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ABSTRACT

Imperfect-information extensive-form games (IIGs) serve as a foundational model
for capturing interactions among multiple agents in sequential settings with hidden
information. A common objective of IIGs is to calculate a Nash equilibrium (NE).
Counterfactual Regret Minimization (CFR) algorithms have been widely developed
to learn an NE in two-player zero-sum IIGs. Among CFR algorithms, Predictive
CFR+ (PCFR+) is powerful, usually achieving an extremely fast empirical con-
vergence rate. However, PCFR+ suffers from the significant discrepancy between
strategies represented by explicit accumulated counterfactual regrets across two
consecutive iterations, which decreases the empirical convergence rate of PCFR+

in practice. To mitigate this significant discrepancy, we introduce a novel and
effective variant of PCFR+, termed Pessimistic PCFR+ (P2PCFR+), minimizing
the discrepancy between strategies represented by implicit and explicit accumu-
lated regrets within the same iteration. We provide theoretical proof to show that
P2PCFR+ exhibits a faster theoretical convergence rate than PCFR+. Experimental
results demonstrate that P2PCFR+ outperforms other tested CFR variants.

1 INTRODUCTION

Imperfect-information extensive-form games (IIGs) are foundational models to capture interactions
among multiple agents in sequential settings with hidden information. IIGs are widely used to
simulate real-world scenarios such as medical treatment (Sandholm, 2015), security games (Lisỳ
et al., 2016), cybersecurity (Chen et al., 2017), and recreational games (Brown & Sandholm, 2018;
2019b). A primary goal in addressing IIGs is to compute a Nash equilibrium (NE), which represents
a rational state where no player can unilaterally improve its payoff by deviating from the equilibrium.

As with much of the literature on solving IIGs, we focus on learning an NE in two-player zero-sum
IIGs. The most widely used method for learning an NE in two-player zero-sum IIGs is Counterfactual
Regret Minimization (CFR) (Shalev-Shwartz & Singer, 2007; Lanctot et al., 2009; Tammelin, 2014;
Brown & Sandholm, 2019a; Farina et al., 2021; 2019; Liu et al., 2021; Pérolat et al., 2021; Liu
et al., 2023; Meng et al., 2023; Farina et al., 2023; Xu et al., 2022; 2024b;a; Zhang et al., 2024), as
evidenced by their success in superhuman game AIs (Bowling et al., 2015; Moravčík et al., 2017;
Brown & Sandholm, 2018; 2019b; Pérolat et al., 2022). CFR algorithms decompose the total regret
over the game into a sum of counterfactual regrets associated within information sets (infosets) and
employ a local regret minimizer to minimize counterfactual regrets within each infoset.

Many technologies have been proposed to improve the empirical convergence rate of CFR algorithms.
For instance, Counterfactual Regret Minimization+ (CFR+) (Tammelin, 2014) replaces the local
regret minimizer—Regret Matching (RM) (Hart & Mas-Colell, 2000; Gordon, 2006)—used in
vanilla CFR (Zinkevich et al., 2007) with Regret Matching+ (RM+). RM+ improves the empirical
convergence rate by ensuring that the accumulated counterfactual regrets remain non-negative.
Subsequently, Farina et al. (2021) introduce Predictive CFR+ (PCFR+), an improved variant of
CFR+, which leverages the key insight of looking one step ahead to improve the convergence rate.
Specifically, PCFR+ maintains two types of accumulated counterfactual regrets: the implicit and
the explicit. The phrase "looking one step ahead" refers to PCFR+ making a prediction at each
iteration t and using this prediction to derive new explicit accumulated counterfactual regrets from the
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current implicit counterfactual regret. PCFR+ then observes the instantaneous counterfactual regret
by following the strategy defined by the new explicit accumulated counterfactual regret and uses it to
update the current implicit counterfactual regret. PCFR+ sets the instantaneous counterfactual regret
observed at iteration t− 1 as the prediction at iteration t. If the prediction aligns with the observed
instantaneous counterfactual regret, the theoretical convergence rate of PCFR+ can be improved
improves from O(1/

√
T ) of CFR+ to O(1/T ) (Farina et al., 2021).

Unfortunately, due to the significant discrepancy between strategies represented by explicit accumu-
lated counterfactual regrets across two consecutive iterations, the alignment between the prediction
and with the observed instantaneous counterfactual regret often fails, which reduces empirical con-
vergence rate. For instance, as illustrated in Section 4.1, within a given infoset, such strategies may
be [1; 0] and [0; 1], respectively. Such a significant discrepancy indicates that the prediction at t, i.e.,
instantaneous counterfactual regret observed at iteration t − 1, may be completely different from
the instantaneous counterfactual regret observed at iteration t (Farina et al., 2023). It implies that
this alignment fails, which undermines the empirical convergence rate of PCFR+, as evidenced by
our experiments utilizing the open-source implementation of CFR algorithms (Liu et al., 2024)1.
Precisely, PCFR+ converges more slowly than other classical CFR algorithms, such as CFR+, even
in standard IIG benchmarks like Leduc Poker, Goofspiel, and Liar’s Dice.

To mitigate the discrepancy between strategies represented by explicit accumulated counterfactual
regrets across two consecutive iterations, we propose a novel variant of PCFR+, named Pessimistic
PCFR+ (P2PCFR+). The key insight of P2PCFR+ is to reduce the discrepancy between strategies
represented by implicit and explicit accumulated regrets within the same iteration to diminish the
significant discrepancy between strategies represented by explicit accumulated counterfactual regrets
across two consecutive iterations. Specifically, from the Cauchy-Schwarz inequality (Steele, 2004),
the discrepancy between strategies represented by explicit accumulated regrets at iteration t and
t+ 1 is bounded by the sum of (i) the discrepancy between strategies represented by the implicit and
explicit accumulated regrets at iteration t, (ii) the discrepancy between strategies represented by the
implicit and explicit accumulated regrets at iteration t+1, and (iii) the discrepancy between strategies
represented by the explicit accumulated regrets at iteration t and t+ 1. Obviously, the discrepancy
between strategies represented by the explicit accumulated counterfactual regrets at iterations t and
t+1 depends largely on the discrepancy between the strategies represented by the implicit and explicit
accumulated counterfactual regrets within the same iteration. As the latter discrepancy decreases, the
former discrepancy also reduces, which accelerates the empirical convergence rate.

We show that P2PCFR+ enjoys a lower regret bound than PCFR+. In other words, P2PCFR+ exhibits
a faster theoretical convergence rate than PCFR+. Moreover, the implementation of P2PCFR+ is
also notably straightforward, requiring only a single line adjustment compared to the open-source
implementation of PCFR+ (Liu et al., 2024).

We conduct extensive experimental evaluations of P2PCFR+ across nine instances from four standard
IIG benchmarks: Kuhn Poker, Leduc Poker, Goofspiel, and Liar’s Dice, compared with previous
CFR algrithms. Among the tested algorithms, P2PCFR+ achieves the fastest empirical convergence
rate. Furthermore, our experiments reveal that the improvement of P2PCFR+ over PCFR+ in terms
of empirical convergence rate is highly correlated with the reduction of the discrepancy between the
strategies represented by implicit and explicit accumulated counterfactual regrets, relative to PCFR+.

Concretely, we make the following contributions:

• We introduce a novel and effective variant of PCFR+, called P2PCFR+. P2PCFR+ mitigates
the discrepancy between strategies represented by explicit accumulated counterfactual regrets
across two consecutive iterations by reducing the discrepancy between strategies represented
by implicit and explicit accumulated regrets within the same iteration.

• We prove that P2PCFR+ exhibits faster theoretical convergence rate than PCFR+.

• We demonstrate that P2PCFR+ is implementable with a single-line modification to the
open-source PCFR+ implementation.

• Experimental results from four standard IIG benchmarks demonstrate that P2PCFR+ out-
performs other tested CFR variants.

1https://github.com/liumy2010/LiteEFG
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2 RELATED WORK

We focus on CFR algorithms (Shalev-Shwartz & Singer, 2007; Lanctot et al., 2009; Tammelin, 2014;
Brown & Sandholm, 2019a; Farina et al., 2021; 2019; Liu et al., 2021; Pérolat et al., 2021; Liu et al.,
2023; Meng et al., 2023; Farina et al., 2023; Xu et al., 2022; 2024b;a; Zhang et al., 2024), the most
widely used method for learning an NE in two-player zero-sum IIGs, as evidenced by their success
in superhuman game AIs (Bowling et al., 2015; Moravčík et al., 2017; Brown & Sandholm, 2018;
2019b; Pérolat et al., 2022).

The key insight of CFR algorithms is the decomposition of the regret over the game into the sum
of counterfactual regrets associated within infosets. The vanilla CFR algorithm, introduced by
Shalev-Shwartz & Singer (2007), employs RM (Hart & Mas-Colell, 2000; Gordon, 2006) as the
local regret minimizer. To improve the empirical convergence rate of CFR, it is common to design
more effective local regret minimizers, as the selection of the local regret minimizers has a significant
impact on the overall performance of the CFR algorithm. Examples include RM+ (Bowling et al.,
2015), Discounted RM (DRM) (Brown & Sandholm, 2019a), and PRM+ (Farina et al., 2021), which
correspond to CFR+ (Bowling et al., 2015), DCFR (Brown & Sandholm, 2019a), and PCFR+ (Farina
et al., 2021), respectively. PCFR+ can demonstrate faster empirical convergence than other CFR
variants. However, as shown in our experiments, PCFR+ is sometimes outperformed by CFR+ and
DCFR, even on standard IIG benchmarks.

To accelerate the convergence rate of PCFR+, several algorithms have been proposed (Farina et al.,
2023; Xu et al., 2024a;b; Zhang et al., 2024). For instance, to mitigate the slow empirical convergence
rate caused by the discrepancy between strategies represented by explicit accumulated counterfactual
regrets, Farina et al. (2023) ensure that the lower bound of the 1-norm of implicit and explicit
accumulated counterfactual regrets exceeds a positive constant. However, their algorithms, Stable
PCFR+ and Smooth PCFR+, forfeit a crucial property of PCFR+—parameter-free—meaning no
parameters need to be tuned (Grand-Clément & Kroer, 2021) to guarantee convergence. P2PCFR+

offers a simpler and more effective solution to address this discrepancy while still obtaining the
parameter-free property. In our experiments, we observe that the empirical convergence rate of
P2PCFR+ consistently significantly outperforms that of Stable PCFR+ and Smooth PCFR+.

3 PRELIMINARIES

Imperfect-information Extensive-form games (IIGs). To model tree-form sequential decision-
making problems with hidden information, a common used model is IIG (Osborne et al., 2004).
An IIG can be formulated as G = {N ,H, P,A, I, {ui}}. Here, N = {0, 1} is the set of players.
“Nature” is also considered a player c (representing chance) and chooses actions with a fixed known
probability distribution. H is the set of all possible history sequences. The set of leaf nodes is
denoted by Z . For each history h ∈ H, the function P (h) represents the player acting at node h,
and A(h) denotes the actions available at node h. To account for private information, the nodes
for each player i are partitioned into a collection Ii, referred to as information sets (infosets). For
any infoset I ∈ Ii, histories h, h′ ∈ I are indistinguishable to player i. The notation I denotes
I = {Ii|i ∈ N}. Thus, we have P (I) = P (h), A(I) = A(h),∀h ∈ I . For each leaf node z, there
is a pair (u0(z), u1(z)) ∈ [−1, 1] which denotes the payoffs for the min player (player 0) and the
max player (player 1) respectively. In two-player zero-sum IIGs, u0(z) = −u1(z),∀z ∈ Z .

Behavioral strategy. In this paper, we present the strategy via behavioral strategy. This strategy σi is
defined on each infoset. For any infoset I ∈ Ii, the probability for the action a ∈ A(I) is denoted by
σi(I, a). We use σi(I) = [σi(I, a)|a ∈ A(I)] ∈ ∆|A(I)| to denote the strategy at infoset I , where
∆|A(I)| is a (|A(I)| − 1)-dimension simplex. If every player follows the strategy profile σ = [σ0;σ1]
and reaches infoset I , the reaching probability is denoted by πσ(I). The contribution of i to this
probability is πσi (I) and πσ−i(I) for other than i, where −i denotes the players other than i. In IIGs,
ui(σi, σ−i) =

∑
z∈Z ui(z)π

σ(z).

Nash equilibrium (NE). NE denotes a rational behavior where no player can benefit by unilaterally
deviating from the equilibrium. For any player, her strategy is the best-response to the strategies of
others. Formally, for all NE strategy profile σ∗ and i ∈ N , it holds that u(σ∗

i , σ
∗
−i) ≥ u(σi, σ

∗
−i)

for all σ. A widely used metric to measure the distance from the given strategy profile x to NE is
exploitability, which is defined as ϵ(σ) =

∑
i∈N maxσ′

i
(u(σi, σ−i)− u(σ′

i, σ−i))/|N |. If ϵ(σ) = δ,
then σ is called as a δ-NE.
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learning an NE via regret minimization algorithms. To learn NE in IIGs, a common used
method is regret minimization algorithms (Rakhlin & Sridharan, 2013a;b; Hazan et al., 2016; Joulani
et al., 2017). For any sequence of strategies σ1

i , · · · , σTi of of player i, player i’s regret for a fixed
strategy σi is RTi =

∑T
t=1 ui(σ

t
i , σ

t
−i)−minσi

ui(σi, σ
t
−i) for all sequence σ1

−i, · · · , σT−i. Regret
minimization algorithms are algorithms that ensure RTi grows sublinearly from any σi. If each player
follow a regret minimization algorithm, then their average strategy converges to NE in two-player
zero-sum IIGs. Formally, assume the regret of each player i is RTi , then it hods that

ϵ(σ̄) = ϵ(σ̄0, σ̄1) ≤
∑
i∈N RTi
|N |T

, (1)

where σ̄i(I) =
∑T
t=1 π

σt

i (I)σti(I)/
∑T
t=1 π

σt

i (I) for all i ∈ N and I ∈ Ii.

Counterfactual Regret Minimization (CFR) framework. This framework (Zinkevich et al., 2007;
Farina et al., 2019; Liu et al., 2021; Farina et al., 2023) is designed to learn NE of two-player zero-sum
IIGs. Instead of directly minimizing the global regret, this framework decomposes the regret to
each infoset and independently minimizes the local regret within each infoset. This framework has
facilitated the development of several superhuman game AIs (Bowling et al., 2015; Moravčík et al.,
2017; Brown & Sandholm, 2018; 2019b; Pérolat et al., 2022). CFR algorithms are the algorithms
which utilize this framework to decompose the regret to each infoset and employ regret minimization
algorithms as the local regret minimizers to minimize the regret at each infoset. Let σt be the strategy
profile at iteration t. CFR algorithms compute the counterfactual value at infoset I for action a as

vσ
t

(Ia) =
∑
h∈I

∑
z∈Zha

πσ
t

−i(h)π
σt

(ha, z)ui(z),

where πσ
t

(ha, z) denotes the probability from ha to z if all players play according to σt and Zha is
the set of the leaf nodes that are reachable after choosing action a at history h. For any infoset I , the
counterfactual regret is

RT (I) =

T∑
t=1

∑
a∈A(I)

σti(Ia)v
σt

(Ia)− min
a∈A(I)

T∑
t=1

vσ
t

(Ia).

It has been shown that the regret over the game RTi =
∑T
t=1 ui(σ

t
i , σ

t
−i)−minσi

ui(σi, σ
t
−i) less

the sum of the counterfactual regrets within infosets (Zinkevich et al., 2007). Formally,

RTi ≤
∑
I∈Ii

RT (I). (2)

So any regret minimization can be used as the local regret minimizer to minimize the regret RT (I)
over each infoset to minimize the regret RTi .

Vanilla Counterfactual Regret Minimization (Vanilla CFR). The first CFR algorithm is proposed
by Zinkevich et al. (2007), which uses Regret Matching (RM) (Hart & Mas-Colell, 2000; Gordon,
2006) as the local regret minimizer. Formally, at each iteration t, vanilla CFR updates its accumulated
counterfactual regret Rt

I at infoset I according to
Rt+1
I = Rt

I + rtI ,

where rtI = ⟨vσt

(I), σti(I)⟩1− vσ
t

(I) is the instantaneous counterfactual regret. Then, vanilla CFR
gets new strategies via the regret-matching operator

σt+1
i (I) =

[Rt+1
I ]+

∥[Rt+1
I ]+∥1

,

where i = P (I) and [·]+ = max(·,0).

Counterfactual Regret Minimization+ (CFR+). To improve the empirical convergence rate of
vanilla CFR, Tammelin (2014) propose a variant of vanilla CFR called CFR+, which utilizes Regret
Matching+ (RM+) (Tammelin, 2014) as the local regret minimizer. The key insight of RM+ is to
ensure that Rt

I ≥ 0 at each iteration t and infoset I . Formally, at each iteration t, CFR+ updates its
accumulated counterfactual regret Rt

I at infoset I according to
Rt+1
I = [Rt

I + rtI ]
+.
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Then, as did in CFR, CFR+ gets strategies via the regret-matching operator

σt+1
i (I) =

[Rt+1
I ]+

∥[Rt+1
I ]+∥1

=
Rt+1
I

∥Rt+1
I ∥1

,

where i = P (I), and the second equality comes from the fact that Rt+1
I ≥ 0.

Predictive Counterfactual Regret Minimization+ (PCFR+). In this paper, we focus on an ad-
vanced variant of CFR+, known as PCFR+ (Farina et al., 2021), which can exhibit a significantly
faster empirical convergence rate compared to CFR+. PCFR+ employs Predictive RM+ (PRM+) (Fa-
rina et al., 2021) as its local regret minimizer, with its key insight being looking one step ahead, a
similar idea to the momentum algorithms in the optimization area (Hoda et al., 2010; Kingma & Ba,
2014). Specifically, at each iteration, PCFR+ maintains two types of accumulated counterfactual
regrets: implicit and explicit. The phrase "looking one step ahead" means that PCFR+ makes a
prediction and uses this prediction to derive new explicit accumulated counterfactual regrets from
the current implicit counterfactual regret. Then, PCFR+ observes the instantaneous counterfactual
regret by following the strategy defined by the explicit accumulated counterfactual regret. Lastly, this
instantaneous counterfactual regret is subsequently used to update the current implicit counterfactual
regret. If the prediction aligns with the observed instantaneous counterfactual regret, Farina et al.
(2021) show that the theoretical convergence of PCFR+ can be improved from O(1/

√
T ) of CFR+

to O(1/T ). In practice, PCFR+ employs the instantaneous counterfactual regret observed at the last
iteration t− 1 as the prediction at iteration t to look one step ahead. Formally, at each iteration t and
for each infoset I ∈ I, PCFR+ updates its strategy according to

R̂t
I = [Rt

I + rt−1
I ]+,Rt+1

I = [Rt
I + rtI ]

+,

σti(I) =
[R̂t

I ]
+

∥[R̂t
I ]

+∥1
=

R̂t
I

∥R̂t
I∥1

,
(3)

where i = P (I), R1
I = 0, the second equality of the second line comes from the fact that R̂t+1

I ≥ 0,
as well as Rt+1

I and R̂t+1
I are implicit and explicit accumulated counterfactual regrets, respectively.

4 OUR METHOD

Although PCFR+ utilizes prediction to substantially accelerate the empirical convergence rate, it suf-
fers from a significant significant discrepancy between strategies represented by explicit accumulated
counterfactual regrets. This discrepancy reduces the empirical convergence rate. To mitigate this
issue, we introduce a novel variant of PCFR+, called Pessimistic PCFR+ (P2PCFR+).

4.1 EXAMPLE OF SIGNIFICANT DISCREPANCY BETWEEN STRATEGIES

Firstly, we present an example illustrating the substantial discrepancy between strategies represented
by explicit accumulated counterfactual regrets in PCFR+. Consider a scenario where the number
of available actions for player i at an infoset I ∈ Ii is 2. Assume that, at iteration t, the implicit
accumulated counterfactual regret Rt

I is [2; 0], and the instantaneous counterfactual regret rt−1
I

is [1;−1]. From the update rule of PCFR+ defined in Eq. (3), the new explicit accumulated
counterfactual regret R̂t

I is [3; 0]. Now, assume the observed instantaneous counterfactual regret rtI
is [−1; 1]. Similarly, we derive that Rt+1

I and R̂t+1
I are [1; 1] and [0; 2], respectively. Applying the

regret matching operator, the strategies represented by R̂t
I and R̂t+1

I are [1; 0] and [0; 1] (derived
from [3; 0] and [0; 2]), respectively. This demonstrates a significant discrepancy between strategies
([1; 0] and [0; 1]) represented by explicit accumulated counterfactual regrets. From the analysis in
Farina et al. (2023), we have

∥rt+1
i (I)− rti(I)∥22 ≤ O(

∑
i∈N

∑
I∈Ii

∥σt+1
i (I)− σti(I)∥22). (4)

Therefore, as the discrepancy between strategies represented by explicit accumulated counterfactual
regrets is large, the prediction is entirely incorrect, leading to the failure of the alignment between the
prediction and with the observed instantaneous counterfactual regret. This failure ultimately impairs
the empirical convergence rate of PCFR+, as demonstrated by our experiments using the open-source
implementation of CFR algorithms (Liu et al., 2024). Specifically, PCFR+ converges more slowly
than classical CFR algorithms, such as CFR+, even in standard IIG benchmarks like Leduc Poker,
Goofspiel, and Liar’s Dice.

5
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4.2 PESSIMISTIC PCFR+

To address the discrepancy between strategies represented by explicit accumulated counterfactual
regrets across two consecutive iterations, we propose a novel variant of PCFR+, termed Pessimistic
PCFR+ (P2PCFR+). P2PCFR+ leverages the misalignment of step sizes in the updates of implicit
and explicit accumulated counterfactual regrets to make more conservative predictions. This approach
reduces the discrepancy between strategies represented by these two types of regrets within the same
iteration, leading to a lower overall discrepancy in strategies across consecutive iterations.

Specifically, assume the strategy represented by Rt
I is σ̃ti(I) = Rt

I/∥Rt
I∥1. From the Cauchy-

Schwarz inequality (Steele, 2004), we have that the discrepancy ∥σt+1
i (I) − σti(I)∥22 between

strategies represented by explicit accumulated regrets at iteration t and t+ 1 is bounded as

∥σt+1
i (I)− σti(I)∥22 ≤ 3∥σt+1

i (I)− σ̃t+1
i (I)∥22 + 3∥σ̃t+1

i (I)− σ̃ti(I)∥22 + 3∥σ̃ti(I)− σti(I)∥22, (5)

where ∥σti(I)−σ̃ti(I)∥22 and ∥σ̃t+1
i (I)−σt+1

i (I)∥22 are the discrepancy between strategies represented
by the implicit and explicit accumulated regrets at iteration t and t + 1, respectively, as well as
∥σ̃t+1

i (I)− σ̃ti(I)∥22 is the discrepancy between strategies represented by the explicit accumulated
regrets at iteration t and t+ 1.

To reduce the value of ∥σt+1
i (I)− σti(I)∥22, P2PCFR+ exploits the misalignment of step sizes in the

updates of implicit and explicit accumulated regrets. This results in a more pessimistic prediction
compared to PCFR+, leading to lower values of ∥σti(I)− σ̃ti(I)∥22 and ∥σ̃t+1

i (I)− σt+1
i (I)∥22, while

maintaining the same value of ∥σ̃t+1
i (I)− σ̃ti(I)∥22. Formally, at each iteration t, P2PCFR+ updates

its strategy at each infoset I according to

R̂t
I = [Rt

I +
1

1 + α
rt−1
I ]+,Rt+1

I = [Rt
I + rtI ]

+,

σti(I) =
[R̂t

I ]
+

∥[R̂t
I ]

+∥1
=

R̂t
I

∥R̂t
I∥1

,

where i = P (I) and α ≥ 0 is a constant. Obviously, the value of ∥σ̃t+1
i (I)− σ̃ti(I)∥22 remains the

same as in PCFR+. Furthermore, P2PCFR+ intuitively reduces the gap between implicit and explicit
accumulated counterfactual regrets, leading to a smaller discrepancy between σ̃ti(I) and σti(I) (as
well as between σ̃t+1

i (I) and σt+1
i (I)). From Eq. (5), as these discrepancy decreases, the discrepancy

∥σt+1
i (I)−σti(I)∥22 between the strategies represented by explicit regrets at iterations t and t+1 also

decreases. We first provide the regret bound when the gap between the prediction and the observed
instantaneous counterfactual regret is considered, as shown in Theorem 4.1.

Theorem 4.1. (Proof is in Appendix A) Assume that T iterations of P2PCFR+ with any 1 ≥ α ≥ 0
are conducted. Then the counterfactual regret at any infoset I ∈ I is bound by

RT (I) ≤ 2

√√√√2 + α

1 + α
EF

T∑
t=1

1

2
∥rtI − rt−1

I ∥2.

where E = maxRI∈∆|A(I)|
1
2∥RI −R1

I∥22, F = maxI∈I ∥rI∥2 and η > 0.

From the property of the counterfactual regret as shown in Eq. (2), we get

RTi ≤
∑
I∈Ii

RT (I) ≤ O

2|Ii|

√√√√2 + α

1 + α
EF

T∑
t=1

1

2
∥rtI − rt−1

I ∥2

 . (6)

Then, from Eq. (1) and (6), we can get the upper bound of the exploitability of the average strategy
of P2PCFR+, as shown in Theorem 4.2.

Theorem 4.2. Assume that T iterations of P2PCFR+ with any 1 ≥ α ≥ 0 are conducted in a
two-player zero-sum IIG. Then the exploitability of the average strategy of P2PCFR+ is bound by

ϵ(σ̄) = ϵ(σ̄0, σ̄1) ≤ O

2|Ii|

√√√√2 + α

1 + α
EF

T∑
t=1

1

2
∥rtI − rt−1

I ∥2

 ,

where σ̄i(I) =
∑T
t=1 π

σt

i (I)σti(I)/
∑T
t=1 π

σt

i (I) for all i ∈ N , and I ∈ Ii.
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Figure 1: Empirical Convergence results of tested CFR algorithms. Each algorithm runs for 2,000
iterations. In all plots,the x-axis is the number of iteration, and the y-axis represents exploitabil-
ity,displayed on a logarithmic scale. Liar’s Dice (x) represents that every player is given a die with x
sides. Goofspiel (x) denotes that each player is dealt x cards.

As α increases, (2 + α)/(1 + α) decreases. When α→ 0, P2PCFR+ simplifies to PCFR+, indicating
that P2PCFR+ achieves a faster theoretical convergence rate compared to PCFR+, provided that the
value of ∥rtI −rt−1

I ∥22 remains the same for both P2PCFR+ and PCFR+. More importantly, since the
updates in P2PCFR+ are more pessimistic, ∥σti(I)− σ̃ti(I)∥22 is expected to decrease, which implies
a reduction in ∥σt+1

i (I)− σti(I)∥22 according to Eq. (6). Consequently, from Eq. (4), we deduce that
the difference ∥rt+1

i (I)− rti(I)∥22 in instantaneous counterfactual regret across iterations diminishes.
As shown in Theorem 4.2, this reduction leads to a faster convergence rate.

Theorem 4.1 considers the gap between the prediction and the observed instantaneous counterfactual
regret. Now, we provide an alternative regret bound as shown in Theorem 4.3, which does not
consider this gap. In other words, it considers the worst case.

Theorem 4.3. (Proof is in Appendix B) Assume that T iterations of P2PCFR+ with any α ≥ 0 are
conducted. Then the counterfactual regret at any infoset I ∈ I is bound by

RT (I) ≤ O

(
2

√
(1 +

1

(1 + α)2
)EF 2T

)
.

Theorem 4.4. Assume that T iterations of P2PCFR+ are conducted in a two-player zero-sum IIG.
Then the exploitability of the average strategy of P2PCFR+ is bound by

ϵ(σ̄) = ϵ(σ̄0, σ̄1) ≤ O

(
|Ii|

√
(1 +

1

(1 + α)2
)
1

T

)
,

where σ̄i(I) =
∑T
t=1 π

σt

i (I)σti(I)/
∑T
t=1 π

σt

i (I) for all i ∈ N and I ∈ Ii.
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Figure 2: Discrepancy between strategies represented by the implicit and explicit accumulated
counterfactual regrets of PCFR+ and P2PCFR+.

Similarly, an alternative upper bound on the exploitability of the average strategy in P2PCFR+ is
obtained, as shown in Theorem 4.4. As α increases, 1/(1 + α)2 decreases, meaning that increasing α
leads to a reduction in

√
(1 + 1/(1 + α)2). As α→ 0, P2PCFR+ reduces to PCFR+, which means

P2PCFR+ achieves faster theoretical convergence rate than PCFR+. As α→ ∞, P2PCFR+ reduces
to CFR+. While Theorem 4.4 indicates the fastest convergence rate when α → ∞, α → ∞ also
implies that the key insight of PCFR+—looking one step ahead—diminishes, leading to a weaker
empirical convergence rate. This is verified in our experiments, where CFR+ converges more slowly
than APCFR+ in most games.

In conclusion, from Theorem 4.2 and Theorem 4.4, regardless of whether the gap between the
prediction and observed instantaneous counterfactual regret is considered, P2PCFR+ exhibits faster
theoretical convergence rate than PCFR+.

5 EXPERIMENTS

We employ four standard commonly used IIG benchmarks to evaluate the empirical convergence
rate of P2PCFR+, e.g., Kuhn Poker, Leduc Poker, Goofspiel Poker, and Liar’s Dice. All the tested
games are implemented by OpenSpiel (Lanctot et al., 2019). Our evaluation includes a comparison
with several existing PCFR+ variants as well as other classical CFR algorithms. Specifically, we
compare P2PCFR+ against PCFR+ (Farina et al., 2021), Stable PCFR+ (Farina et al., 2023), Smooth
PCFR+ (Farina et al., 2023), vanilla CFR (Zinkevich et al., 2007), CFR+ (Tammelin, 2014), and
DCFR (Brown & Sandholm, 2019a). Each algorithm is run for 2000 iterations, which is sufficient
to achieve low exploitability for solving the tested games. We employ alternating updates and
linear averaging (except for DCF), both of which are standard techniques to improve the empirical
convergence rate of CFR algorithms. For P2PCFR+, although Theorem 4.2 requires α ≤ 1, we
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Figure 3: Empirical Convergence results of P2PCFR+ with different α. When α → 0, P2PCFR+

reduces to PCFR+.

set α = 5 because it empirically achieves a faster convergence rate than α = 1, as detailed below.
For both Stable PCFR+ and Smooth PCFR+, we set their learning rates to 1, following the original
configuration from their original paper. All algorithm implementations are based on the open-source
code of LiteEFG (Liu et al., 2024). All experiments are conducted on a machine with a Xeon(R)
Gold 6444Y CPU and 256 GB of memory.

The results about convergence rates are shown in Figure 1. P2PCFR+ algorithm exhibits the fastest
empirical convergence rate among all tested PCFR+ variants. Specifically, compared to PCFR+,
P2PCFR+ achieves significantly faster empirical convergence rate in 7 games except kuhn Poker
and Goofspiel (4), while PCFR+ never outperforms P2PCFR+. In comparison with Stable PCFR+

and Smooth PCFR+, although these two PCFR+ variants achieve better theoretical convergence
rates than P2PCFR+ in normal-form games, a instance of IIGs with only one history for each player,
P2PCFR+ consistently significantly outperforms them across all 8 games, with Smooth PCFR+ only
performs similar to P2PCFR+ in Goofspiel (4). Furthermore, when compared to three other classic
tested CFR algorithms, i.e., vanilla CFR, CFR+, and DCFR, P2PCFR+ consistently significantly
outperforms vanilla CFR in almost all games, with CFR+ and DCFR never outperform P2PCFR+.

To evaluate the key motivation behind P2PCFR+—reducing the discrepancy between strategies
represented by implicit and explicit accumulated counterfactual regrets to enhance the empirical
convergence rate of PCFR+—we present the evolution of this discrepancy over time in both PCFR+

and P2PCFR+. The ℓ1-norm quantifies this discrepancy. The results are shown in Figure 2 confirms
P2PCFR+’s key motivation. In Leduc Poker, Liar’s Dice (5), Liar’s Dice (6), and Goofspiel (6), this
discrepancy in P2PCFR+ consistently remains smaller than in PCFR+, leading to a faster empirical
convergence rate, as illustrated in Figure 1. Additionally, in Liar’s Dice (4) and Goofspiel (5),
the discrepancy in P2PCFR+ is smaller than in PCFR+ during the first 200 and 500 iterations,
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respectively. Subsequently, the difference between the discrepancies of P2PCFR+ and PCFR+

becomes negligible. Since large discrepancies have significant effect on empirical convergence rates
as shown in Theorem 4.2, P2PCFR+ continues to converge faster than PCFR+ in these two games.
In Kuhn Poker, Liar’s Dice (3), and Goofspiel (4), similar to Liar’s Dice (4) and Goofspiel (5), the
discrepancy in P2PCFR+ is smaller than in PCFR+ during early stages. This phase, however, lasts
fewer than 20 iterations, resulting in similar performance between P2PCFR+ and PCFR+.

Finally, we present the empirical convergence rates of P2PCFR+ under various values of α. The
results are illustrated in Figure 3. Notably, when α = 0, P2PCFR+ simplifies to PCFR+. Our
observations indicate that when α is relatively small, specifically when α ≤ 10, P2PCFR+ consis-
tently outperforms PCFR+. However, when α becomes excessively large, for instance at values of
50 or 100, the performance of P2PCFR+ sometimes degrades significantly. This phenomenon is
evident in Kuhn Poker, Liar’s Dice (4), Goofspiel (4), and Goofspiel (5). We hypothesize that this
degradation occurs because, at higher values of α, the strategies defined by implicit and explicit accu-
mulated counterfactual regrets in P2PCFR+ become nearly indistinguishable, thereby diminishing
the effectiveness of the key insight of PCFR+—looking one step ahead.

6 CONCLUSIONS

We propose P2PCFR+, a novel and effective variant of PCFR+. P2PCFR+ employs the misalignment
of step sizes in the updates of implicit and explicit accumulated counterfactual regrets to make a more
conservative prediction than PCFR+. This conservative prediction reduces the discrepancy between
the strategies represented by implicit and explicit accumulated regrets within the same iteration. This
reduction in this discrepancy diminishes the significant discrepancy between strategies represented
by explicit accumulated counterfactual regrets across two consecutive iterations, which typically
slows down the empirical convergence rate of PCFR+. We prove that P2PCFR+ achieves a faster
convergence rate compared to PCFR+. Experimental results further validate that P2PCFR+ exhibits
a faster empirical convergence rate than PCFR+.

To the best of our knowledge, we are the first to propose the misalignment of step sizes in the
updates of implicit and explicit accumulated counterfactual regrets, a simple yet novel technique that
effectively improves the empirical convergence rate of PCFR+.

The implementation of P2PCFR+ is straightforward, requiring only a single line modification to
PCFR+. Empirically, P2PCFR+ consistently outperforms PCFR+ when α ≤ 10. This demonstrates
that a minor change to PCFR+ can lead to significant performance improvements.

Moreover, the discounting techniques used in DCFR are compatible with P2PCFR+. By incorporating
discounting concepts from DCFR, we can assign different values of α to different iterations t, further
enhancing the empirical convergence rate of P2PCFR+. We consider this as future work.
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A PROOF OF THEOREM 4.3

Proof. To prove Theorem 4.1, we use the equivalence between RM+ and Online Mirror Descent
(OMD) proposed by Farina et al. (2021).

We first introduce OMD. OMD is a traditional regret minimization algorithm (Nemirovskij & Yudin,
1983). Let ℓt ∈ Rd, xt ∈ D, and let ψ : D → Rd≥0 = {y|y ∈ Rd,y ≥ 0} be a 1-strongly convex
differentiable regularizer with respect to some norm ∥ · ∥, OMD generates the decisions via

xt+1 := arg min
x′∈D

{
⟨ℓt,x′⟩+ 1

η
Bψ(x′ ∥ xt)

}
,

where Bψ(u,v) = ψ(u)−ψ(v)− ⟨∇ψ(v),u− v⟩ is the Bregman divergence associated with ψ(·).
From the analysis in Section D of Farina et al. (2021), by setting ψ(·) as the the quadratic regularizer
1
2∥ · ∥

2
2, the update rule P2PCFR+ at infoset I can be written as

R̂t
I ∈ argmin

RI∈R|A(I)|
≥0

{⟨−rt−1
I ,RI⟩+

1

η
Bψ(RI ,R

t
I)},

R̂t+1
I ∈ argmin

RI∈R|A(I)|
≥0

{⟨−(1 + α)rtI ,RI⟩+
1

η
Bψ(RI ,R

t
I)},

(7)

where η > 0 is a constant. Note that if R0
I = 0 for all I ∈ I, then for any η, the strategy profile

sequence {σ1, σ2, · · · , σT } generated by P2PCFR+ is same.

Lemma A.1. (Lemma 4 of Farina et al. (2021)) Let D ⊆ Rd be closed and convex, let ℓt ∈ Rd,
xt ∈ D, and let ψ : D → R≥0 be a 1-strongly convex differentiable regularizer with respect to some
norm ∥ · ∥. Then,

xt+1 := arg min
x∈D

{
⟨ℓt,x⟩+ 1

η
Bψ(x ∥ xt)

}
is well defined (that is, the minimizer exists and is unique), and for all x′ ∈ D satisfies the inequality

⟨ℓt,xt+1 − x′⟩ ≤ 1

η

(
Bψ(x′,xt)− Bψ(x′,xt+1)− Bψ(xt+1,xt)

)
Considering the second line of Eq. (7), and using Lemma A.1 with xt = Rt

I , xt+1 = Rt+1
I ,

x′ = RI and ℓt = −(1 + α)rtI , we have

⟨−(1 + α)rtI ,R
t+1
I −RI⟩ ≤

1

η

(
Bψ(RI ,R

t
I)− Bψ(RI ,R

t+1
I )− Bψ(Rt+1

I ,Rt
I)
)

⇔⟨−rtI ,R
t+1
I − R̂t

I + R̂t
I −R⟩ ≤ 1

η(1 + α)

(
Bψ(RI ,R

t
I)− Bψ(RI ,R

t+1
I )− Bψ(Rt+1

I ,Rt
I)
)
.

(8)
Similarly, considering the first line of Eq. (7), and using Lemma A.1 with xt = Rt

I , xt+1 = R̂t
I ,

x′ = Rt+1
I and ℓt = −rt−1

I , we get

⟨−rt−1
I , R̂t

I −Rt+1
I ⟩ ≤ 1

η

(
Bψ(Rt+1

I ,Rt
i)− Bψ(Rt+1

I , R̂t
I)− Bψ(R̂t

I ,R
t
i)
)
. (9)

Summing up Eq. (8) with Eq. (9), we have

⟨−rtI ,R
t+1
I − R̂t

I + R̂t
I −RI⟩+ ⟨−rt−1

I , R̂t
I −Rt+1

I ⟩

≤ 1

η(1 + α)

(
Bψ(RI ,R

t
I)− Bψ(RI ,R

t+1
I )

)
− 1

η(1 + α)
Bψ(R̂t

I ,R
t
i) +

1

η
(Bψ(R̂t

I ,R
t
i)− Bψ(Rt+1

I , R̂t
I)− Bψ(R̂t

I ,R
t
i))

≤ 1

η(1 + α)

(
Bψ(RI ,R

t
I)− Bψ(RI ,R

t+1
I )

)
− 1

η(1 + α)
Bψ(Rt+1

I , R̂t
I) +

1

η
Bψ(Rt+1

I , R̂t
I)−

1

2η
Bψ(R̂t

I ,R
t
i)

≤ 1

η(1 + α)

(
Bψ(RI ,R

t
I)− Bψ(RI ,R

t+1
I )

)
− 1

η(1 + α)
Bψ(Rt+1

I , R̂t
I) +

1

η
Bψ(Rt+1

I , R̂t
I)−

1

2η
Bψ(R̂t

I ,R
t
i).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

From 0 ≤ α ≤ 1, we have

⟨−rtI ,R
t+1
I − R̂t

I + R̂t
I −RI⟩+ ⟨−rt−1

I , R̂t
I −Rt+1

I ⟩

≤ 1

η(1 + α)

(
Bψ(RI ,R

t
I)− Bψ(RI ,R

t+1
I )

)
.

Arranging the terms, we have

⟨−rtI , R̂
t
I −RI⟩ ≤

1

η(1 + α)

(
Bψ(RI ,R

t
I)− Bψ(RI ,R

t+1
I )

)
+ ⟨rt−1

I − rtI , R̂
t
I −Rt+1

I ⟩. (10)

From the facts that rtI = ⟨vσt

(I), σti(I)⟩1− vσ
t

(I) and σti(I) =
[R̂t

I ]
+

∥[R̂t
I ]

+∥1
=

R̂t
I

∥R̂t
I∥1

, we have

⟨−rtI , R̂
t
I −RI⟩ =⟨⟨vσ

t

(I), σti(I)⟩1− vσ
t

(I),RI − R̂t
I⟩

=⟨⟨vσ
t

(I),
R̂t
I

∥R̂t
I∥1

⟩1− vσ
t

(I),RI − R̂t
I⟩

=⟨⟨vσ
t

(I),
R̂t
I

∥R̂t
I∥1

⟩1− vσ
t

(I),RI⟩

=⟨vσ
t

(I), σti(I)−RI⟩.

(11)

Since RI ∈ R|A(I)|
≥0 , we have

RT (I) =

T∑
t=1

∑
a∈A(I)

σti(Ia)v
σt

(Ia)− min
a∈A(I)

T∑
t=1

vσ
t

(Ia) ≤ max
RI∈R|A(I)|

≥0

T∑
t=1

⟨vσ
t

(I), σti(I)−RI⟩.

(12)
Therefore, from Eq. (10), we can bound

1

η(1 + α)

(
Bψ(RI ,R

t
I)− Bψ(RI ,R

t+1
I )

)
+ ⟨rt−1

I − rtI , R̂
t
I −Rt+1

I ⟩ (13)

to bound RT (I).

Lemma A.2. (Adapted from Lemma 11 of Wei et al. (2021)) Let D ⊆ Rd be closed and convex, and
suppose that ψ : D → R≥0 be a 1-strongly convex differentiable regularizer with respect to norm
∥ · ∥2, and let u,u1,u2 ∈ D be related by the following:

u1 = arg min
u′∈D

{⟨u′,g1⟩+Dψ(u
′,u)},

u2 = arg min
u′∈D

{⟨u′,g2⟩+Dψ(u
′,u)}.

Then we have
∥u1 − u2∥2 ≤ ∥g1 − g2∥2,

For Eq. (13), summing up from t = 1 to t = T , we get

1

η
Bψ(RI ,R

1
I) +

T∑
t=1

⟨rtI − rt−1
I ,Rt

I − R̂t
I⟩

≤ 1

η(1 + α)
Bψ(RI ,R

1
I) +

T∑
t=1

∥rtI − rt−1
I ∥2∥Rt

I − R̂t
I∥2

≤ 1

η(1 + α)
Bψ(RI ,R

1
I) + η

T∑
t=1

∥rtI − rt−1
I ∥2∥(1 + α)rtI − rt−1

I ∥2

≤ 1

η(1 + α)
E + η

T∑
t=1

∥rtI − rt−1
I ∥22((1 + α)∥rtI∥2 + ∥rt−1

I ∥2)

≤ 1

η(1 + α)
Bψ(RI ,R

1
I) + η(2 + α)F

T∑
t=1

∥rtI − rt−1
I ∥2,

(14)

14
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where the third line comes from Lemma A.2, as well as the last line comes from that E =
maxRI∈∆|A(I)|

1
2∥RI −R1

I∥22 and F = maxI∈I ∥rI∥2.

For the term 1
η(1+α)E + η(2 + α)F

∑T
t=1 ∥rtI − rt−1

I ∥2, since it takes the minimum when η =√
E

(1+α)F
∑T

t=1 ∥rt
I−rt−1

I ∥2
, we have that

1

η(1 + α)
E + η(2 + α)F

T∑
t=1

∥rtI − rt−1
I ∥2 ≤ 2

EF (2 + α)

1 + α

T∑
t=1

1

2
∥rtI − rt−1

I ∥2 (15)

Combining Eq. (10), (11), (12), and (16), we have

RT (I) ≤ 2

√√√√2 + α

1 + α
EF

T∑
t=1

1

2
∥rtI − rt−1

I ∥2. (16)

It completes the proof.

B PROOF OF THEOREM 4.3

Proof. From the analysis in Section D of Farina et al. (2021), by setting ψ(·) as the the quadratic
regularizer 1

2∥ · ∥
2
2, the update rule P2PCFR+ at infoset I can also be written as

R̂t
I ∈ argmin

RI∈R|A(I)|
≥0

{⟨− 1

1 + α
rt−1
I ,RI⟩+

1

η
Bψ(RI ,R

t
I)},

R̂t+1
I ∈ argmin

RI∈R|A(I)|
≥0

{⟨−rtI ,RI⟩+
1

η
Bψ(RI ,R

t
I)}.

(17)

Corollary B.1. (Adapted from Corollary 1 5 of Farina et al. (2021)) Let ψ : D → R≥0 be a
1-strongly convex differentiable regularizer with respect to norm ∥ · ∥2. For all x̂ ∈ D, all η > 0, and
all times T , the regret cumulated the algorithm defined in Eq. 17 is bounded as

RT (I) ≤ E

η
+ η

T∑
t=1

∥rtI −
1

(1 + α)
rt−1
I ∥22.

From Corollary B.1, we have

RT (I) ≤E
η

+ η

T∑
t=1

∥rtI −
1

1 + α
rt−1
I ∥22

≤E
η

+ η

T∑
t=1

(
∥rtI∥22 +

1

(1 + α)2
∥ 1

1 + α
rt−1
I ∥22

)
≤E
η

+ ηF 2T

(
1 +

1

(1 + α)2

)
≤2

√(
1 +

1

(1 + α)2

)
EF 2T ,

where the third line comes F = maxI∈I ∥rI∥2, and the last line is from that the third line takes the

minimum when η =
√

E

F 2T
(
1+ 1

(1+α)2

) . It completes the proof.
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