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Abstract

We present a new algorithm based on posterior
sampling for learning in Constrained Markov De-
cision Processes (CMDP) in the infinite-horizon
undiscounted setting. The algorithm achieves
near-optimal regret bounds while being advan-
tageous empirically compared to the existing
algorithms. Our main theoretical result is a
Bayesian regret bound for each cost component
of Õ(DS

√
AT ) for any communicating CMDP

with S states, A actions, and diameter D. This
regret bound matches the lower bound in order
of time horizon T and is the best-known regret
bound for communicating CMDPs achieved by
a computationally tractable algorithm. Empiri-
cal results show that our posterior sampling al-
gorithm outperforms the existing algorithms for
constrained reinforcement learning.

1. Introduction
Reinforcement learning (RL) refers to the problem of learn-
ing by trial and error in sequential decision-making systems
based on the scalar signal aiming to minimize the total cost
accumulated over time. In many situations, however, the
desired properties of the agent behavior are better described
using constraints, as a single objective might not suffice to
explain the real-life setting. For example, a robot should
not only fulfill its task but should also control its wear and
tear by limiting the torque exerted on its motors (Tessler
et al., 2019); for telecommunication networks, it is neces-
sary that the average end-to-end delay be limited, especially
for voice traffic, while maximizing the throughput of the
system (Altman, 1999); and autonomous driving vehicles
should reach the destination in a time and fuel-efficient man-
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ner while obeying traffic rules (Le et al., 2019). A natural
approach for handling such cases is specifying the problem
using multiple objectives, where one objective is optimized
subject to constraints on the others.

A typical way of formulating the constrained RL problem is
a Constrained Markov Decision Process (CMDP) (Altman,
1999), which proceeds in discrete time steps. At each time
step, the system occupies a state, and the decision maker
chooses an action from the set of allowable actions. As a
result of choosing the action, the decision maker receives
a (possibly stochastic) vector of costs, and the system then
transitions to the next state according to a fixed state transi-
tion distribution. In the reinforcement learning problem, the
underlying state transition distributions and/or cost distribu-
tions are unknown and need to be learned from observations
while aiming to minimize the total cost.

Learning in CMDPs has been a recurrent topic in the rein-
forcement learning literature, with numerous works address-
ing this challenge in episodic and discounted settings (see,
e.g., Efroni et al. (2020); Brantley et al. (2020); Qiu et al.
(2020); Liu et al. (2021); Kalagarla et al. (2023)). We con-
sider the reinforcement learning problem in a more general
infinite-horizon average reward setting. When decisions
are made frequently so that the discount rate is very close
to 1, the decision-makers may prefer to compare policies
on the basis of their expected infinite-horizon average re-
ward instead of the expected total discounted reward, and
the objective becomes to achieve optimal long-term average
performance under constraints. This criterion is especially
relevant for inventory systems with frequent restocking deci-
sions or queueing control theory, particularly when applied
to controlling computer systems (Puterman, 1994).

Learning in CMDP in the infinite-horizon average reward
setting appears to be more challenging because it depends
on the limiting behavior of the underlying stochastic process,
and approaches for analyzing this setting vary with the class
structure of CMDPs. For instance, Singh et al. (2023) and
Zheng & Ratliff (2020) consider a restricted class of ergodic
CMDPs. In ergodic CMDPs, any policy will reach every
state after a sufficient number of steps, making them self-
explorative and easier to learn than general cases. Neverthe-
less, achieving near-optimal regret bounds is still non-trivial

1



Efficient Exploration in Average-Reward Constrained RL: Achieving Near-Optimal Regret With Posterior Sampling

Table 1. Summary of work on provably efficient constrained RL in the infinite-horizon average reward setting. S and A represent the
number of states and actions, m is the number of constraints, T is the total horizon, TM is the mixing time, D is the diameter of CMDP, p
represents transitions, and sp(p) is the span of CMDP (defined in Section 2). Õ hides logarithmic factors. The “Required knowledge”
column denotes the information an algorithm requires as an input. The “Computation” column roughly denotes the time complexity with
“Efficient” meaning an algorithm is designed to solve a problem using minimal resources, “Inefficient” – an algorithm consumes more
time than necessary, and “Intractable” – an algorithm for which no known polynomial-time solution exists.

Constraint RequiredAlgorithm Main Regret violation CMDP class knowledge Computation

C-UCRL safe policy π
(Zheng & Ratliff, 2020) Õ(mSAT 3/4) 0 ergodic and p

efficient

UCRL-CMDP
(Singh et al., 2023) Õ(TM

√
SAT 2/3) Õ(TM

√
SAT 2/3) ergodic T inefficient

Alg. 3 weakly
(Chen et al., 2022) Õ(sp(p)(S2AT 2)1/3) Õ(sp(p)(S2AT 2)1/3) communicating sp(p), T inefficientfr
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nt
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t

Alg. 4 weakly
(Chen et al., 2022) Õ(sp(p)S

√
AT ) Õ(sp(p)S

√
AT ) communicating sp(p), T intractable

CMDP-PSRL
(Agarwal et al., 2022) Õ(TMS

√
AT ) Õ(TMS

√
AT ) ergodic - efficient

B
ay

es
ia

n

PSCONRL
(this paper) Õ(DS

√
AT ) Õ(DS

√
AT ) communicating - efficient

lower bound
(Singh et al., 2023) Ω(

√
DSAT ) Ω(

√
DSAT ) - - -

under constraints, and the proposed algorithms only achieve
suboptimal regret bounds: with UCRL-CMDP (Singh et al.,
2023) achieving Õ(T 2/3) regret and cost violation bound
and C-UCRL (Zheng & Ratliff, 2020) achieving Õ(T 3/4)
regret bound with no cost violations. In contrast, Chen et al.
(2022) consider a broad class of weakly communicating
CMDPs, which allows more interesting practical scenarios.
They propose two algorithms in this more general setting,
albeit imposing impractical assumptions about knowledge
of some problem-specific parameters. The first algorithm is
computationally tractable but theoretically suboptimal, only
achieving Õ(T 2/3) regret and cost violation bounds; the
second is an intractable algorithm with near-optimal regret
and cost violation bounds of Õ(

√
T ). The main theoretical

results for this setting are summarized in Table 1.

In this paper, we propose a practical and efficient algorithm
based on the posterior sampling principle (Thompson, 1933).
This principle involves maintaining a posterior distribution
for the unknown parameters and guides the exploration by
the variance of the distribution. The posterior sampling prin-
ciple underpins many algorithms in reinforcement learning
(Osband et al., 2013; Abbasi-Yadkori & Szepesvári, 2015;
Agrawal & Jia, 2017; Ouyang et al., 2017).

Our main contribution is a posterior sampling-based algo-
rithm (PSCONRL), which achieves near-optimal Bayesian
regret bounds while being computationally efficient. Draw-
ing inspiration from the algorithmic design structure of
Ouyang et al. (2017), the algorithm proceeds in episodes
with two stopping criteria. At the beginning of every
episode, it samples transition probability vectors from a
posterior distribution for every state-action pair. The key
idea of the algorithm is to switch to efficient exploration

whenever the sampled transitions are infeasible, which we
show to be necessary for communicating CMDPs. When
sampled transitions are feasible, the algorithm solves for
the optimal policy by utilizing a linear program (LP) in the
space of occupancy measures that incorporates constraints
directly (Altman, 1999). The optimal policy computed for
the sampled CMDP is used throughout the episode. Under a
Bayesian framework, we show that the expected regret and
cost violation of our algorithm accumulated up to time T is
bounded by Õ(DS

√
AT ) for any communicating CMDP

with S states, A actions, and diameter D.

A closely related study by Agarwal et al. (2022) analyzes
the long-term average Bellman error in constrained opti-
mization to address potential infeasibility issues of posterior
sampling. They achieve the Bayesian regret and cost vio-
lation bounds of Õ(TMS

√
AT ), where TM is the mixing

time.1 However, they focus on the ergodic CMDP structure,
and, as detailed in Sections 3.2, their method cannot be
applied to communicating CMDPs.

Thus, the main result of the paper shows that near-optimal
Bayesian regret bounds are achievable in constrained rein-
forcement learning. To the best of our knowledge, this is the
first work to obtain a computationally tractable algorithm
with near-optimal regret bounds for the infinite-horizon av-
erage reward setting when underlying CMDP is communi-
cating. Additionally, simulation results demonstrate that our
algorithm significantly outperforms existing approaches for
three CMDP benchmarks.

1Mixing time can be arbitrarily loose compared to the diameter,
e.g., TM ∼ O(DS) for some problem instances (Bartlett & Tewari,
2009).
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The rest of the paper is organized as follows. Section 2 is
devoted to the methodological setup and contains the prob-
lem formulation. The PSCONRL algorithm is introduced in
Section 3. Analysis of the algorithm is presented in Section
4, which is followed by numerical experiments in Section 5.
Section 6 briefly reviews the previous related work. Finally,
we conclude with Section 7.

2. Problem formulation
2.1. Constrained Markov Decision Processes

A constrained MDP model is defined as a tuple M =
(S,A, p, c, τ) where S is the state space, A is the action
space, p : S × A −→ ∆S is the transition function, with
∆S indicating simplex over S, c : S × A −→ [0, 1]m+1 is
the cost vector function, and τ ∈ [0, 1]m is a cost threshold.
In general, CMDP is an MDP with multiple cost functions
(c0, c1, . . . , cm), one of which, c0, is used to set the opti-
mization objective, while the others, (c1, . . . , cm), are used
to restrict what policies can do. A stationary policy π is a
mapping from state space S to a probability distribution on
the action space A, π : S −→ ∆A, which does not change
over time. Let S = |S| and A = |A|, where | · | denotes the
cardinality.

For transitions p and a scalar cost function c, a stationary
policy π induces a Markov chain, and the expected infinite-
horizon average cost (loss) for state s ∈ S is defined as

Jπ(s; c, p) = limT→∞
1

T

T∑
t=1

Eπ
p [c(st, at)|s0 = s] , (1)

where Eπ
p is the expectation under the probability mea-

sure Pπ
p over the set of infinitely long state-action trajec-

tories. Pπ
p is induced by policy π, transition function p,

and the initial state s. Given some fixed initial state s and
τ1, . . . , τm ∈ R , the CMDP optimization problem is to
find a policy π that minimizes Jπ(s; c0, p) subject to the
constraints Jπ(s; ci, p) ≤ τi, i = 1, . . . ,m:

min
π

Jπ(s; c0, p) s.t. Jπ(s; ci, p) ≤ τi, i = 1, . . . ,m . (2)

Communicating CMDPs. To control the regret vector
(defined below), we consider the subclass of communicating
CMDPs. Formally, define the diameter of CMDP with
transitions p as the minimum time required to go from one
state to another in the CMDP using some stationary policy:

D(p) = max
s̸=s′

min
π:S→∆A

Tπ
s→s′ ,

where Tπ
s→s′ is the expected number of steps to reach state

s′ when starting from state s and using policy π. CMDP is
communicating if and only if it has a finite diameter, that
is to say, for every pair of states s and s′ there exists a

stationary policy under which s′ is accessible from s in at
most D(p) steps, for some finite D(p) ≥ 0.

We define Ω∗ to be the set of all transitions p such that the
CMDP with transition probabilities p is communicating,
and there exists a number D such that D(p) ≤ D. We will
focus on CMDPs with transition probabilities in set Ω∗.

Next, by (Puterman, 1994)[Theorem 8.2.6], for scalar cost
function c, transitions p that corresponds to communicating
CMDP, and stationary policy π, there exists a bias function
v(s; c, p) satisfying the Bellman equation for all s ∈ S:

Jπ(s; c, p) + vπ(s; c, p) (3)

=
∑
a∈A

π(a|s)

[
c(s, a) +

∑
s′∈S

p(s′|s, a)vπ(s′; c, p)

]
.

If v satisfies the Bellman equation, v plus any constant
also satisfies the Bellman equation. Furthermore, the
loss of the optimal stationary policy π∗ does not de-
pend on the initial state, i.e., Jπ∗(s; c, p) = Jπ∗(c, p),
as presented in (Puterman, 1994)[Theorem 8.3.2]. With-
out loss of generality, let mins∈S vπ∗(s; ci, p) = 0, for
i = 1, . . .m, and define the span of the MDP as sp(p) =
max1≤i≤m maxs∈S vπ∗(s; ci, p). Note, if D(p) ≤ D, then
sp(p) ≤ D as well (Bartlett & Tewari, 2009).

Linear programming for solving CMDPs. When CMDP
is known, an optimal policy for (2) can be obtained by
solving the following linear program (LP)(Altman, 1999):

min
µ

∑
s,a

µ(s, a)c0(s, a), (4)

s.t.
∑
s,a

µ(s, a)ci(s, a) ≤ τi, i = 1, . . . ,m, (5)

∑
a

µ(s, a) =
∑
s′,a

µ(s′, a)p(s′, a, s), ∀s ∈ S, (6)

µ(s, a) ≥ 0, ∀(s, a) ∈ S ×A,
∑
s,a

µ(s, a) = 1, (7)

where the decision variable µ(s, a) is occupancy measure
(fraction of visits to (s, a)). Given the optimal solution for
LP (4)-(7), µ∗(s, a), one can construct the optimal station-
ary policy π∗(a|s) for (2) by choosing action a in state s

with probability µ∗(s,a)∑
a′ µ∗(s,a′) .

Given the above definitions and results, we can now define
the reinforcement learning problem studied in this paper.

2.2. The reinforcement learning problem

We study the reinforcement learning problem where an
agent interacts with a communicating CMDP M =
(S,A, p∗, c, τ). We assume that the agent has complete
knowledge of S,A, and the cost function c, but not the tran-
sitions p∗ or the diameter D. This assumption is common
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for RL literature (Bartlett & Tewari, 2009; Agrawal & Jia,
2017; Osband & Van Roy, 2017; Kalagarla et al., 2023)
and is without loss of generality because the complexity of
learning the cost and reward functions is dominated by the
complexity of learning the transition probability.

We focus on a Bayesian framework for the unknown parame-
ter p∗. That is, at the beginning of the interaction, the actual
transition probabilities p∗ are randomly generated from the
prior distribution f1. The agent can use past observations to
learn the underlying CMDP model and decide future actions.
The goal is to minimize the total cost

∑T
t=1 c0(st, at) while

violating constraints as little as possible, or equivalently,
minimize the total regret for the main cost component and
auxiliary cost components over a time horizon T , defined as

BR+(T ; c0) = E

[
T∑

t=1

(
c0(st, at)− Jπ∗(c0; p∗)

)
+

]
,

BR+(T ; ci) = E

[
T∑

t=1

(
ci(st, at)− τi

)
+

]
, i = 1, . . . ,m,

where st, at, t = 1, . . . , T , are generated by the agent,
Jπ∗(c0; p∗) is the optimal loss of the CMDP M , and
[x]+ := max{0, x}. The above expectation is with re-
spect to the prior distribution f1, the randomness in the state
transitions, and the randomized policy.

2.3. Assumptions

We introduce two mild assumptions that are common in
reinforcement learning literature.

Assumption 2.1. The support of the prior distribution f1
is a subset of Ω∗. That is, the CMDP M is communicating
and D(p∗) ≤ D.

This type of assumption is common for the Bayesian frame-
work (see, e.g., (Ouyang et al., 2017; Agarwal et al., 2022))
and is not overly restrictive (Bartlett & Tewari, 2009; Chen
et al., 2022). In the experiments section, we provide a prac-
tical justification for this assumption and show that it can be
supported by choosing Dirichlet distribution as a prior.

Assumption 2.2. There exists γ > 0 and unknown policy
π̄(·|s) ∈ ∆A such that J π̄(ci, p∗) ≤ τi − γ for all i ∈
{1, . . . ,m}, and without loss of generality, we assume under
such policy π̄, the Markov chain resulting from the CMDP
is irreducible and aperiodic.

The first part of the assumption is standard in constrained
reinforcement learning (see, e.g., (Efroni et al., 2020; Ding
et al., 2021)) and is mild as we do not require the knowledge
of such policy. The second part is without loss of generality
due to Puterman (1994)[Proposition 8.3.1] and Puterman
(1994)[Proposition 8.5.8]. By imposing this assumption, we
can control the sensitivity of problem (2) to the deviation

between the true and sampled transitions. Later, we will use
this assumption to guarantee that the minimization problem
in Eq. (2) becomes feasible under the sampled transitions.

3. PSCONRL: Learning algorithm for
constrained reinforcement learning

In this section, we propose the Posterior Sampling for Con-
strained Reinforcement Learning (PSCONRL) algorithm.
Our algorithm is based on an intuitive idea of constructing
an adaptive exploration mechanism to address the feasibility
issues. It maintains posteriors for the transition function
and combines the steps of solving LP through the lens of
occupancy measure with the construction of exploration
MDPs (whenever LP is infeasible). Below, we describe the
main components of our algorithm, which is summarized in
Algorithm 1.

Bayes rule. At each timestep t, given history ht, the agent
can compute posterior distribution ft given by ft(P) =
P(p∗ ∈ P|ht) for any set P . Upon applying action at and
observing a new state st+1, the posterior distribution at t+1
can be updated according to Bayes’ rule as

ft+1(dp) =
p(st+1|st, at)ft(dp)∫
p′(st+1|st, at)ft(dp′)

. (8)

The key challenge of posterior sampling is that neither prob-
lem in Eq. (2) nor LP (4)-(7) are guaranteed to be feasible
under the sampled transitions pt ∼ ft, and it is unclear how
the agent should proceed if LP (4)-(7) is infeasible. As we
show in Lemma 4.4, after sufficient exploration, LP (4)-(7)
becomes feasible with high probability (when each state-
action pair is visited

√
T/A times). Therefore, whenever

LP (4)-(7) is infeasible, the agent switches to efficient ex-
ploration by constructing shortest path policies for a set of
MDPs described below.

Reduction to a set of exploration MDPs. To facilitate
efficient exploration, we introduce a set of MDPs, denoted
as {(S,A, pt, cs)}s∈S . Each MDP in this set retains the
original state and action spaces, with the transition function
pt ∼ ft and a state-dependent cost function cs, defined as

cs(s
′, a) =

{
1, if s′ ̸= s;
0, otherwise.

Consider a specific target state s̄ and its corresponding MDP
M t

s̄ = (S,A, pt, cs̄). Note, MDP M t
s̄ is communicating

with a scalar cost function, and, from MDP theory, we
know that there exists an optimal policy πt

s̄ that satisfies the
Bellman optimality equation:

J∗(cs̄, pt) + v∗(s; cs̄, pt) (9)

= min
a∈A

{
cs̄(s, a) +

∑
s′∈S

pt(s
′|s, a)v∗(s′; cs̄, pt)

}
,∀s ∈ S.
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In essence, the optimal policy πt
s̄ corresponds to a policy

that efficiently guides the agent through the MDP toward
the target state s̄, thereby enabling efficient exploration. The
formalization of this intuitive concept will be presented in
Section 4.

3.1. Algorithm description

PSCONRL begins with a prior distribution over transitions
f1 and proceeds in episodes. Let Nt(s, a) denote the num-
ber of visits to (s, a) before time t and Nt(s) denote the
number of visits to s. We use two stopping criteria of
Ouyang et al. (2017) for episode construction. The rounds
t = 1, ..., T are broken into consecutive episodes as follows:
the k-th episode begins at the round tk immediately after
the end of (k − 1)-th episode and ends at the first round t
such that (i) Nt(s, a) ≥ 2Ntk(s, a) or (ii) t ≤ tk+Tk−1 for
some state-action pair (s, a), where Tk = tk+1 − tk is the
length of episode k. The first criterion is the doubling trick
of Jaksch et al. (2010) and ensures the algorithm has visited
some state-action pair (s, a) at least the same number of
times it had visited this pair (s, a) before episodes k started.
The second criterion controls the growth rate of episode
length and is believed to be necessary under the Bayesian
setting (Ouyang et al., 2017).

At the beginning of episode k, a parameter pk is sampled
from the posterior distribution ftk , where tk is the start of
the k-th episode. During each episode k, actions are gener-
ated from the optimal stationary policy πk for the sampled
parameter pk, which is observed either by solving LP (4)-(7)
(if it is feasible) or by recovering the shortest path policy for
a state with minimum visitations to it. Using Assumption
2.2, we will show that eventually, after O(

√
T ) steps, the

sampled CMDP becomes feasible, and the algorithm will
effectively compute πk by solving LP (4)-(7).

Remark 3.1. Note that PSCONRL only requires the knowl-
edge of S, A, c, and the prior distribution f1. It does not
require the knowledge of the horizon T , or the bias span
sp(p) as in Singh et al. (2023) and Chen et al. (2022).

3.2. Importance of additional exploration for
communicating CMDPs

In this subsection, we highlight the importance of reducing
the problem to the exploration MDPs within our algorithm.
In contrast to our approach, PSRL-CMDP (Agarwal et al.,
2022) exclusively solves LP (4)-(7) for the optimal solu-
tion, and in cases when the optimal solution is infeasible,
they opt to disregard constraints and proceed with the un-
constrained problem. They argue that, eventually, the LP
becomes feasible due to the self-exploratory properties of
ergodic CMDPs. Unfortunately, this argument does not
hold for communicating CMDPs, as demonstrated by the
following example.

Algorithm 1 Posterior Sampling for Constrained Reinforce-
ment Learning (PSCONRL)

1: Input: f1
2: Initialization: t← 1, tk ← 0, π0(·)← 1

|A|
3: for episodes k = 1, 2, . . . do
4: Tk−1 ← t− tk
5: tk ← t
6: Generate pk(·|s, a) ∼ ftk
7: if LP (4)-(7) is feasible under pk(·|s, a) then
8: Compute πk(·) by solving LP (4)-(7)
9: else

10: Select s with minimum number of visits Ntk(s)
11: Compute πk(·) by solving Eq. (9) for MDP Ms

12: end if
13: repeat
14: Apply action at = πk(st)
15: Observe new state st+1

16: Update counter Nt(st, at)
17: Update ft+1 according to Eq. (8)
18: t← t+ 1
19: until t ≤ tk + Tk−1 and Nt(s, a) ≤ 2Ntk(s, a) for

some (s, a) ∈ S ×A
20: end for

Example 3.2. Consider a two-state S = {s0, s1}, two-
action A = {a0, a1} CMDP in which the controlled tran-
sition probabilities p∗(s0, a1, s1) = θ and p∗(s0, a1, s0) =
1 − θ are unknown, while remaining probabilities are
p∗(s0, a0, s1) = 1, p∗(s1, ·, s1) = 1 and known. See Figure
1(a) for illustration. Assume that r(s0, ·) = 1, c(s0, ·) = 1
and r(s1, ·) = 0, c(s1, ·) = 0, i.e., reward and cost depend
only upon the current state. Further, let θ = 0.9 and the
average cost threshold τ = 0.5275 (the lowest possible bud-
get that corresponds to a feasible problem). Note that this
CMDP is not ergodic because starting from s0 and utiliz-
ing a policy that chooses action a0 will never visit state s1.
Also, such a policy would clearly correspond to an optimal
solution in case there is no budget constraint.

For two algorithms, PSCONRL (ours) and PSRL-CMDP
(Agarwal et al., 2022), we demonstrate their performance
through simulations on this toy CMDP. For both algorithms,
we set the prior distribution to Beta(1, 1) with the param-
eters of the distribution being the number of visitations to
(s0, a0) and (s0, a1) state-action pairs. At each timestep, we
sample the plausible parameter θ̃. Whenever the sampled
CMDP is infeasible, we utilize the optimal policy for the un-
constrained problem for PSRL-CMDP (policy that chooses
action a0 all the time) and the shortest path policy according
to Eq. (9) for PSCONRL (policy that chooses action a1 all
the time). Note that the sampled CMDP is infeasible every
time θ̃ < θ, due to the choice of cost threshold.

Figure 1(b) demonstrates the results of the experiment.
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(a) Symbolic illustration of Example 3.2. (b) Simulation results for Example 3.2.

Figure 1. CMDP illustration and results of the experiments for Example 3.2, with θ = 0.9 and the average cost threshold τ = 0.5275.
Figure 1(a) represents the CMDP in symbolic form. Figure 1(b) presents average cost (left), and realizations of θ̃ (right). Results are
averaged over 5 runs.

Specifically, we present the average cost (left) and real-
izations of θ̃ (right). Taking a closer look at the average
cost subplot (left), we can see that PSCONRL consistently
fluctuates around the cost threshold and, overall, satisfies the
constraint of the problem, whereas PSRL-CMDP severely
violates the constraint. Moving to the right subplot, it is
evident that PSCONRL successfully learns the true value of
parameter θ, while PSRL-CMDP fails to do so.

A series of assumptions in (Agarwal et al., 2022) makes a
Markov chain induced by any policy aperiodic, recurrent,
and irreducible. Such favorable properties make any CMDP
self-exploratory, meaning that for a sampled CMDP, a policy
that solely maximizes the main reward (regardless of con-
straints) will sufficiently explore the environment and, even-
tually, collect enough information to find the true optimal
solution. However, this does not hold for communicating
CMDPs and necessitates additional exploration to ensure
feasibility. As such, a more involved theoretical analysis is
required to address this issue for communicating CMDPs.

4. Regret bound
We now provide our main result for the PSCONRL algo-
rithm for learning in CMDPs.
Theorem 4.1. For any communicating CMDP M with S
states, A actions, under Assumptions 2.1 and 2.2, for T ≥
Ω((D/γ)4S2A log2(2AT )), the Bayesian regret for main
and auxiliary cost components of Algorithm 1 are bounded:

BR+(T ; ci) ≤ O
(
DS
√
AT log(AT )

)
, i = 0, . . . ,m.

Here O(·) notation hides only the absolute constant.E
Remark 4.2. The regret bound closely matches the theoreti-
cal lower bound of Ω(

√
DSAT ). Also, the provided bound

matches the best bound for the undiscounted setting without
constraints. We emphasize that the O(

√
DS) gap between

lower and upper bounds remains an open question for the
undiscounted setting with and without constraints.

The full proof of Theorem 4.1 is presented in the Appendix
A.1. In the remainder of this section, we introduce three

lemmas that are pivotal to our analysis and present a proof
sketch for Theorem 4.1.

4.1. Key lemmas

A key property of posterior sampling is that conditioned
on the information at time t, the transition functions p∗
and pt have the same distribution if pt is sampled from the
posterior distribution at time t (Osband et al., 2013). Since
the PSCONRL algorithm samples pk at the stopping time tk,
we use the stopping time version of the posterior sampling
property stated as follows.
Lemma 4.3 (Posterior sampling lemma; adapted from
Lemma 1 of (Jafarnia-Jahromi et al., 2021)). Let tk be
a stopping time with respect to the filtration (Ft)

∞
t=1, and

pk be the sample drawn from the posterior distribution at
time tk. Then, for any measurable function g and any Ftk -
measurable random variable X , we have

E [g(pk, X)] = E [g(p∗, X)] .

Recall that in every episode k, PSCONRL runs either an
optimal loss policy by solving LP (4)-(7) for the sampled
transitions or computes the optimal stationary policy for a
fixed finite MDP. In Lemma 4.4, we show that problem (2)
becomes feasible under sampled transitions after sufficient
exploration of every state-action pair, i.e., there exists a pol-
icy that satisfies constraints in problem (2) and Algorithm 1
will effectively find an optimal solution for LP (4)-(7).

We address the feasibility issues by using the deviation
bound between sampled and true transitions and the limiting
matrix properties of the resulting Markov chains. Unlike
optimistic algorithms (Singh et al., 2023; Chen et al., 2022),
which optimize over a confidence set of plausible transitions,
Lemma 4.4 introduces a computationally efficient approach
to deal with feasibility issues.
Lemma 4.4 (Feasibility lemma). If Ntk(s, a) ≥

√
T/A,

∥pk(·|s, a)− p∗(·|s, a)∥1 ≤
√

14S log(2ATtk)
max{1,Ntk

(s,a)} for all

(s, a), and γ ≥ D
√

14SA1/2 log(2AT 2)√
T

there exists policy
π, which satisfies Jπ(ci, pk) ≤ τi for all i ∈ {1, . . . ,m}.
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Next, in Lemma 4.5, we prove that PSCONRL explores the
environment efficiently, whenever LP (4)-(7) is infeasible,
and requires O(DS

√
AT ) to visit each state-action pair√

T/A times.
Lemma 4.5 (Exploration lemma). Define set
G = {p ∈ Ω∗ : ∃π s.t. Jπ(ci; p) ≤ τi,∀i ∈ {1, . . . ,m}}.
Whenever πk is computed as an optimal policy for Eq. (9),
i.e., pk /∈ G, the average number of timesteps to visit each
state-action pair

√
T/A times is bounded by 2DS

√
AT+1.

Formally,

∑
k:tk≤T

E

[
tk+1−1∑
t=tk

I
{
∃(s, a) : Ntk(s, a) <

√
T
}
| pk /∈ G

]
≤ 2DS

√
AT + 1.

Lemma 4.5 plays a crucial role in facilitating efficient ex-
ploration. It ensures that the deviation between sampled
and true transitions becomes sufficiently small, thereby sat-
isfying the conditions outlined in Lemma 4.4. Importantly,
our exploration mechanism requires overall O(

√
T ) steps,

whereas the existing approaches designate O(T 2/3) steps
for exploration in constrained problems and only achieve
suboptimal regret of Õ(T 2/3), e.g., UCRL-CMDP (Singh
et al., 2023) and Alg. 3 (Chen et al., 2022). Only Alg. 4
(Chen et al., 2022) allocates O(

√
T ) steps for exploration,

leading to near-optimal regret bound. However, this explo-
ration scheme renders their algorithm intractable.

The Feasibility and Exploration lemmas form one of the
main novel components of the analysis of Theorem 4.1.

4.2. Proof Sketch of Theorem 4.1

Below, we show a proof sketch of the main theorem for
the main regret component. The proof for auxiliary cost
components is deferred to the Appendix A.1.

We decompose the total regret into the sum of episodic
regrets conditioned on the event that the sampled CMDP is
feasible:

BR+(T ; c0) = E

[
T∑

t=1

(c0(st, at)− Jπ∗)+

]

=

KT∑
k=1

E

[∑
t

[c0(st, at)− Jπ∗ ] |pk ∈ G

]
P (pk ∈ G)

+

KT∑
k=1

E

[∑
t

[c0(st, at)− Jπ∗ | pk /∈ G

]
P (pk /∈ G) ,

where Jπ∗ = Jπ∗(c0; p∗) is the optimal loss of CMDP
M , KT is the number of episodes, and G is defined in the
statement of Lemma 4.5.

For the first term, conditioned on the good event, {pk ∈ G},
the sampled CMDP is feasible, and the standard analysis

of Ouyang et al. (2017) can be applied. Lemma A.2 shows
that this term can be bounded by (D+1)

√
2SAT log(T )+

49DS
√
AT log(AT ).

As for the second term, we further decompose it conditioned
on two events: A1 = {pk /∈ G∧Ntk(s, a) ≥

√
T/A,∀s, a}

and A2 = {pk /∈ G∧∃(s, a) : Ntk(s, a) <
√

T/A}. Using
the Feasibility lemma, we then show that P(A1) is bounded
by 2/15Ttk for each k, and the total regret corresponding
to event A1 is negligible.

Next, conditioned on A2, we can uti-
lize the Exploration lemma and show that∑

k E [
∑

t [c0(st, at)− Jπ∗ |A2]P (A2) < 2DS
√
AT +1,

due to the efficient exploration property of our algorithm.

Putting all bounds together, we obtain the resulting regret
bound of:

BR+(T ; c0) ≤ O
(
DS
√
AT log(AT )

)
.

5. Simulation results
In this section, we evaluate the performance of PSCONRL.
The source code of the experiments can be found at https:
//github.com/danilprov/cmdp.

We present PSCONRL using Dirichlet priors with parame-
ters [0.1, . . . , 0.1]. The Dirichlet distribution is a convenient
choice for maintaining posteriors for the transition probabil-
ity vectors p(s, a) since it is a conjugate prior for categorical
and multinomial distributions. Moreover, Dirichlet prior is
proven to be highly effective for any underlying MDP in
unconstrained problems (Osband & Van Roy, 2017).

We employ three algorithms as baselines: C-UCRL (Zheng
& Ratliff, 2020), UCRL-CMDP (Singh et al., 2023), and
FHA (Alg. 3) from (Chen et al., 2022). Both Alg. 4 of
(Chen et al., 2022) and PSRL-CMDP of (Agarwal et al.,
2022) are omitted from the empirical analysis due to their
practical inapplicability. For additional information about
the baselines, see Appendix B.1.

We run our experiments on three gridworld environments:
Marsrover 4x4, Marsrover 8x8 (Zheng & Ratliff, 2020),
and Box (Leike et al., 2017). To enable fair comparison,
all algorithms were extended to the unknown reward/costs
and unknown probability transitions setting (see Appendix
B for more experimental details). Figure 2 illustrates the
simulation results of all algorithms across three benchmark
environments. The top row shows the cumulative regret
of the main cost component. The bottom row presents the
cumulative constraint violation.

We first analyze the behavior of the algorithm on Marsrover
environments (left and middle columns). The cumulative
regret (top row) shows that PSCONRL consistently out-
performs all three algorithms. Looking at the cumulative
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Figure 2. The main regret and constraint violation of the algorithms as a function of the horizon for Marsrover 4x4 (left column), Marsrover
8x8 (middle column), and Box (right column). (Top row) shows the cumulative regret of the main cost component. (Bottom row) shows
the cumulative constraint violation. Results are averaged over 50 runs for Marsrover 4x4 and over 30 runs for Marsrover 8x8 and Box.
Results for UCRL-CMDP and FHA (Alg. 3) are averaged over 10 runs for Marsrover 4x4.

constraint violation (bottom row), we see that PSCONRL
is comparable with C-UCRL, the only algorithm that ad-
dresses safe exploration. In the Box example (right column),
PSCONRL significantly outperforms C-UCRL, which in-
curs near-linear regret. We note that exploration is relatively
costly in this benchmark compared to Marsrover environ-
ments (see the difference on the x and y-axes in the top
row), which suggests that C-UCRL might be impractical in
(at least some) problems where exploration is non-trivial. In
Figure 5, we further elaborate on the average performance
of the algorithms interpreting regret behavior.

We note the pronounced computational inefficiency of
UCRL-CMDP and FHA (Alg. 3) algorithms. UCRL-
CMDP involves optimization not only across the space
of occupancy measures but also across the set of plausi-
ble CMDPs, resulting in an exhausting non-linear program.
In the most favorable scenario, it requires O((S2A)4) op-
erations per episode. On the other hand, FHA (Alg. 3)
maintains linearity in its main optimization program but
necessitates solving it at each timestep, leading to time com-
plexity of O((SAT 1/3)2) per episode. Although both algo-
rithms enjoy polynomial time complexity, the undesirable
dependence on problem parameters makes them impractical
even for moderate-sized problems. Due to these substan-
tial drawbacks, we have limited their implementation to the
Marsrover 4x4 environment.

Additionally, we would like to point out that in these exam-
ples, CMDPs are fixed and not generated from the Dirichlet
prior. Therefore, we conjecture that PSCONRL has the
same regret bounds under a non-Bayesian setting.

6. Related work
Several algorithms based on the optimism in the face of
uncertainty (OFU) principle have been proposed for con-
strained RL problems. For the episodic setting, both Efroni
et al. (2020) and Brantley et al. (2020) consider sample effi-
cient exploration utilizing a double optimism principle. As
previously mentioned, Singh et al. (2023) and Chen et al.
(2022) study OFU-based algorithms in the infinite-horizon
average reward setting. It is worth mentioning that OFU-
based algorithms often involve optimization across a set of
plausible models (see, e.g., (Efroni et al., 2020; Singh et al.,
2023)), which makes them computationally less appealing.

Another line of closely related works investigates safe RL,
addressing constrained reinforcement learning problems
with constant or zero constrain violation guarantees. Sev-
eral algorithms were proposed in episodic setting (Liu et al.,
2021; Wei et al., 2022; Kalagarla et al., 2023), with Kala-
garla et al. (2023) focusing on posterior sampling algorithm
for safe reinforcement learning. In the infinite-horizon av-
erage reward setting, the safe RL problem was previously

8
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analyzed in (Zheng & Ratliff, 2020; Chen et al., 2022). No-
tably, safe RL algorithms often assume that the transition
model and/or safe policy are known.

Among other related work, Lagrangian relaxation is a widely
adopted technique for solving CMDPs. The works of
(Achiam et al., 2017; Tessler et al., 2019) present con-
strained policy optimization approaches that demonstrate
prominent successes in artificial environments. However,
these approaches are notoriously sample-inefficient and
lack theoretical guarantees. More scalable versions of the
Lagrangian-based methods were proposed in (Chow et al.,
2018; Qiu et al., 2020; Chen et al., 2021; Provodin et al.,
2022). In general, the Lagrangian relaxation method can
achieve high performance, but it is sensitive to the initializa-
tion of the Lagrangian multipliers and learning rate.

7. Conclusion
In this paper, we introduced the PSCONRL algorithm for ef-
ficient exploration in constrained reinforcement learning un-
der the infinite-horizon average reward criterion. Our algo-
rithm achieves near-optimal Bayesian regret bounds for each
cost component while being computationally efficient and
easy to implement. By addressing these aspects, PSCONRL
fills a crucial gap in provably efficient constrained RL.

PSCONRL leverages LP solutions to determine optimal
policies and incorporates efficient exploration whenever
the sampled CMDP is infeasible. As demonstrated in Sec-
tion 3.2, the empirical comparison between PSCONRL and
CMDP-PSLR highlights that the exploration step is not
merely a technical requirement for proofs but is indeed es-
sential for effective learning in communicating CMDPs.

Finally, we validated our approach using simulations on
three gridworld domains and showed that PSCONRL
quickly converges to the optimal policy even when CMDPs
are not sampled from Dirichlet priors, consistently outper-
forming existing algorithms. Our insights suggest that the
use of posterior sampling might be of great value for design-
ing a computationally efficient algorithm with near-optimal
frequentist regret bounds. Exploring this direction further
is a promising avenue for future work. We also believe
that this superior performance extends beyond the scope of
gridworld domains to real-life applications.
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A. Omitted details for Section 4
A.1. Proof of Theorem 4.1

Bounding regret of the main cost component. To analyze the performance of PSCONRL over T time steps, define
KT = argmax{k : tk ≤ T}, number of episodes of PSCONRL until time T . By Ouyang et al. (2017)[Lemma 1], KT

is upper-bounded by
√
2SAT log(T ). Using the tower rule, we can decompose the total regret into the sum of episodic

regrets conditioned on the good event that the sampled CMDP is feasible:

BR+(T ; c0) = E

[
T∑

t=1

(c0(st, at)− Jπ∗(c0; p∗))+

]
=

KT∑
k=1

E [R0,k]

=

KT∑
k=1

E [R0,k|pk /∈ G]P (pk /∈ G) +
KT∑
k=1

E [R0,k|pk ∈ G]P (pk ∈ G) , (10)

where R0,k =
∑tk+1−1

t=tk
[c0(st, at)− Jπ∗(c0; p∗)]+, Jπ∗(c0; p∗) is the optimal loss of CMDP M , and G is defined in the

statement of Lemma 4.5.

Define two events A1 = {pk /∈ G ∧Ntk(s, a) ≥
√

T/A,∀s, a} and A2 = {pk /∈ G ∧∃(s, a) : Ntk(s, a) <
√
T/A}. Then,

the first term of (10) can be further decomposed as

KT∑
k=1

E [R0,k|pk /∈ G]P (pk /∈ G) =
KT∑
k=1

E [R0,k|A1]P (A1) +

KT∑
k=1

E [R0,k|A2]P (A2) .

First, we bound
∑KT

k=1 E [R0,k|A1]P (A1). Let p̄k(s′|s, a) =
Ntk

(s,a,s′)

Ntk
(s,a) be the empirical mean for the transition probability

at the beginning of episode k, where Ntk(s, a, s
′) is the number of visits to (s, a, s′). Define the confidence set

Bk = {p : ∥p̄k(·|s, a)− p(·|s, a)∥1 ≤ βk} ,

where βk =
√

14S log(2ATtk)
max{1,Ntk

(s,a)} .

Now, we observe that {A1} ⊆ {∥pk(·|s, a)− p∗(·|s, a)∥1 > βk}, otherwise, by Lemma 4.4, problem (2) would be feasible
under pk, and therefore pk ∈ G which contradicts to pk /∈ G. Next, we note that Bk is Ftk -measurable which allows us to
use Lemma 4.3. Setting δ = 1/T in Lemma A.7 implies that P (∥pk(·|s, a)− p∗(·|s, a)∥1 > βk) can be bounded by 2

15Tt6k
.

Indeed,

P (∥pk(·|s, a)− p∗(·|s, a)∥1 > βk) ≤ P (p∗ /∈ Bk) + P (pk /∈ Bk) = 2P (p∗ /∈ Bk) ≤
2

15Tt6k
,

where the last equality follows from Lemma 4.3 and the last inequality is due to Lemma A.7.

Finally, we have

KT∑
k=1

E [R0,k|A1]P (A1) ≤
KT∑
k=1

2(tk+1 − tk)

15Tt6k
≤ 2

15

∞∑
k=1

k−6 ≤ 1.

To bound the term
∑KT

k=1 E [R0,k|A2]P (A2), we rewrite it as

KT∑
k=1

E [R0,k |A2]P (A2) =

KT∑
k=1

tk+1−1∑
t=tk

E [(c0(st, at)− Jπ∗(c0; p∗)|A2]P (A2)

≤
KT∑
k=1

tk+1−1∑
t=tk

P (A2) ≤
KT∑
k=1

tk+1−1∑
t=tk

P
(
∃(s, a) : Ntk(s, a) <

√
T/A | pk /∈ G

)
,
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where the first inequality holds because |(c0(st, at)−Jπ∗(c0; p∗)|≤ 1 and the last inequality is by P(A∧B) = P(A|B)P(B).
Then, by Lemma 4.5, we obtain

KT∑
k=1

tk+1−1∑
t=tk

P
(
∃(s, a) : Ntk(s, a) <

√
T/A | pk /∈ G

)
≤ 2DS

√
AT + 1.

For the second term of (10), conditioned on the good event, {pk ∈ G}, the sampled CMDP is feasible, and the standard
analysis of Ouyang et al. (2017) can be applied. Lemma A.2 shows that this term can be bounded by (D+1)

√
2SAT log(T )+

49DS
√
AT log(AT ).

Putting all bounds together, we obtain the resulting regret bound of:

BR+(T ; c0) ≤ O
(
DS
√
AT log(AT )

)
.

Bounding regret of auxiliary cost components. Without loss of generality, fix the cost component ci and its threshold τi
for some i and focus on analyzing the i-th component regret. Similarly to the decomposition of the main component, we
obtain:

BR+(T ; ci) = E

[
T∑

t=0

(ci(st, at)− τi)+

]
=

KT∑
k=1

E [Ri,k]

=

KT∑
k=1

E [Ri,k|pk /∈ G]P (pk /∈ G) +
KT∑
k=1

E [Ri,k|pk ∈ G]P (pk ∈ G)

where Ri,k =
∑tk+1−1

t=tk
[ci(st, at)− τi]+.

The first term can be analyzed similarly to the main cost component and bounded by 2DS
√
AT + 2. The regret bound of

the second term is the same as the regret bound of the analogous term of the main cost component. Its analysis is marginally
different and provided in Lemma A.3.

A.2. Proof of Feasibility lemma (Lemma 4.4)

Proof. Fix some i ∈ {1, . . . ,m}. Further, we will omit index i and write c and τ instead of ci and τi.

With slight abuse of notation, we rewrite the equation (3) in vector form:

Jπ,p,c + vπ,p = cπ + Pπv
π,p. (11)

Above, Jπ,p,c, vπ,p, and cπ are S dimensional vectors of Jπ,p,c
s , vπ,ps , and cs,π(s) with Jπ,p,c

s = Jπ(s; c, p), vπ,ps = vπ(s; p),
and cs,π(s) =

∑
a∈A π(a|s)c(s, a); and Pπ is the transition matrix whose rows formed by the vectors ps,π(s), where

ps,π(s) =
∑

a∈A π(a|s)p(·|s, a).

Let P k
π̄ be the transition matrix whose rows are formed by the vectors pks,π̄(s), and P ∗

π̄ be the transition matrix whose rows

are formed by the vectors p∗s,π̄(s). Since Ntk(s, a) ≥
√

T/A for all (s, a), ∥pk(·|s, a)− p∗(·|s, a)∥1 ≤
√

14S log(2ATtk)
max{1,Ntk

(s,a)} ,

and the span of the bias function vπ̄,p∗ is at most D (by Assumption 2.1), we observe

(pk(·|s, a)− p∗(·|s, a))⊺ vπ̄,p∗ ≤ ∥pk(·|s, a)− p∗(·|s, a)∥1
∥∥vπ̄,p∗

∥∥
∞ ≤ δD

where δ =
√

14SA1/2 log(2ATtk)√
T

. Above implies(
P k
π̄ − P ∗

π̄

)
vπ̄,p∗ ≤ δD1 (12)

where 1 is the vector of all 1s.

Following (Agrawal & Jia, 2017), let (P k
π̄ )

∗ denote the limiting matrix for Markov chain with transition matrix P k
π̄ . Observe

that P k
π̄ is aperiodic and irreducible because of Assumption 2.2. This implies that (P k

π̄ )
∗ is of the form 1q⊺ where q is the

stationary distribution of P k
π̄ (refer to (A.4) in (Puterman, 1994)). Also, (P k

π̄ )
∗P k

π̄ = (P k
π̄ )

∗ and (P k
π̄ )

∗1 = 1.
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Therefore, the gain of policy π̄
J π̄,pk,c1 = (c⊺π̄q)1 = (P k

π̄ )
∗cπ̄

Now,

J π̄,pk,c1− J π̄,p∗,c1 = (P k
π̄ )

∗cπ̄ − J π̄,p∗,c1

= (P k
π̄ )

∗cπ̄ − J π̄,p∗,c
(
(P k

π̄ )
∗1
)

(using (P k
π̄ )

∗1 = 1)

= (P k
π̄ )

∗ (cπ̄ − J π̄,p∗,c1
)

= (P k
π̄ )

∗ (I − P ∗
π̄ ) v

π̄,p∗ (using (11))

= (P k
π̄ )

∗ (P k
π̄ − P ∗

π̄

)
vπ̄,p∗ (using (P k

π̄ )
∗P k

π̄ = (P k
π̄ )

∗)

≤ Dδ1. (using (12) and (P k
π̄ )

∗1 = 1)

Then observing that Dδ ≤ γ, we obtain

J π̄(c, pk)− J π̄(c, p∗) ≤ Dδ ≤ γ.

Using Assumption 2.2 and rearranging the terms in the inequality above, it follows

J π̄(c, pk) ≤ J π̄(c, p∗) + γ ≤ τ − γ + γ ≤ τ.

A.3. Proof of Exploration lemma (Lemma 4.5)

Before providing the proof for the Exploration lemma, we first show that PSCONRL requires at most D timesteps to reach a
target state when LP (4)-(7) is infeasible.
Lemma A.1. Fix some target state s̄ and its corresponding MDP Ms̄ and let πs̄ be a solution of Eq. (9). Then Tπs̄

s→s̄ ≤ D.

Proof. For simplicity, assume that MDP Ms̄ is aperiodic (we will consider the general case later). In such MDP, value
iteration is known to converge, and we can find (J∗, v∗) that satisfy Eq. (9) and the corresponding optimal policy π∗

s̄ .

Assume that there exists some policy π and state s such that Tπ∗
s̄

s→s̄ > Tπ
s→s̄. Consider the following policy π′: follow π

starting from s and wait until s̄ is reached (suppose that this happens in τ steps), then follow the optimal policy π∗
s̄ . Note

that τ is a random variable and, by definition,
E[τ ] = Tπ′

s→s̄.

Let (Jπ′
, vπ

′
) be the average cost and the bias function of policy π′. First, note that J∗ = Jπ′

, since π′ is constructed the
way that some policy π is utilized for a finite number of steps and the same policy π∗

s̄ is used in the long term. Next, if v is
a bias vector, v plus any constant is also a bias vector. Therefore, without loss of generality, we can apply the following
transformation to v∗ and vπ

′
:

v∗ = v∗ −min
s∈S

v∗(s),

vπ
′
= vπ

′
−min

s∈S
vπ

′
(s).

(13)

Observe that by definition of the cost function cs̄, after transformation (13), v∗(s) = T
π∗
s̄

s→s̄ and vπ
′
(s) = Tπ′

s→s̄. Thus, for
state s, we obtain

J∗ + v∗(s) > Jπ′
+ vπ

′
(s),

which contradicts the optimality of (J∗, v∗).

Now, if the MDP Ms̄ is periodic, we apply the aperiodicity transformation from Puterman (1994) to get a new MDP M̃s̄:
choose θ satisfying 0 < θ < 1 and define S̃ = S, Ã = A, and

c̃s̄ = θcs̄,

p̃(·|s, a) = (1− θ)es + θp(·|s, a).

13
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Note that M̃s̄ is communicating and aperiodic, and the previous reasoning applies to M̃s̄. Let J̃π, ṽπ, T̃π
s→s̄ denote the

quantities associated with M̃s̄ for some policy π. Then, by Puterman (1994)[Proposition 8.5.8], these are related to the
corresponding quantities for Ms̄ as follows:

J̃π = Jπ,

ṽπ = vπ,

T̃π
s→s̄ =

Tπ
s→s̄

θ
.

Using these relations and the fact that we proved the result for M̃s̄ gives us the result for periodic MDPs. Since minπ T
π
s→s̄ ≤

maxs,s′ minπ T
π
s→s′ , it immediately follows that Tπ∗

s̄
s→s̄ ≤ D.

Proof of Lemma 4.5. Let Te be the first time when every (s, a)-pair is visited at least
√
T/A times given {pk /∈ G},

Te = min{t : Nt(s, a) ≥
√
T/A ∀(s, a) | pk /∈ G}.

Since Tk ≤ Tk−1 + 1 and P
(
∃(s, a) : Nt(s, a) <

√
T/A | pk /∈ G

)
is non-increasing in t, i.e.,

P
(
∃(s, a) : Nt(s, a) <

√
T/A | pk /∈ G

)
≤ P

(
∃(s, a) : Nt−1(s, a) <

√
T/A | pk /∈ G

)
, for k > 1, we observe

tk+1−1∑
t=tk

P
(
∃(s, a) : Ntk(s, a) <

√
T/A | pk /∈ G

)
≤ P

(
∃(s, a) : Ntk(s, a) <

√
T/A | pk /∈ G

)

+

tk−1∑
t=tk−1

P
(
∃(s, a) : Nt(s, a) <

√
T/A | pk /∈ G

)
.

Next, by noting that P
(
∃(s, a) : Nt(s, a) <

√
T/A | pk /∈ G

)
= P (Te > t), we have

∑
k:tk≤T

E

[
tk+1−1∑
t=tk

I
{
∃(s, a) : Ntk(s, a) <

√
T/A

}
| pk /∈ G

]
=

KT∑
k=1

tk+1−1∑
t=tk

P
(
∃(s, a) : Ntk(s, a) <

√
T/A | pk /∈ G

)

≤ 1 +

KT∑
k=2

tk+1−1∑
t=tk

P
(
∃(s, a) : Ntk(s, a) <

√
T/A | pk /∈ G

)

≤ 1 +

KT∑
k=2

P(∃(s, a) : Ntk(s, a) <
√

T/A | pk /∈ G
)
+

tk−1∑
t=tk−1

P
(
∃(s, a) : Nt(s, a) <

√
T/A | pk /∈ G

)
= 1 +

KT∑
k=2

P (Te > tk) +

tk−1∑
t=tk−1

P (Te > t)

 = 1 +

KT∑
k=2

P (Te > tk) +

T∑
t=1

P (Te > t) ≤ 1 + 2E[Te],

where the last inequality follows from the tail sum formula E[Te] =
∑∞

t=0 P(Te > t). Finally, by Lemma A.1, we have
E[Te] ≤ DS

√
AT , which gives

∑
k:tk≤T

E

[
tk+1−1∑
t=tk

I
{
∃(s, a) : Ntk(s, a) <

√
T/A

}
| pk /∈ G

]
≤ 2DS

√
AT + 1.

A.4. Auxiliary lemmas

Lemma A.2 (Regret of the main cost on the good event). Under Assumption 2.1, conditioned on the good event {pk ∈ G},
KT∑
k=1

E [R0,k|pk ∈ G]P (pk ∈ G) ≤ (D + 1)
√

2SAT log(T ) + 49DS
√
AT log(AT ).
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Most of the analysis here recovers the analysis of Ouyang et al. (2017). Nonetheless, for the sake of clarity, we provide the
complete proof of Lemma A.2.

Proof. First, we rewrite equation (3) in terms of the state-action pair (Chen et al., 2022):

Jπ(s; c, p) + qπ(s, a; p) = c(s, a) +
∑
s′

p(s′|s, a)vπ(s′; p), (14)

where vπ(s; p) and qπ(s, a; p) are connected by vπ(s; p) =
∑

a π(a|s)qπ(s, a; p).

Conditioned on the good event {pk ∈ G}, every policy πk is the solution of LP (4)-(7), and we can apply the Bellman
equation (14) to c0(st, at), and decompose R0,k into the following terms.

KT∑
k=1

E [R0,k|pk ∈ G]P (pk ∈ G) ≤
KT∑
k=1

E [R0,k|pk ∈ G] =
KT∑
k=1

E

[
tk+1−1∑
t=tk

(
c0(st, at)− Jπ∗(c0; p∗)

)]

=

KT∑
k=1

E

[
tk+1−1∑
t=tk

(
Jπk(c0; pk)− Jπ∗(c0; p∗) + qπk(st, at; pk)−

∑
s′∈S

pk(s
′|st, at)vπk(s′, pk)

)]

=
∑
k

E

[∑
t

(
Jπk(c0; pk)− Jπ∗(c0; p∗)

)]
︸ ︷︷ ︸

R0

+
∑
k

E

[∑
t

(qπk(st, at; pk)− vπk(st; pk))

]
︸ ︷︷ ︸

R1

+
∑
k

E

[∑
t

[vπk(st; pk)− vπk(st+1; pk)]

]
︸ ︷︷ ︸

R2

+
∑
k

E

[∑
t

[
vπk(st+1; pk)−

∑
s′

pk(s
′|st, at)vπk(s′; pk)

]]
︸ ︷︷ ︸

R3

.

Now, we note that R1 = 0 as

E[qπk(st, at; pk)− vπk(st; pk)] = E[qπk(st, at; pk)−
∑
a

πk(a|st)qπ(st, a; pk)] = 0. (15)

Next, applying lemmas A.4, A.5, A.6 to R0, R2, R3, correspondingly, gives us the result.

Lemma A.3 (Regret of the auxiliary costs on the good event). Under Assumption 2.1, conditioned on the good event
{pk ∈ G},

KT∑
k=1

E [Ri,k|pk ∈ G]P (pk ∈ G) ≤ (D + 1)
√
2SAT log(T ) + 49DS

√
AT log(AT ).

Proof. Similarly to Lemma A.2, conditioned on the good event {pk ∈ G}, we can decompose Ri,k as follows:

KT∑
k=1

E [Ri,k|pk ∈ G]P (pk ∈ G) ≤
KT∑
k=1

E [Ri,k|pk ∈ G] =
KT∑
k=1

E

[
tk+1−1∑
t=tk

(
ci(st, at)− τi

)]

=

KT∑
k=1

E

[
tk+1−1∑
t=tk

(
Jπk(ci; pk)− τi + qπk(st, at; pk)−

∑
s′∈S

pk(s
′|st, at)vπk(s′, pk)

)]

=
∑
k

E

[∑
t

(
Jπk(ci; pk)− τi

]
︸ ︷︷ ︸

R0

+
∑
k

E

[∑
t

(qπk(st, at; pk)− vπk(st; pk))

]
︸ ︷︷ ︸

R1

+
∑
k

E

[∑
t

[vπk(st; pk)− vπk(st+1; pk)]

]
︸ ︷︷ ︸

R2

+
∑
k

E

[∑
t

[
vπk(st+1; pk)−

∑
s′

pk(s
′|st, at)vπk(s′; pk)

]]
︸ ︷︷ ︸

R3

.
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Now, we note that (Jπk(ci; pk)− τi) is negative on the good event {pk ∈ G} for all k, and term R0 can be dismissed.
R1 = 0 because of (15), and R2 and R3 regret terms can be bounded by Lemmas A.5 and A.6 correspondingly.

Lemma A.4 (Lemma 3 from (Ouyang et al., 2017)). For any cost function c : S ×A −→ [0, 1],

E

[
KT∑
k=1

tk+1−1∑
t=tk

(
Jπk(c; pk)− Jπ∗(c; p∗)

)]
≤ KT ≤

√
2SAT log(T ).

Lemma A.5 (Lemma 4 from (Ouyang et al., 2017)).

E

[
KT∑
k=1

tk+1−1∑
t=tk

(
vπk(st; pk)− vπk(st+1; pk)

)]
≤ DKT ≤ D

√
2SAT log(T ).

Lemma A.6 (Lemma 5 from (Ouyang et al., 2017)).

E

[
KT∑
k=1

tk+1−1∑
t=tk

(
vπk(st+1; pk)−

∑
s′∈S

pk(s
′|st, at)vπk(s′; pk)

)]
≤ 49DS

√
AT log(AT ).

Lemma A.7 (Lemma 17 from (Jaksch et al., 2010)). For any t ≥ 1, the probability that the true MDP M is not contained
in the set of plausible MDPsM(t) =

{
(S,A, p′, c, τ, ρ) : ∥p′(·|s, a)− pk(·|s, a)∥1 ≤

√
14S log(2Atk/δ)
max{1,Ntk

(s,a)}

}
at time t is at

most δ
15t , that is

P {M /∈M(t)} < δ

15t6
.

B. Experimental details
B.1. Baselines: OFU-based algorithms

We use three OFU-based algorithms from the existing literature for comparison: C-UCRL (Zheng & Ratliff, 2020),
UCRL-CMDP (Singh et al., 2023), and FHA (Alg. 3) (Chen et al., 2022). These algorithms rely on the knowledge of
different CMDP components, e.g., UCRL-CMDP relies on knowledge of rewards r, whereas C-UCRL uses the knowledge
of transitions p. To enable fair comparison, all algorithms were extended to the unknown reward/costs and unknown
probability transitions setting. Specifically, we assume that each algorithm knows only the states space S and the action
space A, substituting the unknown elements with their empirical estimates:

r̄t(s, a) =

∑t−1
j=1 I{st = s, at = a}rt

Nt(s, a) ∨ 1
, ∀s ∈ S, a ∈ A, (16)

c̄i,t(s, a) =

∑t−1
j=1 I{st = s, at = a}ci,t

Nt(s, a) ∨ 1
, ∀s ∈ S, a ∈ A, i = 1 . . . ,m, (17)

p̄t(s, a, s
′) =

Nt(s, a, s
′)

Nt(s, a) ∨ 1
, ∀s, s′ ∈ S, a ∈ A. (18)

where r is the reward function (inverse main cost c0) and Nt(s, a) and Nt(s, a, s
′) denote the number of visits to (s, a) and

(s, a, s′) respectively.

Further, we provide algorithmic-specific details separately for each baseline:

1. C-UCRL follows a principle of “optimism in the face of reward uncertainty; pessimism in the face of cost uncertainty.”
This algorithm, which was developed in (Zheng & Ratliff, 2020), considers conservative (safe) exploration by
overestimating both rewards and costs:
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r̂t(s, a) = r̄t(s, a) + bt(s, a) and ĉt(s, a) = r̄t(s, a) + bt(s, a).

C-UCRL proceeds in episodes of linearly increasing number of rounds kh, where k is the episode index and h is the
fixed duration given as an input. In each epoch, the random policy 2 is executed for h steps for additional exploration,
and then policy πk is applied for (k − 1)h number of steps, making kh the total duration of episode k.

2. Unlike the previous algorithm, where uncertainty was taken into account by enhancing rewards and costs, UCRL-
CMDP (Singh et al., 2023) constructs confidence set Ct over p̄t:

Ct = {p : |p(s, a, s′)− p̄t(s, a, s
′)| ≤ bt(s, a) ∀(s, a)} .

UCRL-CMDP algorithm proceeds in episodes of fixed duration of ⌈Tα⌉, where α is an input of the algorithm. At
the beginning of each round, the agent solves the following constrained optimization problem in which the decision
variables are (i) Occupation measure µ(s, a), and (ii) “Candidate” transition p′:

max
µ,p′∈Ct

∑
s,a

µ(s, a)r(s, a), (19)

s.t.
∑
s,a

µ(s, a)ci(s, a) ≤ τi, i = 1, . . . ,m, (20)

∑
a

µ(s, a) =
∑
s′,a

µ(s′, a)p′(s′, a, s), ∀s ∈ S, (21)

µ(s, a) ≥ 0, ∀(s, a) ∈ S ×A,
∑
s,a

µ(s, a) = 1, (22)

Note that program (19)-(22) is not linear anymore as µ(s′, a) is being multiplied by p′(s′, a, s) in equation (21). This is
a serious drawback of UCRL-CMDP algorithm because, as we show in the experiments, program (19)-(22) becomes
computationally inefficient for even moderate problems.

3. FHA (Finite Horizon Approximation for CMDP) divides the T timesteps into K rounds and treats each episode as
an episodic finite-horizon CMDP. Fix some episode k. Through the lens of occupancy measure that is defined on
S ×A×H × S space (where H is the length of the episode), FHA optimizes the following linear program:

max
µ

∑
h

∑
s,a

r(s, a)
∑
s′

µ(s, a, h, s′), (23)

s.t.
∑
h

∑
s,a

ci(s, a)
∑
s′

µ(s, a, h, s′) ≤ Hτi + sp(p∗), (24)

Pµ ∈ {p : |p(s, a, s′)− p̄k(s, a, s
′)| ≤ bk(s, a) ∀(s, a)} , , (25)

where Pµ(s, a, s
′) = µ(s,a,h,s′)∑

s′ µ(s,a,h,s
′) ∀h = 1, . . . H .

Although program (23)-(25) is linear, we emphasize that this algorithm requires finding an optimal occupancy measure
for each H and each K, resulting in O(S2AT ) decision variables. As we mentioned in the experiments, this is
prohibitive even for moderate-sized CMDPs.

2Original algorithm utilizes a safe baseline during the first h rounds in each epoch, which is assumed to be known. However, to make
the comparison as fair as possible, we assume that a random policy is applied instead.
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(a) Marsrover 4x4 (b) Marsrover 8x8

Figure 3. Marsrover gridworlds. The initial position is light green, the goal is dark green, the walls are gray, and risky states are purple.
Figure 3(a) illustrates 4x4 Marsrover environment. Figure 3(b) illustrates 8x8 Marsrover environment. In both cases, the agent’s task is to
get from the initial state to the goal state, and the optimal policy combines with some probabilities fast and safe ways, which are indicated
by arrows on the pictures.

B.2. Environments

To demonstrate the performance of the algorithms, we consider three gridworld environments in our analysis. There are
four actions possible in each state, A = {up, down, right, left}, which cause the corresponding state transitions, except
that actions that would take the agent to the wall leave the state unchanged. Due to the stochastic environment, transitions
are stochastic (i.e., even if the agent’s action is to go up, the environment can send the agent with a small probability left).
Typically, the gridworld is an episodic task where the agent receives cost 1 (equivalently reward -1) on all transitions until
the terminal state is reached. We reduce the episodic setting to the infinite-horizon setting by connecting terminal states
to the initial state. Since there is no terminal state in the infinite-horizon setting, we call it the goal state instead. Thus,
every time the agent reaches the goal, it receives a cost of 0 (or reward of 0), and every action from the goal state sends the
agent to the initial state. We introduce constraints by considering the following specifications of a gridworld environment:
Marsrover and Box environments.

Marsrover. This environment was used in (Tessler et al., 2019; Zheng & Ratliff, 2020; Brantley et al., 2020). The agent
must move from the initial position to the goal avoiding risky states. Figure (3) illustrates the CMDP structure: the initial
position is light green, the goal is dark green, the walls are gray, and risky states are purple. ”In the Mars exploration
problem, those darker states are the states with a large slope that the agents want to avoid. The constraint we enforce is the
upper bound of the per-step probability of stepping into those states with large slope – i.e., the more risky or potentially
unsafe states to explore” (Zheng & Ratliff, 2020). Each time the agent appears in a purple state incurs an auxiliary cost of 1.
Other states incur no auxiliary costs.

Without constraints, the optimal policy is obviously to always go up from the initial state. However, with constraints,
the optimal policy is a randomized policy that goes left and up with some probabilities, as illustrated in Figure 3(a). In
experiments, we consider two marsrover gridworlds: 4x4, as shown in Figure 3(a), and 8x8, depicted in Figure 3(b).

Box. Another conceptually different specification of a gridworld is Box environment from (Leike et al., 2017). Unlike the
Marsrover example, there are no static risky states; instead, there is an obstacle, a box, which is only ”pushable” (see Figure
4(a)). Moving onto the blue tile (the box) pushes the box one tile into the same direction if that tile is empty; otherwise,
the move fails as if the tile were a wall. The main idea of Box environment is ”to minimize effects unrelated to their main
objectives, especially those that are irreversible or difficult to reverse” (Leike et al., 2017). If the agent takes the fast way
(i.e., goes down from its initial state; see Figure 4(c)) and pushes the box into the corner, the agent will never be able to get
it back, and the initial configuration would be irreversible. In contrast, if the agent chooses the safe way (i.e., approaches
the box from the left side), it pushes the box to the reversible state (see Figure 4(b)). This example illustrates situations of
performing the task without breaking a vase in its path, scratching the furniture, bumping into humans, etc.

Each action incurs an auxiliary cost of 1 if the box is in a corner (cells adjacent to at least two walls) and no auxiliary costs
otherwise. Similarly to the Marsrover example, without safety constraints, the optimal policy is to take a fast way (go down
from the initial state). However, with constraints, the optimal policy is a randomized policy that goes down and left from the
initial state.
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(a) Box (Main) (b) Box (Safe) (c) Box (Fast)

Figure 4. Box gridworld. The initial position is light green, the goal is dark green, the walls are gray, and risky states are purple. Figure
4(a) illustrates the initial configuration. The agent’s task is to get from the initial state to the goal state, and the optimal policy combines
with some probabilities fast and safe ways, which are indicated by arrows on the pictures. Figure 4(b)-4(c) illustrates safe and fast ways.

B.3. Simulation results

Figure 5 shows the reward (inverse main cost) and average consumption (auxiliary cost) behavior of PSCONRL, C-UCRL,
UCRL-CMDP, and FHA (Alg. 3) illustrating how the regret from Figure 2 is accumulated. The top row shows the reward
performance. The bottom row presents the average consumption of the auxiliary cost.

Taking a closer look at Marsrover environments (left and middle columns), we see that all algorithms converge to the optimal
solution (top row), and their average consumption (middle row) satisfies the constraints in the long run. In the Box example
(right column), we see that C-UCRL is stuck with the suboptimal solution. The algorithm exploits safe policy once it is
learned, which corresponds to the near-linear regret behavior in Figure 2. Alternatively, PSCONRL converges to the optimal
solution relatively quickly (middle and bottom graphs).

Figure 5. (Top row) shows the average reward (inverse average main cost); the dashed line shows the optimal behavior, and the dotted
lines depict the reward level of safe and fast policies. (Bottom row) shows the average consumption of the auxiliary cost; the constraint
thresholds are 0.2 for Marsrover 4x4, 0.1 for Marsrover 8x8, and 0.6 for Box. Results are averaged over 100 runs for Marsrover 4x4 and
over 30 runs for Marsrover 8x8 and Box.
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