
A Little Depth Goes a Long Way:
The Expressive Power of Log-Depth Transformers

Anonymous Author(s)
Affiliation
Address
email

Abstract

Most analysis of transformer expressivity treats the depth (number of layers) of1

a model as a fixed constant, and analyzes the kinds of problems such models can2

solve across inputs of unbounded length. In practice, however, the context length3

of a trained transformer model is bounded. Thus, a more pragmatic question is:4

What kinds of computation can a transformer perform on inputs of bounded length?5

We formalize this by studying highly uniform transformers where the depth can6

grow minimally with context length. In this regime, we show that transformers7

with depth O(logC) can, in fact, compute solutions to two important problems for8

inputs bounded by some max context length C, namely simulating finite automata,9

which relates to the ability to track state, and graph connectivity, which underlies10

multi-step reasoning. Notably, both of these problems have previously been proven11

to be asymptotically beyond the reach of fixed depth transformers under standard12

complexity conjectures, yet empirically transformer models can successfully track13

state and perform multi-hop reasoning on short contexts. Our novel analysis thus14

explains how transformer models may rely on depth to feasibly solve problems up15

to bounded context that they cannot solve over long contexts. It makes actionable16

suggestions for practitioners as to how to minimally scale the depth of a transformer17

to support reasoning over long contexts, and also argues for dynamically unrolling18

depth as a more effective way of adding compute compared to increasing model19

dimension or adding a short chain of thought.20

1 Introduction21

A line of recent work has analyzed the computational power of transformers, finding that, with22

fixed depth, they cannot express many simple problems outside the complexity class TC0, including23

recognizing regular languages and resolving connectivity of nodes in a graph (Merrill & Sabharwal,24

2023a; Chiang et al., 2023). These problems conceivably underlie many natural forms of reasoning,25

such as state tracking (Liu et al., 2023; Merrill et al., 2024) or resolving logical inferences across long26

chains (Wei et al., 2022). Thus, these results suggest inherent limitations on the types of reasoning27

transformer classifiers can perform. Yet, while these results establish that transformers cannot solve28

these problems for arbitrarily long inputs, they come with an important caveat: that transformers may29

still be able to solve such problems over inputs up to some bounded length, even if they cannot solve30

them exactly for inputs of arbitrary lengths. This is, in fact, aligned with a common experience that,31

in practice, transformer-based language models are indeed able to track state and perform multi-step32

reasoning successfully on small context sizes. This is analogous to how regular expressions cannot33

express all context-free languages, but one can write regular expressions that capture fragments of a34

context free language.35

Submitted to the Mathematics of Modern Machine Learning Workshop at NeurIPS 2024. Do not distribute.

This perspective, coupled with the fact that treating depth as fixed is crucial to prior analyses placing36

transformers in TC0, motivates three related questions about depth as an important resource for a37

transformer, in relation to the context length over which it can express reasoning problems:38

1. Bounded Context: Can fixed depth transformers express hard problems up to a long, but39

bounded, context length? If so, what is that bound?40

2. Dynamic Depth: Can minimally scaling the depth of a transformer allow it to solve such41

problems for arbitrarily long inputs?42

3. Architecture Design: When targeting harder reasoning problems, should one add additional43

layers or invest test-time compute in larger model dimension, chain of thought, etc.?44

Input Length (n, log scale)

Tr
an

sf
or

m
er

 D
ep

th
 (d

)
0

50

100

150

10 100 1000 10000 100000

Simulating Automata Graph Connectivity depth 32
depth 80 depth 126

Figure 1: Solid lines: The maximum context length
(x-axis) at which transformers can solve reasoning
problems at a given depth (y-axis), derived from
Theorems 1 and 2. Dashed lines: common depths
(32, 80, 126) of transformer-based LLMs. Cross-
ing points indicate context bounds for that depth.

We address these questions by analyzing the ex-45

pressive power of “universal” transformers (also46

called “looped” transformers) whose depth is47

scaled dynamically with context length by re-48

peating middle layers (Dehghani et al., 2019;49

Yang et al., 2024).1 We capture the regime50

where depth grows minimally with context51

length by allowing the middle layers to be re-52

peated O(log n) times. Using a universal trans-53

former architecture allows the model to be spec-54

ified using a fixed set of parameters despite55

dynamic depth, making the architecture highly56

“uniform”. In this regime, we prove that such57

log-depth transformers can recognize regular58

languages and solve graph connectivity, two im-59

portant reasoning problems shown to be beyond60

fixed-depth transformers in prior work (Merrill61

& Sabharwal, 2023a). This result has three inter-62

esting interpretations, answering the questions63

above:64

First, transformers with a fixed depth d can rec-65

ognize regular languages and solve graph con-66

nectivity problems on inputs up to size 2O(d). For instance, as illustrated in Figure 1, with depth67

80 (such as in LLaMA 3.1 70B), transformers can simulate finite automata on context length up to68

100. Even with a depth of only 32 (such as in LLaMA 3.1 7B, OLMo 7B), they can solve graph69

connectivity up to a context length of 100. With depth 126 (as in LLaMA 3.1 405B), transformers70

can solve these problems to practically unbounded contexts.71

Second, by dynamically increasing their depth to O(log n), we can construct transformers that can72

solve regular language recognition and graph connectivity for arbitrary context length.273

Third, scaling depth logarithmically as a computational resource more efficiently expands the expres-74

sive power of transformers compared to scaling width (i.e., model dimension) or adding O(log n)75

chain-of-thought style intermediate steps (Wei et al., 2022; Nye et al., 2021). Specifically, we show76

that even transformers with poly(n) width cannot solve the above two problems, and neither can77

transformers with O(log n) chain-of-thought steps.78

We hope the first and third observations here will serve as actionable guidance for practitioners to79

choose effective model depths for reasoning over long contexts, and potentially motivate exploring80

the use of dynamic depth as way to efficiently introduce test-time compute for transformers.81

2 Preliminaries: Universal Transformers82

We consider (s, r, t)-universal transformers which are defined to have s fixed initial layers at the83

start, a sequence of r layers that is repeated some number of times based on the input length, and a84

1We use the term “universal” throughout because it is more standard, though “looped” is more accurate as
these transformers cannot express all Turing machines with bounded precision.

2Following conventions in computer science, we use logn to mean log2 n.

2

sequence of t fixed final/terminal layers. Thus, an (s, r, t)-universal transformer unrolled d(n) times85

for input length n has a total of s + rd(n) + t layers. A standard d-layer transformer is (d, 0, 0)-86

universal (equivalently, (0, 0, d)-universal), while a standard universal transformer (Dehghani et al.,87

2019; Yang et al., 2024) is (0, 1, 0)-universal.88

Definition 1. A decoder-only (s, r, t)-universal transformer with h heads, d layers, model dimension89

m (divisible by h), and feedforward width w is specified by:90

1. An embedding projection matrix E that maps Q|Σ| to Qm, as well as a positional encoding91

function π, which we assume separates 1 from other indices (Merrill & Sabharwal, 2024);392

2. A list of s “initial” transformer layers (defined in Section 2.1);93

3. A list of r “repeated” transformer layers;94

4. A list of t “final” transformer layers;95

5. An unembedding projection matrix U that maps vectors in Qm to Q|Σ|.96

We next define how the transformer maps a sequence w1 · · ·wn ∈ Σn to an output value y ∈ Σ;97

to do so, we will always specify that the transformer is unrolled to a specific depth function d(n),98

which we will consider to be d(n) = ⌈log n⌉. The computation is inductively defined by the residual99

stream hi: a cumulative sum of all layer outputs at each token i. In the base case, the residual stream100

hi is initialized to h0
i = E(y) + π(i). We then iteratively compute s + rd(n) + t more lowers,101

deciding which layer to use at each step as follows:102

Lℓ =

s-layer ℓ if 1 < ℓ ≤ s
r-layer (ℓ− s) mod r if s < ℓ ≤ s+ rd(n)

t-layer ℓ− s− rd(n) otherwise.

We then compute hℓ
1, . . . ,h

ℓ
n = Lℓ(hℓ−1

1 , . . . ,hℓ−1
n).103

2.1 Transformer Sublayers104

To make Definition 1 well-defined, we will next describe the structure of the self-attention and105

feedforward sublayers that make up the structure of each transformer layer. Our definition of the106

transformer will have two minor differences from practice:107

1. Averaging-hard attention (a.k.a., saturated attention): attention weight is split uniformly108

across the tokens with maximum attention scores.109

2. Masked pre-norm: We assume standard pre-norm (Xiong et al., 2020) but add a learned110

mask vector that can select specific dimensions of the residual stream for each layer’s input.111

Each sublayer will take as input a sequence of normalized residual stream values:112

zi = layer_norm(mhi),

where layer-norm can be standard layer-norm (Ba et al., 2016) or RMS norm (Zhang & Sennrich,113

2019). The sublayer then maps z1, . . . , zn to a sequence of updates to the residual stream δ1, . . . , δn,114

and the residual stream is updated as h′
i = hi + δi.115

Definition 2 (Self-attention sublayer). The self-attention sublayer is parameterized by a mask116

m ∈ Qm, output projection matrix W ∈ Qm×m, and, for 1 ≤ k ≤ h, query, key, and value matrices117

Qk ∈ Qm×(m/h),Kk ∈ Qm×(m/h),Vk ∈ Qm×(m/h).118

Given its input zi, the self-attention sublayer computes queries qi = ziQ
k, keys ki = ziK

k, and119

values vi = ziV
k. Next, these values are used to compute the attention head outputs:120

ai,k = lim
α→∞

c(i)∑
j=1

exp(αqi,kkj,k)

Zi,k
· vj,k, where Zi,k =

c(i)∑
j=1

exp (αqi,kkj,k)

and c(i) is i for standard causal attention and i − 1 for strict causal attention. Attention is made121

saturated to focus on the argmax positions (through the α limit). Finally, the attention heads are122

aggregated to create an output to the residual stream:123

δi = concat(ai,1, . . . ,ai,h) ·W.
3We use rationals Q instead of R so that the model has a finite description. All our simulations go through as

long as at least c logn bits are used to represent rationals, similar in spirit to log-precision floats used in earlier
analysis (Merrill & Sabharwal, 2023a,b).

3

Definition 3 (Feedforward sublayer). The feedforward sublayer at layer ℓ is parameterized by a mask124

m ∈ Qm and projections W ∈ Qm×w and U ∈ Qw×m.125

A feedforward layer computes a local update to the residual stream according to126

δi = ReLU(ziW)U.

2.2 Memory Management in Universal Transformers127

A technical challenge when working with universal transformers that add values to the residual128

stream is that if one is not careful, outputs from the previous iteration of a layer may interfere with its129

computation at a later iteration. This necessitates “memory management” of individual cells in which130

the transformer stores values. In particular, any intermediate values stored by a layer must be “reset”131

to 0 and any desired output values must be correctly updated after use in subsequent layers.132

Appendix A discusses in detail how values in {−1, 0, 1} can be stored directly in the residual stream,133

while a general scalar z can be stored either as ψ(z) = ⟨z, 1,−z,−1⟩ in its unnormalized form or as134

the unit vector ϕ(z) = ψ(z)/
√
z2 + 1 in its normalized form. Importantly, whichever way a general135

z is stored, when it is read using masked pre-norm, we obtain ϕ(z). Thus, if ψ(z) is stored as an136

intermediate output, resetting the corresponding residual stream cells in the next layer will often137

require recomputing ψ(z) again in the next layer and adding −ψ(z) to those cells to reset their value138

to 0. We will use a similar mechanism to reset or update a scalar added to a single cell of the residual139

stream, such as in the proof of Lemma 5. Further details are deferred to Appendix A.140

3 Fixed Depth Transformers Can Divide Small Integers141

A useful primitive for coordinating information routing in a log-depth transformer will be dividing142

integers and computing remainders. We therefore start by proving that transformers can perform143

integer division for small numbers, which will be a useful tool for our main results. Specifically, we144

show that given a non-negative integer ai no larger than the current position i, one can compute and145

store the (normalized) quotient and remainder when ai is divided by an integer m. This effectively146

means transformers can perform arithmetic modulo m for small integers.147

We note that there are some high-level similarities between our division construction and a modular148

counting construction from Strobl et al. (2024), though the tools (and simplifying assumptions) used149

by each are different. Specifically, their approach relies on nonstandard position embeddings whereas150

ours makes heavy use of masked pre-norm.151

Lemma 1. Let ai, bi, ci,m ∈ Z≥0 be such that ai = bim+ ci where ai ≤ i and ci < m. Suppose152

ψ(i), ψ(m), and ϕ(ai) (or ψ(ai)) are present in the residual stream of a transformer at each token i.153

Then, there exists a 7-layer transformer with causally masked attention and masked pre-norm that,154

on any input sequence, adds ϕ(bi) and ϕ(ci) to the residual stream at each token i.155

4 Log Depth Enables Recognizing Regular Languages156

One natural problem that constant-depth transformers cannot express is recognizing regular languages,157

which is closely related to state tracking (Liu et al., 2023; Merrill et al., 2024). Liu et al. (2023,158

Theorem 1) show how a log-depth transformer can recognize regular languages using a binary tree159

construction similar to associative scan (Hillis & Steele Jr, 1986). However, their result requires160

simplifying assumptions, removing residual connections from the transformer and assuming specific161

positional encodings. As discussed in Section 2.2, dealing with residual connections is particularly162

tricky in universal transformers, requiring proper memory management of cells in the residual stream163

so that outputs from the previous iteration of a layer interfere with a later iteration. Our result164

therefore refines that of Liu et al. (2023) to hold with a more general universal transformer model165

that uses residual connections and does not rely on specific positional encodings:166

Theorem 1. Let L be a regular language over Σ and $ ̸∈ Σ. Then there exists a (0, 7, 9)-universal167

transformer that, on any string w$, recognizes whether w ∈ L when unrolled to ⌈log2|w|⌉ depth.168

Proof. Regular language recognition can be framed as multiplying a sequence of elements in the169

automaton’s transition monoid (Myhill, 1957; Thérien, 1981). It thus suffices to show how elements170

4

in a finite monoid can be multiplied with log depth. A log-depth universal transformer can implement171

the standard binary tree construction (Barrington & Thérien, 1988; Liu et al., 2023; Merrill et al.,172

2024) where each level multiplies two items, meaning the overall depth is O(log|w|).[WILL: cut173

here?] We will represent a tree over the input tokens within the transformer. Each level of the tree174

will take 5 transformer layers. We define a notion of active tokens: at level 0, all tokens are active,175

and, at level ℓ, tokens at t · 2ℓ − 1 for any t will remain active, and all other tokens will be marked as176

inactive. As an invariant, active token i = t · 2ℓ − 1 in level ℓ will store a unit-norm vector δℓi that177

represents the cumulative product of tokens from i− 2ℓ + 1 to i.178

We now proceed by induction over ℓ, defining the behavior of non-$ tokens at layers that make179

up level ℓ. The current group element δℓi stored at active token i is, by inductive assumption, the180

cumulative product from i− 2ℓ + 1 to i. Let αℓ
i denote that token i is active. By Lemma 4 we use181

a layer to store i − 1 at token i. The next layer attends with query ϕ(i − 1), key ϕ(j), and value182

δℓj to retrieve δℓi−1, the group element stored at the previous token. Finally, another layer attends183

with query 1⃗, key ⟨ϕ(j)1, αℓ
i⟩, and value δℓj−1 to retrieve the group element δℓj∗ stored at the previous184

active token, which represents the cumulative product from i− 2 · 2ℓ + 1 to i− 2ℓ. Next, we will185

use two layers to update δℓi ← δℓ+1
i and δℓj ← 0⃗, which is achieved as follows. First, we assert there186

exists a single feedforward layer that uses a table lookup to compute δℓj∗ , δ
ℓ
i 7→ d such that187

d

∥d∥
= δℓj∗ · δℓi = δℓ+1

i .

Next, we invoke Lemma 3 to construct a layer that adds d to an empty cell of the residual stream and188

then another layer that deletes it. This second layer can now read both δℓi , δ
ℓ
j∗ and δℓ+1

i (from d) as189

input, and we modify it to add δℓ+1
i − δℓi to δℓi , changing its value to δℓ+1

i . Similarly, we modify it to190

add −δℓj∗ to δℓj∗ to set it to 0. A feedforward network then subtracts δℓi from the residual stream and191

adds δℓi · δℓj . This requires at most 4 layers.192

To determine activeness in layer ℓ+ 1, each token i attends to its left to compute ci/i, where ci is the193

prefix count of active tokens, inclusive of the current token. We then compute ϕ(ci/i, 1/i) = ϕ(ci)194

and store ci it temporarily in the residual stream. At this point, we use Lemma 1 to construct 7 layers195

that compute ci mod 2 with no storage overhead. The current token is marked as active in layer ℓ+ 1196

iff ci = 0 mod 2, which is equivalent to checking whether i = t · 2ℓ − 1 for some t. In addition to197

updating the new activeness αℓ+1
i , we also persist store the previous activeness αℓ

i in a separate cell198

of the residual stream and clear ci. This requires at most 8 layers.199

Finally, we describe how to aggregate the cumulative product at the $ token, which happens in parallel200

to the behavior at other tokens. Let δℓ$ be a monoid element stored at $ that is initialized to the identity201

and will be updated at each layer. Using the previously stored value i − 1, we can use a layer to202

compute and store αℓ
i−1 and αℓ+1

i−1 at each i. A head then attends with query 1⃗, key ⟨ϕ(j)1, 10 ·αℓ
i−1⟩,203

and value ⟨(1 − αℓ+1
j−1) · δ

ℓ+1
j−1⟩. This retrieves a value from the previous active token j at level204

ℓ that is δℓj if j will become inactive at ℓ + 1 and 0⃗ otherwise. Iff δℓj is retrieved, a feedforward205

network subtracts δℓ$ from the residual stream and adds δℓj · δℓ$. This guarantees that whenever a tree206

is deactivated, its cumulative product is incorporated into δℓ$. Thus, after ℓ = ⌈log2|w|⌉+ 1 levels,207

δℓ$ will be the transition monoid element for w. We can use one additional layer to check whether208

this monoid element maps the initial state to an accepting state using a finite lookup table. Overall,209

this can be expressed with 8 layers repeated ⌈log2|w|⌉ times and 9 final layers (to implement the210

additional step beyond ⌈log n⌉).211

Theorem 1 thus reveals that running a transformer to log n depth on inputs of length n unlocks new212

power compared to a fixed-depth transformer.213

Remark. The idea of this theorem can be generalized beyond regular languages: if a c layer214

transformer can perform some binary associative operation ⊕, then one can construct an O(c log n)215

layer transformer that computes the iterated version of the operator on n values, x1 ⊕ x2 ⊕ . . .⊕ xn.216

One natural iterated problem is iterated matrix multiplication. If the matrices come from a fixed217

set (e.g., they are fixed size k × k matrices over booleans), then our result for regular languages218

shows that this task can be performed. However, if the matrices are not from a fixed set (e.g., they219

5

contain general integer or rational values, or the matrix itself is of size n × n), then it is unclear220

whether log-depth transformers can solve the iterated multiplication problem; in fact, for n × n221

integer matrices, it is unknown whether they can even compute binary multiplication.222

5 Log Depth Enables Graph Connectivity223

In the graph connectivity problem, the input is a graph G, along with a source vertex s and a224

target vertex t. The task is to determine whether G has a path from s to t. This is a core problem225

at the heart of many computational questions in areas as diverse as network security, routing and226

navigation, chip design, and—perhaps most commonly for language models—multi-step reasoning.227

This problem is known to be complete for the class of logspace Turing machines (Reingold, 2008;228

Immerman, 1998), which means that, under common complexity theory beliefs, it cannot be solved229

accurately by fixed-depth transformer encoders, which can only solve problems in the smaller class230

TC0. In fact, it is believed to not be solvable even with log-depth AND/OR circuits (NC1). However,231

logspace Turing machines can be simulated by log-depth threshold circuits (TC1) (Barrington &232

Maciel, 2000), which opens up a natural question: Can log-depth transformers, which are in TC1,233

solve graph connectivity? We show in this section that the answer is yes.234

Theorem 2. There exists an (17, 2, 1)-universal transformer T that, when unrolled ⌈log2 n⌉ times,235

solves the connectivity problem on (directed or undirected) graphs over n vertices: given as input the236

n× n adjacency matrix of a graph G, n3 padding tokens, and s, t ∈ {1, . . . n} in unary notation, T237

determines whether G has a path from vertex s to vertex t.238

Proof Sketch. We will prove this for directed graphs, as an undirected edge between two vertices can239

be equivalently represented as two directed edges between those vertices. Let G be a directed graph240

over n vertices. Let A ∈ {0, 1}n×n be G’s adjacency matrix: for i, j ∈ {1, . . . , n}, Ai,j is 1 if G has241

an edge from i to j, and 0 otherwise.242

The idea is to use the first n2 tokens of the transformer to construct binary predicates Bℓ(i, j) for243

ℓ ∈ {0, 1, . . . , ⌈log n⌉} capturing whether G has a path of length at most 2ℓ from i to j. To this244

end, the transformer will use the n3 padding tokens to also construct intermediate ternary predicates245

Cℓ(i, k, j) for ℓ ∈ {1, . . . , ⌈log n⌉} capturing whether G has paths of length at most 2ℓ−1 from i to246

k and from k to j. These two series of predicates are computed from each other iteratively:247

B0(i, j) ⇐⇒ A(i, j) ∨ i = j (1)
Cℓ+1(i, k, j) ⇐⇒ Bℓ(i, k) ∧Bℓ(k, j) (2)
Bℓ+1(i, j) ⇐⇒ ∃k s.t. Cℓ+1(i, k, j) (3)

We first argue that B⌈logn⌉(i, j) = 1 if and only if G has a path from i to j. Clearly, there is such248

a path if and only if there is a “simple path” of length at most n from i to j. To this end, we argue249

by induction over ℓ that Bℓ(i, j) = 1 if an only if G has a path of length at most 2ℓ from i to j. For250

the base case of ℓ = 0, by construction, B0(i, j) = 1 if and only if either i = j (which we treat as a251

path of length 0) or Ai,j = 1 (i.e., there is a direct edge from i to j). Thus, Bℓ(i, j) = 1 if and only252

if there is a path of length at most 20 = 1 from i to j. Now suppose the claim holds for Bℓ(i, j). By253

construction, Cℓ+1(i, k, j) = 1 if and only if Bℓ(i, k) = Bℓ(k, j) = 1, which by induction means254

there are paths of length at most 2ℓ from i to k and from k to j, which in turn implies that there is255

a path of length at most 2 · 2ℓ = 2ℓ+1 from i to j (through k). Furthermore, note conversely that if256

there is a path of length at most 2ℓ+1 from i to j, then there must exist a “mid-point” k in this path257

such that there are paths of length at most 2ℓ from i to k and from k to j, i.e., Cℓ+1(i, k, j) = 1 for258

some k. This is precisely what the definition of Bℓ+1(i, j) captures: it is 1 if and only if there exists a259

k such that Cℓ+1(i, k, j) = 1, which, as argued above, holds if and only if there is a path of length at260

most 2ℓ+1 from i to j. This completes the inductive step.261

In the interest of space, we leave the details of how the transformer operationalizes the computation262

of predicates Bℓ and Cℓ to Appendix B.263

6

6 Growing Depth is More Efficient than Growing Width or CoT264

We now consider how increasing the depth compares to other methods of extending the computational265

resources that a transformer can perform. One natural question is how increasing depth compares266

to increasing width: it turns out that, whereas slightly increasing depth expands expressive power267

beyond TC0, doing the same by increasing width would require width to grow superpolynomially268

with sequence length, which is infeasible. Another natural comparison is between increasing depth269

and adding chain-of-thought (CoT) steps, as both are ways to expand the test-time compute avaiable270

to a pretrained model. Here, transformers with O(log n) layers are more powerful than transformers271

with O(log n) chain-of-thought steps, demonstrating a weakness of chain of thought compared to272

increasing transformer depth as a paradigm for test-time compute.273

6.1 Wide Transformers with Fixed Depth Remain in TC0
274

We have shown that growing the transformer’s depth minimally allows it to express key problems275

that are likely outside TC0. Does growing the width of the model have the same effect? We show276

that this is not the case: gaining power outside TC0 from growing width would require growing the277

width superpolynomially in n, as long as TC0 ̸= NC1 (proof in Appendix B).278

Theorem 3. Consider a transformer with fixed depth whose width (model dimension) grows as a279

polynomial of n and whose weights on input length n (to accomodate growing width) are computable280

in L. Then this transformer can be simulated in L-uniform TC0.281

6.2 Transformers with Log Chain-of-Thought Steps Remain in TC0
282

Merrill & Sabharwal (2024) analyze the power of transformers with O(log n) chain-of-thought steps,283

showing it is at most L. However, we have shown that transformers with O(log n) depth can solve284

directed graph connectivity, which is NL-complete: this suggests growing depth has some power285

beyond growing chain of thought unless L = NL. In fact, this can be extended to show transformers286

with O(log n) chain of thought cannot solve any problem outside TC0 (Anonymous, personal287

communication), demonstrating advantage of dynamic depth vs. chain of thought for expanding the288

test-time compute of a model (proof in Appendix B).289

Theorem 4 (Anonymous, p.c.). Any language recognized by a transformer with O(log n) steps of290

chain of thought (cf. Merrill & Sabharwal, 2024) is in TC0.291

7 Limitations of Log Depth292

We have shown that increasing transformer depth logarithmically with the input sequence length293

allows transformers to solve some problems they cannot solve with constant depth, under standard294

conjectures. Is logarithmic depth sufficient for transformers to solve any inherently sequential295

problem, or are there some problems that cannot be made solvable in this way?296

It turns out there are many problems that likely are not made expressible by log depth. We know that297

log-depth transformers can be simulated in TC1. Thus, log-depth (or even polylog depth, i.e., logk n)298

transformers cannot express P-complete problems including solving linear equalities, in-context299

context-free language recognition, etc., unless NC = P. Beyond this, it is an open question whether300

certain other problems can be expressed by log-depth transformers. Interesting candidates include301

context-free recognition (generalizing regular languages; Theorem 1), which is in NC2 (Ruzzo, 1981).302

An even simpler problem where we do not have a log-depth transformer construction (but which is303

in NC1) is boolean formula evaluation. In future work, it would be interesting to further study the304

depth required for these problems and identify separations between transformers with Θ(log n) and305

Θ(log2 n) depth, which we believe may correspond roughly to a boundary for what is efficient to306

train in practice.307

7

8 Conclusion308

We have shown that recognizing regular languages and graph connectivity, two key problems inex-309

pressible by fixed-depth transformers, become expressible if the depth of the transformer can grow310

very slightly (logarithmically) with the context length. Equivalently, this means that transformers311

with fixed depth d can solve these problems up to context length at least 2O(d). Thus, while these312

problems are not solvable in general by fixed-depth transformers, our results reveal that one only has313

to minimally scale depth to make them expressible up to some bounded context length. Further, we314

showed that scaling depth to solve these problems is more efficient than scaling width (which requires315

superpolynomial increase) or scaling chain-of-thought steps (which requires more than logarithmic316

increase). In future work, it would thus be interesting to explore whether universal transformers can317

realize this theoretical efficiency in practice to provide more efficient long-context reasoning than318

chain of thought prompting.319

References320

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL321

https://arxiv.org/abs/1607.06450.322

David A. Mix Barrington and Denis Thérien. Finite monoids and the fine structure of nc1. J.323

ACM, 35(4):941–952, oct 1988. ISSN 0004-5411. doi: 10.1145/48014.63138. URL https:324

//doi.org/10.1145/48014.63138.325

David Mix Barrington and Alexis Maciel. Lecture 5: The landscape of complexity classes, 2000.326

Lecture notes.327

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer328

encoders. In ICML, 2023.329

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal330

transformers. In International Conference on Learning Representations, 2019. URL https:331

//openreview.net/forum?id=HyzdRiR9Y7.332

W Daniel Hillis and Guy L Steele Jr. Data parallel algorithms. Communications of the ACM, 29(12):333

1170–1183, 1986.334

Neil Immerman. Descriptive complexity. Springer Science & Business Media, 1998.335

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers336

learn shortcuts to automata. In ICLR, 2023.337

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision338

transformers. TACL, 11, 2023a.339

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In NeurIPS,340

2023b.341

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.342

In ICLR, 2024.343

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth344

threshold circuits. TACL, 10:843–856, 2022.345

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models. In346

ICML, 2024.347

John Myhill. Finite automata and the representation of events. WADD Technical Report, 57:112–137,348

1957.349

Maxwell Nye, Anders Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber,350

David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Augustus351

Odena. Show your work: Scratchpads for intermediate computation with language models. arXiv,352

abs/2112.00114, 2021.353

8

https://arxiv.org/abs/1607.06450
https://doi.org/10.1145/48014.63138
https://doi.org/10.1145/48014.63138
https://doi.org/10.1145/48014.63138
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7

Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), September 2008. ISSN 0004-354

5411. doi: 10.1145/1391289.1391291. URL https://doi.org/10.1145/1391289.1391291.355

Walter L. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sciences, 22356

(3):365–383, 1981. ISSN 0022-0000. doi: https://doi.org/10.1016/0022-0000(81)90038-6. URL357

https://www.sciencedirect.com/science/article/pii/0022000081900386.358

Lena Strobl, Dana Angluin, David Chiang, Jonathan Rawski, and Ashish Sabharwal. Transformers359

as transducers, 2024. URL https://arxiv.org/abs/2404.02040.360

Denis Thérien. Classification of finite monoids: the language approach. Theoretical Computer Science,361

14(2):195–208, 1981. ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(81)90057-8. URL362

https://www.sciencedirect.com/science/article/pii/0304397581900578.363

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,364

Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language365

models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), NeurIPS,366

2022.367

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Huishuai Zhang, Yanyan Lan,368

Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architecture, 2020. URL369

https://openreview.net/forum?id=B1x8anVFPr.370

Liu Yang, Kangwook Lee, Robert D Nowak, and Dimitris Papailiopoulos. Looped transformers are371

better at learning learning algorithms. In ICLR, 2024.372

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In NeurIPS, 2019.373

A Building Blocks374

A.1 Residual Stream Storage Interface375

Our masked pre-norm transformer architecture always normalizes values when reading them from376

the residual stream. This means that it’s not always the case that what’s added to the residual stream377

by one layer is accessible as-is in future layers, which can be problematic if there is a need to “erase”378

that value. We discuss how values are stored and, if needed, erased from the stream.379

For any general scalar z, storing z in the residual stream results in sgn(z) being retrieved when380

masked pre-norm is applied to this cell. This will be useful when we want to collapse multiple values381

or perform equality or threshold checks. As a special case, when z ∈ {−1, 0, 1}, the retrieved value382

after masked pre-norm is precisely z. Thus scalars in {−1, 0, 1} can be stored and retrieved without383

any information loss.384

When a general scalar z needs to be preserved, we store it as a 4-dimensional vector. Let ψ(z) =385

⟨z, 1,−z,−1⟩ be its unnormalized representation and the corresponding 0-centered unit vector386

ϕ(z) = ψ(z)/
√
z2 + 1 be its normalized representation. We say that a scalar z is stored in the387

residual stream if some set of four indices contain either ψ(z) or ϕ(z). Note that a masked pre-norm388

applied to the positions containing ψ(z) or ϕ(z) yields ϕ(z). Thus, once a scalar z is stored in the389

residual stream in either form, it remains available in subsequent layers as ϕ(z). We will write “a390

transformer layer stores z” to mean it adds either ψ(z) or ϕ(z) to the residual stream, depending on391

which one it has immediate access to.392

Individual scalars stored in the residual stream can be trivially retrieved by masked pre-norm. In393

addition, the hashes of pairs of stored scalars can be easily retrieved as well:394

Lemma 2. Let ⟨x1, y1⟩, . . . , ⟨xk, yk⟩ be pairs of integers stored in the residual stream.395

There exists a masked pre-norm that computes ⟨ϕ(x1, y1), . . . , ϕ(xk, yk)⟩ or, equivalently,396

⟨ϕ(x1/y1), . . . , ϕ(xk/yk)⟩.397

Proof. We apply a masked pre-norm to the positions where x1, . . . , xk and y1, . . . , yk are stored:398

1√
2k
⟨ϕ(x1, y1), . . . , ϕ(xk, yk)⟩.

9

https://doi.org/10.1145/1391289.1391291
https://www.sciencedirect.com/science/article/pii/0022000081900386
https://arxiv.org/abs/2404.02040
https://www.sciencedirect.com/science/article/pii/0304397581900578
https://openreview.net/forum?id=B1x8anVFPr

We can hardcode the scalar multiplier of the layer-norm output to remove the scalar factor (or399

equivalently, bake it into the next linear transformation).400

In the repeated layers of a universal transformer, we will want need overwrite the value stored in a401

particular register of the residual stream with a new value. That is, given xℓ is stored at layer ℓ, we402

will want to store some new value xℓ+1 instead. In most cases, this will involve computing some403

intermediate values and then removing them from the residual stream. The following lemma turns404

out to be useful for constructions of this form:405

Lemma 3. Assume there exists a single transformer layer that writes an update δi to the residual406

stream hi using indices at which δi is 0. Then there are two transformer layers that write δi to the407

residual stream and then remove it, so that the intermediate steam contains hi + δi and the final408

stream is hi.409

Proof. Since the input to the layer that computes δi is preserved, we can simply repeat it twice and410

flip signs so that the second layer writes −δi. This guarantees that the residual stream after the first411

layer is hi + δi and the residual stream after the second layer is hi + δi − δi = hi.412

A.2 Computing Position Offsets413

It will be useful to show how a transformer can compute the position index of the previous token.414

Lemma 4. Assume a transformer stores 1[i = 0] and 1[i < k] in the residual stream. Then, with 1415

layer, it possible to add ϕ(i− k) in the residual stream at indices i ≥ k.416

Proof. We construct two attention heads. The first is uniform with value 1[j = 0], and thus computes417

1/i. The second is uniform with value 1[j ≥ k], and thus computes (i − k)/i. We then use a418

feedforward layer to compute ϕ((i− k)/i, 1/i) = ϕ(i− k) and store it in the residual stream.419

The precondition that we can identify the initial token (cf. Merrill & Sabharwal, 2024) is easy to420

meet with any natural representation of position, including 1/i or ϕ(i), as we can simply compare421

the position representation against some constant.422

We assume that the positional encodings used by the model allow detecting the initial token (Merrill423

& Sabharwal, 2024). One way to enable this would simply be to add a beginning-of-sequence token,424

although most position embeddings should also enable it directly.425

A.3 Equality Checks426

We show how to perform an equality check between two scalars and store the output as a boolean.427

Lemma 5. Given two scalars x, y computable by attention heads or stored in the residual stream, we428

can use a single transformer layer to write 1[x = y] in the residual stream. Furthermore, a second429

layer can be used to clear all intermediate values.430

Proof. After computing x, y in a self-attention layer, we write x − y to a temporary cell in the431

residual stream. The feedforward sublayer reads σ1 = sgn(x− y), computes z = 1− ReLU(σ1)−432

ReLU(−σ1), and writes z to the residual stream.433

The next transformer layer then recomputes y− x and adds it to the intermediate memory cell, which434

sets it back to 0. Thus, the output is correct and intermediate memory is cleared.435

B Proofs436

B.1 Proof of Lemma 1437

Proof of Lemma 1. The overall idea is as follows. In the first layer, each position i outputs an438

indicator of whether it’s a multiple of m. It also adds ϕ(j) to the residual stream such that j is439

the quotient i/m if i is a multiple of m. In the second layer, each position i attends to the nearest440

position j ≤ i that is a multiple of m and retrieves the (normalized) quotient stored there, which is441

j/m = ⌊i/m⌋. It adds this (normalized) quotient in its own residual stream. We then use Lemma 4442

10

to construct a third layer that adds ϕ(i− 1) and ϕ(i− 2) to the residual stream. A fourth layer checks443

in parallel whether the quotient stored at i matches the quotients stored at i− 1 and i− 2, respectively.444

In the fifth layer, position i counts the number of positions storing the same quotient as i, excluding445

the first such position. Finally, in the sixth layer, position i attends to position ai to compute and add446

to the residual stream ϕ(⌊ai/m⌋) (which is ϕ(bi)) and ϕ(ai −m⌊ai/m⌋) (which is ϕ(ci)). We next447

describe a detailed implementation of the construction, followed by an argument of its correctness.448

Construction. The first layer uses an attention head with queries, keys, and values computed as449

follows. The query at position i is qi = ϕ(i,m) = ϕ(i/m) computed via Lemma 2 leveraging the450

assumption that ψ(i) and ψ(m) are present in the residual stream. The key and value at position j are451

kj = vj = ϕ(j). Let h1i = ϕ(j) denote the head’s output. The layer adds h1i to the residual stream452

and also adds ei = I(h1i = ϕ(i/m)) using Lemma 5 (scalar equality check) on the first coordinate of453

h1i and ϕ(i/m). As we will argue below, this layer has the intended behavior: ei = 1 if and only if i454

is a multiple of m and, if ei = 1, then the value it stores in the residual stream via h1i is precisely the455

(normalized) quotient i/m.4456

The second layer uses a head that attends with query qi = ⟨1, 1⟩, key kj = ⟨ej , [ϕ(j)]0⟩, and value457

vj = h1j ; note that both ej and h1j can be read from the residual stream using masked pre-norm. This458

head attends to all positions j ≤ i that are multiples of m (where ej = 1), with [ϕ(j)]0, the first459

component of ϕ(j), serving as a tie-breaking term for breaking ties in favor of the nearest multiple of460

m. Let h2i = h1j denote the head’s output. The layer adds h2i to the residual stream at position i. As461

we will argue below, h2i = ϕ(j/m) where j/m is precisely the quotient stored in the residual stream462

at the multiple j of m that is closest to (and no larger than) i, which by definition is ⌊i/m⌋. The layer463

thus adds ϕ(⌊i/m⌋) to the residual stream at position i.464

The third layer uses Lemma 4 to add ϕ(i− 1) and ϕ(i− 2) to the residual stream at i.465

In parallel for k ∈ {1, 2}, the fourth layer attends with query qi = ϕ(i − k), key kj = ϕ(j), and466

value vj = ϕ(⌊j/m⌋) to retrieve the quotient stored at position i − k. It uses Lemma 5 (on the467

first coordinate) to store in the residual stream a boolean bki = I(ϕ(⌊i/m⌋) = ϕ(⌊(i − k)/m⌋)),468

indicating whether the quotient stored at i matches the quotient stored at i− k.469

In the fifth layer, position i attends with query qi = ⟨ϕ(⌊i/m⌋), 1⟩, key kj = ⟨ϕ(⌊j/m⌋), b1j ⟩, and470

value vj = 1− b2j ; note that bki can be retrieved from the residual stream. This head thus attends to471

every position with the same quotient as the current token besides the initial such position, with value472

1 at the second such token and 0 elsewhere. Assuming m does not divide i, this head will attend to473

precisely i−m⌊i/m⌋ positions and return fi = 1/(i−m⌊i/m⌋) as the head output. The layer adds474

the vector ψ(1, fi) defined as ⟨1, fi,−1,−fi⟩ to the residual stream at position i. This, when read in475

the next layer using masked pre-norm, will yield ϕ(1, fi) = ϕ(1/fi). On the other hand, if m does476

divide i (which can be checked with a separate, parallel head), we write ψ(0) to the residual stream,477

which, when read by the next layer, will yield ϕ(0).478

The sixth layer attends with query qi = ϕ(ai), key kj = ϕ(j), and value vj = ⟨h2j , ϕ(1/fj)⟩. Recall479

that ϕ(1/fj) can be read from the residual stream as discussed above. Further, the layer can recompute480

fj (or 0 in case m divides i) and write −ψ(1, fj) (or −ψ(0), respectively) to the same coordinates,481

thereby resetting those cells to 0. Since ai ≤ i, the query matches exactly one position j = ai, and482

the head retrieves ⟨h2ai
, 1/ϕ(1/fai

)⟩. This, by construction, is ⟨ϕ(⌊ai/m⌋), ϕ(i−m⌊ai/m⌋)⟩, which483

equals ⟨ϕ(bi), ϕ(ci)⟩. The layer can thus store ϕ(bi) and ϕ(ci) to the residual stream at position i, as484

desired.485

The seventh and final layer cleans up any remaining intermediate values stored in the residual stream,486

setting them back to 0 as per Lemma 5. This is possible because all values v are of the form ϕ(x) or487

boolean, so adding −ϕ(v) will reset the cell to 0.488

Correctness. We now argue that each layer, as constructed above, conforms to its intended behavior.489

In the first layer, suppose first that i is a multiple of m. In this case, there exists a position j∗ ≤ i490

such that i = mj∗, which means the query qi = ϕ(i/m) = ϕ(j∗) exactly matches the key kj∗ . The491

head will thus return vj∗ = ϕ(j∗) = ϕ(i/m), representing precisely the quotient i/m. Further, the492

equality check will pass, making ei = 1. The layer thus behaves as intended when i is a multiple of493

4As described in Lemma 5, a component will be added to the second layer to reset intermediate memory
cells used in the first layer to 0 (this will happen analogously in later layers, but we will omit mentioning it).

11

m. On the other hand, when i is not a multiple of m, no such j∗ exists. The head will instead attend494

to some j for which i ̸= mj and therefore ϕ(i/m) ̸= ϕ(j), making the subsequent equality check495

fail and setting ei = 0, as intended.496

In the second layer, qi · kj = ej − [ϕ(j)]0 where [ϕ(j)]0 = j/
√
2j2 + 2 is the first coordinate of497

ϕ(j). Note that [ϕ(j)]0 ∈ [0, 1) for positions j ≤ i and that it is monotonically increasing in j. It498

follows that the dot product is maximized at the largest j ≤ i such that ej = 1, i.e., at the largest499

j ≤ i that is a multiple of m. This j has the property that ⌊i/m⌋ = j/m. Thus, the head at this layer500

attends solely to this j and retrieves the value ϕ(j/m) = ϕ(⌊i/m⌋) as intended.501

The correctness of the third and fourth layer is easy to verify.502

In the fifth layer, qi ·kj ≤ 2 and the dot product achieves this upper limit exactly when two conditions503

hold: b1j = 1 and ⌊i/m⌋ = ⌊j/m⌋. Thus, as desired, the head at i attends to all positions j ≤ i that504

have the same quotient as i and also have b1j = 1. Write i as i = b′m+ c′ for some c′ < m. It follows505

that the query-key dot product is maximized precisely at the c′ positions b′m+1, b′m+2, . . . , b′m+c′.506

Of these positions, only b′m+1 has the property that the quotient there is not the same as the quotient507

two position earlier, as captured by the value vj = 1 − b2j . Thus, the value vj is 1 among these508

positions only at j = b′m+ 1, and 0 elsewhere. The head thus attends uniformly at c′ positions and509

retrieves 1/c′. By construction, c′ = i− b′m = i− ⌊i/m⌋m, showing that this layer also behaves as510

intended.511

Finally, that the sixth and seventh layers operate as desired is easy to see from the construction.512

B.2 Proof of Theorem 2513

Proof of Theorem 2. We will prove this for directed graphs, as an undirected edge between two514

vertices can be equivalently represented as two directed edges between those vertices. Let G be a515

directed graph over n vertices. Let A ∈ {0, 1}n×n be G’s adjacency matrix: for i, j ∈ {1, . . . , n},516

Ai,j is 1 if G has an edge from i to j, and 0 otherwise.517

The idea is to use the first n2 tokens of the transformer to construct binary predicates Bℓ(i, j) for518

ℓ ∈ {0, 1, . . . , ⌈log n⌉} capturing whether G has a path of length at most 2ℓ from i to j. To this519

end, the transformer will use the n3 padding tokens to also construct intermediate ternary predicates520

Cℓ(i, k, j) for ℓ ∈ {1, . . . , ⌈log n⌉} capturing whether G has paths of length at most 2ℓ−1 from i to521

k and from k to j. These two series of predicates are computed from each other iteratively:522

B0(i, j) ⇐⇒ A(i, j) ∨ i = j (4)
Cℓ+1(i, k, j) ⇐⇒ Bℓ(i, k) ∧Bℓ(k, j) (5)
Bℓ+1(i, j) ⇐⇒ ∃k s.t. Cℓ+1(i, k, j) (6)

We first argue that B⌈logn⌉(i, j) = 1 if and only if G has a path from i to j. Clearly, there is such523

a path if and only if there is a “simple path” of length at most n from i to j. To this end, we argue524

by induction over ℓ that Bℓ(i, j) = 1 if an only if G has a path of length at most 2ℓ from i to j. For525

the base case of ℓ = 0, by construction, B0(i, j) = 1 if and only if either i = j (which we treat as a526

path of length 0) or Ai,j = 1 (i.e., there is a direct edge from i to j). Thus, Bℓ(i, j) = 1 if and only527

if there is a path of length at most 20 = 1 from i to j. Now suppose the claim holds for Bℓ(i, j). By528

construction, Cℓ+1(i, k, j) = 1 if and only if Bℓ(i, k) = Bℓ(k, j) = 1, which by induction means529

there are paths of length at most 2ℓ from i to k and from k to j, which in turn implies that there is530

a path of length at most 2 · 2ℓ = 2ℓ+1 from i to j (through k). Furthermore, note conversely that if531

there is a path of length at most 2ℓ+1 from i to j, then there must exist a “mid-point” k in this path532

such that there are paths of length at most 2ℓ from i to k and from k to j, i.e., Cℓ+1(i, k, j) = 1 for533

some k. This is precisely what the definition of Bℓ+1(i, j) captures: it is 1 if and only if there exists a534

k such that Cℓ+1(i, k, j) = 1, which, as argued above, holds if and only if there is a path of length at535

most 2ℓ+1 from i to j. This completes the inductive step.536

We next describe how the transformer operationalizes the computation of predicates Bℓ and Cℓ. The537

input to the transformer is the adjacency matrix A represented using n2 tokens from {0, 1}, followed538

by n3 padding tokens □, and finally the source and target nodes s, t ∈ {1, . . . , n} represented in539

12

unary notation using special tokens a and b:540

A1,1 . . . A1,n A2,1 . . . A2,n An,1 . . . An,n □□︸ ︷︷ ︸
n3

a a︸ ︷︷ ︸
s

b b︸ ︷︷ ︸
t

Let N = n2 + n3 + s+ t, the length of the input to the transformer. The first n2 token positions will541

be used to compute predicates Bℓ, while the next n3 token positions will be used for predicates Cℓ.542

Initial Layers. The transformer starts off by using layer 1 to store 1/N, n, n2, s, and t in the543

residual stream at every position, as follows. The layer uses one head with uniform attention and with544

value 1 only at the first token (recall that the position embedding is assumed to separate 1 from other545

positions). This head computes 1/N and the layer adds ψ(1/N) to the residual stream. Note that the546

input tokens in the first set of n2 positions, namely 0 and 1, are distinct from tokens in the rest of547

the input. The layer, at every position, uses a second head with uniform attention, and with value 1548

at tokens in {0, 1} and value 0 at all other tokens. This head computes n2/N . The layer now adds549

ψ(n2/N, 1/N), where ψ(a, b) is defined as the (unnormalized) vector ⟨a, b,−a,−b⟩. When these550

coordinates are later read from the residual stream via masked pre-norm, they will get normalized and551

one would obtain ϕ(n2/N, 1/N) = ϕ(n2). Thus, future layers will have access to ϕ(n2) through552

the residual stream. The layer similarly uses three additional heads to compute n3/N , s/N , and553

t/N . From the latter two values, it computes ψ(s/N, 1/N) and ψ(t/N, 1/N) and adds them to the554

residual stream; as discussed above, these can be read in future layers as ϕ(s/N, 1/N) = ϕ(s) and555

ϕ(t/N, 1/N) = ϕ(t). Finally, the layer computes ψ(n3/N, n2/N) and adds it to the residual stream.556

Again, this will be available to future layers as ϕ(n3/N, n2/N) = ϕ(n).557

The transformer uses the next 15 layers to compute and store in the residual stream the semantic558

“coordinates” of each of the first n2 + n3 token position as follows. For each of the first n2 positions559

p = in + j with 1 ≤ p ≤ n2, it uses Lemma 1 (7 layers) with ai set to p and m set n in order to560

add ϕ(i) and ϕ(j) to the residual stream at position p. In parallel, for each of the next n3 positions561

p = n2 + (in2 + kn+ j) with n2 + 1 ≤ p ≤ n2 + n3, it uses Lemma 1 with ai set to p and m set562

n in order to add ϕ((i+ 1)n+ k) and ϕ(j) to the residual stream. It then uses the lemma again (7563

more layers), this time with ai set to (i+ 1)n+ k and m again set to n, to add ϕ(i+ 1) and ϕ(k) to564

the residual stream. Lastly, it uses Lemma 4 applied to ϕ(i+ 1) to add ϕ(i) to the residual stream.565

Layer 17 of the transformer computes the predicate B0(i, j) at the first n2 token positions as follows.566

At position p = in + j, it uses Lemma 5 to compute I(ϕ(A(i, j) = ϕ(1)) and I(ϕ(i) = ϕ(j));567

note that ϕ(A(i, j)), ϕ(i), and ϕ(j) are available in the residual stream at position p. It then uses a568

feedforward layer to output 1 if both of these are 1, and output 0 otherwise. This is precisely the569

intended value of B0(i, j). The sublayer then adds B0(i, j) to the residual stream. The layer also570

adds to the residual stream the value 1, which will be used to initialize the boolean that controls layer571

alternation in the repeated layers as discussed next.572

Repeating Layers. The next set of layers alternates between computing theCℓ and theBℓ predicates573

for ℓ ∈ {1, . . . , ⌈log n⌉}. To implement this, each position i at layer updates in the residual stream574

the value of a single boolean r computed as follows. r is initially set to 1 at layer 8. Each repeating575

layer retrieves r from the residual stream and adds 1− r to the same coordinate in the residual stream.576

The net effect is that the value of r alternates between 1 and 0 at the repeating layers. The transformer577

uses this to alternate between the computation of the Cℓ and the Bℓ predicates.578

For ℓ ∈ {1, . . . , ⌈log n⌉}, layer (2ℓ− 1) + 8 of the transformer computes the predicate Cℓ(i, k, j) at579

the set of n3 (padding) positions p = n2+ in2+kn+ j, as follows. It uses two heads, one with query580

⟨ϕ(i), ϕ(k)⟩ and the other with query ⟨ϕ(k), ϕ(j)⟩. The keys in the first n2 positions q = i′n + j′581

are set to ⟨ϕ(i′), ϕ(j′)⟩, and the values are set to Bℓ−1(i
′, j′). The two heads thus attend solely to582

positions with coordinates (i, k) and (k, j), respectively, and retrieve boolean values Bℓ−1(i, k) and583

Bℓ−1(k, j), respectively, stored there in the previous layer. The layer then uses Lemma 5 to compute584

I(Bℓ−1(i, k) = 1) and I(Bℓ−1(k, j) = 1), and uses a feedforward layer to output 1 if both of these585

checks pass, and output 0 otherwise. This is precisely the intended value of Cℓ(i, k, j). If ℓ > 1, the586

layer replaces the value Cℓ−1(i, k, j) stored previously in the residual stream with the new boolean587

value Cℓ(i, k, j) by adding Cℓ(i, k, j)− Cℓ−1(i, k, j) to the same coordinates of the residual stream.588

If ℓ = 1, it simply adds Cℓ(i, k, j) to the residual stream.589

13

For ℓ ∈ {1, . . . , ⌈log n⌉}, layer 2ℓ+ 8 computes the predicate Bℓ(i, j) at the first n2 position590

p = in + j, as follows. It uses a head with query ⟨ϕ(i), ϕ(j)⟩. The keys in the second set of n3591

positions q = n2 + i′n2 + k′n+ j′ are set to ⟨ϕ(i′), ϕ(j′)⟩ (recall that ϕ(i′) and ϕ(j′) are available592

in the residual stream at q) and the corresponding values are set to the boolean Cℓ(i
′, k′, j′), stored593

previously in the residual stream. The head thus attends uniformly to the n padding positions that have594

coordinates (i, k′, j) for various choices of k′. It computes the average of their values, which equals595

h = 1
n

∑n
k′=1 Cℓ(i, k

′, j) as well as 1/(2n) using an additional head. We observe that h ≥ 1/n596

if there exists a k′ such that Cℓ(i, k
′, j) = 1, and h = 0 otherwise. These conditions correspond597

precisely to Bℓ(i, j) being 1 and 0, respectively. We compute h− 1/(2n) and store it in the residual598

stream. Similar to the proof of Lemma 5, the feedforward layer reads σ = sgn(h−1/(2n)), computes599

z = (1 + ReLU(σ))/2, and writes z to the residual stream. The value z is precisely the desired600

Bℓ(i, j) as σ is 1 when h ≥ 1/n and 0 when h = 0. As in Lemma 5, the intermediate value601

h− 1/(2n) written to the residual stream can be recomputed and reset in the next layer. As before,602

the transformer replaces the value Bℓ−1(i, j) stored previously in the residual stream with the newly603

computed value Bℓ(i, j) by adding ψ(Bℓ(i, j)−Bℓ−1(i, j)) to the stream at the same coordinates.604

Final Layers. Finally, in layer 2⌈log n⌉+ 18, the final token uses a head that attends with query605

⟨ϕ(s), ϕ(t)⟩ corresponding to the source and target nodes s and t mentioned in the input; recall that606

ϕ(s) and ϕ(t) are available in the residual stream. The keys in the first n2 positions p = in + j607

are, as before, set to ⟨ϕ(i), ϕ(j)⟩, and the values are set to B⌈logn⌉(i, j) retrieved from the residual608

stream. The head thus attends solely to the position with coordinates (s, t), and retrieves and outputs609

the value B⌈logn⌉(s, t). This value, as argued earlier, is 1 if and only if G has a path from s to t.610

B.3 Proofs of Theorems 3 and 4611

Proof of Theorem 3. By assumption, we can construct an L-uniform TC0 circuit family in which612

the transformer weights for sequence length n are hardcoded as constants. Next, we can apply613

standard arguments (Merrill et al., 2022; Merrill & Sabharwal, 2023a,b) to show that the self-attention614

and feedforward sublayers can both be simulated by constant-depth threshold circuits, and the size615

remains polynomial (though a larger polynomial). Thus, any function computable by a constant-depth,616

polynomial-width transformer is in L-uniform TC0.617

Proof of Theorem 4. The high-level idea is that a polynomial-size circuit can enumerate all possible618

O(log n)-length chains of thought. Then, in parallel for each chain of thought, we construct a619

threshold circuit that simulates a transformer (Merrill & Sabharwal, 2023a) on the input concatenated620

with the chain of thought, outputting the transformer’s next token. We then select the chain of thought621

in which all simulated outputs match the correct next token and output its final answer. The overall622

circuit has constant depth, polynomial size, and can be shown to be L-uniform. Thus, any function623

computable by a transformer with O(log n) chain of thought is in TC0.624

14

	Introduction
	Preliminaries: Universal Transformers
	Transformer Sublayers
	Memory Management in Universal Transformers

	Fixed Depth Transformers Can Divide Small Integers
	Log Depth Enables Recognizing Regular Languages
	Log Depth Enables Graph Connectivity
	Growing Depth is More Efficient than Growing Width or CoT
	Wide Transformers with Fixed Depth Remain in TC0
	Transformers with Log Chain-of-Thought Steps Remain in TC0

	Limitations of Log Depth
	Conclusion
	Building Blocks
	Residual Stream Storage Interface
	Computing Position Offsets
	Equality Checks

	Proofs
	Proof of lem:modular-counting
	Proof of thm:graph-connectivity
	Proofs of thm:polyn-width,thm:cot-tc0

