace with desired attractor structures, but are subop-
timal as learning signals otherwise. To enter the optimal
attractor subspace, the network might have to successfully
traverse one or more subspaces with very little, yet non-zero,
help from the gradient signals. Thus, the solution to increas-
ing the training speed in large scale foundational models
may lie, beyond developing new optimizers [50], in design-
ing loss functions whose gradients incentivize beneficial

bifurcations and are optimal during the search phase.

Introduction of the temporal consistency regularization:
In this work, we assigned a subset of neurons the role of
“memory neurons,” which were encouraged to have slow-
time dynamics (Fig. 4). The resulting temporal consis-
tency regularization allowed training leaky firing rate RNNs,
which do not have a RELU non-linearity or trainable neu-
ronal time scales, under even chaotic initialization and po-
tentially in an online manner (Figs. 5 and 6). Unlike prior
solutions to training RNNs despite chaos [26], temporal con-
sistency regularization is compatible with back-propagation
through time and allowed using established algorithms (here,
ADAM optimizer [50]) for training RNNs.

Implications for learning in biological systems: Our work
may explain the mechanism of a widely observed phe-
nomenon in systems neuroscience: slow-time dynamics and
ramping neural activities play a vital role in memory and
associative computations [30, 47, 48]. As we have shown in
this work, a plausible explanation for this phenomenon may
be that directly encouraging slow-time dynamics in biologi-
cal networks can promote attractor formation, thereby short-
ening the search phase via beneficial bifurcations. Moreover,
the temporal consistency may carry long-term dependencies
in an online scenario (Fig. 6), without requiring explicit cal-
culation of the gradients of a global loss function, e.g., via
backpropagation through time, which often fails in chaotic
networks to begin with [43, 44]. Consequently, a testable
biological prediction of our work is the putative existence
of a very specific form of short-term synaptic plasticity
mechanism that implements TCR biologically.

4. Conclusion
In this work, we studied learning dynamics, bifurcations,
and attractor formation in recurrent networks. We showed
how different regions of weight space correspond to dif-
ferent attractor landscapes, and uncovered that gradients
alone often struggle to find the “right” weight subspaces
with desired attractors. We re-analyzed manifold attrac-
tor regularization proposed specifically for PLRNNs [30]
and discovered that enforcing slow-time dynamics explic-
itly may induce attractor formation, giving rise to enhanced
short-term memory capabilities. Inspired by these obser-
vations, we proposed temporal consistency regularization,
an attractor structure-agnostic, architecture-agnostic, and
biologically plausible learning mechanism for incentivizing
attractor formation. We found that TCR led to faster search
phase by driving beneficial bifurcations, and allowed train-
ing chaotic networks in offline and online scenarios. Overall,
our work is a significant leap for understanding the learning
mechanisms in biological and artificial networks, empha-
sizing the importance of studying currently underexplored
topics in high-dimensional dynamical system theory.

9

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Acknowledgements
We thank Dr. Itamar Landau, Dr. Surya Ganguli, Dr. Nina
Miolane, Mert Yuksekgonul, and Abby Bertics for their
helpful feedback on the manuscript and valuable interac-
tions throughout the project. MJS gratefully acknowledges
funding from the Simons Collaboration on the Global Brain,
the Vannevar Bush Faculty Fellowship Program of the U.S.
Department of Defense, and Howard Hughes Medical Insti-
tute. FD receives funding from Stanford University’s Mind,
Brain, Computation and Technology program, which is sup-
ported by the Stanford Wu Tsai Neuroscience Institute. FD
expresses gratitude for the valuable mentorship he received
at PHI Lab during his internship at NTT Research.

Contribution statement
FD proposed and designed the project under the supervision
of HT and MJS. UH, LS, YJ, and FD performed the experi-
ments, whereas AS and OA wrote the code for the flip flop
and evidence accumulation tasks, respectively. All authors
contributed to the writing of the manuscript.

Code and data availability
The reproduction code for the experiments performed in this
work will be made public upon publication in an archival
venue. Until then, they are available in a private repository
and can be shared upon reasonable request.

Limitations
We note that implementing TCR required using PyTorch’s
RNNCell module, which is significantly slower compared
to the RNN module. Thus, training speed is significantly
suboptimal without targeted development of modules that
allow direct access to internal RNN states.

References
[1] Daniel Durstewitz, Georgia Koppe, and Max Ingo

Thurm. Reconstructing computational dynamics from
neural measurements with recurrent neural networks.
bioRxiv, 2022.

[2] Matthew G Perich, Charlotte Arlt, Sofia Soares,
Megan E Young, Clayton P Mosher, Juri Minxha,
Eugene Carter, Ueli Rutishauser, Peter H Rudebeck,
Christopher D Harvey, et al. Inferring brain-wide
interactions using data-constrained recurrent neural
network models. bioRxiv, pages 2020–12, 2021.

[3] David Sussillo, Mark M Churchland, Matthew T Kauf-
man, and Krishna V Shenoy. A neural network that
finds a naturalistic solution for the production of mus-
cle activity. Nature neuroscience, 18(7):1025–1033,
2015.

[4] Adrian Valente, Jonathan W Pillow, and Srdjan Osto-
jic. Extracting computational mechanisms from neural
data using low-rank rnns. Advances in Neural Infor-
mation Processing Systems, 35:24072–24086, 2022.

[5] Arseny Finkelstein, Lorenzo Fontolan, Michael N
Economo, Nuo Li, Sandro Romani, and Karel Svo-
boda. Attractor dynamics gate cortical information
flow during decision-making. Nature Neuroscience,
24(6):843–850, 2021.

[6] Christopher Langdon, Mikhail Genkin, and Tatiana A
Engel. A unifying perspective on neural manifolds and
circuits for cognition. Nature Reviews Neuroscience,
pages 1–15, 2023.

[7] Niru Maheswaranathan, Alex Williams, Matthew D.
Golub, Surya Ganguli, and David Sussillo. Reverse
engineering recurrent networks for sentiment classifi-
cation reveals line attractor dynamics, 2019.

[8] David Sussillo and Omri Barak. Opening the black
box: low-dimensional dynamics in high-dimensional
recurrent neural networks. Neural computation,
25(3):626–649, 2013.

[9] Matthew G Perich and Kanaka Rajan. Rethinking
brain-wide interactions through multi-region ‘network
of networks’ models. Current opinion in neurobiology,
65:146–151, 2020.

[10] Steven L. Brunton, Joshua L. Proctor, and J. Nathan
Kutz. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences,
113(15):3932–3937, March 2016.

[11] Samuel H. Rudy, Steven L. Brunton, Joshua L. Proc-
tor, and J. Nathan Kutz. Data-driven discovery
of partial differential equations. Science Advances,
3(4):e1602614, 2017.

[12] Brian M. de Silva, Kathleen Champion, Markus
Quade, Jean-Christophe Loiseau, J. Nathan Kutz, and
Steven L. Brunton. Pysindy: A python package for the
sparse identification of nonlinear dynamics from data,
2020.

[13] Mikail Khona and Ila R. Fiete. Attractor and integrator
networks in the brain. Nature Reviews Neuroscience,
23(12):744–766, Dec 2022.

[14] Daniel Levenstein, Veronica A. Alvarez, Asohan Ama-
rasingham, Habiba Azab, Zhe S. Chen, Richard C.
Gerkin, Andrea Hasenstaub, Ramakrishnan Iyer, Re-
naud B. Jolivet, Sarah Marzen, Joseph D. Monaco,
Astrid A. Prinz, Salma Quraishi, Fidel Santamaria,
Sabyasachi Shivkumar, Matthew F. Singh, Roger

10

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Traub, Farzan Nadim, Horacio G. Rotstein, and
A. David Redish. On the role of theory and modeling
in neuroscience. Journal of Neuroscience, 43(7):1074–
1088, 2023.

[15] Elia Turner and Omri Barak. The simplicity bias in
multi-task rnns: Shared attractors, reuse of dynamics,
and geometric representation. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine,
editors, Advances in Neural Information Processing
Systems, volume 36, pages 25495–25507. Curran As-
sociates, Inc., 2023.

[16] KiJung Yoon, Michael A. Buice, Caswell Barry, Robin
Hayman, Neil Burgess, and Ila R. Fiete. Specific evi-
dence of low-dimensional continuous attractor dynam-
ics in grid cells. Nature Neuroscience, 16(8):1077–
1084, Aug 2013.

[17] Rishidev Chaudhuri, Berk Gerçek, Biraj Pandey,
Adrien Peyrache, and Ila Fiete. The intrinsic attrac-
tor manifold and population dynamics of a canonical
cognitive circuit across waking and sleep. Nature Neu-
roscience, 22(9):1512–1520, Sep 2019.

[18] A David Redish, Adam N Elga, and David S Touretzky.
A coupled attractor model of the rodent head direction
system. Network: Computation in Neural Systems,
7(4):671, nov 1996.

[19] Kanaka Rajan, Christopher D Harvey, and David W
Tank. Recurrent network models of sequence genera-
tion and memory. Neuron, 90(1):128–142, 2016.

[20] Lea Duncker and Maneesh Sahani. Dynamics on the
manifold: Identifying computational dynamical activ-
ity from neural population recordings. Current opinion
in neurobiology, 70:163–170, 2021.

[21] Zach Cohen, Brian DePasquale, Mikio C Aoi, and
Jonathan W Pillow. Recurrent dynamics of prefrontal
cortex during context-dependent decision-making.
bioRxiv, pages 2020–11, 2020.

[22] Philippe Faure and Henri Korn. Is there chaos in the
brain? i. concepts of nonlinear dynamics and methods
of investigation. Comptes Rendus de l’Académie des
Sciences - Series III - Sciences de la Vie, 324(9):773–
793, 2001.

[23] Christine A Skarda and Walter J Freeman. Chaos and
the new science of the brain. Concepts in neuroscience,
1(2):275–285, 1990.

[24] Jonas Mikhaeil, Zahra Monfared, and Daniel Durste-
witz. On the difficulty of learning chaotic dynamics
with rnns. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, editors, Advances in

Neural Information Processing Systems, volume 35,
pages 11297–11312. Curran Associates, Inc., 2022.

[25] Y. Sato and S. Nagaya. Evolutionary algorithms that
generate recurrent neural networks for learning chaos
dynamics. In Proceedings of IEEE International Con-
ference on Evolutionary Computation, pages 144–149,
1996.

[26] David Sussillo and Larry F Abbott. Generating coher-
ent patterns of activity from chaotic neural networks.
Neuron, 63(4):544–557, 2009.

[27] Brian DePasquale, Christopher J Cueva, Kanaka Rajan,
G Sean Escola, and LF Abbott. full-force: A target-
based method for training recurrent networks. PloS
one, 13(2):e0191527, 2018.

[28] Fatih Dinc, Adam Shai, Mark Schnitzer, and Hidenori
Tanaka. Cornn: Convex optimization of recurrent
neural networks for rapid inference of neural dynamics.
Advances in Neural Information Processing Systems,
36:51273–51301, 2023.

[29] Manuel Brenner, Florian Hess, Jonas M Mikhaeil,
Leonard F Bereska, Zahra Monfared, Po-Chen Kuo,
and Daniel Durstewitz. Tractable dendritic RNNs for
reconstructing nonlinear dynamical systems. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato, editors, Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, pages 2292–2320. PMLR,
17–23 Jul 2022.

[30] Dominik Schmidt, Georgia Koppe, Zahra Monfared,
Max Beutelspacher, and Daniel Durstewitz. Identify-
ing nonlinear dynamical systems with multiple time
scales and long-range dependencies. In International
Conference on Learning Representations, 2021.

[31] Georgia Koppe, Hazem Toutounji, Peter Kirsch, Ste-
fanie Lis, and Daniel Durstewitz. Identifying nonlinear
dynamical systems via generative recurrent neural net-
works with applications to fmri. PLoS computational
biology, 15(8):e1007263, 2019.

[32] Dhruvit Patel and Edward Ott. Using machine learn-
ing to anticipate tipping points and extrapolate to post-
tipping dynamics of non-stationary dynamical systems.
Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence, 33(2), February 2023.

[33] Z. Monfared and D. Durstewitz. Existence of n-cycles
and border-collision bifurcations in piecewise-linear
continuous maps with applications to recurrent neural
networks. Nonlinear Dynamics, 101(2):1037–1052,
Jul 2020.

11

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

[34] Kenji Doya et al. Bifurcations in the learning of recur-
rent neural networks 3. learning (RTRL), 3:17, 1992.

[35] Roberto Marichal, Jose Piñeiro, and Gonzalez E. Study
of fold bifurcation in a discrete recurrent neural net-
work. Lecture Notes in Engineering and Computer
Science, 2179, 10 2009.

[36] Steven H Strogatz. Nonlinear dynamics and chaos:
With applications to physics, biology, chemistry, and
engineering. CRC press, 2018.

[37] Lukas Eisenmann, Zahra Monfared, Niclas Alexan-
der Göring, and Daniel Durstewitz. Bifurcations
and loss jumps in rnn training. arXiv preprint
arXiv:2310.17561, 2023.

[38] Robert Haschke and Jochen J. Steil. Input space bifur-
cation manifolds of recurrent neural networks. Neuro-
computing, 64:25–38, 2005. Trends in Neurocomput-
ing: 12th European Symposium on Artificial Neural
Networks 2004.

[39] Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. On the difficulty of training recurrent neural
networks. In International conference on machine
learning, pages 1310–1318. Pmlr, 2013.

[40] Sekitoshi Kanai, Yasuhiro Fujiwara, and Sotetsu Iwa-
mura. Preventing gradient explosions in gated recur-
rent units. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Process-
ing Systems, volume 30. Curran Associates, Inc., 2017.

[41] Alexander Rehmer and Andreas Kroll. The effect of
the forget gate on bifurcation boundaries and dynamics
in recurrent neural networks and its implications for
gradient-based optimization. In 2022 International
Joint Conference on Neural Networks (IJCNN), pages
01–08, 2022.

[42] António H. Ribeiro, Koen Tiels, Luis A. Aguirre, and
Thomas Schön. Beyond exploding and vanishing gra-
dients: analysing rnn training using attractors and
smoothness. In Silvia Chiappa and Roberto Calandra,
editors, Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics,
volume 108 of Proceedings of Machine Learning Re-
search, pages 2370–2380. PMLR, 26–28 Aug 2020.

[43] Wolfgang Maass, Thomas Natschläger, and Henry
Markram. Real-time computing without stable states:
A new framework for neural computation based on per-
turbations. Neural computation, 14(11):2531–2560,
2002.

[44] Herbert Jaeger and Harald Haas. Harnessing nonlin-
earity: Predicting chaotic systems and saving energy
in wireless communication. science, 304(5667):78–80,
2004.

[45] Peter DelMastro, Rushiv Arora, Edward Rietman, and
Hava T Siegelmann. On the dynamics of learning
time-aware behavior with recurrent neural networks.
arXiv preprint arXiv:2306.07125, 2023.

[46] Florian Hess, Zahra Monfared, Manuel Brenner, and
Daniel Durstewitz. Generalized teacher forcing for
learning chaotic dynamics. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceedings of
the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pages 13017–13049. PMLR, 23–29 Jul
2023.

[47] Christopher J Cueva, Alex Saez, Encarni Marcos,
Aldo Genovesio, Mehrdad Jazayeri, Ranulfo Romo,
C Daniel Salzman, Michael N Shadlen, and Stefano
Fusi. Low-dimensional dynamics for working mem-
ory and time encoding. Proceedings of the National
Academy of Sciences, 117(37):23021–23032, 2020.

[48] Nandakumar S Narayanan. Ramping activity is a corti-
cal mechanism of temporal control of action. Current
opinion in behavioral sciences, 8:226–230, 2016.

[49] Nicolas Y Masse, Guangyu R Yang, H Francis Song,
Xiao-Jing Wang, and David J Freedman. Circuit mech-
anisms for the maintenance and manipulation of in-
formation in working memory. Nature neuroscience,
22(7):1159–1167, 2019.

[50] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

12

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

S1. Methods
S1.1. Network architectures
PIECE-WISE LINEAR RECURRENT NEURAL NETWORKS

We considered piece-wise linear recurrent networks (PLRNNs) [31, 30] for most of our experiments unless otherwise
specified. PLRNN dynamical systems equation is as follows.

x[t] = Ax[t− 1] +Wϕ(x[t− 1]) + Cs[t] + h (S1)

Here, x[t] ∈ RN is the network currents/ states. N number of neurons, ϕ(x[t]) is the network firing rates with ReLU
non-linearity; ϕ(x[t])i = max(0, xi[t]), i ∈ 1, ..., N . A ∈ RN×N is a diagonal matrix encoding decay time constants of
neurons. W ∈ RN×N is the recurrent connectivity matrix. s[t] ∈ RK is the external input with shape K. C ∈ RN×K

injects inputs into neurons. h ∈ RN is the bias.

To obtain the predictions ô[T] ∈ R, we linearly project the currents at the end of the trials x[T].

ô[T] = Woutx[T] + bout (S2)

Here, Wout ∈ R1×N projects the currents onto the final predictions. bout ∈ R is the output bias. Unless otherwise
specified, we allow the network to learn A,W,C, h,Wout and bout to minimize the mean squared error between the target
(oT = u1

t1 + u1
t2 for the delayed addition task) and the network predictions ô[T].

LEAKY FIRING RATE RECURRENT NEURAL NETWORKS

For the analysis on networks with fixed-time scales, we used the leaky firing rate RNNs:

τ
dr(t)

dt
= −r(t) + tanh(Wr(t) + Cs(t)), (S3)

where τ is the fixed neuronal time scales and the rest is defined as above. In practice, we used a discretized version of these
equations:

r[t+∆t] = (1− α)r[t] + α tanh(Wr[t] + Cs[t]), (S4)

where α = ∆t/τ is the discretization constant. We used these equations to perform forward and backwards propagation
in all experiments. For all experiments, τ = 10ms and ∆t = 8ms, leading to α = 0.8. When lfRNNs are initialized in
chaotic regime, we sampled the weight matrices from a Gaussian distribution with zero mean and standard deviation of
g/
√
N with g ≥ 1.

S1.2. Task details
DELAYED ADDITION TASK

The delayed addition task consists of several train and test trials. Input to each trial, U = {(u1
1, u

2
1), (u

1
2, u

2
2), ..., (u

1
T , u

2
T)},

has the shape of T × 2, where T is the trial length. Here,

u1
t ∼ U [0, 1) (S5)

is sampled randomly from a uniform distribution between 0 and 1, whereas

u2
t =

{
1 if t = t1 or t = t2

0 otherwise
(S6)

is the cue signal that is mostly zero except for times t = t1 and t = t2. Here, t1 and t2 are randomly sampled such that
t1 < 10 and t2 < T/2. The goal of the task is to output u1

t1 + u1
t2 at the final time step T . This requires the network to have

a memory that can store a number for at least T/2 time steps. To measure the network performances, we calculated the
fraction of correct trials. Specifically, we counted the trials where |oT − ô[T]| < 0.04 and presented it as a fraction. The
task was used in previous work to identify memory capabilities in PLRNNs [30].

13

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

EVIDENCE ACCUMULATION TASK

In the evidence accumulation task, the network receives two inputs and has two corresponding outputs. Two inputs contain
transient pulses during the evidence interval, at random time points. The task is to output high after a certain time point,
only in the output channel corresponding to the input channel with the higher number of transient pulses, e.g., evidence. The
network should sustain this output until the end of the trial. See Fig. 5A for an illustration.

3-BIT FLIP FLOP TASK

In the 3-bit flip flop task, the RNN has 3 outputs corresponding to the state of 3 memory bits and receives transient ±1
pulses from the corresponding 3 inputs. The task is to output in each channel the latest sign of the corresponding input
channel, leading to a total of 23 memory states. The network is required to sustain that value until the corresponding input
changes. See Fig. S14A for an illustration.

S1.3. Manifold attractor regularization
Recent work has demonstrated the promise in promoting attractor formation [30]. In this framework, memory units are
regularized to form a line-attractor subspace, while computation units remain unregularized, resulting in enhanced memory
capacity:

LMAR = λMAR

Nreg∑
i=1

(Aii − 1)2 +

Nreg∑
i=1

N∑
j=1
j ̸=i

W 2
i,j +

Nreg∑
i=1

h2
i

 . (S7)

Here, MAR enforces the diagonal time scales to be 1 (perfect memory of previous state), and the weights and biases to be
zero. If this is exactly enforced on the inputs (λMAR →∞), we are left with:

x[t+ 1] = x[t] + Cs[t], (S8)

which is a plane attractor and performs integration. In the case of manifold attractor initialization (MAI), only a subset of
neurons are initialized with this plane attractor, creating a sub-circuit capable of performing integration of inputs.

Overall, the slow time dynamics induced by MAI/MAR directly stem from the fact that they incentivize explicit plane
attractor formation, which is specifically beneficial to the delayed-addition tasks. Moreover, MAI/MAR require the
dynamical system equation to be in a specific format, making them inapplicable to general architectures.

S1.4. Hyperparameter selection and details on figures
Unless otherwise specified, we trained the networks on the delayed addition task with Adam optimizer [50], a train batch
size of 500, a test batch size of 100, and 100,000 train and 10,000 test trials. We ran most of the experiments with PyTorch
framework on a desktop computer with two GeForce RTX 4090 GPUs.

Figs. 1 and S1: In these figures, we trained an unregularized PLRNN on a delayed addition task with T = 40. We initialized
all the weights (i.e. A,W,C, h) using PyTorch’s default recurrent network initialization method, by sampling from a uniform
distribution of [− 1√

N
, 1√

N
]. We kept the bout learnable and initialized x[0] from a standard normal distribution. The network

was trained for 500 epochs, with 10.0 gradient clipping. To optimize the learning rate, we repeated the experiment 3 times
with a learning rate from {0.0015, 0.001}. A learning rate of 0.0015 was picked.

Figs. 2, 3, and S2: To further analyze the gradient alignment and bifurcations, we repeated the same experiments in Fig. 1
with T = 40 and 3, 000 epochs with a stable 0.001 learning rate. To make the training harder, the networks were shown
1, 000 training trials and 10, 000 test trials.

Fig. 4: To find out the effect of TCR (Fig. 4), we conducted experiments with unregularized PLRNNs, PLRNNs with MAR,
and PLRNNs with TCR. We considered the same network implementations, initialization method, and hyper-parameters
used in the previous work [30], T = 40, 100 epochs of training, and a learning rate of 0.001 for all the networks. A gradient
clipping of 3.0 was applied for all the networks. For TCR, we used λTCR = 1.0 as the regularization strength. For all the
networks with TCR, we regularized 50% of the neurons, i.e. Nreg = 40× 0.5 = 20. We repeated the experiments 10 times
and reported the mean and the standard error (Fig. 4A, B). For Fig. 4C, we summarized the search phase duration of the
networks presented in Fig. S9 (See below).

Fig. S3: This figure compares the performances of unregularized PLRNNs vs those trained with MAR and MAI from the
experiments in Fig. S9 (See below).

14

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Fig. S4: To reproduce MAR results from [30] (Fig. S4A), we considered three networks; unregularized PLRNN,
PLRNN with MAI and PLRNN with MAI and MAR. We followed hyper-parameters used in [30] for T ∈
{20, 40, 60, 100, 200, 300, 400, 500}. Experiments were repeated across 10 networks per condition.

Fig. S5: For this experiment, picked 10 unregularized PLRNNs and 10 PLRNNs trained with MAR and MAI for the delayed
addition task (T = 60) from the networks shown in Fig. S4A.

Fig. S6: We trained PLRNNs using the same configuration as in Figs. 2, 3, and S2, but on harder delayed addition tasks
(T = 40, 60, 100, 200). For MAR, we used λMAR = 0.1 and regularized half of the N = 40 neurons.

Figs. S7 and S8: These figures analyzed the effect of weight decay and batch size respectively. All the other hyper-
parameters were consistent with experiments from Fig. S9 (see below).

Fig. S9: Here, we conducted experiments with the same hyperparameters used for bifurcation analysis for unregularized
PLRNNs (Fig. 1). In addition to unregularized PLRNNs, here we considered PLRNNs with MAI, PLRNNs with MAR
(λMAR = 5.0), and PLRNNs with TCR (λTCR ∈ {0.001, 0.01, 0.1}). For all the networks with MAR/ TCR/ MAI, we
regularized only half of the N = 40 neurons. We repeated all the experiments 10 times.

Fig. S10: We performed a grid search over TCR parameters, otherwise using the same parameters as in Fig. 4A, B.

Fig. S11: For noise-injection experiments, we considered the same configurations used for Fig. 1 bifurcation analysis,
except with a learning rate of 0.001 and a weight decay of 10−8. Experiments were repeated 3 times per condition.

Figs. 5 and S12: For the evidence accumulation task, we initialized the RNNs with g = 4 for Fig. 5 and with Xavier
initialization for Fig. S12. For illustrations in Fig. 5A-B, we used an unregularized lfRNN with N = 50 neurons, which
was initialized with Xavier initialization and trained for 3, 000 epochs. For all other experiments, we trained 20 lfRNNs per
condition, with Adam optimizer and 0.001 learning rate. We used 100 training trials, each trial was 400ms in duration. The
evidence was presented between [100, 300]ms intervals. Expected number of flips per channel was 4. The coherence of each
task was sampled randomly from a uniform distribution on [−1, 1].

Fig. S13: For the LSTM experiments, we trained 50 networks for 2000 epochs with Adam optimizer, gradient clipping
parameter of 5, weight decay rate of 10−8, and 0.001 learning rate. We varied λTCR ∈ {0, 10−3, 10−2, 0.1, 1}, which was
applied to the cell states of Nreg = 20 out of N = 40 neurons. Both the training and test datasets contained 1, 000 trials
each.

Fig. S14: For flip-flip experiments, we initialized the lfRNNs with g = 3.0. We trained 20 networks for 2000 epochs with
Adam optimizer and 0.001 learning rate. The training dataset contained 100 trials with a duration of 400ms. Expected
number of flips per channel was 8.

Fig. 6: See Appendix S1.11. In Fig. 6C, boxes contain data points from lower to upper quartiles, with the middle line
denoting the median. The upper and lower whiskers are 1.5 times the interquartile distance.

S1.5. Energy minimization
To extract the slow points of the network, the core implementation is based on previously published work [8], though we
modified it slightly by replacing the minimization algorithm with a Pytorch based solver to speed up the process. We first
picked a data batch with 100 trials from the test set. We obtained currents for all the trials. This resulted in 100× T total
number of states. 500 states were randomly picked (x[0]) as the initialization points for energy minimization. Starting from
each x[0], we minimized energy using stochastic gradient descent in a recursive manner:

Algorithm S1 Energy minimization

xe[0]← x[0]
for t ∈ 0, . . . , number of steps -1 do

Generate x[t+ 1] from x[t] using one step of our model in eq. 1
E[t]← ||x[t+ 1]− x[t]||22
xe[t+ 1]← x[t]− α∂E(t)

∂x[t]

∣∣∣
x[t]

x[t+ 1]← xe[t+ 1]
end for

15

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Here, α = 0.1 and the number of steps is 1000. [xe[0], xe[1], ..., xe[1000]] gives a single energy minimization trajectory.
Final states xe[1000] for each initialization were visualized as red crosses using PCA in Fig. 1, 2, 4, and S1.

S1.6. Visualization analysis
To visualize attractor manifolds, we reduced the dimensionality of x[t] and xe[t] into 3 with Principle Component Analysis
(PCA). To fit the data to PCA, we first fed 100 trials from the test set to the fully-trained PLRNN and obtained the
corresponding currents x[t]s. All the states in x[t]s are used to fit the PCA. The resultant PCA model transformed all the
xe[t]s and x[t]s obtained from checkpoint models during the training.

S1.7. Stimulus Decoding Experiments
To test the memory capabilities of attractor-incentivized networks compared to unregularized PLRNNs, we conducted cue
and stimulus decoding experiments. We picked 10 unregularized PLRNNs and 10 PLRNNs trained with MAR and MAI for
the delayed addition task from the networks shown in Fig. S4 A: T = 60.

We first created a new addition dataset with predetermined cue positions (i.e. t1 = 5 and t2 = T
2 − 1). The goal was

to quantify networks ability to predict u1
t1 , u

1
t2 , and u1

t1 + u1
t2 from instantaneous currents of all the neurons (xS [t] =

xi[t]i={1,...,N}), memory neurons (xS1 [t] = xi[t]i={1,...,Nreg}), and computational neurons (xS2 [t] = xi[t]i={Nreg+1,...,N})
separately. Analysis was conducted for all the time steps, t ∈ 1, ..., T .

To predict cues and/or targets from neuronal activity, we used linear regression models. For a given network and a time step
t, 9 linear regression models were independently fitted to map 3 types of instantaneous inputs (i.e. xS [t], xS1

[t], xS2
[t]) into

3 types of decoding targets (i.e. u1
t1 , u

1
t2 , and u1

t1 + u1
t2). We repeated the procedure for t ∈ {1, ..., T} and all 20 networks

(i.e., 10 unregularized PLRNNs and 10 regularized PLRNNs). All the fitting was done on the training dataset with 10, 000
trials and testing was done on the testing dataset with 1, 000 trials.

S1.8. Frequency Analysis
We analyzed frequency distributions of x[t] belonging to unregularized PLRNNs, PLRNNs with MAI, and PLRNNs with
MAI+MAR. To conduct this analysis, we selected 3 representative networks from Fig. S4A, with T = 20. We first
concatenated 50 trials with T = 20 from the test set and obtained a long trial with a temporal length of T = 1000. Currents
x[t]s were obtained for this long input trial. Obtained currents for 10 neurons are shown in Fig. S4C.

To obtain the frequency plots, we separately considered activities, x[t], of computational and memory neurons. We first
divided the trajectories of the neuronal currents by the maximum current of each trajectory. Fast Fourier transform followed
by frequency shift was then applied. We then obtained absolute values from the resultant frequency sequence. The resultant
frequency sequences were divided again by the maximum frequency component of the corresponding frequency sequence.
Finally, we took the mean frequency sequence over neurons. Resulting frequency plots are shown in Fig. S4C.

S1.9. Intervention experiments
We performed intervention experiments (Fig. S11) by injecting noise into the networks that were trained with and without
TCR. Networks had N = 40 neurons and were performing an addition task with T = 40.

In the first case (Fig. S11A), we injected Gaussian noise with ϵ standard deviation (∼ N (0, ϵ2)) during the first half of the
task duration t ∈ {1, ..., 20}, to 2 sets of neurons; S1 = 1, ..., Nreg and S2 = Nreg, ..., N separately. In the second case
(Fig. S11B), we injected a constant input with amplitude γ during the first half of the task duration to neurons; S1 and S2.
For networks trained with TCR, the set S1 and S2 corresponded to memory and computational neurons respectively. The
procedure was repeated for 6 networks (3 unregularized PLRNNs and 3 PLRNNs with TCR).

S1.10. Training speed during the search phase
We calculated the training speed during the search phase by taking 1

epochb
. epochb is computed based on the stalling points in

the loss function during training. Specifically, we computed the first epoch that achieves a particular value in the loss or
accuracy levels, after which rapid learning took place. For the delayed addition task (Figs. 4 and S6), this was ∼ 0.08 for
the fraction of correct trials. For the K-bit flip flop task (Fig. S14), this was ∼ 0.5 in the correlation values between the
target and the outputs. For the evidence accumulation task (Figs. 5 and S12), this was ∼ 0.3 in the mean squared distance
between target and reconstructed coherence. We performed visual inspection in all cases to ensure that we captured the
onset of the rapid comprehension phase.

16

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

S1.11. Cue-associated fixed-point generation (online and local)
For our online experiments, we once again used leaky firing rate RNNs:

τ
dri(t)

dt
= −ri(t) + f(zi(t)),

zi(t) =

Nrec∑
j=1

Wijrj(t) +

Nin∑
j=1

Cijsj(t) + ϵi(t), ∀i ∈ [Nrec].
(S9)

Here, ri is the activity or firing rate of neuron i and zi is the total input current to neuron i. Nrec, the number of neurons, is
400 and Nin, the number of input channels. The rest is defined as before. Furthermore, the time constant τ = 10ms, and
f(·) = tanh(·). Each element of W was initially drawn from a normal distribution with mean 0 and standard deviation
1.8/
√
Nrec while each element of C was drawn from a standard normal. To prevent self-excitation, we also enforced

Wii = 0, ∀i ∈ [Nrec].

While the continuous time formulation provides a theoretically motivated window into the time dynamics of the network,
the simulations were performed via discretization with ∆t time steps. The discretized network dynamics followed:

ri[t+∆t] = (1− α)ri[t] + αf(zi[t+∆t]), (S10)

where α = ∆t
τ is the unitless normalized discretization time, here chosen to be α = 0.1.

The learning process began after s[t] becomes nonzero, i.e., the arrival of the rectangular pulse. After completion of this
pulse, we enforced that the network aims to produce its previous activity r(t−∆t). Namely, we performed a local gradient
step on the loss function:

λ(ri[t]− ri[t− 1])2 (S11)

for all neurons, where λ determines the strength of this derivative regularizer - we set λ = 1/1000. A step of this update
rule corresponded to

W [t+∆t] = W [t]− λTCR (r[t]− r[t−∆t]) r[t−∆t]T . (S12)

We repeated this update several times, in a randomized manner across cues, as shown in Fig. 6. Each pass across all cues
was considered a single epoch. For Fig. 6C, we computed the Jacobian J at some given r∗ by taking partial derivatives of
the right-hand side in Eq. (S9).

17

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Figure S1: Minimizing the kinetic energy of the neural activities unravels the slow point landscape. A Since the kinetic energy
minimization is a non-convex problem, the optimization trajectories (black lines) and the converged slow points (red crosses) depend on
the initial points, which are chosen randomly from the neural states visited during the trials (blue dots). B The kinetic energy is plotted
over optimization step, each line corresponds to a different trajectory from a distinct initialization. Though the kinetic energy decreases
over iterations, it does not reach zero (or close to the machine precision), indicating the existence of slow, but not necessarily fixed, points.

Figure S2: The gradients first destabilize then recover at a bifurcation, but the weight changes are permanent. A Right around
the bifurcations, the weights undergo large updates, in line with the prior work [39]. B The weight matrices evolve rapidly during the
bifurcation and settle into a new equilibrium once the bifurcation is complete. Solid lines: means. Shaded areas: s.e.m. over 19 networks
(N = 40 neurons, T = 40 time steps, 3000 epochs training, no regularization).

Figure S3: Manifold attractor regularization and initialization lead to negligible search phase. As discussed in the Appendix S1.3,
MAI creates a plane attractor using a small subset of units in the PLRNN, which gives the network enhanced memory capabilities.
Therefore, MAI practically skips the search phase while having an extremely rapid learning phase. In comparison, MAR encourages the
plane attractor formation during the learning with a regularization term, leading to undetectable fast search phase. Solid lines: means.
Shaded areas: s.d. over 5 networks that are trained on the delayed addition task with T = 40 and N = 40, with 20 regularized memory
neurons whenever applicable. MAR regularization weight was λMAR = 5.

18

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Figure S4: Manifold attractor initialization and regularization incentivize slow time dynamics. A-B We trained unregularized and
regularized PLRNNs on the delayed-addition task with varying levels of sequence length. We plotted (A) mean squared errors and (B) the
fractions of correct trials. Solid lines: means. Error bars: s.e.m. over 10 runs. C Analysis of frequency content in PLRNNs’ computation
and memory units. Memory units in networks with MAR/MAI show slow time dynamics, whereas the neural activities of the computation
units have high frequency components. For all experiments, MAR/MAI was applied to 20 out of 40 neurons. MAR regularization weight
was λMAR = 5.

19

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

A

Time into the trial
0 60

Fr
ac

tio
n

of
 c

or
re

ct
 tr

ia
ls

0

1

Cue 1 Cue 2

Decoding the first cue B Decoding the second cue

0 60
Cue 1 Cue 2

C

0

1

Decoding the target output

All neurons Computation neurons Memory neurons Control with an unregularized PLRNN

0 60
Cue 1 Cue 20

1

Figure S5: Manifold attractors enhance the memory capabilities of PLRNNs. To test the memorization of the task-relevant information
in the unit activations, we trained PLRNNs on delayed addition tasks with T = 60, which were initialized with manifold attractors and
encouraged to retain them with a regularization term. Here, 20 out of N = 40 neurons were regularized with λMAR = 5. During testing
only, we focused on a variation of the delayed addition task, in which the input times for the cues were fixed (See Appendix S1.7). Using
the activities of memory, computation, and all neurons, we trained linear estimators for (A) the first cue, (B) the second cue, and (C) the
target output, i.e., the sum of the two cues. Computation, but not the memory, neurons have eventually forgotten cue 1, cue 2, and the
output, emphasizing the role of the manifold attractors for enhancing the short-term memory capabilities. As a control (dashed lines), we
also trained unregularized PLRNNs, which were not able to retain the memories for either of the cues to begin with. Solid and dashed
lines: means. Shaded areas: s.e.m. over 10 networks.

Figure S6: MAR shortens the search phase by choosing a closer bifurcation point. A MAR leads to a faster training speed during
the search phase. The comparisons are performed with two-sided Wilcoxon signed-rank tests (∗∗∗p < 10−3, ∗∗p < 10−2). Solid lines:
means. Error bars: s.e.m. over 20 networks. B PLRNNs trained with MAR show lower L2 distances between initialization and bifurcation
weights, indicating that regularized networks cross the desired weight subspace boundary at a closer bifurcation point. The comparison is
performed with a two-sided rank sum test (∗∗p < 10−2).

20

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Figure S7: Weight decay does not have a consistent effect on the duration of the search phase. To test whether weight decay can
facilitate beneficial bifurcations, we trained PLRNNs (N = 40) regularized with varying levels of weight decay values on delayed
addition tasks with T = 40. We had not observed any consistent affect of the weight decay values on the duration of the search phase.
Solid lines: mean. Shaded areas: s.e.m. over 10 networks.

21

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Figure S8: Increasing the stochasticity of the gradient shortens the search phase. Similar to Fig. S7, we tested the effects of
stochasticity in training by varying the batch sizes while training unregularized PLRNNs (N = 40) to perform delayed addition tasks
with T = 40. Solid lines: means. Shaded areas: s.e.m. over 5 networks.

22

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Figure S9: Enforcing temporal consistency on subset of neurons shortens the search phase. To test the efficacy and efficiency of
TCR, we trained PLRNNs (regularized Nreg = 20 out of N = 40 neurons) to perform delayed addition tasks with T = 40. Higher TCR
strength led to faster conclusion of the search phase, whereas PLRNNs trained with either MAR or MAI practically skipped the search
phase. Solid lines: means. Shaded areas: s.e.m. over 10 networks.

Figure S10: In a narrow range of parameters, TCR can lead to a rapid conclusion of the search phase. We re-analyzed the
experiments in Fig. 4A, but with varying levels of hyperparameter configurations for TCR. Extreme cases, i.e., λTCR = 0.05 and
λTCR = 50, show that the networks can barely pass the search phase without or with extreme levels of TCR, whereas moderate levels of
regularization significantly increased the chances of rapid training. Similar to Fig. 4A, we trained PLRNNs (N = 40) on delayed addition
tasks with T = 40 for 100 epochs.

23

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Figure S11: Enforcing temporal consistency led to the formation of robust attractors. As before, we trained PLRNNs on delayed
addition tasks with T = 40. During test trials, we injected random (A) and constant (B) inputs to memory and computation neurons in the
regularized networks, and to randomly selected (control) neurons in the unregularized networks (See Appendix S1.9). All networks had
N = 40 neurons, regularization (λTCR = 0.5) was applied to 20 neurons whenever applicable. Solid lines: means. Error bars: s.e.m.
over 3 networks.

Figure S12: Even when initialized in a non-chaotic regime, TCR improves the convergence on the evidence accumulation task. We
trained the networks on the same task in Fig. 5 but with Xavier initialization, for 300 epochs. Similar to before, TCR resulted in slightly
lower loss (A) and faster training speed (B) during the search phase. The lfRNNs had N = 50 neurons, Nreg = 25 were regularized with
TCR whenever applicable, the neuronal decay time was τ = 10ms, and the lfRNNs were discretized with ∆ = 8ms. The comparisons
were performed with two-sided Wilcoxon signed-rank tests (∗∗p < 10−2 and ∗∗∗p < 10−3).

Figure S13: Time consistency regularization improves training speed of LSTMs during the search phase. We trained 50 LSTMs on
the delayed addition task with T = 40, where Nreg = 20 out of N = 40 neurons were regularized with TCR (See Appendix S1.4). The
error values (A) and the accuracies (B) over 1, 000 test trials as a function of number of training epochs. Solid lines: means. Shaded
regions: 95% confidence intervals across 50 networks. C Once again, TCR led to faster search phase. The comparisons were performed
with two-sided Wilcoxon signed-rank tests (∗∗∗p < 10−3).

24

Why do recurrent neural networks suddenly learn? Bifurcation mechanism in neuro-inspired short-term memory tasks

Figure S14: Time consistency regularization improves training of fixed-points in chaotic networks. We trained 20 chaotically
initialized lfRNNs (N = 50, Nreg = 25, τ = 10ms, ∆t = 8ms, and g = 3) on a 3-bit flip-flop task for 2, 000 epochs (See Appendix
S1.4). A In the flip-flop task, the network receives three (mostly zero) inputs, with occasional positive and negative pulses signalling
state changes. The network should adapt its three outputs to the latest state presented by the input, which requires switching its internal
dynamics between 23 = 8 distinct states. As in Fig. S13, TCR enhanced the learning speed and performance (B) and accelerated training
during the search phase (C).

25

