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Abstract

There has been limited success for dense re-
trieval models in multilingual retrieval, due
to uneven and scarce training data available
across multiple languages. Synthetic training
data generation is promising (e.g., InPars or
Promptagator), but has been investigated only
for English. Therefore, to study model capa-
bilities across both cross-lingual and monolin-
gual retrieval tasks, we develop JUMP-IR,! a
synthetic retrieval training dataset containing
33 (high to very-low resource) languages for
fine-tuning multilingual dense retrievers with-
out requiring any human supervision. To con-
struct JUMP-IR, we propose SAP (summarize-
then-ask prompting), where the large language
model (LLM) generates a textual summary
prior to the query generation step. SAP
assists the LLM in generating informative
queries in the target language. Using JUMP-
IR, we explore synthetic fine-tuning of mul-
tilingual dense retrieval models and evaluate
them robustly on three retrieval benchmarks:
XOR-Retrieve (cross-lingual), XTREME-UP
(cross-lingual) and MIRACL (monolingual).
Our models, called JUMP-X, are competitive
with human-supervised dense retrieval mod-
els, e.g., mContriever, finding that JUMP-IR
can cheaply substitute for expensive human-
labeled retrieval training data.”

1 Introduction

Dense retrieval models have demonstrated impres-
sive performance in ad-hoc information retrieval
(IR) tasks, e.g., web search, outperforming tradi-
tional retrieval systems such as BM25 (Karpukhin
et al., 2020; Lin et al., 2021; Ni et al., 2022; Nee-
lakantan et al., 2022, inter alia). A major rea-
son for success lies in the availability of large-
scale supervised training datasets in English, such

! Acronym blinded for review.
2Qur dataset will be available in the supplementary material.

Dataset Q Gen. Cross. Mono. #L Domain # Train
NeuCLIR  Human EN—L L—L 3 News (hc4) X
MKQA Human L—EN X 26 Wikipedia 10K

mMARCO Translate X L—-L 13 MS MARCO 533K

Mr.TyDI Human X L-L 11 Wikipedia 49K
MIRACL  Human X L-L 18 Wikipedia 726K
JH-POLO GPT-3 EN—L X 3 News (hc4) 78K
JUMP-IR PaLM2 L—EN L-L 33 Wikipedia 28M

Table 1: Existing datasets only contain up to a few
thousand training pairs, as scaling human annotations
is both expensive and cumbersome. In our work, we
construct JUMP-IR, a “synthetic” multilingual dataset
with 28 million PaLLM 2-generated training pairs across
33 languages; (Q Gen.) denotes the query generation
task; (Cross. and Mono.) denotes the retrieval task and
(query—document) language pair; (# L and # Train) de-
notes the language count and available training pairs.

as MS MARCO (Nguyen et al., 2016) or NQ
(Kwiatkowski et al., 2019), and coupled with ef-
fective training strategies, such as custom hard-
negative mining (Xiong et al., 2021; Lin et al.,
2023), or teacher distillation (Hofstétter et al.,
2021; Ren et al., 2021).

However, there is a limited exploration of dense
retrieval models in multilingual retrieval,® due to
uneven and low distribution of human-supervised
training data for other languages apart from En-
glish (Reimers and Gurevych, 2020; Ruder, 2022;
Feng et al., 2022; Wieting et al., 2023). Collecting
human annotations for training data generation is
not scalable, as it is cumbersome to search and hire
native speakers, check their language proficiency,
and teach them. Additionally, human annotators
are expensive, thereby requiring a large annotation
budget for generating a sufficient amount of train-
ing pairs (cf. Figure 5).

Multilingual query generation is a complex task
(Wang et al., 2021). It requires understanding
of semantic mappings of words across languages,
3Throughout the paper, we use “multilingual retrieval” to col-

lectively denote both cross-language, i.e., cross-lingual and
within language, i.e., monolingual retrieval tasks.



f
[
[

With about 850,000 residents, the Comoros is one

of the least-populous countries in the world, but its
population density is high, with an average of 275 S
inhabitants per square kilometre (710/sq mi). In 2001,
34% of the population was considered urban, but
the urban population has since grown; in recent years
rural population growth has been negative, while

overall population growth is still relatively high. =
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Figure 1: An illustration of SAP (Summarize-then-Ask Prompting) versus standard prompting for English query
generation on English Wikipedia. SAP assists the large language model (LLM) in improving multilingual query
generation (orange box) by identifying the relevant sections of the input passage (highlighted in red) using extrac-
tive summarization (yellow box) as an intermediate reasoning step.

similar to machine translation (Forcada, 2002; Tan
et al.,, 2019; Zhu et al., 2023). Recently, using
a Large Language Model (LLM) for query gen-
eration has been popular in English (Bonifacio
et al., 2022; Dai et al., 2023). But as illustrated
in Figure 1, standard prompt templates can lead
the LLM to generate either extractive or uninfor-
mative* queries across multiple languages.

To improve the quality of the generated query,
we propose SAP (Summarize-then-Ask Prompt-
ing), where we prompt the LLM to break down
the query generation in two stages: (i) summary
extraction, which identifies the relevant informa-
tion from the long input passage and extracts the
best representative sentences as the summary, and
(i1) query generation, which generates a multilin-
gual query relevant for the input passage, using the
extracted summary (first stage) as the intermedi-
ate step. SAP highlights the relevant information
within the passage and produces difficult (i.e., in-
formative) queries in the target language.

In our work, we utilize PaLM 2 (Anil et al.,
2023) for multilingual query generation. The
generated query paired with the original passage
from Wikipedia is used to construct the JUMP-
IR dataset. JUMP-IR spans 33 diverse languages,
including both high and very-low resource-level
languages. JUMP-IR provides synthetic training
pairs for improving dense retrieval models without
requiring any human supervision. JUMP-IR is one
of largest multilingual synthetic training dataset
with 28 million training pairs (cf. Table 1).

We develop synthetic multilingual (both mono-
lingual and cross-lingual) dense retrieval models
called JUMP-X, using mT5 (base) (Xue et al.,
2021) as bacbone and fine-tuning on JUMP-IR.
We compare JUMP-X with models fine-tuned with

*Uninformative denotes a query that can be easily answered
using the first (or last) few words in the passage.

human supervision by changing only the training
dataset while keeping other, i.e., both model pa-
rameters and training settings unchanged. We
evaluate on three standard multilingual retrieval
benchmarks (two cross-lingual and one monolin-
gual). On XOR-Retrieve (Asai et al.,, 2021a),
JUMP-X outperforms the best-supervised baseline
(mContriever-X) by 7.1 points at Recall@5kt. On
MIRACL (Zhang et al., 2023b), a monolingual re-
trieval benchmark, JUMP-X is inferior to the best-
supervised baseline (mContriever) by 9.0 points at
nDCG @10, which shows room for future improve-
ment. On XTREME-UP (Ruder et al., 2023), a
challenging benchmark containing 20 underrepre-
sented Indo-European languages, JUMP-X outper-
forms the best-supervised baseline (mContriever-
X) by 11.7 points at MRR @ 10.

2  JUMP-IR Dataset Overview

In our dataset overview, we describe the SAP de-
sign formulation for multilingual query generation
(§2.1), data construction details (§2.2), and statis-
tics and analysis (§2.3).

2.1 SAP Design Formulation

Multilingual query generation is not a trivial task
as it requires a deep understanding of the passage
content and its own translations across different
languages (Wang et al., 2021). Passages can of-
ten be lengthy and contain information on multi-
ple topics. Using the entire passage can potentially
hallucinate models by generating non-meaningful
queries, which affects the retrieval performance
(Gospodinov et al., 2023).

To break down the task complexity of multilin-
gual query generation and improve multilingual
question quality, we implement summarize-then-
ask prompting (SAP). As shown above in Figure 1,
we identify the relevant information within a pas-
sage by asking the LLM to generate an extractive
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Figure 2: An illustration of cross-lingual JUMP-IR dataset construction procedure. (1) Sample N passages from
English Wikipedia using stratified sampling for each target language out of a total of L languages; (2) Feed a
single input passage along with few-shot exemplars to the LLM with SAP (summarize-then-ask prompting); (3
& 4) Parse the LLM output to receive the synthetic query in target language (above in Bengali); (5) Fine-tune a
multilingual dense retriever model (JUMP-X) with training data combined for all languages, i.e., N X L pairs.

summary and use it as an intermediate step for gen-
erating informative queries. The procedure is de-
scribed in more detail below:

(i) Summary extraction. The LLM constructs
an extractive summary e; of the input passage
ps, wWhere s denotes the source language. The
summary captures the most relevant information
within the passage ps (which occasionally may be
long) acting as an useful intermediate signal for
the LLM to generate a multilingual query in the
later stage. We denote the first stage as e; =
LLM(ps;6',--- ,0F), where (81, - - - , 0%) denotes
the k few-shot prompt exemplars® containing the
passage, summary in the source language s and the
query in the target language ¢.°

(ii) Query Generation. Next, the LLM combines
the summary e, generated previously, with the
original input passage ps, highlighting the relevant
information required for composing the query (g:)
in the target language t. We denote this stage as
q: = LLM(es, ps:0',--- ,0F), where extractive
summary eg, input passage ps and k-shot exem-
plars all appear from the first stage.

2.2 JUMP-IR Dataset Construction

For constructing JUMP-IR, we only require an
unlabeled corpus of passages and generate multi-
lingual training pairs. An overview of the cross-
lingual generation procedure is shown in Figure 2.
Prompt examples are shown in Appendix (§C.3).

Cross-lingual. The goal is to generate a query
in the target language ¢ using the input passage
in English (source language s). We use a strat-
ified sampling algorithm (for more details, refer

*Multilingual query generation requires few-shot prompt ex-
emplars. As our experiments show in (§4), zero-shot prompt-
ing often generates unparseable outputs with PaLM 2.

°In our work, we did not use abstractive summarization,
as LLMs have notoriously been shown to hallucinate and
generate factual inconsistencies in their output generations
(Maynez et al., 2020; Liu et al., 2023).

to §F.4 in Appendix) to sample a maximum of
one million passages for each target language ¢
from the English Wikipedia corpus used in XOR-
Retrieve (Clark et al., 2020; Asai et al., 2021a) or
XTREME-UP (Ruder et al., 2023). Next, we con-
struct five prompt exemplars in English, where we
generate both the exemplar summaries and queries
in English. Further, we use Google Translate’ to
translate the exemplar queries to other languages.
Finally, we construct the prompt, where we ex-
plain our query generation task as an instruction,
include the target language, and the 5-shot exem-
plars as an input to the LLM with SAP.

Monolingual. The goal is to generate a query in
the same language as the input passage (s = t).
We follow the setting similar to the cross-lingual
task. We first sample one million passages (if
available) for each language-specific Wikipedia
corpus in MIRACL (Zhang et al., 2023b).8 Next,
we carefully select three training pairs as our
prompt exemplars.” For languages with no train-
ing split, we manually construct our prompt exem-
plars. Further, we use Google Bard.! to gener-
ate exemplar summaries in the target language. Fi-
nally, we construct the prompt, where we explain
our query generation task, include the language,
and the 3-shot exemplars with SAP.

2.3 Dataset Statistics and Human Validation

JUMP-IR synthetic training dataset spans 33 di-
verse languages, including both cross- and mono-
lingual query-passage pairs. All queries in JUMP-
IR are synthetic and LLM-generated using PaLM
2 (Anil et al., 2023) with small size (S). Detailed
statistics can be found in the Appendix.

"Google Translate: translate.google.com

8For 16 / 18 languages, MIRACL contains a training split
except for German (de) and Yoruba (yo).

°As language-specific passages consume more tokens, e.g.,
Telugu, to save computational budget, we rely only on 3-
shot exemplars (instead of 5) for the monolingual task.
Google Bard: bard.google.com
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Model PLM PT

Finetune Recall @5kt
(Datasets) Avg.| Ar Bn Fi Ja Ko Ru Te

Existing Supervised Baselines (Prior work)

Dr. DECR (Li et al., 2022) XLM-R WikiM NQ + XOR* 73.1170.2 859 69.4 65.1 68.8 68.8 832
mDPR (Asai et al., 2021a) mBERT — XOR 5021489 60.2 59.2 349 498 43.0 555
mBERT + xQG (Zhuang et al., 2023) mBERT — XOR 535|424 549 54.1 33.6 523 33.8 525
Google MT + DPR (Asai et al., 2021a) BERT — NQ 69.6 | 69.6 822 62.4 64.7 68.8 60.8 79.0
OPUS MT + DPR (Asai et al., 2021a) ~ BERT — NQ 50.6 | 524 62.8 61.8 48.1 58.6 37.8 324

Zero-shot baselines (English-only supervision)

mContriever mT5 mC4 — 3891359 339 43.6 34 351 451 445
mDPR (En) mT5 — MS MARCO 39.3 1343 355 452 402 365 439 395
mContriever (En) mT5 mC4 MS MARCO 44.0 | 37.5 38.2 50.6 41.1 37.2 49.8 53.8
Supervised Baselines (Cross-lingual supervision)

mDPR-X mT5 — XOR 53.6 |51.5 63.5 525 456 523 43.0 66.8
mContriever-X mT5 mC4 XOR 5531521 68.1 545 47.7 50.5 502 64.3
mDPR-X mT5 —  MSMARCO+XOR 582|553 70.1 56.7 49.8 55.8 50.6 69.3
mContriever-X mT5 mC4 MSMARCO+XOR 59.6 |54.7 734 57.0 53.1 56.5 51.5 71.0

Synthetic Baselines (Our work)

JUMP-X (500K) mT5 — JUMP-IR 59.0 | 54.0 67.4 59.2 527 55.1 54.4 70.2
JUMP-X (500K) mT5 mC4 JUMP-IR 63.0 |57.0 71.1 61.8 56.8 60.7 63.3 70.2
JUMP-X (TM) mT5 — JUMP-IR 65.1 579 75.0 65.6 593 589 646 744
JUMP-X (TM) mT5 mC4 JUMP-IR 66.7 |61.2 77.0 65.0 622 62.8 654 73.5

Table 2: Experimental results showing Recall@5kt for cross-lingual retrieval on XOR-Retrieve dev (Asai et al.,
2021a); (PLM) denotes the pretrained language model; (PT) denotes the pretraining dataset; (*) Dr.DECR is fine-
tuned in a complex training setup across more datasets (§3.3); WikiM denotes WikiMatrix (Schwenk et al., 2021);
XOR denotes XOR-Retrieve; JUMP-X (ours) is fine-tuned on 500K and 7M synthetic data.

Human validation. We conduct an validation
study to evaluate the quality of generated queries
in JUMP-IR for a subset of the languages.!! We
evaluate each query across a three-level rating
scale measuring fluency, adequacy and language.
From Appendix (Table 6), the generated query
quality in English is found best. Around 86% of
the generated queries are adequate and 88% are
fluent (ratings 1 and 2) across five evaluated lan-
guages. For more details including results, refer to
Appendix (§D).

Content Filtering. LLMs are shown to gener-
ate undesirable content, particularly under condi-
tions that prime the model with material targeted at
drawing out any negative patterns or associations
in the training data (Gehman et al., 2020; Bender
et al., 2021). We filter out training pairs in JUMP-
IR with content classification of either /Adult or
any of the /Sensitive Subjects labels. For
more details on filtering, refer to Appendix (§D).

3 Experiments
3.1 Datasets and Metrics

We evaluate on three multilingual retrieval bench-
marks: (i) XOR-Retrieve (Asai et al., 2021a),
(ii) MIRACL (Zhang et al., 2023b) and (iii)
XTREME-UP (Ruder et al.,, 2023). XOR-
Retrieve and XTREME-UP are cross-lingual and
MIRACL is monolingual. Following prior work,

"Finding native speakers for all of the 33 languages, who are
willing to annotate is both cumbersome and expensive.

we evaluate models at Recall@5kt on XOR-
Retrieve, nDCG@10 on MIRACL and MRR@ 10
on XTREME-UP. For more details on evaluation
benchmarks, refer to Appendix (§G).

3.2 Experimental Methods

Baselines. Following common practice across all
datasets, we evaluate three broad range of base-
lines: (1) Zero-shot: where the model is fine-tuned
only for human-labeled English training data such
as MS MARCO (Nguyen et al., 2016) or NQ
(Kwiatkowski et al., 2019). (2) Gold FT: where the
model denoted by “X” (model-X) is fine-tuned on
language-specific human labeled, i.e., gold train-
ing data. (3) Synthetic FT: where the model de-
noted by “JUMP-X is fine-tuned without any
gold training data, relying only on JUMP-IR train-
ing data. Additionally, we also report the amount
of synthetic pairs used, e.g., S00K for fine-tuning
a JUMP-X (500K) model.

Model Choices. For our dense retrieval mod-
els, we adapt DPR (Karpukhin et al., 2020) to
the multilingual setting. Next, we include mCon-
triever (Izacard et al., 2022) which adopts an ad-
ditional pre-training stage with contrastive loss
based on unsupervised data prepared from pair-
wise sentence cropping in mC4 (Xue et al., 2021).

Existing Baselines. For XOR-Retrieve, we in-
clude Dr. DECR (Li et al., 2022), a cross-lingual
ColBERT (Khattab and Zaharia, 2020) fine-tuned
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Existing Supervised Baselines (Prior work)

BM25 38.5 | 48.1 508 35.1 319 333 551 183
mDPR 41.8 | 499 443 394 478 48.0 472 435
Hybrid 56.6 | 67.3 654 549 64.1 594 672 523
Cohere-API 542 | 66.7 634 50.1 50.7 484 675 443
Zero-shot baselines (English-only supervision)

mDPR (En) 39.8 | 49.7 50.1 354 353 393 482 313
mContriever (En) | 37.8 | 49.1 484 327 333 37.1 484 270
Supervised Baselines (Monolingual supervision)

mDPR-X 39.6 | 52.8 57.1 302 247 37.6 461 264
mContriever-X 554 | 664 684 442 428 489 652 46.2
Synthetic Baselines (Our work)

JUMP-X (180K) | 464 | 602 57.1 347 334 363 40.6 643
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33.0 395 408 433 49.7 400 559 563 633 502 36.5

Table 3: Experimental results for monolingual retrieval on MIRACL dev (Zhang et al., 2023b). All scores denote
nDCG @10; (Hyb.) denotes Hybrid retriever with ranked fusion of three retrievers: mDPR, mColBERT and BM25;
BM25, mDPR and Hybrid scores taken from (Zhang et al., 2023b); Cohere-API is used as a reranker on top of 100
BM25 results, taken from (Kamalloo et al., 2023). JUMP-X (ours) is fine-tuned on 180K synthetic data.

on large amounts of supervised data in a com-
putationally expensive setup of knowledge dis-
tillation with English ColBERTv2 (Santhanam
et al., 2022). xQG (Zhuang et al., 2023) involv-
ing cross-language query generation and concate-
nating the queries along with the passage repre-
sentation. We also include two-stage translation
baselines, Google Translate and Opus-MT from
Asai et al. (2021a). For MIRACL, we include
the official BM25, mDPR and Hybrid (combining
BM25, mDPR and mColBERT) baseline available
in Zhang et al. (2023b), and the Cohere-API is
used as a reranker with top-100 BM25 retrieved
results in Kamalloo et al. (2023).

3.3 Implementation Details

Supervised Baselines. We replicate mContriever
and mDPR zero-shot baselines by initializing from
a multilingual T5-base checkpoint (Xue et al.,
2021) and fine-tune on MS MARCO, in a setup
similar to Ni et al. (2022). Similarly, mContriever-
X and mDPR-X have been additionally fine-tuned
on training split available for each dataset. For ad-
ditional technical details on supervised baselines,
refer to Appendix (§F.2). mContriever includes
an additional pre-training stage, we set the batch
size to 8192, learning rate to 1e > and pre-train for
600K steps with mC4 (Xue et al., 2021). For more
details on pretraining, refer to Appendix (§F.1).

Synthetic Baselines. For our synthetic baselines,
we pre-train on mC4 and fine-tune on JUMP-IR
with in-batch negatives with the contrastive loss
function (van den Oord et al., 2018). During
fine-tuning, we set the batch size to 4096, learn-
ing rate to le 3 and fine-tune JUMP-X for 5K to
50K steps, depending upon the size of the training
dataset. In all our experiments, we use the PaLM

2 (S) (Anil et al., 2023) to generate the cross-
language multilingual queries due to its rather low-
cost and quick inference. For additional hyperpa-
rameter choices and fine-tuning details, refer to
Appendix (§F.3). For all our experiments, we use
T5X Retrieval (Ni et al., 2022) for pre-training,
fine-tuning and evaluation.

3.4 Experimental Results

XOR-Retrieve. Table 2 shows that JUMP-X
(7M) which is fine-tuned on 7M synthetic pairs
(max. of 1M per language) outperforms the best
FT model, mContriever-X, by 7.1 points on Re-
call@5kt. Without mC4 pre-training, our JUMP-
X (7M) performance drops by only 1.6 points. We
also evaluate JUMP-X (500k), a limited-budget
baseline fine-tuned on 500k training pairs, that out-
performs mContriever-X by 3.6 points. Few exist-
ing baselines outperform JUMP-X, however, the
comparison is not fair, as Dr. DECR is a mul-
tilingual ColBERT (Khattab and Zaharia, 2020)
model, which is computationally expensive at run-
time (Thakur et al., 2021) and Google MT + DPR
rely on a powerful Google Translate system for
translation.

MIRACL. Table 3 shows that JUMP-X (180K)
model is competitive on MIRACL. JUMP-X
(180K) outperforms the best zero-shot model, by
6.6 points on nDCG@10. However, JUMP-X is
unable to outperform mContriever-X, fine-tuned
on around 90K human-labeled training pairs with
up to four hard negatives available in MIRACL.
However, JUMP-X have not been optimized with
hard-negatives. Few existing baselines outperform
JUMP-X, however the comparison is not fair, as
the Hybrid baseline relies on information based on
aggregation of three models, and for Cohere-API,



Model | Avg. | as

bho brx gbm gom gu hi hne

kn mai ml mni mr mwr or pa ps sa ta ur

Zero-shot baselines (English-only supervision)

mDPR (En) 63|26 64 04 72 13 86 133 52
79 32 78 03 97 22 111 152

mContriever (En) 79
Supervised Baselines (Cross-lingual supervision)
mDPR-X
mContriever-X
mContriever-X°
Synthetic Baselines (Our work)
JUMP-X (120K)M7 | 26.1
JUMP-X (120K) 25.2

84 67 99 48 100 87 88 91 94
1241 9.8 157 6.7 140 11.7 133 155 139
135 11.6 154 80 169 123 152 16.7 157

252 295 21 308 22.1 315 358 315
244 277 43 283 254 294 324 288

104 64 123 02 89 58 04 60 56 52 102 10.0
82 106 86 156 04 107 85 1.1 103 33 57 129

9.0 100 105 48 7.8 96 69 86 74 85 81 9l
13.6 139 169 6.5 12.0 13.8 7.5 134 9.8 124 13.0 14.1
147 156 174 7.0 142 147 9.1 132 10.1 148 12.1 149

28.7 322 346 22 327 277 148 30.7 21.0 282 30.6 29.2
30.1 31.8 344 5.1 30.7 257 15.8 29.6 20.6 26.1 27.9 26.1

Table 4: Experimental results for cross-lingual retrieval on XTREME-UP test (Ruder et al., 2023). () denotes the
mContriever-X model fine-tuned without MS MARCO (Nguyen et al., 2016); Two variants of JUMP-X considered,
both fine-tuned on 120K synthetic data: (1) JUMP-X (120K)™7 fine-tuned using Google Translate, i.e., translated
prompt exemplars for 15 languages, whereas (2) JUMP-X (120K) is fine-tuned using prompt exemplars sampled

from XTREME-UP training split for all languages.

the underlying model information is unknown.

XTREME-UP. Table 4 shows the results on
XTREME-UP. JUMP-X (120K) model is fine-
tuned by randomly selecting 5 exemplars from
the XTREME-UP training dataset (human-labeled
queries) for all languages, whereas the MT vari-
ant reuses XOR-Retrieve prompt exemplars with
translated summaries and queries for 15 lan-
guages.'> JUMP-X (120K)MT outperforms the
best supervised baseline, mContriever-X" (fine-
tuned without MS MARCO) by a huge margin of
12.6 points on MRR@10. The JUMP-X (120K)
model performs minimally worse than the MT ver-
sion by 0.9 points. Interestingly, none of the mod-
els perform well on two extremely low-resource
languages, Boro (brx) and Manipuri (mni).

3.5 SAP versus Standard Prompting
We evaluate whether the generated query qual-
ity using SAP against standard few-shot prompt-
ing affect the downstream retrieval performance
on XOR-Retrieve. We additionally evaluate dif-
ferent LLM sizes to observe a correlation in re-
trieval model performance with change in LLM
size. To ensure consistency, we adopt the exper-
imental setup utilized in JUMP-X (500K). Our re-
sults are shown in Figure 3 (Left), we infer two
insights: (i) Increase in the LLM size provides di-
minishing gains in JUMP-X performance on XOR-
Retrieve and PalLM-2 (S) provides the best trade-
off in terms of performance and query generation
speed. (ii) SAP outperforms standard prompting
by at least 0.6 points Recall@5kt for all PaLM-
2 generators on XOR-Retrieve, where the max-
12We were unable to translate our prompt exemplars for 5 lan-
guages due to language unavailability in Google Translate:
Boro (brx), Garhwali (gbm), Chattisgarhi (hne) and Mar-
wari (mwr). Manipuri (mni) is available in Google Translate

in “Meitei” script instead of the “Bengali-Assamese” script
present in the XTREME-UP dataset.

imum improvements are observed by up to 3.2
points Recall@ 5kt for models sizes (S) or smaller.
We hypothesize that PaLM 2 (sizes > S) are in-
herently able to generate coherent questions, lead-
ing to diminishing improvements with SAP versus
few-shot standard prompting.

3.6 How much Synthetic data to Generate?

We analyze the optimal value of synthetic train-
ing data for training JUMP-X models. Figure 5
depicts the relative improvement in JUMP-X on
XOR-Retrieve, with the performance (gradually
increasing) starting to saturate after 500K syn-
thetic pairs. The first observation is that with
only 2K pairs, the JUMP-X (2K) achieves 49.1
Recall @5kt on XOR-Retrieve, which outperforms
the best zero-shot (English-only) baseline. The
break-even point occurs at around 200K synthetic
pairs, where the JUMP-X (250K) model achieves
60.5, outperforming the best supervised baseline
of mContriever-X achieving 59.6 Recall @ 5kt.

3.7 Indo-European Language Transferability

We investigate language transfer capabilities of
synthetic data generated with JUMP-IR on Indic
(Indo-European language family). We fine-tune
separate JUMP-X models individually for eight
languages and evaluate on XTREME-UP. From
Figure 4, we observe that models fine-tuned for
Konkani (gom) or Hindi (hi) transfer best on all
languages in XTREME-UP (rows 3&4), whereas
Tamil (ta) transfers worst (row 8). Assamese (as),
Konkani (gom), Odia (or), Pashto (pa) and San-
skrit (sa) have the lowest zero-shot capabilities
with JUMP-X, where in-language synthetic data
is found crucial for improvement in MRR@10.
Hindi (hi), Kannada (kn), Malayalam (ml), Gu-
jarati (gu) show good zero-shot transfer capabili-
ties with all individual fine-tuned Indic languages.
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Figure 3: (Left) SAP (Summarize-then-Ask Prompting)
(green) versus standard prompting (red) for various
PalLM 2 model sizes. (Right) Varying K-shot prompt
exemplars. All JUMP-X models are fine-tuned on 500K
synthetic data and evaluated on XOR-Retrieve.

4 Ablation Studies

K-shot prompt exemplars. We investigate the
number of K-shot prompt exemplars required by
PalLM 2 and the variation in the cross-lingual per-
formance with K on XOR-Retrieve.!> From Fig-
ure 3 (right), we observe a linear improvement in
Recall@5kt with increase in K. Best Recall @5kt
is observed with K = 5. Our SAP technique can-
not perform well zero-shot (i.e., K = 0) due to the
complex nature of the multilingual question query
task which requires a few examples for PalL.M 2 to
understand the difficult task.

ByTS tokenizer. We evaluate whether the poor
performance of JUMP-X on low-resource lan-
guages in XTREME-UP can be attributed towards
low-quality language tokenization. We reproduce
JUMP-X, with a ByT5-base (Xue et al., 2022)
model as backbone, which contains a language in-
dependent tokenizer extension. From our results
in Table 5, ByT5 models underperform by up to
9.8 points MRR @10 on XTREME-UP, in contrast
to mT5-base. Additionally, JUMP-X performance
on both mni and brx do not improve with ByTS5.
We leave it as future work to investigate the low-
quality performance of JUMP-X on mni and brx.

Training split query replacement. Next, we
evaluate the impact of human-generated versus
LLM-generated queries on retrieval performance
on XTREME-UP. We replace all human-generated
queries in the XTREME-UP training split with
only synthetic queries generated using PalL.M 2
(S). From Table 5, the performance drops by
BWe limit K = 5, as it fits within the 4096 tokens in context

length. Adding more exemplars require longer PalLM 2 con-
texts which increases the computational cost significantly.
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Figure 4: Heatmap showing MRR@10 denot-
ing language-based transfer ability of JUMP-X
(120K) across Indo-European languages available in
XTREME-UP (Ruder et al., 2023). (ALL) denotes
JUMP-X fine-tuned on all XTREME-UP languages.

2.0 points on MRR@10. This shows that better
quality human-generated queries results in better
MRR@10 in XTREME-UP. However, JUMP-X
can be fine-tuned effectively with synthetic gener-
ated queries, by marginally dropping in retrieval
performance.

5 Cost Comparison

Generating synthetic training data is relatively in-
expensive however, not free. The cost is depen-
dent upon the length of the prompt, input, and out-
put generated from the LLM. The costs also lin-
early increase with each additional language pair.
At this writing, PaLM 2 and similar LLMs cost
about 0.0005 USD for 1000 characters in the in-
put and output text.'* Our prompts on average
contain about 8-9K characters in the prompt input
and generate about 1-2K characters in the output.
The relative performance improvement associated
with annotation cost in XOR-Retrieve is shown
in Figure 5. Generating 200K synthetic training
pairs in JUMP-IR will roughly cost $1K USD.
JUMP-X (200K) performs comparably to the best
supervised baseline (mContriever-X), trained on
15.2K human-annotated pairs, requiring roughly
14 times more, i.e., $14.1K USD to annotate, if
we pay an hourly rate of $18.50 USD per hour
for the annotator (local minimum wages is $11.50
USD/hr) following (Zhang et al., 2023b), assum-
ing an estimated annotation cost of 3.0 minutes per
example (Ruder et al., 2023).

6 Background and Related Work

The development of pre-trained multilingual LMs
has contributed toward recent progress in multilin-

4Pal.M 2 pricing: cloud.google.com/vertex-ai/pricing
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Model Backbone Query Gen. brx mni MRR@10
1. Models with Byte-level (UTF-8) tokenizer

mCon.-X” ByT5 Human 1.8 1.0 2.1
JUMP-X (120)MT  ByT5 PaLM?2 2.1 49 13.3
JUMP-X (120k) ByT5 PaLM2 5.1 58 15.4

2. Human-generated query replacement in XTREME-U.
mCon.-X” mT5 Human - - 13.5
JUMP-X (~10K) mT5 PalLM 2 - - 11.5

Table 5: Ablations in XTREME-UP. First, we replace
the mT5 backbone with ByT5. Next, we replace the
human-generated queries in the XTREME-UP train-
ing dataset with PaLLM-2 synthetic queries; MRR@10
scores are macro averaged across all 20 languages; brx
denotes Boro and mni denotes the Manipuri language.

gual retrieval (Asai et al., 2021a; Izacard et al.,
2022; Asai et al., 2021b; Li et al., 2022; Ruder
et al., 2023; Zhang et al., 2023b,a). Notable base-
lines include mDPR and mContriever. mDPR
(Asai et al., 2021a,b; Zhang et al., 2023a) extends
English DPR (Karpukhin et al., 2020) to the multi-
lingual setting. mContriever (Izacard et al., 2022)
adopts an unsupervised pre-training objective us-
ing the contrastive loss function and data prepared
from mC4 (Xue et al., 2021) and fine-tuned on MS
MARCO (Nguyen et al., 2016).

Synthetic Data Generation. Traditionally,
docT5query (Nogueira and Lin, 2019) for query
generation has been prominent for generating syn-
thetic training data in English (Ma et al., 2021;
Thakur et al., 2021; Wang et al., 2022; Thakur
et al., 2022). Recently, using LLMs for query gen-
eration has gained interest. Bonifacio et al. (2022)
proposed InPars, where they few-shot prompt
GPT-3 (Brown et al., 2020) to generate synthetic
queries. Similarly, complementary works (Sachan
et al., 2022; Jeronymo et al., 2023; Boytsov et al.,
2023; Saad-Falcon et al., 2023; Dua et al., 2023)
all follow a similar setup in Bonifacio et al. (2022).
Dai et al. (2023) proposed Promptagator, which
studied task-dependent few-shot LLM prompting
and used the synthetic data for both retrieval and
ranking models. Similarly, HyDE (Gao et al.,
2023) and GenRead (Yu et al., 2023) generate
synthetic documents instead of queries. However,
prior work has focused on English, with the excep-
tion of HyDE. In our work, we robustly investigate
how LLMs can be used for improving multilingual
retrieval systems.

Multilingual Datasets. Prior work investigate
techniques to build multilingual datasets for bet-
ter fine-tuning or evaluation of dense retrieval
models. Datasets such as NeuCLIR (Lawrie
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Figure 5: Recall@5kt improvement (in %) on XOR-
Retrieve versus annotation cost in USD ($) to create
the training dataset. The amount of generated train-
ing pairs (human-generated marked in red and green;
LLM-generated marked in blue) are mentioned with
each marked datapoint in the graph.

et al., 2023), MKQA (Longpre et al., 2021) have
been constructed using human annotators. Sim-
ilarlyy, mMARCO (Bonifacio et al., 2021) has
been generated using machine translation of MS
MARCO (Nguyen et al.,, 2016). However, as
translated documents are not written by a na-
tive speaker, mMARCO and similar datasets suf-
fer from artifacts such as “Translationese” (Clark
et al., 2020). A concurrent work (Mayfield et al.,
2023) prompts GPT-3 to generate English queries
from language specific passages in NeuCLIR.

7 Conclusion

In this work, we present JUMP-IR, a synthetic
multilingual retrieval training dataset with 28 mil-
lion training pairs across 33 diverse languages.
JUMP-IR allows synthetic fine-tuning of multilin-
gual dense retrieval models cheaply without hu-
man supervision. JUMP-IR is constructed using
SAP (summarize-then-ask prompting) which as-
sists the LLM to identify the relevant sections of
the input passage, improving the quality of the gen-
erated multilingual query.

Our rigorous evaluation across three multilin-
gual retrieval benchmarks assess our dataset qual-
ity. We find that JUMP-X, fine-tuned on JUMP-
IR (keeping model and training parameters un-
changed) outperform the best supervised cross-
lingual baseline, mContriever-X by 7.1 points
Recall@5kt on XOR-Retrieve and 11.7 points
MRR@10 on XTREME-UP, while remaining
competitive on monolingual retrieval in MIRACL.



8 Limitations of JUMP-IR dataset

JUMP-IR like any other dataset is not perfect and
has limitations. These limitations do not directly
affect the downstream multilingual retrieval task,
where dense retrieval models learn how to match
relevant passages to queries. JUMP-IR dataset
has been created for the “sole” purpose of training
multilingual retrieval models. We describe below
few noted limitations:

1. Decontextualization. PalLM 2 captures the
salient information from the paragraph, but can
generate the query in a reduced context, which can-
not be answered without the Wikipedia paragraph.

2. Code-Switching. PalLM 2 can occasionally
generate a code-switched query with words com-
bined for English and the target language. Code-
switching is more frequently observed for cross-
lingual generation in low-resource languages.

3. Passage Quality and Length. A good qual-
ity passage contains relevant information about a
topic which PaLM 2 uses to generate a synthetic
query. However, if the passage is really short with
little or zero information, or contains noisy infor-
mation, this likely can generate a subpar query.

4. Factual inconsistencies in LLM generation.
LLMs have been found to generate text lacking
sufficient grounding to knowledge sources (Dziri
et al., 2022; Ji et al., 2023), thereby posing risks
of misinformation and hallucination in their gener-
ated outputs (Maynez et al., 2020; Raunak et al.,
2021; Muller et al., 2023). Queries in JUMP-
IR are relevant for the input passage, but are not
human-verified, thereby queries may contain fac-
tual inconsistencies.
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A Appendix

The following supplementary sections in JUMP-
IR are arranged as follows:

* Appendix B provides information on the
JUMP-IR dataset release.

* Appendix C provides extra material with
JUMP-IR dataset: Datacard, Examples and
Prompts. All the prompts for all languages
will be provided as text files within our sup-
plementary submission.

* Appendix D and E provides details on the hu-
man validation of JUMP-IR question quality
and content filtering.

* Appendix F provides detailed information
on hyperparameters and training settings for
baselines, multilinugal pre-training, synthetic
finetuning, and sampling strategies.

* Appendix G provides statistics for three mul-
tilingual retrieval evaluation datasets: XOR-
Retrieve, MIRACL and XTREME-UP.

* Appendix H contains additional results on
the JUMP-IR dataset for XOR-Retrieve and
MIRACL evaluation datasets.

B Details on JUMP-IR Dataset Release

Long Term Preservation. The dataset will be
available for a longer time by continually updating
the Tensorflow dataset (TFDS) and HuggingFace
dataset. The authors will be responsible for main-
taining the dataset and in future extension of the
work for supporting more languages (Joshi et al.,
2020) and other cross-language retrieval setting:
English query retrieving across language specific
corpora (En—L), inclusion of both would improve
multilingual neural retrieval models on a wider va-
riety of languages.

Licensing. The JUMP-IR dataset is based on
language-specific Wikipedia. We follow the same
license as Wikipedia for JUMP-IR: Creative Com-
mons Attribution-ShareAlike 4.0 Unported Li-
cense (CC BY-SA 4.0)."° Overall, the license
allows both researchers and industry alike to ac-
cess the dataset, and allow them to copy and redis-
tribute the dataset for future work.

C JUMP-IR Extra Material
C.1 JUMP-IR Data Card

We provide the datacard associated with the
JUMP-IR dataset along in the supplementary ma-

Shttps://creativecommons.org/licenses/by-sa/4.0
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terial. The datacard generated using the template
provided by the Data Cards Playbook (Pushkarna
et al., 2022). The datacard has been generated us-
ing the Markdown format.'® The Datacard is pro-
vided along with our dataset release in the supple-
mentary material.

C.2 JUMP-IR Dataset Statistics

The languages covered and the amount of train-
ing pairs available in JUMP-IR are provided in
Table 7. A majority of the training pairs (sam-
pled a maximum of 1 million per language pair)
are provided for 18 languages in MIRACL (Zhang
et al., 2023b). The rest of 15 Indo-European lan-
guages from XTREME-UP contribute for 100K
training pairs. We additionally, provide two exam-
ples from JUMP-IR dataset for each retrieval task,
cross-lingual and monolingual in Figure 7. The
cross-lingual example is provided for Chinese (zh)
and monolingual for Spanish (es).

There are six fields associated with every
JUMP-IR training datapoint. We briefly describe
each field available below: (i) _id: denotes the
unique identifier of the training pair. (ii) title:
denotes the title of the Wikipedia article.(iii) text:
denotes the passage extracted from the Wikipedia
article. (iv) query: denotes the synthetic multilin-
gual query generated using PaLM 2 (Anil et al.,
2023). (v) lang: denotes the language of the syn-
thetic query. (v) code: denotes the ISO code of the
synthetic query language.

C.3 JUMP-IR Prompts

All prompts and their templates (across all 33 lan-
guages) used for developing JUMP-IR have been
provided in the supplementary material submis-
sion. We show individual prompt examples for a
single language for the three datasets in the Ap-
pendix: (1) XOR-Retrieve (English passage; Syn-
thetic Bengali query) in Figure 8, (2) MIRACL
(Chinese passage; Synthetic Chinese query) in Fig-
ure 9, and (3) XTREME-UP (English Passage:
Synthetic Hindi query) in Figure 10. The rest of
the prompts will be provided in the supplementary
material.

D Human Validation

In this section, we evaluate the quality of the
PalLM 2 generated questions available in the
“The Markdown format

datacard is available here:
code/datacardsplaybook

and the template of the
https://github.com/pair-


https://creativecommons.org/licenses/by-sa/4.0/
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https://github.com/pair-code/datacardsplaybook

Lang. (ISO)
Rating (—)

English (en)
Spanish (es)
Chinese (zh)
Hindi (hi)

Bengali (bn)

fluency (1) adequacy (1)
0 1 2 0 1 2

2% 3% 95% 2% 13% 85%
1% 10% 89% 14% 12% T4%
7% 19% 74% 1% 30% 63%
12% 5% 83% 6% 19% 15%
6% 4% 90% 10% 14% 76%

language (1)
0 1 2

0% 0% 100%
1% 0% 99%
0% 0% 100%
0% 0% 100%
1% 0% 99%

Table 6: Human validation statistics on JUMP-IR. An-
notators (native speakers) evaluate the query quality on
a three-level rating scale (0/1/2) measured for (i) flu-
ency, (ii) adequacy and (iii) language.

JUMP-IR dataset using human annotators who are
native speakers of different languages available in
the dataset. For our annotation task, we evaluate
five languages'’ in total: English (en), Bengali
(bn), Spanish (es), Chinese (zh) and Hindi (hi).
Within the five languages, three are high-resource
(en, es, zh), one is medium resource (hi) and low-
resource (bn). For each language, we sample a
fixed amount of question-passage pairs resulting
in overall 500 question-passage pairs human evalu-
ated. For English, Spanish and Chinese, we evalu-
ate monolingual training pairs. For Hindi and Ben-
gali, we mix and evaluate both cross-lingual and
monolingual task-specific question-passage pairs.

We compute the question quality on a three-
level rating scheme (0/1/2) based on three statis-
tics, fluency, adequacy, and language. (i) Fluency
measures the coherence of the generated ques-
tion, i.e., whether the question can be perfectly
understandable and readable by the user contain-
ing no spelling or grammatical mistakes. (ii) Ade-
quacy measures the relevancy of the question with
the Wikipedia passage (used for generation of the
question), whether the question asked contains the
answer within the passage. (ii) Language mea-
sures whether the generated question is in the cor-
rect language, or code-switching occurs in the gen-
erated question. We add these details in our anno-
tation guidelines to teach the human annotator and
attach it at the end of the Appendix section.

D.1 Human Validation Results

Table 6 shows the results of human validation
across five languages on JUMP-IR. The human
annotators get 99-100% for the language metric
which denotes the PaLLM 2 generated quality is al-
ways in the correct language. For Fluency, the ma-
jor mistakes are observed in Hindi (12%), where
few sampled passages in MIRACL can be too

"The authors in the paper are native speakers of the five lan-
guages chosen for evaluation: Bengali, Spanish, Chinese,
Hindi and English.
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short (2-3 words long), this confuses the PaLM 2
model which duplicates the exact text in the query.
For Adequacy, we observe that in Chinese (30%)
of the generated synthetic queries are not strongly
related to the passage. Similar to fluency, a low
adequacy is observed when the LLM-generated
query is generated for a short sampled passage or
when the query asks a question about a related
topic which is not directly mentioned in the pas-
sage.

E Content Filtering

LLMs have been shown to generate undesir-
able content, particularly under conditions that
prime the model with material targeted at draw-
ing out any negative patterns or associations in the
model’s training data (Gehman et al., 2020; Ben-
der et al., 2021). We originally hoped that sam-
pled Wikipedia passages would provide almost en-
tirely safe material for prompting LLMs. However,
for each combination of query-passage languages
within JUMP-IR, we discovered that between 6—
10% of the pairs contained sensitive subjects and
adult content (i.e., weapons; violence and abuse;
accidents and disasters; death and tragedy; war
and conflict). We used the Google Cloud Natu-
ral Language content classification categories'® to
identify and remove pairs when either the original
sampled passage or the resulting LLM generated
query has a content classification of either /Adult
or any of the /Sensitive Subjects labels.

F Additional Technical Details

F.1 mContriever Pretraining

In the original implementation of mContriever
(Izacard et al., 2022), the authors initialized the
model using the mBERT (Devlin et al., 2019) pre-
trained language model (PLM). Next, the model
was jointly pre-trained on 29 languages covering
the CCNet dataset (Wenzek et al., 2020) with a
contrastive pre-training objective. In our imple-
mentation of mContriever, we initialize the model
with the multilingual TS (mT5) model (Xue et al.,
2021). Next, we jointly pre-train the model on
101 languages'® available in mC4 (Xue et al.,
2021). We sample two random non-overlapping
texts from our document with a maximum size of
256 tokens. Similar to the mTS5 pre-training ob-

18¢loud.google.com/natural-language/docs/categories
The list of all 101 languages in mC4 can be found at:
www.tensorflow.org/datasets/catalog/c4


https://cloud.google.com/natural-language/docs/categories
https://www.tensorflow.org/datasets/catalog/c4#c4multilingual

jective (Xue et al., 2021), examples are not uni-
formly sampled over languages, i.e., the probabil-
ity that a training sample comes from a specific
language is directly proportional to the amount of
training data available in the language. We ran-
domly sample a maximum of 20k samples per lan-
guage and keep it as a validation subset. We op-
timize our mContriever model with the AdamW
optimizer (Loshchilov and Hutter, 2019) with a
learning rate of le™3, batch size of 8192, and
for 600K training steps. For the first 500K steps,
we pre-train with a language-mixed training ob-
jective, where a single training batch can contain
examples across multiple languages. For the re-
maining 100k training steps, we pre-train with a
language-unmixed training objective, where a sin-
gle training batch contains all examples from a
specific language, i.e., no mixing of different lan-
guage pairs within a training batch. We inter-
nally conducted a quick evaluation of the mCon-
triever pre-trained models with language-mixing
(500k) and with both language-mixing and unmix-
ing (600k) checkpoints. On XOR-Retrieve, we ob-
serve that the language-unmixed pre-training over-
all improves the model performance by 7.3 points
on XOR-Retrieve.

F.2 Baseline FT Models

XOR-Retrieve. For the zero-shot baseline model,
we fine-tune on the MSMARCO (Nguyen et al.,
2016) dataset. Our base initialization model is
mT5 (Xue et al.,, 2021). We use in-batch nega-
tives, AdamW optimizer (Loshchilov and Hutter,
2019) and with a learning rate of 1e~3. The query
sequence length contains a maximum sequence
length of 64 tokens, whereas the document con-
tains a maximum sequence length of 256 tokens.
On MSMARCO, our models are fine-tuned with a
batch size of 4096 and for 50k training steps. For
our supervised fine-tuned baselines, we fine-tune
on the XOR-Retrieve training dataset. The orig-
inal dataset authors provide 1 hard negative per
each training query in (Asai et al., 2021a). We fine-
tune our baseline models on XOR-Retrieve on the
triplets containing the query, positive passage and
a hard negative, AdamW optimizer (Loshchilov
and Hutter, 2019), learning rate of 1e 3 for a batch
size of 4096 for 15K training steps.

MIRACL. For the zero-shot baseline model, we
fine-tune on the MSMARCO (Nguyen et al., 2016)
dataset. Details are shown above in XOR-Retrieve.
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Figure 6: Training batch size ablation of JUMP-X
(500K) model on XOR-Retrieve (Asai et al., 2021a).
The best Recall@5kt (Macro Avg.) is achieved with
batch size equal to 4096. To avoid overfitting, we fine-
tune JUMP-X models with decreasing training steps of
{40K, 40K, 30K, 30K, 20K, 20K, 15K} for increas-
ing batch sizes of {128, 256, 512, 1024, 2048, 4096,
8192} respectively. We fine-tune all JUMP-X models
on 500K synthetic JUMP-IR training pairs.

For the monolingual supervised models, we use
the MIRACL training data for fine-tuning. The
authors of MIRACL provided hard negatives for
training samples. We sample up to a maximum of
four hard negatives for each query and fine-tune
our models on MIRACL for 15K training steps.

XTREME-UP. For the zero-shot baseline model,
we fine-tune on the MSMARCO (Nguyen et al.,
2016) dataset. For the supervised baselines, we
use the XTREME-UP training data and fine-tune
with in-batch negatives for a batch size of 1024
for 5K training steps.

F.3 Synthetic FT models

We fine-tune all JUMP-X models using in-batch
negatives, AdamW optimizer (Loshchilov and
Hutter, 2019) and with a learning rate of le 3.
The pre-trained language model for JUMP-X is
the mT5 Base model with 580M parameters (Xue
et al., 2021). The batch size and the training steps
varies for each retrieval setting. All training data is
always split evenly across all languages present in
the training data. For example, given 100K pairs
with 5 different languages, each language includes
20K training pairs.

XOR-Retrieve. JUMP-X is fine-tuned with a
batch size of 4096 and with a maximum of 50K
steps on synthetic JUMP-IR cross-lingual pairs.
For the 500K training pairs, we fine-tune for 20K



steps, and for the maximum of 7M pairs we fine-
tune for 50K training steps. The training pairs
within a single batch include language-mixing, i.e.,
one or more language-specific training pairs are
sampled within a single training batch.

MIRACL. JUMP-X is fine-tuned for a batch-size
of 4096 and for a maximum of 15K steps. As
shown in (Roy et al., 2020; Zhang et al., 2023a),
language-unmixed training setup is shown to work
well for monolingual retrieval. Following prior
work, our JUMP-X training pairs include language
unmixing, i.e., all pairs are from a single language.
The examples are uniformly sampled across all
languages, i.e., probability that a training sample
comes from a specific language is the same for all
languages, unlike the previous experiment in mC4
pre-training.

XTREME-UP. JUMP-X has been fine-tuned for
a batch size of 1024 and for a maximum of 15K
training steps. Similar to XOR-Retrieve, training
pairs include language-mixing with a single batch
during fine-tuning.

F.4 Stratified Sampling in JUMP-IR

In our work, we use a stratified sampling technique
to select a subset of passages from the Wikipedia
corpus we use to generate questions for JUMP-
IR. We ensure all languages have relatively an
equal amount of training samples, wherever possi-
ble. Our Wikipedia corpus contains entities which
are sorted alphabetically (A-Z). We then compute
inclusion threshold I, which is defined as I;;, =
Dgampie/ Diotar, Where (Dgsgmpie) is number of
passages required to sample and (D7) is the to-
tal numbers of passages in corpus. Next, for each
passage (p;) in the corpus, we randomly generate
an inclusion probability p; € [0, 1]. We select the
passage (p;) if p; < I. This ensures uniform
sampling of passages with Wikipedia entities be-
tween all letters (A-Z).2°

G Evaluation Dataset Information

We evaluate on three multilingual retrieval bench-
marks: (i) XOR-Retrieve (Asai et al., 2021a),
(ii) MIRACL (Zhang et al.,, 2023b) and (iii)
XTREME-UP (Ruder et al., 2023). NeuCLIR
(Lawrie et al., 2023) was excluded from our eval-
uation as it contained a fewer subset of languages
namely, Chinese (zh), Farsi (fa) and Russian (ru).

2 All Wikipedia entities starting with a non-alphabet are in-
cluded in the beginning of the Wikipedia corpus.
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Although MKQA (Longpre et al., 2021) contained
a wider variety of languages, the dataset is com-
monly used for question-answering instead of mul-
tilingual retrieval. In Table 8, we provide an
overview of the three evaluation datasets and pro-
vide statistics for each retrieval dataset.

Our three evaluation datasets contain a training
split. Only XTREME-UP has released their test
split publicly, as a result it was used for evaluation
in the paper. However, for both XOR-Retrieve and
MIRACL, we evaluate on the development split.
The list of languages covered by each dataset and
samples available for training and evaluation can
be found in Table 8.

XOR-Retrieve (Asai et al., 2021a) is a cross-
lingual open retrieval training and evaluation task
within TYDI1-QA (Clark et al., 2020). XOR-
Retrieve contains 15K human annotated relevant
passage-query pairs in the training set with one
hard negative and 2K passage-answer pairs in the
dev set. The corpus C contains 18.2M passages
with a maximum of 100 word tokens from the En-
glish Wikipedia. The queries are multilingual and
cover seven languages. We evaluate our models
using recall at m kilo-tokens, i.e., Recall@mkt,
which computes the fraction of queries for which
the minimal answer is contained within the top m
thousand tokens of the retrieved passages. Follow-
ing prior work in Asai et al. (2021a), we evaluate
our models at Recall@5kt and Recall @2kt.

MIRACL (Zhang et al., 2023b) is a monolin-
gual open retrieval evaluation task containing 18
languages. MIRACL was developed on top of
Mr. TyD1 (Zhang et al., 2021), and covers more
languages and provides denser judgments by hu-
man annotators. The test set is not publicly re-
leased, hence in this paper we evaluate using the
dev set. The training set contains 88,288 pairs,
with the exception of Yoruba (yo) and German
(de) which do not have any training data avail-
able. The authors also provide labeled hard nega-
tives for the training query-passage pairs. The dev
set contains around 13,495 query-passage pairs.
The corpus C' in MIRACL are language-specific
Wikipedia articles with various sizes starting from
smallest, Yoruba (yo) with 49K passages, till the
largest, English (en) with 39.2M passages. Fol-
lowing prior work in Zhang et al. (2023b) and Ka-
malloo et al. (2023), we evaluate our models at
nDCG @10 and Recall@100.

XTREME-UP Ruder et al. (2023) contains di-



verse information-access and user-centric tasks fo-
cused on under-represented languages. In this pa-
per, we evaluate cross-lingual retrieval task con-
taining 5,280 query-passage pairs in the training
set. The corpus C contains 112,426 passages sam-
pled from TYDI-QA (Clark et al., 2020). The test
set contains 10,705 query-passage pairs for evalua-
tion. The cross-language retrieval for QA task con-
tains 20 under-represented Indic languages. Fol-
lowing prior work in Ruder et al. (2023), we eval-
uate our models at MRR@10.

H Additional Results

XOR-Retrieve. In Table 9, we report the Re-
call@2kt scores across all multilingual retrievers
on XOR-Retrieve. We find similar trends for im-
provement, where JUMP-X (7M) outperforms the
best FT model on mContriever-X by 3.9 points
on Recall@2kt. The JUMP-X (7M) without pre-
training is also a strong baseline outperforming
JUMP-X (7M) with pre-training on 4/7 languages
in XOR-Retrieve.

MIRACL. In Table 10, we report the Recall@ 100
scores across all multilingual retrievers on MIR-
ACL. We observe that the mContriever-X model
overall achieves the highest Recall@100 score of
86.5, JUMP-X models achieve a recall of 78.9
which is competitive on MIRACL outperforming
both the zero-shot mDPR and mContriever mod-
els. For Yoruba, Our JUMP-X outperforms mCon-
triever which shows the importance of synthetic
training data, as the model does not contain super-
vision for Yoruba (i.e., no human-labeled training
pairs).
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Cross-Lingual (33) Monolingual (18)
Q-PLang. # Train Pairs  Q-P Lang. # Train Pairs
Languages available in MIRACL (Zhang et al., 2023b)
ar-en 901,363 ar-ar 890,389
bn-en 909,748 bn-bn 257,327
de-en 909,145 de-de 943,546
en-en - en-en 936,481
es-en 905,771 es-es 947,340
fa-en 910,295 fa-fa 973,409
fi-en 906,429 fi-fi 967,139
fr-en 911,694 fr-fr 977,900
hi-en 919,729 hi-hi 466,272
id-en 907,826 id-id 837,459
ja-en 906,862 ja-ja 893,520
ko-en 905,669 ko-ko 941,459
ru-en 904,933 ru-ru 915,693
sw-en 905,242 SW-SW 123,099
te-en 902,190 te-te 220,431
th-en 914,610 th-th 451,540
yo-en 902,467 yo-yo 43211
zh-en 921,701 zh-zh 946,757
Indo-European Languages in XTREME-UP (Ruder et al., 2023)
as-en 5,899 as-as -
bho-en 5,763 bho-bho -
gom-en 5,755 gom-gom -
gu-en 5,870 gu-gu -
kn-en 5,763 kn-kn -
mai-en 5,768 mai-mai -
ml-en 5,907 ml-ml -
mni-en 5,604 mni-mni -
mr-en 5,977 mr-mr -
or-en 5,837 or-or -
pa-en 5,840 pa-pa -
ps-en 5,694 ps-ps -
sa-en 5,779 sa-sa -
ta-en 5,930 ta-ta -
ur-en 5,816 ur-ur -
Total 15,532,876 Total 12,732,972

Overall Training Pairs = 28,265,848

Table 7: Dataset Statistics of JUMP-IR for both cross-
lingual and monolingual settings; (Q-P Lang.) denotes
the language code of the query-passage training pair
in JUMP-IR; (# Train Pairs) denotes the count of the
relevant training pairs containing the synthetic query
and original passage pair.



Benchmark Retrieval Query Passage #L IS0 Languages Train Split Dev/Test Split
Task ‘ (#Queries) (HNeg.) ‘ (#Queries)  (#Passages) (Metric)
XOR-Retrieve Cross-lingual L English 7 ar, bn, fi, ja, ko, Arabic, Bengali, Finnish, Japanese, 15,250 Yes (1 each) 2,110 18,003,200  Recall@5kt
(Asai et al., 2021a) ru, te Korean, Russian, Telugu
MIRACL (Zhang Monolingual L L 18 ar, bn, de, en, es, Arabic, Bengali, German, English, 88,288 Yes (max 4) 13,495 106,332,152 nDCG@10
et al., 2023b) fa, fi, fr, hi, id, Spanish, Farsi, Finnish, French,
ja, ko, ru, sw, te, Hindi, Indonesian, Japanese, Ko-
th, yo, zh rean, Russian, Swahili, Telugu,
Thai, Yoruba, Chinese
XTREME-UP Cross-lingual L English 20 as, bho, brx, gbm, Assamese, Bhojpuri, Boro, 13,270 No 5,300 112,426 MRR@10
(Ruder et al., 2023) gom, gu, hi, hne, Garhwali, Konkani,  Gujarati,
kn, mai, ml, mni, Hindi, Chhattisgarhi, Kannada,
mr, mwr, or, pa, ps, Maithili, Malayalam, Manipuri,
sa, ta, ur Marathi, Marwari, Odia, Punjabi,
Pashto, Sanskrit, Tamil, Urdu

Table 8: Statistics of multilingual retrieval evaluation benchmarks used in our work: XOR-Retrieve (Dev) (Asai
etal., 2021a), MIRACL (Dev) (Zhang et al., 2023b) and XTREME-UP (Test) (Ruder et al., 2023). For each bench-

mark, we describe the retrieval task, language in which query and passage are
statistics and evaluation metric; (HNeg.) denotes availability of hard negatives
(#L) denotes the number of languages covered by the benchmark.

(a) Cross-lingual Training Pair in JUMP-IR

available, train and dev/test split
for training multilingual models;

Title: Menlo Park, New Jersey

Text: Menlo Park is an unincorporated community located within Edison Township in Middlesex County, New Jersey,
United States. In 1876, Thomas Edison set up his home and research laboratory in Menlo Park, which at the time
was the site of an unsuccessful real estate development named after the town of Menlo Park, California. While
there, he earned the nickname "the Wizard of Menlo Park". The Menlo Park lab was significant in that it was one of
the first laboratories to pursue practical commercial applications of research. It was in his Menlo Park laboratory that
Thomas Edison invented the phonograph and developed it.

FER T BBEEMERIA T BEN?

Translation: (Where did Thomas
Edison invent the phonograph?)

LLM-generated Query in Chinese (zh)

Passage (ID: 10770836) from English Wikipedia (en)

(b) Monolingual Training Pair in JUMP-IR

Title: En la tierra del Guaran
Text: Es considerada una de las primeras realizaciones sonoras de la regién y uno de los primeros antecedentes
de cooperacion entre dos paises de la zona (Paraguay y Argentina) para la realizacion de un filme.

Translation: (/n the land of Guaran: It is considered one of the first sound productions in the region and one of the
first precedents of cooperation between two countries in the area (Paraguay and Argentina) for the making of a film.)

Passage (ID:spanish_5170543#3) from Spanish Wikipedia (es)

¢Qué pelicula es una de las primeras
realizaciones sonoras de la regiéon?

Translation: (What film is one of the first
sound films in the region?)

LLM-generated Query in Spanish (es)

Figure 7: Dataset examples showing both (a) cross-lingual and (b) monolingual training pairs in the JUMP-IR

dataset. The passage is selected from English Wikipedia, and PaLM 2 generates

the query. A detailed description

of all the dataset column headers are provided in Appendix (§C.2). All translations in the figure above have been

provided using Google Translate (translate.google.com) for illustration purposes
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Model PLM PT Finetune Recall @2kt

(Datasets) Avg.\ Ar Bn Fi Ja. Ko Ru Te
Existing Supervised Baselines (Prior work)
Dr. DECR (Li et al., 2022) XLM-R | WikiM NQ + XOR* 66.0 | — - - - - - -
mDPR (Asai et al., 2021a) mBERT | — XOR 40.5|38.8 48.4 525 26.6 442 333 399
mBERT + xQG (Zhuang et al., 2023) | mBERT | — XOR 46.2 | 424 549 54.1 33.6 523 338 525
Google MT + DPR (Asai et al., 2021a) | BERT — NQ 62.2 1625 747 573 55.6 60.0 52.7 72.3
OPUS MT + DPR (Asai et al., 2021a) | BERT — NQ 4277 1434 539 55.1 40.2 50.5 30.8 20.2
Zero-shot baselines (English-only supervision)
mContriever mT5 mC4 — 29.9 |27.2 23.0 350 27.0 27.7 35.0 34.0
mDPR (En) mT5 — MS MARCO 30.6 | 26.2 26.0 37.9 32.8 24.6 34.6 324
mContriever (En) mT5 mC4 MS MARCO 338 127.8 243 424 299 31.2 40.5 40.3
Supervised Baselines (Cross-lingual supervision)
mDPR-X mT5 — XOR 43.6 | 43.7 50.0 44.6 36.1 41.1 359 542
mContriever-X mT5 mC4 XOR 46.6 | 40.1 62.5 47.1 382 442 384 555
mDPR-X mT5 — | MSMARCO+XOR | 49.5 | 46.0 63.8 49.0 39.0 484 439 56.3
mContriever-X mT5 mC4 | MSMARCO +XOR | 53.0 | 47.6 65.1 51.6 47.3 50.2 443 65.1
Synthetic Baselines (Our work)
JUMP-X (500K) mT5 — JUMP-IR 49.2 1463 572 49.0 427 456 44.7 58.8
JUMP-X (500K) mT5 mC4 JUMP-IR 53.3146.6 61.8 519 46.5 49.1 553 61.8
JUMP-X (TM) mT5 — JUMP-IR 56.6 | 50.8 65.1 56.1 48.1 54.0 55.7 66.4
JUMP-X (7TM) mT5 mC4 JUMP-IR 56.9 | 534 67.8 55.1 49.4 52.6 553 64.7

Table 9: Experimental results showing Recall@2kt for cross-lingual retrieval on XOR-Retrieve dev (Asai et al.,
2021a); (PLM) denotes the pretrained language model; (PT) denotes the pretraining dataset; (*) Dr.DECR is fine-
tuned in a complex training setup across more datasets (§3.3); WikiM denotes WikiMatrix (Schwenk et al., 2021);
XOR denotes XOR-Retrieve; JUMP-X (ours) is fine-tuned on 500K and 7M synthetic data.

Model | Avg.| ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo
Existing Supervised Baselines (Prior work)

BM25 772 | 889 909 819 702 73.1 89.1 653 86.8 904 805 783 66.1 70.1 831 887 560 572 733
mDPR 79.0 | 84.1 819 768 864 898 788 915 776 573 825 737 797 61.6 762 67.8 944 89.8 795
Hybrid 88.0 | 94.1 932 882 948 937 895 965 912 768 904 900 874 725 857 823 959 889 80.7
Cohere-API 769 | 854 856 746 71.7 77.1 809 81.6 724 683 8l.6 77.1 767 666 898 869 769 725 57.6
Zero-shot baselines (English-only supervision)

mDPR (En) 769 | 855 859 724 668 79.7 860 714 742 670 80.1 771 774 802 919 848 685 709 58.6

mContriever (En) | 76.6 | 73.5 80.8 52.1 49.5 61.7 660 51.8 503 635 656 563 589 735 859 76.6 582 363 30.2
Supervised Baselines (Monolingual supervision)

mDPR-X 60.6 | 73.5 80.8 52.1 495 61.7 660 51.8 503 635 656 563 589 735 859 76.6 582 363 302
mContriever-X 86.5 | 920 953 80.6 788 840 93.1 86.0 821 837 895 877 867 933 967 943 859 793 688
Synthetic Baselines (Our work)

JUMP-X (180K) ‘ 78.9 ‘ 89.2 87.8 729 700 763 916 758 725 743 776 768 779 878 849 929 699 724 69.3

Table 10: Experimental results for monolingual retrieval on MIRACL dev (Zhang et al., 2023b). All scores denote
Recall@100; (Hyb.) denotes Hybrid retriever with ranked fusion of three retrievers: mDPR, mColBERT and
BM25; BM25, mDPR and Hybrid scores taken from (Zhang et al., 2023b); Cohere-API is used as a reranker on
top of 100 BM25 results, taken from (Kamalloo et al., 2023). JUMP-X is fine-tuned on 180K synthetic data.
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5-shot Summarize-then-Ask Prompting_for XOR-Retrieve

Read the following article and write a factual summary. Your summary will act as a surrogate for asking a question
based on the article. Finally, translate the question to Bengali.

Article: Long Lost Family is a BAFTA award winning British television series that has aired on ITV since 21 April 2011.
The programme, which is presented by Davina McCall and Nicky Campbell, aims to reunite close relatives after years
of separation. It is made by the production company Wall to Wall. "Long Lost Family" is based on the Dutch series
"Spoorloos" (), airing on NPO 1 since February 1990 and it is made by KRO-NCRYV. Presented by Davina McCall and
Nicky Campbell, the series offers a last chance for people who are desperate to find long lost relatives.

Summary: Long Lost Family is a BAFTA award winning British television series aired since 2011. The series aim to
reunite close relatives after years of seperation which is presented by Davina McCall and Nicky Campbell.

Question [Bengali]: f3G*r (&= SifFe; 12 e756 TN (P YTH [Grerz?

Article: Muscular activity accounts for much of the body's energy consumption. All muscle cells produce adenosine
triphosphate (ATP) molecules which are used to power the movement of the myosin heads. Muscles have a short-term
store of energy in the form of creatine phosphate which is generated from ATP and can regenerate ATP when needed
with creatine kinase. Muscles also keep a storage form of glucose in the form of glycogen. Glycogen can be rapidly
converted to glucose when energy is required for sustained, powerful contractions. Within the voluntary skeletal
muscles, the glucose molecule can be metabolized anaerobically in a process.

Summary: All muscle cells produce adenosine triphosphate (ATP) molecules for movement of myosin heads. A short
term store of energy is generated from ATP in the form of cratine phosphate and can regenerate ATP when needed
with creatine kinase.

Question [Bengali]: PO (o (T T WA FOBUR G *f&F *If S (M2

Article: The 1960s brought anime to television and in America. The first anime film to be broadcast was "Three Tales" in
1960. The following year saw the premiere of Japan's first animated television series, "Instant History", although it did
not consist entirely of animation. Osamu Tezuka's "Tetsuwan Atom" ("Astro Boy") is often miscredited as the first anime
television series, premiering on January 1, 1963. "Astro Boy" was highly influential to other anime in the 1960s, and
was followed by a large number of anime about robots or space.

Summary: First anime movie broadcast on TV was 'Three Tales' in 1960. First anime TV series was 'Instant History' in
1961. 'Astro Boy! first aired in 1963 was a highly influential anime about robots or space.

Question [Bengali]: Sowo ST Bfere STBIE® 242 SNy &7 (FG?

Article: Leczna is a town in eastern Poland with 19,780 inhabitants (2014), situated in Lublin Voivodeship. It is the seat
of keczna County and the smaller administrative district of Gmina teczna. The town is located in northeastern corner
of historic province of Lesser Poland. teczna tops among the hills of the Lublin Upland, at the confluence of two rivers
—the Wieprz, and the Swinka. On December 31, 2010, the population of the town was 20,706. Leczna does not have
a rail station, the town has been placed on a national Route 82 from Lublin to Wiodawa. And shall be considered as a
Summary: teczna is a town in eastern Poland with 19,780 inhabitants. It is a hill located in the Lublin Upland, at the
confluence of two rivers - Wieprz and Swinka. It is a road hub, and has no rail station.

Question [Bengali]: fATEAT (TSR WE‘%WWW7

Article: The p-law algorithm (sometimes written "mu-law", often approximated as "u-law") is a companding algorithm,
primarily used in 8-bit PCM digital telecommunication systems in North America and Japan. It is one of two versions of
the G.711 standard from ITU-T, the other version being the similar A-law, used in regions where digital
telecommunication signals are carried on E-1 circuits, e.g. Europe. Companding algorithms reduce the dynamic range
of an audio signal. In analog systems, this can increase the signal-to-noise ratio (SNR) achieved during transmission;
in the digital domain, it can reduce the quantization error (hence increasing signal to quantization noise ratio).
Summary: The p-law algorithm is a companding algorithm, which is used to reduce the dynamic range of audio signals.
In analog systems, this can increase the signal-to-noise ratio (SNR) achieved during transmission.

Question [Bengali]: p-S2N SHENTAN oI TNV SITEIN AT NNF HAolTo FH?

Article: {Input Wikipedia Article in English}
Summary:

Figure 8: 5-shot SAP (Summarize-then-Ask Prompting) for XOR-Retrieve (Asai et al., 2021a) is shown for Bengali
(bn). There are five exemplars (5-shot) in our cross-lingual question generation task. The passages are randomly
selected from XOR-Retrieve. Summaries and questions are manually written in English by the authors. Finally,
the questions in exemplars are translated to Bengali using Google Translate (translate.google.com).
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3-shot Summarize-then-Ask Prompting for MIRACL

Read the following article in Chinese and write a factual summary in Chinese. Your summary will act as a surrogate for
asking a question in Chinese based on the article.

Avrticle: PO) || &t \NZBR tBIRE(ER) | I3A0EMERD . MTERBR/\NZENERD, BRERRHRVNEIS, JISINCERLE
MNZHE, TEEEEME. JIHURY. RN, BEEE. BE. HIUE. BRaER. =6k, LhbFELRBolmAL
KaZBaE. BIOF. fukik, RIUFE, HEAE, LURFDIBLAKTIN) I EEKTENRESEE.

Summary: PU)||ISEEMEES, NZBIEEER, TEAEEE. )30, RERNE., BERY. HUE. BERSE.
=5k, MEPF. BoaE. RHF. HukiR. RPFE. HEoE, EFIIIB LKL I ERKTRH5E

=

=E5.
Question [Chinese]: [U)||ZEBBHELL?

Article: $i-FEEftER (Leonids['li.e,n1dz] \"lee-uhnids\")RELEHIALIIIFRUEE R TR EECHMN—EREN, MFER
ERNGSE_RAEERENEST R EEMFEE, £2009F, EEREMIRERBENF17H (HFRE) , SIS
EFJREEIES008, HARLRARESR (B/\FEIR1,000 E8RENKREN) .

Summary: F—RINFEEREMKRLEE2009F11H17H. MFERERESSEAALIFINEE /R BIFREEF XN
—RER. HFEREMIEEERAXNMEMET RIS EIFFEE,

Question [Chinese]: E—XINFRERERAERTARE?

Article: JERKRZ (, HER: ) , BRER, EMBELEFE. HEEBE. BEER. BROEERE, B—FHEARHM
EItEHESEXBEEEN N AZR, BETF19115F, FitRAIBELEMmES. /05BN BEERENED B FERAT
EEBEEMEIREEFSA RN ERIE", R1926FRIgAEE. MBRFERE, BESItA. mEEKy, BEEL
KiDIRRT K, 1938FEBITRE, ZREMAMBE RS, 146FETEBELEER, BEX. = B, I. RE5MFR,
1949F R \REREMIZE, EEEAZABRTFRARBMFRESS, B8 FERE", MEEEEAERKEBHRET
1955FERIEHITER, MERERE.

Summary: JERAFIRET 19115, RItREAIBELEMmSES. 05K AEEREANED B FEAATERBEMR
BEFR PRSI EE,

Question [Chinese]: EREARZHARHRRIZAY?

Article: {Input Wikipedia Article in Chinese}
Summary:

Figure 9: 3-shot SAP (Summarize-then-Ask Prompting) for MIRACL (Zhang et al., 2023b) is shown for Chinese
(zh). There are three exemplars (3-shot) in our monolingual question generation task. The query-passage pairs are
randomly selected from MIRACL training set. Finally, the summaries in exemplars are automatically generated
using Google Bard (bard.google.com).
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5-shot Summarize-then-Ask Prompting for XTREME-UP

Read the following article and write a factual summary. Your summary will act as a surrogate for asking a question
based on the article. Finally, translate the question to Hindi.

Article: Long Lost Family is a BAFTA award winning British television series that has aired on ITV since 21 April 2011.
The programme, which is presented by Davina McCall and Nicky Campbell, aims to reunite close relatives after years
of separation. It is made by the production company Wall to Wall. "Long Lost Family" is based on the Dutch series
"Spoorloos" (), airing on NPO 1 since February 1990 and it is made by KRO-NCRYV. Presented by Davina McCall and
Nicky Campbell, the series offers a last chance for people who are desperate to find long lost relatives.

Summary: Long Lost Family is a BAFTA award winning British television series aired since 2011. The series aim to
reunite close relatives after years of seperation which is presented by Davina McCall and Nicky Campbell.

Question [Hindi]: fafe=r Tafifas @i=T e HiAE 3 D9 1 REBR SidT?

Article: Muscular activity accounts for much of the body's energy consumption. All muscle cells produce adenosine
triphosphate (ATP) molecules which are used to power the movement of the myosin heads. Muscles have a short-term
store of energy in the form of creatine phosphate which is generated from ATP and can regenerate ATP when needed
with creatine kinase. Muscles also keep a storage form of glucose in the form of glycogen. Glycogen can be rapidly
converted to glucose when energy is required for sustained, powerful contractions. Within the voluntary skeletal
muscles, the glucose molecule can be metabolized anaerobically in a process.

Summary: All muscle cells produce adenosine triphosphate (ATP) molecules for movement of myosin heads. A short
term store of energy is generated from ATP in the form of cratine phosphate and can regenerate ATP when needed
with creatine kinase.

Question [Hindi]:ﬂ@ﬁ?%@ﬂﬂ%ﬁ%ﬁﬂmﬁmmﬂﬁﬁﬁﬁg?

Article: The 1960s brought anime to television and in America. The first anime film to be broadcast was "Three Tales" in
1960. The following year saw the premiere of Japan's first animated television series, "Instant History", although it did
not consist entirely of animation. Osamu Tezuka's "Tetsuwan Atom" ("Astro Boy") is often miscredited as the first anime
television series, premiering on January 1, 1963. "Astro Boy" was highly influential to other anime in the 1960s, and
was followed by a large number of anime about robots or space.

Summary: First anime movie broadcast on TV was 'Three Tales' in 1960. First anime TV series was 'Instant History' in
1961. 'Astro Boy! first aired in 1963 was a highly influential anime about robots or space.

Question [Hindi]: $’&e F E1d TR TR 1 Tl Ugelt TR ftbed 1 4t ft?

Article: Leczna is a town in eastern Poland with 19,780 inhabitants (2014), situated in Lublin Voivodeship. It is the seat
of keczna County and the smaller administrative district of Gmina teczna. The town is located in northeastern corner
of historic province of Lesser Poland. teczna tops among the hills of the Lublin Upland, at the confluence of two rivers
—the Wieprz, and the Swinka. On December 31, 2010, the population of the town was 20,706. Leczna does not have
a rail station, the town has been placed on a national Route 82 from Lublin to Wiodawa. And shall be considered as a
Summary: teczna is a town in eastern Poland with 19,780 inhabitants. It is a hill located in the Lublin Upland, at the
confluence of two rivers - Wieprz and Swinka. It is a road hub, and has no rail station.

Question [Hindi]: Ao Tiets H foeT o Afeat & W7m R R 82

Article: The p-law algorithm (sometimes written "mu-law", often approximated as "u-law") is a companding algorithm,
primarily used in 8-bit PCM digital telecommunication systems in North America and Japan. It is one of two versions of
the G.711 standard from ITU-T, the other version being the similar A-law, used in regions where digital
telecommunication signals are carried on E-1 circuits, e.g. Europe. Companding algorithms reduce the dynamic range
of an audio signal. In analog systems, this can increase the signal-to-noise ratio (SNR) achieved during transmission;
in the digital domain, it can reduce the quantization error (hence increasing signal to quantization noise ratio).
Summary: The p-law algorithm is a companding algorithm, which is used to reduce the dynamic range of audio signals.
In analog systems, this can increase the signal-to-noise ratio (SNR) achieved during transmission.

Question [Hindi]: ¥ p-Fam TETRYH T Rer F TRl & gHIfAd BT 82

Article: {Input Wikipedia Article in English}
Summary:

Figure 10: 5-shot SAP (Summarize-then-Ask Prompting with Machine Translation (MT) for XTREME-UP (Ruder
etal., 2023) is shown for Hindi (hi). There are five exemplars (5-shot) in our cross-lingual question generation. The
passages are re-used from the XOR-Retrieve task. Summaries and questions are manually written in English by the
authors. Finally, the questions in exemplars are translated to Hindi using Google Translate (translate.google.com).
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Annotation Guidelines for JUMP-IR

e The goal of this task is to evaluate the quality of LLM-generated (PaLM 2-S) generated
questions.
e Every annotator will receive a set of annotations containing the wikipedia paragraph and
the question in the ${target_language}.
e Annotators should read each annotation carefully and provide feedback on the following:
o The fluency of the question.
o The adequacy of the question.
o The language of the question.
e Annotators should be respectful and professional in their feedback.

e Annotators should complete all annotations within the allotted duration.

Here below we define the following terms:

Fluency
Rating Level Explanation
2 (Flawless) Perfect use of ${target language} with no mistakes at all.
1 (Good) Few or minor spelling or grammar mistakes; the text is still mostly
understandable and readable.
0 (Poor) Many or serious spelling, grammar, or other mistakes, which make the
text difficult to understand or hard to read.
Adequacy
Rating Level Explanation
2 (Relevant) Highly related to the wiki passage. The question can be answered using
the wiki passage.




1 (Moderate)

The question is somewhat related to the wiki paragraph, the question
cannot be answered using the passage.

0 (Not Relevant)

The question is not at all related to the wiki passage.

Language
Rating Level Explanation
2 (Flawless) The whole question is perfectly in the ${target _language}.
1 (Good) Code-switching occurs with part of the question in the ${target_language}.
0 (Poor) The whole question is not at all in ${target_language}.

Thank you for your participation in this task!
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