
Evaluate, Scale, and Credit: A Comprehensive Study on
Multi-Agent Collaboration of Large Language Models

Anonymous ACL submission

Abstract
Large Language Models based Multi-Agent001
Systems (LLM-MAS) perform well in many002
domains, but we still lack a clear understanding003
of the collaboration mechanism among mul-004
tiple LLM-based agents. This study aims to005
explore three key issues: (1) Can multi-agent006
outperform single-agent systems? (2) Is scal-007
ing better for multi-agent systems? (3) How008
to credit agents and optimize collaboration?009
Specifically, we design five collaboration archi-010
tectures and evaluate their effectiveness across011
different LLMs and tasks. Our findings offer012
significant insights for understanding the col-013
laboration within MAS, optimizing collabora-014
tion architectures among agents, and reducing015
system costs. Furthermore, our conclusion will016
inspire and provide new perspectives for future017
studies on LLM-MAS.018

1 Introduction019

Large Language Model-based Multi-agent Systems020

(LLM-MAS) specialize multiple LLMs into differ-021

ent agents and effectively simulate complex real-022

world environments through the interaction among023

these diverse agents (Guo et al., 2024). With proven024

outstanding abilities in contextual understanding,025

reasoning, and generation, LLMs empower agents026

to collaboratively plan, discuss, and make deci-027

sions, imitating human team cooperation to solve028

real world problems (Li et al., 2023; Hong et al.,029

2023; Wu et al., 2023).030

Recent research efforts have focused on explor-031

ing and optimizing the collaboration mechanisms032

of MAS driven by LLMs (Liang et al., 2023; Du033

et al., 2023; Chan et al., 2023), revealing two criti-034

cal challenges: architecture scaling and contribu-035

tion crediting. The challenge of architecture scal-036

ing encompasses expanding the number of agents037

and increasing their interaction frequency to solve038

more complex tasks (Zhang et al., 2023b; Chan039

et al., 2023; Li et al., 2024). However, while en-040

hancing system capabilities, scaling also leads to041
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a substantial rise in communication overhead, pre- 042

senting a notable challenge in maintaining system 043

efficiency (Zhang et al., 2023b; Yin et al., 2023). At 044

the same time, the challenge of contribution credit- 045

ing involves the accurate allocation of contributions 046

among agents, which is crucial for promoting col- 047

laboration and ensuring interpretability and robust- 048

ness within LLM-MAS systems (Liu et al., 2023b). 049

Evaluating LLM-MAS systems from the perspec- 050

tives of scaling and crediting not only diagnoses 051

their current shortcomings and limitations but also 052

directs future developments toward more efficient, 053

effective, and scalable multi-agent collaborations. 054

In this paper, to comprehensively evaluate the 055

multi-agent collaboration of large language models, 056

we design a unified evaluation procedure and con- 057

ducted systematic evaluations on 9 datasets across 058

3 tasks. Specifically, we design five collaboration 059

architectures that reflect different communication 060

patterns and the diversity of agent collaboration. 061

This paper primarily investigates three research 062

questions (RQ): 063

RQ1: Can multi-agent outperform single- 064

agent systems? Different from single-agent sys- 065

tems, LLM-MAS involves multiple agents that in- 066

fluence each other with frequent and complex agent 067
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interactions. The interaction or communication pat-068

terns between agents, which we refer to as the col-069

laboration architectures, can significantly affect the070

system performance. Some researchers have ex-071

plored several possible optimal collaboration archi-072

tectures (Chan et al., 2023; Chen et al., 2023b) and073

designed various LLM-based multi-agent systems.074

Yin et al. (2023) explored integrating different col-075

laboration architectures to enhance system perfor-076

mance. However, past studies primarily focused on077

exploring specific systems, lacking a comprehen-078

sive study on the general properties of LLM-MAS.079

Inspired by traditional multi-agent theory, we con-080

struct several collaboration architectures and use081

these architectures to build multiple multi-agent082

systems and conduct systematic studies in different083

scenarios.084

RQ2: Is scaling better for multi-agent sys-085

tems? Cost is a crucial but often overlooked limit-086

ing factor in LLM-based multi-agent research. In087

this study, we analyze the scale of MAS, including088

time step, agent number, and the threshold of early089

stopping, etc. Yin et al. (2023) discussed the the-090

oretical costs of some collaboration architectures.091

Li et al. (2024) systematically studied the effect of092

the agent number in a sampling-and-voting method.093

However, they did not consider the communication094

between agents. A question remains: How do we095

decide the scale or cost-related factors? Therefore,096

we systematically analyze the relationship between097

scale and performance in multi-agent.098

RQ3: How to credit agents and optimize col-099

laboration? We also address the optimization of100

collaboration architectures in LLMs-based MAS,101

which has received less attention than agent role102

assignments. Current strategies primarily utilize103

LLMs for evaluating agent outputs through rank-104

ing or rating (Liu et al., 2023b; Jiang et al., 2023b;105

Qin et al., 2023). This type of method, despite its106

prevalence, faces challenges in accuracy. In con-107

trast, traditional multi-agent reinforcement learning108

(MARL) offers insights into collaboration through109

credit assignment, focusing on the distribution of110

rewards among agents based on their contributions.111

Inspired by MARL principles (Minsky, 1961; Sune-112

hag et al., 2018), we explore an LLM-independent113

method using Shapley value to quantify the contri-114

butions of each collaboration in the system proce-115

dure and optimize multi-agent systems.116

Our experiments provide insights into the multi-117

agent collaboration of large language models: 1)118

Multi-agent often outperform single-agent systems, 119

and single-agent performance does not determine 120

multi-agent benefit. 2) More agents will bring more 121

benefits, and achieving agreement among agents is 122

crucial for better performance. 3) By aggregating 123

information and encouraging self-reflection among 124

agents in the collaboration strategy, the optimized 125

architecture system is efficient and effective. 126

Generally, our contributions are as follows: 127

• We introduce five collaborative multi-agent ar- 128

chitectures and conduct extensive experiments 129

in various scenarios to explore three crucial 130

questions regarding the multi-agent collabora- 131

tion of large language models. 132

• We investigate the connection between the 133

scale and performance of LLM-MAS and 134

provide an in-depth study of the agreement 135

changes of the system and the early stopping 136

mechanism. 137

• By quantifying the credits of individual agents, 138

we propose a Shapley value-based optimiza- 139

tion approach for LLM-MAS. This optimized 140

structure significantly reduces communication 141

costs across various datasets while achieving 142

superior performance. 143

2 Collaboration Architectures 144

Traditional multi-agent research (Esmaeili et al., 145

2016; Damba and Watanabe, 2007; Dorri et al., 146

2018; Horling and Lesser, 2004) has identified and 147

delineated various effective multi-agent architec- 148

tures, including Flat, Hierarchical, Holonic, and 149

Team. Each architecture possesses distinct advan- 150

tages and is suitable for specific scenarios. 151

Inspired by the multi-agent theory and recent 152

multi-agent research, we designed five unique col- 153

laboration architectures that reflect different com- 154

munication patterns and the diversity of agent col- 155

laboration. Figure 2 contains five types of collab- 156

oration architectures. There are three static col- 157

laboration architectures: FULL, CYCLE, and HI- 158

ERARCHICAL in Figure 2(a), and two dynamic 159

architectures, TEAM and RANK, in Figure 2(b). 160

• FULL Inspired by the Flat structure (Dorri 161

et al., 2018) of traditional multi-agent theory, 162

information can be freely passed from one 163

agent to another. In particular, when there are 164

only two agents, the collaboration architec- 165

ture degenerates into a typical debate archi- 166

tecture. This kind of architecture simulates 167
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information propagation in unrestricted dis-168

cussions, facilitating the fast spread of infor-169

mation. However, such networks may lead to170

high costs.171

• CYCLE Inspired by Multi-Agent Debate172

(Liang et al., 2023), information is propa-173

gated among pairs of agents to reach a final174

agreement. This architecture simulates private175

conversation. It emphasizes how information176

gradually evolves and spreads over a limited177

number of interactions. This type of archi-178

tecture has less costs, but the time required179

for the system to reach an agreement may be180

longer.181

• HIERARCHICAL Inspired by the Hierarchi-182

cal structure (Damba and Watanabe, 2007)183

of the traditional multi-agent theory, informa-184

tion is propagated between nodes at different185

levels. This architecture simulates the Del-186

phi method1 in expert groups. This kind of187

architecture emphasizes aggregation and pro-188

cessing of the information.189

• TEAM Inspired by the Team structure (Parker,190

1993) of the traditional multi-agent, informa-191

tion flows between agents with different view-192

points(answers). This architecture simulates193

the propagation of information during a team194

discussion. This kind of architecture has no in-195

teraction between agents with the same view-196

point.197

• RANK Inspired by the idea of agent optimiza-198

tion in DyLAN (Liu et al., 2023b), informa-199

tion and messages are sorted before it is de-200

livered, and only top-k information can be201

passed to the next time step. This architecture202

simulates a review or screening process, such203

as editorial review or administrator approval,204

emphasizing the concern for information qual-205

ity.206

3 Experiments207

This section introduces the dataset and LLM we208

used, providing a data foundation for subsequent209

problem analysis.210

1Delphi method: soliciting experts’ opinions on a problem,
organizing and summarizing them, then anonymously feeding
them back to the experts, and soliciting opinions again until
they reach an agreement
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Figure 2: Collaboration Architectures

Tasks and Datasets. In our experiments, we 211

used a general evaluation procedure to assess the 212

performance of five architectures across three tasks, 213

including: 1) Math: GSM8K (Cobbe et al., 2021), 214

MATH (Hendrycks et al., 2021b), and SVAMP (Pa- 215

tel et al., 2021) datasets; 2) Knowledge: MMLU 216

(Hendrycks et al., 2021a), CommonsenseQA (Tal- 217

mor et al., 2019), and CommonsenseQA 2.0 (Tal- 218

mor et al., 2022); 3) Logic: LogiQA (Liu et al., 219

2020), LogiQA2.0 (Liu et al., 2023a), and ReClor 220

(Yu et al., 2020). 221

Model Details. We tested the proposed col- 222

laboration mechanism based on different models. 223

Considering cost and effectiveness, we selected 224

open-source models, e.g., Llama2-7b-Chat (Tou- 225

vron et al., 2023), Mistral-7b-Instruction (Jiang 226

et al., 2023a), and Starling-LM-7B-alpha (Zhu 227

et al., 2023), for our experiments. Specifically, we 228

downloaded the corresponding open-source mod- 229

els on hugging face and deployed the APIs using 230

Fastchat and vLLM (Kwon et al., 2023). These 231

three LLMs will be combined with the five archi- 232
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tectures to form 15 multi-agent systems. The maxi-233

mum time step is six if not explicitly stated.234

System Details. To reflect the difference be-235

tween the Agents, we set the temperature of each236

Agent to a different value between 0 and 1 during237

generation. By default, we used 3 Agents with238

temperatures of 1, 0.6, and 0.4. Inspired by social239

comparison theory and review collaboration (Xu240

et al., 2023c), we considered generating solutions,241

final answers, and reviewing other agents’ answers242

during generation. Complete prompt examples can243

be found in the appendix. Motivated by Liu et al.244

(2023b) and Practical Byzantine Fault Tolerance,245

when 2/3 of the agents in the system reached a con-246

sensus (i.e., the answer is the same), we made the247

system early stop, and the process stopped.248

4 Can multi-agent systems outperform249

single-agent systems?250

This section evaluates the multi-agent benefit. We251

conducted experiments with multi-agent systems252

composed of three LLMs and five collaboration253

architectures across nine datasets and analyzed the254

MAS performance according to the relative im-255

provement of multi-agent systems. Moreover, we256

investigated the impact of the possible factors of257

multi-agent synergy, i.e., collaboration architecture,258

LLM, and task.259

The benefit of MAS260

Final Success Rate (e.g., accuracy) is the most com-261

monly used metric for evaluating multi-agent sys-262

tems (Du et al., 2023; Chan et al., 2023; Liu et al.,263

2023b; Chen et al., 2023a), which offers the advan-264

tages of simplicity and intuitiveness. However, the265

final success rate is highly correlated with the LLM266

and Task and does not reflect multi-agent synergy.267

To examine the benefits of multi-agent synergy, a268

natural idea is to consider the relative improvement269

in accuracy, which we refer to as accuracy improve-270

ment (∆acc).271

∆acc =
Perfm − Perfs

Perfs
(1)272

where Perfs and Perfm represent the perfor-273

mance (accuracy) of the single-agent2 and system,274

respectively.275

2We use the results generated by greedy decoding to repre-
sent single-agent accuracy.
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Figure 3: The scatter plot comparing multi-agent to
single-agent performance.

Finding 1: Multi-agent collaboration often help, 276

and early stopping is necessary. We plotted single- 277

agent and multi-agent accuracy for all possible 278

<Architecture, LLM, Task> triplets, totaling 135 279

points, as shown in Figure 3. A point above the red 280

line indicates that the multi-agent system outper- 281

forms the single-agent. As the chart shows, 55.6% 282

MAS showed improvement compared to single- 283

agent. With early stopping activated, this number 284

increased to 80%. This finding suggests that multi- 285

agent approaches generally offer improvements, 286

and early stopping mechanisms are crucial for max- 287

imizing system performance. Detailed data are 288

given in the Appendix A.2. 289

Finding 2: Every factor related to multi-agent 290

synergy influences the system significantly, and 291

single-agent performance does not determine multi- 292

agent benefit. 293

In this part, we investigated the effect of the 294

three factors: architecture, LLM, and task. To 295

study the effect of architecture, we formed a 296

vector of performances for all five architectures 297

in every possible <LLM, Task>. We averaged 298

these vectors to indicate the relative performance 299

of architectures. To minimize the influence 300

of LLM and task, we performed z-score nor- 301

malization or Min-max normalization on all 302

vectors before averaging. Let Perf(a,m, t) be 303

the performance of a multi-agent system com- 304

posed of architecture and LLM on task, ˜Perf = 305

(Perf(FULL),Perf(TEAM), ...,Perf(CYCLE)) 306

¯Perf =

∑
(m,t)∈M×T

Norm( ˜Perf(m, t))

|M||T |
(2) 307

The experiment results in Table 1 show that 308

(1) different architectures led to different improve- 309

ments, and the Rank architecture achieved rela- 310
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Metric
Single-Agent Multi-Agent

∆accAccuracy Accuracy

Normalization Min-Max Z-score Min-Max Z-score Min-Max Z-score

Architecture

Full

\ \

0.41 -0.21 0.41 -0.21
Cycle 0.51 0.10 0.51 0.10
Hierarchical 0.52 0.04 0.52 0.04
Rank 0.55 0.18 0.55 0.18
Team 0.46 -0.11 0.46 -0.11

LLM

Llama2 0.12 -0.79 0.10 -0.97 0.60 0.30
Mistral 0.31 -0.32 0.51 0.03 0.66 0.45
Starling 0.93 1.11 0.90 0.94 0.15 -0.75

Task

Math 0.56 0.08 0.46 -0.10 0.63 0.31
Knowledge 0.77 0.57 0.84 0.76 0.46 -0.10
Logic 0.23 -0.65 0.22 -0.66 0.41 -0.20

Table 1: The analysis for the possible factors of multi-agent synergy. It is important to note that these values are not
the actual accuracy of systems. They are the average values after Normalization across the different architectures
(or LLMs, tasks).

tively the best results; (2) different LLMs led to311

different improvements, and Mistral achieved rela-312

tively the best results; (3) the effectiveness of the313

multi-agent approach also depended on the task.314

Math got the highest multi-agent benefits, which315

aligned with our expectations.316

Notably, it is challenging to predict multi-agent317

benefits based on single-agent performance. For318

example, although Starling performed best with319

the single agent, its multi-agent benefits were less320

than Mistral. Knowledge tasks generally had the321

highest accuracy, but the multi-agent method im-322

provement was less than Math. Besides, we plotted323

a scatter plot of single-agent performance and sys-324

tem improvement in the Appendix A.1, as shown in325

Figure 7, revealing no apparent correlation between326

Perfs and ∆acc.327

5 Is scaling better for multi-agent328

systems?329

This section examines and analyzes the relationship330

between scale and performance in MAS. In particu-331

lar, we considered the agent number and maximum332

communication rounds (time step) in MAS. Depart-333

ing from Li et al. (2024), we focused on the scale334

of MAS with dynamic interactions among agents335

rather than the simple ensemble of answers.336

Finding 3: Many hands may make light work.337

More agents will bring more benefits.338

In this part, we explored the impact of different339

agent numbers in MAS. Due to max context length340

and expensive cost, we did not compare systems341

Dataset MMLU GSM8K LOGIQA2

Architecture Full Rank Full Rank Full Rank

1 agent 44.0% 44.0% 46.0% 46.0% 39.0% 39.0%
2 agents 55.0% 55.0% 45.0% 41.0% 39.0% 44.0%
3 agents 64.0% 57.0% 47.0% 50.0% 47.0% 40.0%
4 agents 67.0% 67.0% 51.0% 57.0% 44.0% 42.0%
5 agents 67.0% 68.0% 52.0% 51.0% 45.0% 46.0%

Table 2: The performance of systems with different
agents. Every system here is conducted with Mistral
and applied early stopping.

with more than five agents. 342

Table 2 shows the accuracy of different systems 343

on different datasets. We observed an overall im- 344

provement in LLM-based agents, consistent with 345

the findings of Li et al. (2024), which suggest that 346

adding more agents can lead to better system per- 347

formance. Although the performance did not con- 348

tinue to increase with five agents on the LOGIQA2 349

dataset, we believe that adding more and varied 350

agents will improve its performance. It is worth 351

pointing out that the only difference among the 352

agents here is temperatures. Theoretically, adding 353

agents with different roles or different LLMs will 354

better improve performance (Chan et al., 2023; Liu 355

et al., 2023b). 356

Finding 4: Agreement is strength. Achieving 357

agreement among agents is crucial for better per- 358

formance. 359

We calculated the system agreement at each time 360

step and the proportion of the correct answer in 361

each time step and shown the result in Figure 4. 362

Generally, the higher system agreement could lead 363
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Figure 5: The agreement and system performance. The x-axis represents the distance from the current time step to
the early stopping time step. For example, 0 represents the early stopping time step, 1 represents the next time step
after early stopping, and -1 represents the time step before early stopping. These data come from a MAS composed
of four agents based on Mistral.

to better system performance. This observation364

may indicate that the benefit of MAS comes from365

the procedure in which agents collaborate and ulti-366

mately reach a consensus. Additionally, we found367

that different datasets had different performance-368

increasing speeds. Therefore, we wondered if the369

agreement threshold for early stopping is unique370

for different datasets.371

Considering that 95% of the data reached early372

stopping within ten time steps, we examined the373

ten time steps before and after reaching early stop-374

ping. As shown in Figure 5, we found that both375

MMLU and LogiQA2 reached their best perfor-376

mance at the early stopping time step. At the same377

time, GSM8K could further improve performance378

after early stopping, suggesting that using 2/3 as379

the early stopping threshold for GSM8K may not380

be reasonable. To determine the source of this ob-381

servation, we additionally tested 100 sampled data382

of High school Mathematics Problems and Ele-383

mentary Mathematics Problems in MMLU (named384

EMATH and HMATH), and the results revealed385

that EMATH showed a relatively small decrease 386

with FULL and fluctuating correction with RANK, 387

while HMATH showed a fluctuating increase in 388

both architectures. We speculated the threshold 389

might related to the task and its complexity. Math 390

problems had a higher threshold, and the more 391

challenging the tasks were, the higher the threshold 392

was. 393

6 How to optimize collaboration? 394

This part demonstrates how to optimize a collabo- 395

ration system. We focused on assessing the relative 396

importance of the communication paths in each 397

time step and optimizing the collaboration architec- 398

tures. Specifically, we sampled another 200 data 399

from GSM8K to optimize the FULL architecture 400

time step by step. 401

Credit assignment in MAS 402

Recent LLM-MAS use LLMs to rank or rate the 403

information output of agents, calculating contri- 404

butions based on these rankings or scores. While 405
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Architecture
Math Knowledge Logic

Avg↑ Crel↓MATH SVAMP GSM8K CSQA CSQA2 MMLU LogiQA LogiQA2 ReClor

OPTIMIZED (Ours) 0.24 0.72 0.56 0.60 0.67 0.66 0.37 0.47 0.41 0.52 0.46

FULL 0.22 0.70 0.47 0.58 0.64 0.64 0.38 0.47 0.43 0.50 1.00
RANK 0.19 0.71 0.49 0.57 0.66 0.65 0.42 0.45 0.50 0.52 0.66

Table 3: The performance of systems conducted with FULL, RANK, and OPTIMIZED architecture on different
datasets. These systems were based on Mistral and built with 3 agents. Crel indicates the relative number of
communication paths, assume the path number of Full architecture to be 1.

this type of approach has achieved certain results406

in many related studies (Chan et al., 2023; Zhang407

et al., 2023b; Jiang et al., 2023b), ranking or rat-408

ing text by LLMs remains an unsolved problem409

(Wang et al., 2023a; Shen et al., 2023). Inspired410

by Credit Assignment in MARL, we broke down411

the optimization of the collaboration architecture412

into identifying the relative importance and reward413

of each communication path between agents at any414

single time step.415

We use the Shapley value (Shapley and Corpo-416

ration, 1951) to indicate the relative importance.417

The Shapley value is a concept from cooperative418

game theory that offers a fair distribution of the419

total gains to the players (agents) based on their420

contributions to the alliance (MAS).421

Suppose the set of communication paths to422

Agent n at time step t is S. We defined the value423

function v(S) as the accuracy difference of Agent424

n3 between time step t-1 and t. Given N paths, the425

formula for the Shapley value of path i is:426

∑
S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪{i})− v(S))

(3)427

v(S ∪ {i}) is the value of the alliance contains428

path i and v(S) is the value of the alliance without429

path i. A higher Shapley value suggests a more430

significant importance or contribution of this path.431

After calculating the Shapley values of the com-432

munication paths, we removed those paths where433

Shapley values were lower than a certain threshold434

(we took the threshold as 0.002 to eliminate those435

paths with a small effect). This ensures an overall436

improvement of each time step. After optimizing a437

time step, we used the optimal structure to optimize438

the next time step, continuing this process until no439

positive reward path or reached the maximum time440

step.441

3we calculated the accuracy in the picked 200 training data

Task

Figure 6: The optimized architecture. Contains only
46% communication paths in the Full architecture.

Finding 5: The optimized architecture reduces 442

cost and outperforms other architectures in many 443

instances. 444

We extracted 200 data points from the GSM8K 445

training dataset and optimized the FULL architec- 446

ture with 3 agents for 8 time steps. We applied 447

these optimized architectures on all datasets, with 448

the results shown in Table 3. To align with other 449

architectures, we used only the first 6 time steps for 450

evaluation. The optimized architectures performed 451

well on the GSM8K and exhibited a certain degree 452

of transfer ability on other datasets. Specifically, 453

it outperforms FULL and RANK on 7 datasets. It 454

is worth noting that we deleted those paths with 455

smaller benefits during optimization, which further 456

reduces the cost. The optimized architecture only 457

contains 46.2% communication paths in the FULL 458

architecture. 459

Finding 6: The optimized architecture incorpo- 460

rates information aggregation and self-reflection. 461

An interesting phenomenon occurs in optimized 462

architecture: information aggregates to specific 463

agents and then spreads back to all agents, con- 464

sistent with the Hierarchical architecture. Further- 465

more, we found that in the optimized architecture, 466

agents tend to communicate with others at early 467

time steps and tend to make a self-reflection, which 468

aligns with the method mentioned in Wang et al. 469

(2023b), at the later time steps. This may reduce 470

the propagation of misinformation after multiple 471

rounds of interaction. 472
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7 Related Work473

LLM-based multi-agent. In the last few years,474

researchers have conducted numerous studies on475

LLM-MAS. Some studies focus on approach-476

ing collaborative mechanisms to enhance systems.477

These studies, e.g., Debate (Du et al., 2023),478

MAD (Liang et al., 2023), Deepwide (Zhang et al.,479

2023b), and ChatEval (Chan et al., 2023), concen-480

trated on continuous debates among agents. Other481

studies focus on the decomposition of complex482

tasks, such as Camel (Li et al., 2023), ChatDev483

(Qian et al., 2023), AutoGen (Wu et al., 2023), and484

MetaGPT (Hong et al., 2023), exploring MAS for485

task division where different agents responsible for486

different sub-tasks. Additionally, a series of studies487

have explored how to use LLMs to simulate hu-488

man behavior. This includes strategic and sandbox489

games like Werewolf (Xu et al., 2023a,b), Avalon490

(Lan et al., 2023), Minecraft (Chen et al., 2023b;491

Gong et al., 2023), game theory simulation (Fu492

et al., 2023; Mao et al., 2023; Guo et al., 2023), and493

sociological simulation (Park et al., 2023; Zhang494

et al., 2023a). However, the scale, agent credit, and495

factors related to multi-agent synergy have also not496

been comprehensively studied.497

Collaboration Architecture of multi-agent.498

Traditional multi-agent research has proposed a499

variety of possible structures (Horling and Lesser,500

2004) such as Flat, Hierarchical, Holonic (Esmaeili501

et al., 2016), Team, and Congregation (Brooks and502

Durfee, 2003). In the past few years, some studies503

have leveraged the capabilities of LLMs to con-504

struct more complex MAS. Shi et al. (2023); Du505

et al. (2023); Liang et al. (2023) organized multi-506

ple LLM-based agents for fixed rounds of debates.507

Chen et al. (2023a) organized agents in the form of508

a Round-Table Conference. ChatLLM (Hao et al.,509

2023) and WideDeep (Zhang et al., 2023b) orga-510

nized agents into linear layers to enhance system511

capabilities. Zhang et al. (2023c) adopted a dy-512

namic acyclic graph structure during the reasoning513

process. Liu et al. (2023b) proposed a dynamic514

architecture that can adjust according to different515

queries. Yin et al. (2023) proposed four architec-516

tures based on network topology.517

Contribution of Agents. Evaluating the contri-518

bution of LLM agents is crucial for optimizing519

MAS. Credit assignment (Agogino and Tumer,520

2004), introduced from traditional multi-agent,521

studies how to measure the impact of actions on522

global rewards. Extensive research has been delv-523

ing into this problem, including implicit methods 524

like policy gradients and Q-learning algorithms 525

and explicit methods such as the Shapley value and 526

actor-critic architecture. LLM-MAS studies pri- 527

marily use extra LLMs for evaluation. Jiang et al. 528

(2023b); Qin et al. (2023); Liu et al. (2023b) rank- 529

ing outputs of agents to determine contributions. 530

Others calculate contributions based on LLM’s in- 531

termediate outcomes, such as the confidence evalu- 532

ation proposed by (Yin et al., 2023), which calcu- 533

lates the model’s confidence based on the variation 534

in responses. 535

8 Conclusion and Future Direction 536

This paper focuses on three main questions: ex- 537

ploring the performance of multi-agent systems 538

under various scenarios, investigating the influence 539

of scale-related factors, crediting agents, and op- 540

timizing architectures. Our empirical study offers 541

significant insights for collaboration within MAS, 542

finding that single-agent performance does not de- 543

cide the performance of multi-agent synergy. Fur- 544

thermore, our study at scale suggests that adding 545

more agents can lead to better system performance, 546

aligning with the conclusions from (Li et al., 2024). 547

We observed that the system agreement gradually 548

increases as the time step increases. We also opti- 549

mized the FULL architecture based on the Shapley 550

value, which achieved the best results and demon- 551

strated certain transferability. Our empirical study 552

on scaling and crediting can be helpful in future 553

studies of LLM-based multi-agent systems. 554

Limitations 555

Our study also has some limitations. First, we did 556

not experiment with a MAS consisting of more 557

than five agents due to the limitation of the context 558

length of the open-source model. We plan to use 559

models that support longer contexts for systems 560

with more agents in the future. Besides, an interest- 561

ing problem arises in Q2: Why does MAS show a 562

performance decline after reaching early stopping 563

on some datasets? According to our case study, 564

this problem came from the accidentally generated 565

error messages and the fast spreading of misin- 566

formation. We plan to analyze this phenomenon 567

systematically in the future. Lastly, considering the 568

extra computational costs of Shaley value, using 569

Information Gain and a simplified method from 570

MARL may be a better way. 571
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A Appendix870

A.1 The relation between single-agent871

performance and multi-agent benefit872

In section 4, we propose the finding that single-873

agent performance does not determine multi-agent874

benefit. To further verify this finding, we made a875

scatter plot of single-agent system’s accuracy with876

multi-agent benefit, as shown in Fig. 7. It can be877

found that there is no obvious correlation between878

them, which supports the conclusion of section 4.879
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Figure 7: Single-agent accuracy and system improve-
ment

A.2 System performance in every880

architecture, LLM, and dataset881

In section 4, we calculated the average influence882

of different factors, i.e., architecture, LLM, and883

dataset, but the absolute performance of each fac-884

tor was not shown. For this reason, we present all885

data in Table 4. Keep in mind that the table only886

contains results for the 3-agent system, consider-887

ing the cost, we did not conduct such extensive888

experiments for systems consisting of more agents.889

890

A.3 Shapley value of every path891

In section 6, we optimized FULL architecture with892

Shapley value, but we didn’t present the middle893

value of the optimization. Here, we show the Shap-894

ley value of every path in each optimization time895

step in Table 5. Noticing that each column depend896

on the optimized architecture at that time step.897

A.4 Agent prompt898

We show the role prompt for each agent in Table 6.899
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LLM Architecture MATH GSM8K SVAMP CSQA CSQA2 MMLU LogicQA LogiQA2 ReClor

llama2

Single Agent 0.14 0.18 0.57 0.31 0.57 0.44 0.38 0.33 0.27
Full 0.10 0.26 0.61 0.40 0.56 0.44 0.45 0.33 0.37

Cycle 0.10 0.23 0.64 0.41 0.61 0.44 0.48 0.34 0.34
Hierarchical 0.12 0.22 0.59 0.42 0.52 0.47 0.48 0.34 0.34

Team 0.12 0.22 0.58 0.38 0.57 0.43 0.45 0.34 0.38
Rank 0.10 0.24 0.58 0.38 0.63 0.47 0.35 0.38 0.38

mistral

Single Agent 0.12 0.46 0.66 0.46 0.65 0.44 0.35 0.39 0.43
Full 0.22 0.48 0.70 0.58 0.64 0.64 0.38 0.47 0.43

Cycle 0.23 0.49 0.70 0.62 0.62 0.64 0.40 0.45 0.45
Hierarchical 0.20 0.50 0.71 0.61 0.61 0.69 0.40 0.43 0.48

Team 0.22 0.47 0.71 0.59 0.70 0.64 0.39 0.47 0.45
Rank 0.23 0.50 0.70 0.57 0.63 0.58 0.32 0.40 0.49

starling

Single Agent 0.34 0.75 0.80 0.71 0.68 0.64 0.36 0.55 0.56
Full 0.42 0.78 0.81 0.78 0.65 0.63 0.37 0.48 0.48

Cycle 0.36 0.77 0.81 0.80 0.67 0.65 0.40 0.51 0.49
Hierarchical 0.38 0.77 0.86 0.75 0.64 0.66 0.38 0.51 0.50

Team 0.38 0.76 0.83 0.79 0.63 0.65 0.39 0.50 0.49
Rank 0.42 0.75 0.85 0.77 0.68 0.70 0.40 0.57 0.58

Table 4: System accuracy on every system and dataset. Systems based on 3 agents. The max time step is 6.

Time Step 1 2 3 4 5 6 7 8

Path(0, 0) -0.043 0.009 0.006 -0.001 -0.009 0.008 0.010 -0.015
Path(1, 0) 0.033 0.002 0.001 -0.008 0.018 -0.003 0.000 0.000
Path(2, 0) 0.035 -0.031 -0.022 0.009 -0.004 -0.005 -0.005 0.000
Path(0, 1) 0.013 0.016 0.007 -0.003 -0.032 -0.009 -0.006 -0.013
Path(1, 1) 0.003 0.016 0.014 -0.005 0.021 0.016 -0.006 0.004
Path(2, 1) 0.000 -0.017 -0.006 0.013 -0.004 -0.007 0.002 -0.011
Path(0, 2) -0.008 0.025 0.019 0.002 -0.008 -0.008 0.010 -0.001
Path(1, 2) 0.015 0.010 0.014 -0.016 0.012 0.017 -0.020 -0.003
Path(2, 2) 0.008 -0.020 -0.033 0.014 -0.008 -0.003 0.000 0.004

Table 5: The Shapley value for every path in every time step during optimizing. the Path(i, j) denote the path from
agent i to agent j
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[System Prompt]
You are an excellent and very capable domain question solver. You are now invited to an expert
group of processing and solving domain application questions. Your codename in the expert group
is Expert self.rrid. As a distinguished member of the expert group, you possess the capability to a
broad range of domain disciplines, allowing you to adapt and apply the appropriate methodologies
to the given questions.

[User Prompt]
### Task Description
Your task is to systematically address the domain application question presented below, decipher
complex question statements and elucidate your reasoning in a sequential, step-by-step fashion.
Carefully utilize the provided information to work through the question. Your answer should
be both concise and comprehensive, detailing the logical progression of your thought process.
Besides, the expert group have provided some potential answers to this question, you should
consider insights from these answers to enrich the quality and accuracy of your own answer.

### Given Question
Question: question

### Given Question Again
Read the given question again.
Question: question

### Answers by Other Experts
There are some potential answers provided by different experts for the same question. Consider
these responses to cross-verify your approach, broaden your understanding, and gain alternative
perspectives with diverse approaches to the question-solving process. This may help you ensure
consistency and accuracy in your methodology. However, we have not verified the correctness of
these answers, so be careful of the quality and relevance of these answers.
messages

### Output Format
start
Opinion: your opinion about other experts’ answers
Solution: your detailed, step-by-step solution, final answer is formatted as "[ final answer here ]"
end

The output start with your opinion about other experts’ answers, followed by your step-by-step
solution in the next line.
Remember that your final answer in the solution is surrounded by ’[’ and ’]’, which is formatted as
"[ final answer here ]".
Now take a deep breath and solve the question step by step.

Table 6: The prompt template for Agent. We replace the colored slot with real text before querying the LLMs. Note
that we use a similar template when conducting single-agent-based experiments and ignore the Answers by Other
Experts.
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