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Abstract. Class imbalance significantly impacts the performance of
multi-label classifiers. Oversampling is one of the most popular
approaches, as it augments instances associated with less frequent labels
to balance the class distribution. Existing oversampling methods gen-
erate feature vectors of synthetic samples through replication or linear
interpolation and assign labels through neighborhood information. Lin-
ear interpolation typically generates new samples between existing data
points, which may result in insufficient diversity of synthesized samples
and further lead to the overfitting issue. Deep learning-based methods,
such as AutoEncoders, have been proposed to generate more diverse and
complex synthetic samples, achieving excellent performance on imbal-
anced binary or multi-class datasets. In this study, we introduce AEMLO,
an AutoEncoder-guided Oversampling technique specifically designed for
tackling imbalanced multi-label data. AEMLO is built upon two funda-
mental components. The first is an encoder-decoder architecture that
enables the model to encode input data into a low-dimensional feature
space, learn its latent representations, and then reconstruct it back to
its original dimension, thus applying to the generation of new data. The
second is an objective function tailored to optimize the sampling task for
multi-label scenarios. We show that AEMLO outperforms the existing
state-of-the-art methods with extensive empirical studies.

Keywords: Multi-label classification · Class imbalance ·
Oversampling · AutoEncoder

1 Introduction

In the field of multi-label classification (MLC), each instance can belong to multi-
ple labels simultaneously. MLC is widely used in various fields, including image
annotation [4], sound processing [16], biology [34] and text classification [14].
The issue of class imbalance in multi-label classification has gained prominence
recently [28]. It is prevalent in real-world MLC problems and significantly affects
classifier performance, as many algorithms assume data is balanced. Imbalanced
datasets tend to bias learners towards majority labels [29].
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1.1 Research Goal

Our goal is to address the class imbalance in multi-label datasets through the
integration of a deep generative model within an encoder-decoder architecture.
This strategy seeks to outperform conventional methods, such as sampling with
linear interpolation or random replication, by dynamically creating instances
that contain richer feature information.

1.2 Motivation

In recent years, innovative approaches have been developed to tackle the issue of
imbalance in multi-label learning [28], including sampling methods [6,17], clas-
sifier adaption [9], and ensemble techniques [18,27]. Sampling methods, in par-
ticular, aim to balance the dataset before the training phase, offering flexibility
and compatibility with any multi-label classifier. To ensure effective sampling,
several studies have concentrated on identifying specific samples and refining
decision boundaries. For example, MLSOL [17] assigns a higher selecting prob-
ability to the sample suffering severe local imbalance. MLBOTE [29] refines the
boundary samples related to high imbalance labels and employs different sam-
pling strategies. Traditional oversampling techniques often rely on basic linear
interpolation or replication for creating feature vectors of synthesized samples,
with label vectors typically generated through majority voting or replication.

The Autoencoder (AE) and Generative Adversarial Network (GAN), as
exemplary generative models, have shown substantial potential in data genera-
tion, restoration, and augmentation [8,12,15,19,22]. An Autoencoder compresses
data into a latent space using an encoder and reconstructs it by a decoder. Its
objective is to minimize reconstruction errors, enabling efficient feature extrac-
tion and noise reduction [13,15]. Although Autoencoder and GAN are used to
address the imbalance problem and generate minority samples, they primar-
ily cater to single-label datasets and face several challenges when applied to
multi-label datasets. First, AE and GAN require training samples with identical
labels (same class in the single-label dataset or same label set in the multi-label
dataset). However, in multi-label data, the number of samples with a complete
label set is often too limited to effectively train deep learning models. Secondly,
although multi-label datasets can be divided into several binary datasets via the
One vs All strategy, For each binary dataset, we can learn and reconstruct new
feature vectors for multi-label data through end-to-end models, but we can not
determine appropriate complete label set for each feature vector (Fig. 1).

1.3 Summary

In this work, we introduce an innovative approach crafted to tackle the class
imbalance issue in multi-label datasets named AutoEncoder-guided Multi-Label
Oversampling (AEMLO). The core of AEMLO’s design lies in two essential
elements:
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Fig. 1. Using Autoencoders to train data.

1. The basic encoder-decoder architecture is designed to encode data into a
lower-dimensional space and subsequently reconstruct it, making it suitable
for oversampling applications.

2. A specialized objective function for multi-label imbalance data sampling.

Our approach incorporates the sampling process into a deep encoder-decoder
framework that has been pre-trained, providing a holistic solution for the cre-
ation of low-dimensional data representations and synthetic instances through an
end-to-end methodology. By augmenting the original training set with instances
generated via AEMLO, we further train various traditional multi-label classi-
fiers and conduct comparisons against several multi-label sampling techniques.
Experimental results consistently demonstrate the superiority of our method.
Our code can be found in https://github.com/CquptZA/AEMLO.

2 Related Work

2.1 Multi-label Classification

Formally, let X ∈ R
d represent the d-dimensional feature space, and let L =

{l1, l2, . . . , lq} denote a set of q predefined labels. In multi-label classification,
our objective is to construct a mapping function h : X → L based on a given
multi-label training dataset D = {(xi,yi)}ni=1, where each sample xi ∈ X is
associated with a binary label vector yi ∈ {0, 1}q. Here, yi is a binary vector
where each element denotes whether the associated label from L is relevant (1)
or not relevant (0) to xi.

In Multi-Label Classification (MLC), methods are split into three types based
on how they handle label correlations. First-order strategies like MLkNN [35] and
BR [3] treat labels independently, offering simplicity and efficiency. Second-order
methods, such as CLR [11], analyze pairwise label correlations for improved inter-
action understanding. For complex scenarios with intricate label relationships,
high-order methods, like RAkEL [31] and ECC [23], are more effective. RAkEL
tackles this by dividing labels into subsets for diverse interaction modeling. ECC
sequentially links classifiers, allowing each to learn from the predictions of its
predecessors.

2.2 Multi-label Imbalance Learning

Let N1
j (N0

j ) denote the number of instances with “1” (“0”) class of label lj . IRlbl
and ImR are the two measures to evaluate the imbalance level of individual labels

https://github.com/CquptZA/AEMLO
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[6,32]. Let N1
max = max{N1

j }qj=1 be the number of “1”s in the most frequent
label, IRlblj and ImR are defined as:

IRlblj = N1
max/N1

j ImRj = max(N1
j , N0

j )/min(N1
j , N0

j ) (1)

The larger the IRlblj and ImRj , the higher the imbalance level of lj . Then,
MeanIR calculates the average imbalance ratio (IRlbl) across all labels in a
dataset, defined by: 1

q

∑q
j=1 IRlblj , where q is the total number of labels. The

higher MeanIR, the imbalance of the dataset. By considering the IRlbl and
MeanIR, we can calculate imbalance indicators such as the coefficient of varia-
tion of IRlbl (CV IR) and concurrency level (SCUMBLE) [28].

The imbalanced approaches proposed for MLC can be divided into three
categories: sampling methods, classifier adaptation [9,32,33], and ensemble
approaches [18,27]. Compared to the other two methods, the sampling method
is more universal, as it creates (deletes) instances related to minority (major-
ity) labels to construct a balanced training set that can be used to train any
classifier without suffering from bias. Sampling methods involve undersampling
and oversampling techniques. Undersampling reduces the presence of majority
labels by either randomly removing instances or employing heuristic approaches
to selectively eliminate samples. For example, LPRUS and MLRUS [25] aim to
alleviate imbalances by respectively targeting the most frequent label sets or indi-
vidual labels for removal. Conversely, oversampling techniques such as LPROS
and the MLSMOTE [6] focus on augmenting the dataset with new instances
associated with minority labels, either through duplication or the generation of
synthetic samples. Recent developments include the REMEDIAL [5] method,
which adjusts label and feature spaces to lessen label co-occurrence and improve
sampling. Integrating this method with techniques such as MLSMOTE can fur-
ther optimize dataset balancing [7]. MLSOL [17] specifically generates instances
to focus on local imbalances in datasets. On the other hand, MLTL [21] refines
datasets by removing instances that obscure class boundaries, Another notable
method, MLBOTE [29], categorizes instances based on their boundary charac-
teristics and applies different sampling rates.

2.3 Deep Sampling Method

Traditional sampling techniques struggle to effectively expand the training set
for complex models. This has sparked interest in generative models and their
potential to mimic oversampling strategies [2,10]. Utilizing an encoder-decoder
setup, artificial instances can be effectively introduced into an embedding space.
AE [13,15] and GAN [12] have been effectively employed to capture the under-
lying distribution of data and further applied to generate data for oversampling
purposes. AE is designed to learn efficient data codings in an unsupervised man-
ner. Essentially, they aim to capture the most salient features of the data by
compressing the input into a lower-dimensional latent space and then recon-
structing it back to the original dimensionality. The core objective of an AE
is defined by the reconstruction error, which quantifies the difference between
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the original data and its reconstruction. Unlike Variational Autoencoder (VAE),
which incorporates the Kullback-Leibler (KL) divergence to regulate the latent
space, standard AE relies solely on the reconstruction loss. This encourages the
model to develop a compressed representation that retains as much of the original
information as possible, enabling the AE to generate reconstructions that are as
close to the input. For example. DeepSMOTE [8] integrates traditional SMOTE
methods into encoding and decoding architectures similar to AE. VAE strive to
maximize a variational lower bound on the data’s log-likelihood. Typically, they
are formulated by merging a reconstruction loss with the KL divergence. The
KL divergence serves as an indirect penalty for the reconstruction loss, steering
the model towards a more faithful replication of the data distribution [22]. By
penalizing the reconstruction loss, the model is motivated to refine its replica-
tion of the data, thereby enabling it to produce outputs rooted in the input’s
latent distribution. GAN has significantly advanced the field of computer vision
by framing image generation as a competitive game between a generator and a
discriminator network [19,20,37]. Despite their remarkable achievements, GAN
requires the deployment of two separate networks, can encounter training diffi-
culties, and are susceptible to mode collapse [8].

3 Multi-label AutoEncoder Oversampling

3.1 Method Description and Overview

The multi-label AutoEncoder oversampling framework, as described in Algo-
rithm 1, is divided into the training process and the instance generation phase.

In the training process, as shown in Fig. 2, the model is designed to learn
and optimize four distinct mapping functions: the feature encoding function Fex,
label encoding function Fey, feature decoding function Fdx, and label decoding
function Fdy. The model is trained end-to-end with mini-batches and the Adam
optimizer, where batch size n encompasses the feature vector xi and binary label
vector yi of the i-th sample, respectively. The matrices X and Y aggregate the
input features and labels for all samples in the batch. The framework ingests
a feature matrix X and its corresponding label matrix Y, aiming to output
reconstructed versions of X′ and Y′. Meanwhile, The other goal of our model
is to identify an optimal latent space L, where the Deep Canonical Correlation
Analysis (DCCA) component [1] enhances the correlation between X and Y.
Therefore, the model’s objective function is defined as:

Θ = min
Fex,Fey,Fdx,Fdy

Φ(Fex,Fey) + αΨ(Fex,Fdx) + βΓ (Fey,Fdy) (2)

where Φ(Fex,Fey) denotes the latent space loss, αΨ(Fex,Fdx) and βΓ (Fey,Fdy)
signify the reconstruction losses. Here, α and β serve to balance these compo-
nents, respectively. In Sect. 3.2, we will explain every term of the objective func-
tion in details. At the end of each epoch, we enter a validation phase, adjusting
the threshold for binary label conversion by maximizing the F-measure of each
label on the validation set.
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Algorithm 1: Using Encoder and Decoder for Multi-Label Sampling
Input: Original dataset D = (X,Y), sample count num, parameter α, β,

latent space dimension l
Output: Balanced training set D′

/* train the Encoder and Decoder */
1 for e ← 1 to epochs do
2 for batch(X̂, Ŷ) ← B do
3 Fex((X̂)),Fey((Ŷ)); /* encode batch data to L */
4 Fdx((X̂)),Fdy((Ŷ)); /* decode batch data from L */
5 Define the loss function by Eq 2;
6 Compute gradients and update parameters with Adam;

7 Update T ; /* validate and optimize the bipartition
threshold for each label */

/* generate instances */
8 while num > 0 do
9 xs ← select form M ; /* choose seed instance */

10 Fex(xs) ; /* encode */
11 xg ← Fdx(Fex(xs)) yg ← Fdy(Fex(xs)); /* decode */
12 yg ← T ; /* rounding */
13 D’=D’ ∪ (xg,yg) ;
14 num ← num − 1 ;

15 return D′

After the model training is completed, we proceed with instance generation.
Let num represent the required number of instances to be generated, and p
denote the sampling rate. Further details on the sampling process can be found
in Sect. 3.3.

3.2 Loss Function

Joint Embedding. To calculate Φ(Fex,Fey) defined in Eq. 2, we employ the
DCCA to embed features and labels into a shared latent space simultaneously
and rewrite the correlation-based Φ(Fex,Fey) as the following deep version:

Φ(Fex(X),Fey(Y)) = ‖Fex(X)−Fey(Y)‖2F = Tr(CT
1 C1)+λTr(CT

2 C2+CT
3 C3)

(3)
where

C1 = Fex(X) − Fey(Y),

C2 = Fex(X)Fex(X)T − I,

C3 = Fey(Y)Fey(Y)T − I,

constraint : Fex(X)Fex(X)T = Fey(Y)Fey(Y)T = I

(4)
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Fig. 2. The architecture of the proposed autoencoder learns the latent space L through
the function of Fex and Fey, and decouples L through Fdx and Fdy.

C1 quantifies the discrepancy between the feature and label embeddings, while
C2 and C3 assess how each embedded space diverges from orthonormality. The
goal is to minimize these discrepancies to align the embeddings of X and Y
closely, ensuring they remain orthonormal as dictated by the constraint. The
identity matrix I ∈ R

l×l, serves as a benchmark for achieving this orthonor-
mality, where l denotes the latent space dimension. Integrating DCCA in our
sampling framework not only enables a unified embedding of features and labels
but also allows for their precise reconstruction from shared space through the
functions Ψ(Fex(X),Fdx(X)) for features and Γ (Fey(Y),Fdy(Y)) for labels.

Feature Reconstruction. The function Ψ is composed of two distinct compo-
nents: the feature reconstruction error, M, and the instance similarity metric,
S. It is defined as:

Ψ(Fex(X),Fdx(X)) = M + λS (5)

where λ is a regularization parameter that balances the contribution of the
similarity metric S relative to the reconstruction error M.

The reconstruction error M, quantified as mean squared error, is calculated
as:

M =
n∑

i=1

(x′
i − xi)2 (6)

with x′
i representing the reconstruction of the input xi, generated by the Fdx

applied to the encoded representation Fex(xi).
The similarity metric S ensures that the proximity between original instances

is maintained after reconstruction, thereby conserving the integrity of the feature
space. This metric is formulated as:
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S =
1

n(n − 1)

n∑

i,j=1,i �=j

(
(xi − xj)2 − (x′

i − x′
j)

2
)2 (7)

which measures the squared differences in distances between all pairs of original
instances (xi,xj) and their corresponding reconstructed pairs (x′

i,x
′
j), ensuring

the model preserves instance similarity in its learned feature space. The com-
bination of M and S ensures an optimal balance between high-fidelity feature
reconstruction and the preservation of relative distances among data within the
feature space.

Label Reconstruction. The function Γ encapsulates ranking loss to help the
model retrieve label vectors from the shared embedding space:

Γ (Fey(Y),Fdy(Y)) =
n∑

i=1

(
Ei

|Yi| × |Ȳi|
)

(8)

where Ei is defined as the set of label pairs (yij , yik) that satisfy the condition
f(xi, yij) ≤ f(xi, y

′
ij), with these label pairs belonging to the Cartesian product

of the set of positive labels Yi and the set of negative labels Ȳi. Here, Yi represents
the set of positive labels, while Ȳi represents the set of negative labels.

3.3 Generate Instances and Post-processing

Let Ls = {lj | ImRj > 10, IRlblj > MeanIR}1 be the set comprising m minor-
ity labels [29] and M = {(xi,yi) | yij = 1, lj ∈ Ls} be the minority instance set
associated any labels in Ls. Then, we randomly select a seed sample (xi,yi) from
M to initiate the sampling process through forward inference. As shown in Fig. 3,
the process encodes the feature vector xs into a latent space by Fex(xs), then
decodes it to the feature and label vectors of the new instance by Fdx(Fex(xs))
and Fdy(Fex(xs)), respectively. Specifically, we employ a predefined threshold
set T to transform the decoded numerical label vector into a binary label vector.
After the process, we remove any instances where the generated label vector is
entirely zeros to ensure each instance contributes meaningfully to the dataset.

4 Experiments and Analysis

4.1 Datasets

We evaluate our proposed model across 9 benchmark multi-label datasets span-
ning diverse domains, such as text, images, and bioinformatics [30]. Each dataset
is characterized by a set of statistics and imbalance metrics, which include the

1 Here, 10 is a hyperparameter. We refer to the suggestions in [29] for the selection.
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Fig. 3. The process of generating instances

number of instances (n), feature dimensions (d), labels (q), average label cardi-
nality per instance Card(q), and label density Den(q). A comprehensive expla-
nation of these statistical measures and imbalance metrics is available in [28,36].
In the experiment, 20% training data is split as the validation set, which is used
to establish thresholds for accurate prediction of final labels (Table 1).

Table 1. Characteristics of the experimental datasets

Dataset Domainn d q Card(q)Den(q)MeanIRCVIR
bibtex text 7395 1836 159 2.40 0.02 12.50 0.41
enron text 1702 1001 53 3.38 0.06 73.95 1.96
Languagelog text 1460 1004 75 15.93 0.21 5.39 0.78
yeast biology 2417 103 14 4.24 0.30 7.20 1.88
rcv1 text 6000 472 101 2.88 0.03 54.49 2.08
rcv2 text 6000 472 101 2.63 0.03 45.51 1.71
rcv3 text 6000 472 101 2.61 0.03 68.33 1.58
cal500 music 502 68 174 26.04 0.15 20.58 1.09
Corel5k images 5000 499 374 3.52 0.01 189.57 1.53

4.2 Experiment Setup

In AEMLO, Fex and Fey are comprised of two fully connected layers, whereas
Fdx and Fdy adopt a single fully connected layer structure. Each layer within
these components incorporates 512 neurons and incorporates a leaky ReLU acti-
vation function to introduce nonlinearity. The parameters α and β of objective
function are explored within the range of [2−4, 2−3, · · · , 24].
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Compared Sampling Methods. We compare our proposed sampling method
with the following sampling methods.

– MLSMOTE: MLSMOTE extends the classical SMOTE method to multi-
label data.[Parameter : Ranking, k = 5]

– MLSOL: MLSOL considers local label imbalance and employs weight vectors
and type matrices for seed instance selection and synthetic instance genera-
tion. [Parameter : p ∈ (0.1, 0.3, 0.5, 0.7, 0.9) , k = 5]

– MLROS: MLROS executes replicating instances associated with minority
labels. [Parameter : p ∈ (0.1, 0.3, 0.5, 0.7, 0.9)]

– MLRUS: MLRUS executes removing instances associated with majority
labels. [Parameter : p ∈ (0.1, 0.2, 0.3)]

– MLTL: MLTL identifies and removes Tomek-Links in multi-label data
by considering the set of instances associated with each minority label.
[Parameter : k = 5]

– MLBOTE: MLBOTE divides instances into three categories, and determines
specific instance weights and sampling rates for each group.

Base Multi-lable Classifiers. We use all sampling methods on the following
five multi-label classifiers.

– Binary Relevance [3]: BR transforms the multi-label classification prob-
lem into multiple independent binary classification tasks, each of which cor-
responds to one label and trains a binary classifier. Base binary classifier:
SVM.

– Multi-label k-Nearest Neighbors [35]: MLkNN is an extension of the
k-Nearest Neighbors (kNNs) algorithm for multi-label classification. hyper-
parameter configuration: k=10.

– Random k-labELsets [31]: RAkEL divides the entire label set into several
random subsets containing at least three labels and encodes each subset as
a multi-class dataset by treating each label combination as a class. hyper-
parameter configuration: k = 3, n = 2q, base binary classifier: C4.5 Decision
Tree.

– Ensemble of Classifier Chain [23]: ECC is an approach that extends the
Classifier Chain further in an ensemble framework. hyperparameter configu-
ration: N = 5, base binary classifier: C4.5 Decision Tree.

– Calibrated Label Ranking [11]: CLR transforms the multi-label learning
problem into the label ranking problem. Base binary classifier: SVM

Evaluation Metrics. To assess the efficacy of the batch method in multi-label
classification, three commonly utilized evaluation metrics are adopted, compris-
ing Macro-F, Macro-AUC, Ranking Loss. Please refer to [36] for detailed defini-
tions of these metrics (Figs. 4, 5 and 6).
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(a) bibtex (b) enron (c) Languagelog

(d) yeast (e) rcv1 (f) rcv2

(g) rcv3 (h) cal500 (i) Corel5k

Fig. 4. The performance of the multi-label sampling methods in terms of Macro-F
across five different classification methods.

4.3 Experimental Analysis

Table 2 presents the average rankings of each base classifier combined with sam-
pling methods across all datasets. Additionally, the Friedman test was utilized
to verify the significant superiority/inferiority of our method compared to other
sampling approaches across three evaluation metrics in five basic multi-label clas-
sification methods. The detailed results of the comparative sampling methods
using five fundamental learners on the Macro-F, Macro-AUC, and Ranking Loss
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Fig. 5. The performance of the multi-label sampling methods in terms of Macro-AUC
across five different classification methods.

are shown in Github. The Origin represents training directly using the train-
ing set without any sampling methods. The results indicate that the AEMLO
method achieves the highest average ranking in almost all metrics, securing the
most significant victories without any substantial losses. It is observed that
MLBOTE and MLSOL outperform MLSMOTE, reflecting that refining rule
selection for seed instances is more effective than oversampling with all minor-
ity seeds directly. An interesting observation is that the performance of MLTL
and MLRUS is even worse than that of the original dataset. This is primarily
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Fig. 6. The performance of the multi-label sampling methods in terms of Ranking Loss
across five different classification methods.

attributed to the removal of critical instances, leading to the loss of important
information.

Autoencoders excel at generating new samples by learning compressed rep-
resentations of input data. However, a subtle challenge arises when the feature
space of these generated samples diverges from that of the origin samples. This
divergence may pose difficulties for the MLkNN, which relies heavily on the dis-
tances between samples within the feature space to identify nearest neighbors.
As such, any significant discrepancy in the feature distribution between gen-
erated and origin samples could potentially impact the MLkNN to accurately
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Table 2. The mean ranking of different sampling methods evaluated with five base
learners across three metrics is presented. The notation (n1/n2) indicates adjustments
from the Friedman test at a 5% significance level, signifying that the method in ques-
tion significantly outperforms n1 methods and is outdone by n2 methods. The top-
performing method is emphasized in bold, with lower rankings indicating superior
performance.

Origin MLSMOTEMLSOL MLROS MLRUS MLTL MLBOTE AEMLO
Macro-F BR 6.33(0/3) 5.11(0/3) 2.89(4/1) 4.22(1/0) 6.00(0/3) 7.33(0/5) 2.78(4/0) 1.33(6/0)

MLkNN 5.33(0/4) 3.11(3/0) 1.56(4/0) 3.89(2/0) 6.89(0/4) 7.67(0/5) 4.56(1/1) 3.00(3/0)
RAkEL 5.67(0/3) 4.11(2/2) 2.67(2/0) 4.89(2/2) 7.22(0/5) 7.00(0/5) 2.44(3/0) 2.00(4/0)
ECC 5.11(0/2) 4.22(0/0) 3.56(2/0) 5.67(0/2) 5.44(0/2) 6.67(0/3) 2.78(3/0) 2.56(4/0)
CLR 6.33(0/3) 3.89(2/0) 2.78(3/0) 3.00(2/0) 6.89(0/4) 7.11(0/5) 3.89(2/0) 2.11(3/0)
Avg(Total) 5.75(0/15) 4.09(7/5) 2.69(15/1) 4.33(7/4) 6.49(0/18) 7.16(0/23) 3.29(13/1) 2.20(20/0)

Macro-AUC BR 5.00(0/2) 4.78(0/1) 3.00(3/0) 4.11(1/0) 5.78(0/3) 7.56(0/5) 4.33(1/1) 1.44(7/0)
MLkNN 5.11(0/3) 4.22(2/0) 3.44(3/0) 3.78(2/0) 6.11(0/4) 6.78(0/4) 4.44(1/0) 2.11(3/0)
RAkEL 5.33(0/2) 4.33(1/0) 2.78(2/0) 3.56(1/0) 4.33(1/0) 7.67(0/6) 4.89(0/0) 3.11(2/0)
ECC 5.22(0/2) 5.02(0/2) 3.33(3/0) 4.22(1/0) 6.89(0/4) 7.00(0/4) 2.56(3/0) 1.56(5/0)
CLR 6.00(0/3) 5.00(0/1) 3.16(2/0) 3.67(2/1) 5.56(0/2) 7.44(0/4) 3.33(2/0) 1.67(5/0)
Avg(Total) 5.33(0/12) 4.71(3/4) 2.98(13/0) 3.87(7/0) 5.73(1/13) 7.29(0/23) 3.91(7/1) 2.18(22/0)

Ranking LossBR 4.89(0/1) 6.22(0/2) 4.44(0/0) 4.00(1/0) 5.33(0/2) 6.11(0/3) 3.00(3/0) 2.00(4/0)
MLkNN 4.56(0/2) 5.44(0/3) 3.56(3/0) 5.33(0/2) 4.00(0/2) 6.89(0/5) 2.89(3/0) 3.33(2/0)
RAkEL 6.44(0/3) 5.22(0/1) 4.33(1/0) 4.44(0/0) 2.78(2/0) 7.56(0/4) 3.11(2/0) 2.11(3/0)
ECC 5.00(0/1) 4.56(0/0) 4.78(0/0) 3.67(1/0) 4.67(0/0) 6.33(0/2) 4.11(0/0) 2.89(2/0)
CLR 5.22(0/2) 4.00(1/1) 4.22(1/1) 4.11(1/0) 5.00(0/2) 7.67(0/5) 3.89(3/0) 1.89(5/0)
Avg(Total) 5.22(0/9) 5.09(1/7) 4.27(5/1) 4.31(3/2) 4.36(2/6) 6.91(0/19) 3.40(11/0) 2.44(16/0)

classify unseen samples. The enhanced performance of BR and CLR methods on
augmented datasets can be attributed to the robustness of SVM and its adept-
ness at navigating complex decision boundaries. Specifically, SVM is particularly
effective at managing the intricacies introduced into the feature space by data
synthesized through Autoencoders.

4.4 Parameter Analysis

We investigate the influence of various parameter settings on the performance
of ALMLO. We select smaller enron and larger Corel5k as two representative
datasets in the parameter analysis.

As shown in Fig. 7(a), the impact of varying sampling rate p on Macro-F
and Macro-AUC scores (based on MLkNN) shows a trend of initial fluctuation,
followed by stabilization. In contrast, in Fig. 7(b) exhibits a higher sensitivity
to p, with significant volatility in Macro-F and inconsistent variations in Macro-
AUC. These observations suggest that the optimal selection of p may be highly
dependent on dataset characteristics.

Figure 8 illustrates ALMLO’s performance sensitivity to variations in α and
β, highlighting the importance of balancing feature reconstruction loss with label
relevance loss during optimization.
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Fig. 7. Performance of sampling rate in terms of Macro-F and Macro-AUC.

Fig. 8. Performance of AEMLO with varying parameter configurations in terms of
Macro-F.

4.5 Sampling Time

Figure 9 shows the time efficiency of different sampling methods, with the epoch
set as 100 for AEMLO. It is evident that AEMLO, as a deep learning approach,
requires training before sampling, resulting in a higher time expenditure.

Fig. 9. Sampling time of different sampling method.
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5 Conclusion

In this paper, we introduce AEMLO, an innovative oversampling model devised
for addressing data imbalance in multi-label learning by integrating canonical
correlation analysis with the encoder-decoder paradigm. AEMLO emerges as
an effective oversampling solution for training deep architectures on imbalanced
data distributions. It acts as a data-level solution for class imbalance, synthe-
sizing instances to balance the training set and thus enabling the training of
any classifiers without bias. AEMLO exhibits the pivotal characteristics cru-
cial for a successful sampling algorithm in the multi-label learning domain: the
ability to manipulate features and labels, i.e., to learn low-dimensional joint
embeddings from feature and label representations and transform them into an
original-dimensional space, along with generating new feature representations
and their corresponding label subsets. This is facilitated through the utilization
of an encoder/decoder framework. Extensive experimental studies demonstrate
the capability of AEMLO to handle imbalanced multi-label datasets in various
domains and collaborate with diverse multi-label classifiers.
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