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ABSTRACT

We hypothesize that diffusion models can be used to enhance the performance
of deep learning methods for predictive tasks involving sparse outputs, such as
point-localization tasks. However, this approach presents two challenges: slow
inference and the stochastic nature of sampling, resulting in varying predictions
based on different initialization seeds. To improve inference efficiency, we pro-
pose the introduction of task bias in the forward diffusion process, replacing the
standard convergence to zero-mean Gaussian noise by convergence to a noise dis-
tribution closer to that of the target sparse point localization data. This simplifies
the reverse diffusion process and is shown to decrease the number of necessary
denoising steps, while improving prediction quality. To decrease prediction vari-
ance due to seed stochasticity, we propose a task-guided loss that is shown to
decrease the average distance between predictions from different noise realiza-
tions. The two contributions are combined into the Task-Guided Biased Diffusion
Model (TGBDM), which maps an initial prediction from a classical localization
method into a refined localization map. This is shown to achieve state-of-the-art
performance for crowd localization, pose estimation, and cell localization.

1 INTRODUCTION

Computer vision tasks such as crowd localization and human pose estimation require the prediction
of sparse localization maps (Wan et al., 2021). However, due to the overlap between receptive fields
of nearby visual features, existing deep learning solutions tend to predict smooth maps. For crowd
localization, these make it hard to recover individual heads in crowded regions. For human pose
estimation, a smooth heat map makes the boundary between joints ambiguous.

Diffusion models have shown remarkable performance for the synthesis of images (Ho et al., 2020)
and videos (Ho et al., 2022) from random noise (Song et al., 2020), natural language (Rombach
et al., 2022) or sketches (Wang et al., 2022). They have also been shown to benefit discriminative
tasks including object detection (Chen et al., 2022), segmentation (Baranchuk et al., 2021), and
classification (Han et al., 2022). In this work, we hypothesize that they can be used to increase the
sharpness of the predictions produced by classical approaches to localization tasks. This can greatly
benefit problems like crowd localization, human pose estimation, or cell localization.

However, there are two challenges to the application of diffusion models to point localization tasks.
First, their inference is slow. Typical diffusion models require 1000 steps to generate high-quality
images. Second, the predictions can vary substantially with the noise seed used to initialize the
sampling chain at inference. This is desirable for generic image and video synthesis, where diversity
is highly desirable, but not for the refinement of an initial prediction for a conditional task, such as
the location of heads, body joints, or cells in a a given image.

To address these issues, we propose the Task-Guided Biased Diffusion Model (TGBDM) for crowd
localization, human pose estimation, and cell localization. This has two main contributions. First,
to improve inference speed, the initial conditioning prediction, produced by the classical method, is
used as a bias term in the forward diffusion process. This makes the process converge to a Gaussian
random variable whose mean is identical to that of the conditioning prediction, rather than zero as
is usual for standard diffusion processes. In result, the distribution from which the random seed is
drawn is centered around the initial prediction produced by the classical method. For example, in
the crowd localization task, the density map produced by an existing crowd localization approach
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is used to create this bias. As shown in Figure 3, this makes the distribution of noisy images closer
to this original prediction, which makes the denoising process easier. We have found that the ad-
dition of this bias substantially reduces the number of diffusion steps required to generate accurate
localization maps. Second, taking inspiration from classifier-guided diffusion models (Dhariwal
& Nichol, 2021), we propose a task-guided loss that encourages the denoising network to predict
similar results for different noise seeds. This is shown to significantly reduce the dependency of the
predicted localization maps on the seed, leading to overall better localization performance. We show
that, with these two contributions, the TGBDM is able to improve the localization performance of
state of the art methods to crowd localization, human pose estimation, and cell localization.

The contribution of the paper is three-fold: 1) We show how to apply diffusion models to point
localization tasks requiring sparse outputs, such as crowd localization and human pose estimation,
and how this improves on the performance of classical solutions to these problems. 2) A task-
guided loss function that both decreases the variance of diffusion model predictions and improves
their accuracy. 3) A biased diffusion process, where the introduction of task-guided bias in the
random seed of the sampling chain simplifies the denoising process for predictive tasks, decreasing
the number of denoising steps and improving inference speed.

2 RELATED WORKS

2.1 DIFFUSION MODELS

Motivated by Langevin Dynamics (Welling & Teh, 2011), Denoising Diffusion Probabilistic Models
(DDPM) are proposed to generate images from random Gaussian noise based on a Markov chain (Ho
et al., 2020). Denoising Diffusion Implicit Models (DDIM) are then proposed with a non-Markov
chain (Song et al., 2020). Nichol & Dhariwal (2021) propose classifier guidance to generate images
from different classes. To avoid explicit classifier training, Ho & Salimans (2022) propose to sample
from a conditional and an unconditional model during inference. Liu et al. (2023b) proposes novel
conditional diffusion models that directly learn the diffusion processes between two distributions.
Latent diffusion (Rombach et al., 2022) is proposed to improve the inference efficiency by applying
diffusion models in the latent space. Except for generative tasks, diffusion models have also been
applied to discriminative tasks, such as classification (Han et al., 2022), segmentation (Baranchuk
et al., 2021), and object detection (Chen et al., 2022). However, these methods suffer from intensive
computation complexity and stochastic predictions from different random noises. In this paper,
we propose a biased DDPM and task-guided loss to address these challenges. DiffusionDet (Chen
et al., 2022) also localizes object bounding boxes from images, but their method is based on a
standard diffusion of the bounding box coordinates (a 4-dim space), whereas we modify the diffusion
model so that it can be directly applied to generate the localization map (image space). Our point
localization tasks also do not require scale information which is easier for annotation.

2.2 CROWD LOCALIZATION

Detection-based crowd localization methods first generate pseudo bounding boxes from point an-
notations (Liu et al., 2019b) and use object detection algorithms to detect individuals (Ren et al.,
2015). However, the performance of detection-based methods is limited since the bounding boxes
are not accurate. Density map-based methods are proposed with point annotations only during train-
ing (Wan et al., 2021). Idrees et al. (2018) and Gao et al. (2019) propose to predict sharp density
maps for better localization. However, the predicted maps are still blurry for high-density regions.
Therefore, postprocessing is required to find the local maximum. Moreover, the postprocessing is
sensitive to the hyperparameter. In recent years, point prediction-based methods have been pro-
posed to directly predict points (Song et al., 2021). Liang et al. (2022) propose a Transformer-based
architecture to predict points motivated by DETR (Carion et al., 2020). An improved initial query
selection method is proposed to further improve the performance in Liu et al. (2023a). Our proposed
method can effectively predict very sharp output which does not require complex postprocessing and
is robust to the hyperparameter.
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Figure 1: (a) and (b) are training and inference pipelines respectively of the proposed method.

2.3 HUMAN POSE ESTIMATION

Human pose estimation methods can be divided into two categories: top-down and bottom-up. To-
down methods first detect individuals in the image and then localize joints from the detected result
(He et al., 2017). Stacked hourglass networks (Newell et al., 2016) are proposed to extract multi-
scale features. HRNet (Sun et al., 2019) is designed for high-resolution representations. Bottom-up
methods detect individuals and their joints simultaneously (Cheng et al., 2020). Openpose (Cao
et al., 2021) is proposed to associate joints from the same person with part affinity fields. Besides,
Associate Embedding (Newell et al., 2017) is proposed to learn a specific embedding for each indi-
vidual. The proposed method is effective in further improving the performance by predicting sharper
joint heatmaps.

2.4 CELL LOCALIZATION

Detection-based methods are also used in cell localization (Paulauskaite-Taraseviciene et al., 2019).
However, the detection-based methods tend to miss cells in high-density regions. Therefore, the
counting performance is limited. Regression-based methods (Li et al., 2018) are proposed to ad-
dress this issue by predicting density maps instead of bounding boxes. However, the localization
performance is worse than detection-based methods since the predicted density maps are too blurry
to distinguish individual cells (Ciampi et al., 2022). Our proposed method can effectively improve
both cell counting and localization performance by utilizing diffusion models for sharp outputs.

3 METHODOLOGY

In this section, we briefly review diffusion models. and introduce enhancements for their application
to point localization tasks. Finally, the biased DDPM and task-guided loss are proposed to improve
inference speed and decrease stochastic effects of generative models. The pipeline of the proposed
method is shown in Figure 1.

3.1 DIFFUSION MODELS

Denoising Diffusion Probabilistic Models (DDPMs) are generative models that exploit Langevin
Dynamics to generate images from a Gaussian noise seed.

3.1.1 FORWARD DIFFUSION PROCESS

Consider an image sampled from a real data distribution x0 ∼ q(x). At step t this is mapped to noisy
image xt by addition of Gaussian noise ϵt ∼ N (0, βtI) to xt−1, where βt is the variance for step
t ∈ [1, T ]. The noisy image produced at step t is a sample from

xt =
√
ᾱt · x0 +

√
1− ᾱt · ϵ, (1)

where ᾱ =
∏t

i=1 αi, αi = 1− βi, and ϵ ∼ N (0, I).
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3.1.2 REVERSE DIFFUSION PROCESS

Given noisy images xT , a denoising network is trained to iteratively recover the clean images x0.
The reverse Markov chain is defined as

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

where µθ(xt, t) and Σθ(xt, t) are approximated by a denoising neural network. Instead of directly
predicting µθ(xt, t) and Σθ(xt, t), the network is trained to predict the noise at each time step, using
the loss

Ln = Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥2], (3)
where xt is generated with Equation 1. Once the denoising network is trained, the Markov chain
mean is computed with

µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
, (4)

while the covariance Σθ(xt, t) is assumed fixed (Ho et al., 2020). Finally, xt−1 is sampled using
Equation 2. See (Ho et al., 2020) for details.

3.2 DIFFUSION MODELS FOR POINT LOCALIZATION

While diffusion models are commonly used for image synthesis, we have found that they are also
able to generate conditioned sparse output, such as the map of head locations in the image of a crowd.
However, with standard diffusion, this has two challenges. First, around 1,000 steps are needed to
ensure the synthesis of images with sufficient quality for localization. We propose the biased DDPM,
which leverages biased Gaussian noise to significantly lower this requirement. Second, as illustrated
in Figure 4(b), the synthesized localization maps vary with the noise seed xT used to initialize
inference. To address this issue, we propose to decrease the stochasticity of the synthesized maps,
using additional task-guided regularization during the training of the DDPM network. We refer to
the model combining these contributions as the Task-Guided Biased Diffusion Model (TGBDM).

3.2.1 MOTIVATION AND OVERALL APPROACH

Given a crowd image, the goal of crowd localization is to produce a density map composed by a delta
function at each head location. This is usually done by a deep network that takes images as input
and outputs density maps of head locations (Wan et al., 2021). Crowd localization is a challenging
task because there are usually many heads in a crowd image, see e.g. Figure 2, frequently resulting
in low accuracy maps. We hypothesize that the problem can be addressed by using a DDPM to
produce a higher quality density map, conditioned on the lower quality one output by the classic
approach. This, however, poses two challenges. First, DDPMs require many iterations to produce
a denoised image, particularly for very sparse images like density maps. Second, the outcome of
the DDPM denoising process usually varies depending on the random seed used to initialize it. In
the context of localization, this means that the output density map has some stochasticity around the
localization ground truth. Ideally, this stochasticity should be small.

In this work, we propose to overcome these two problems with the approach of Figure 1. An initial
density map is produced by a conventional crowd localization network. This initial prediction is
used to condition the denoising DDPM. To improve inference efficiency, it is also used as a bias
term in the forward diffusion process, leading to the biased DDPM presented in Section 3.2.2. This
uses the binary ground truth localization map as x0, gradually generating noisy maps xt. A task-
guided loss, defined in Section 3.2.3, is used to train the denoising network so as to be less sensitive
to the stochasticity of the random seed. At inference, the biased Gaussian noise is used as input and
the position map prediction is gradually generated by the reverse diffusion process.

3.2.2 BIASED DDPM

To increase the inference speed of diffusion models for localization tasks, we propose to add biased
Gaussian noise during the forward diffusion process. Rather than Gaussian noise ϵt ∼ N (0, βtI),
we propose to sample Gaussian noise from ϵ̃t ∼ N (x̃, βtI) where x̃ is an initial prediction, namely
the low-quality localization map produced by the classic crowd localization approach. Figure 3
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Figure 2: The effectiveness of using diffusion models for localization. The top row is the baseline
prediction and the bottom row is our method. The threshold is increasing from left to right. The
baseline predictions change dramatically while our prediction is more robust to the threshold. Note
that the red crosses indicate the ground-truth and the white circles are predictions.
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Figure 3: The comparison between DDPM and biased DDPM.

shows the mean of the noisy image xt over diffusion steps. The traditional DDPM produces samples
of decreasing mean, converging to zero mean Gaussian noise. The introduction of the bias term x̃
constrains the mean of xt to be closer to that of x0, simplifying the denoising process and decreasing
the number of timesteps required.

Forward Diffusion Process in Biased DDPM In the biased DDPM, the noise is defined as ϵ̃t ∼
N (x̃, βtI). Using the standard reparameterization trick leads to the forward diffusion process

q(xt|xt−1) = N (xt;
√
1− βtxt−1 +

√
βtx̃, βtI), (5)

where x̃ is the initial density map prediction. This results in the noisy image at timestep t

xt =
√
αtxt−1 +

√
1− αtx̃ +

√
1− αtϵt−1

=
√
αt(

√
αt−1xt−2 +

√
1− αt−1x̃ +

√
1− αt−1ϵt−2) +

√
1− αtx̃ +

√
1− αtϵt−1

=
√
αtαt−1xt−2 + (

√
αt(1− αt−1) +

√
1− αt)x̃ +

√
αt(1− αt−1)ϵt−2 +

√
1− αtϵt−1

=
√
αtαt−1xt−2 + (

√
αt(1− αt−1) +

√
1− αt)x̃ +

√
1− αtαt−1ϵ̄t−2

= . . .

=
√
ᾱtx0 + γtx̃ +

√
1− ᾱtϵ.

(6)
where ᾱ =

∏t
i=1 αi, αi = 1− βi, ϵi, ϵ̄i, ϵ ∼ N (0, I) and

γt =
√
1− αt +

√
αt(1− αt−1) + ...+

√
αt · · ·α2(1− α1) =

t∑
j=1

√
(1− αj)

∏t

i=j+1
αi.

(7)
Please refer to the appendix for the full derivation. It follows that it is possible to sample xt at an
arbitrary timestep with

q(xt|x0) = N (xt;
√
ᾱtx0 + γtx̃, (1− ᾱt)I). (8)
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(a) with task loss (b) without task loss

Figure 4: The comparison of stochastic sampling with or without task loss.

Figure 3(c), shows a visualization of γt. When compared to the standard DDPM, the mean of the
noisy samples is influenced by x̃. This has initially zero weight but quickly becomes predominant.
Note that the weight

√
ᾱt of x0 decreases to zero. Hence, while in the early iterations, the mean of the

diffusion process is determined by the groundtruth image x0, in the later iterations it is determined
by the initial prediction x̃.

Reverse Diffusion Process of the Biased DDPM The reverse diffusion process of the biased DDPM
is similar to that of the standard DDPM, with the exception that random seeds are sampled from
xT ∼ N (γT x̃, I) instead of N (0, I), as shown in Figure 1(b).

3.2.3 TASK-GUIDED LOSS

We propose a task-guided loss to reduce the variability of the reconstructed localization maps with
the noise seed xT . This leverages the fact that, given the predicted noise ϵθ(xt, t), the groundtruth
image can be reconstructed with

x̃0 =
1√

1− ᾱt
(xt −

√
ᾱtϵθ(xt, t)). (9)

The task-guided loss Lt(x̃0, x0) is added to minimize the stochasticity of the reconstructed samples.
This is a task-specific loss. For crowd localization and cell localization, we use the Generalized Loss
of Wan et al. (2021) while for human pose estimation, the MSE loss is used (Ding et al., 2022). The
overall loss function is L = Ln + λLt. When the this task-guided loss is used to train the biased
DDPM, we refer to the model as Task-Guided Biased Diffusion Model (TGBDM).

4 EXPERIMENTS

In this section, we present the results of an experimental evaluation of the TGBDM. We first discuss
the experimental setting and datasets used for evaluation. Then, we ablate the efficacy of the pro-
posed components: biased DDPM and task-guided loss. Finally, we visualize the crowd localization
maps produced by the TGBDM and compare to state-of-the-art algorithms for three localization
tasks: crowd localization, human pose estimation, and cell localization.

4.1 SETTINGS

Datasets: All crowd localization experiments use the NWPU-Crowd (Wang et al., 2020b) and UCF-
QNRF (Idrees et al., 2018) datasets. NWPU-Crowd is the largest benchmark for crowd counting
and localization. It contains 3,106 training images, 500 validation images, and 1,500 testing images.
UCF-QNRF is the most widely used dataset for crowd localization with 1,535 high-resolution im-
ages (1,201/334 for training/testing). For human pose estimation, we use the popular CrowdPose
(Li et al., 2019) dataset, which contains 20,000 images. For cell localization, the most recent and
dense dataset, the Nuclei dataset of Sirinukunwattana et al. (2016), is used.

Metrics: Following Wan et al. (2021), Precision, Recall, and F-measure are used for NWPU-Crowd
and Precision, Recall, and AUC for UCF-QNRF. Following Li et al. (2019), Average Precision (AP)
and Average Recall (AR) are used to evaluate human pose estimation. For cell counting, evaluation
is based on Mean Absolute Error (MAE), Grid Average Mean Error (GAME), and mean Average
Precision (mAP) (Ciampi et al., 2022).
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Figure 5: (a) The effectiveness of using diffusion models for localization. (b) AUC v.s. λ on NWPU-
Crowd validation set. (c) (d) The performance with different timesteps with/without bias. Biased
DDPM achieves better performance with a small timestep while standard DDPM requires more
timesteps.

Table 1: Comparison with state-of-the-art crowd localization algorithms on NWPU-Crowd dataset.

Annotation Method Validation Test

Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑ F1 ↑

Box
Faster RCNN (Ren et al., 2015) 0.964 0.038 0.073 0.958 0.035 0.067
TinyFaces (Hu & Ramanan, 2017) 0.543 0.666 0.598 0.529 0.611 0.567
TopoCount (Abousamra et al., 2021) - - - 0.695 0.687 0.691

Point

GPR (Gao et al., 2019) 0.610 0.522 0.563 0.558 0.496 0.525
RAZ Loc (Liu et al., 2019a) 0.692 0.569 0.625 0.666 0.543 0.598
AutoScale loc (Xu et al., 2022) 0.701 0.638 0.668 0.673 0.574 0.620
Crowd-SDNet (Wang et al., 2021b) - - - 0.651 0.624 0.637
CLTR (Liang et al., 2022) 0.739 0.713 0.726 0.694 0.676 0.685
GL (Wan et al., 2021) - - - 0.800 0.562 0.660
GL + TGBDM 0.766 0.726 0.745 0.805 0.670 0.731

Network architecture and training: We adopt the UNet commonly used to implement DDPMs
and follow the guided diffusion model (Dhariwal & Nichol, 2021). We set the number of channels
32 for acceleration. We use Adam optimizer with a learning rate of 1e-4. λ is set to 1 according
to the experiment shown in 5(b). The initial crowd localization map is produced by the generalized
loss (GL) method of Wan et al. (2021). This is a state-of-the-art approach for localization, as shown
in Tables 1 and 2. We will refer to this method as the baseline in what follows. The initial density
map is concatenated with the noisy image for conditioning (Dhariwal & Nichol, 2021).

4.2 ABLATION STUDIES

4.2.1 EFFECTIVENESS OF USING DIFFUSION MODELS FOR LOCALIZATION

We start by verifying the effectiveness of diffusion models for localization. The main limitation of
classical methods is the smoothness of the predicted localization maps. Two post-processing steps
are required to generate the final locations: a search for local maximum responses and a filtering of
the predicted points below a threshold. Most methods are quite sensitive to this threshold. Figure 2
compares the crowd locations of the proposed TGBDM (bottom row) to those of the GL baseline
(top row), for various thresholds. The maps predicted by the TGBDM are much more robust to the
threshold value. Figure 5(a) shows that the AUC of the TGBDM is significantly superior to that of
the GL method for all threshold values and much more insensitive to the choice of threshold. Its
performance is between 4 and 10 points better than that of the baseline.

4.2.2 MODEL COMPONENTS

We next evaluate the effectiveness of the TGBDM components. Table 3 compares various methods.
The baseline is the GL method used to produce the initial predictions. GL + DDPM uses a stan-
dard DDPM to refine the GL predictions. This uses the common approach to condition DDPMs,

Table 2: Comparison with state-of-the-art crowd localization algorithms on UCF-QNRF dataset.
Method Precision ↑ Recall ↑ F1 ↑
CL (Idrees et al., 2018) 0.758 0.598 0.668
LCFCN (Laradji et al., 2018) 0.779 0.524 0.627
LSC-CNN (Sam et al., 2020) 0.758 0.747 0.753
AutoScale loc (Xu et al., 2022) 0.813 0.758 0.784
TopoCount (Abousamra et al., 2021) 0.818 0.790 0.803
CLTR (Liang et al., 2022) 0.822 0.798 0.810
GL (Wan et al., 2021) 0.782 0.748 0.764
GL + TGBDM 0.833 0.826 0.835
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Table 3: The effectiveness of different components on NWPU-Crowd validation set.

Method NWPU-Crowd

Precision ↑ Recall ↑ F1 ↑ Avg. dist. ↓
GL 0.821 0.605 0.697 -
GL + DDPM 0.722 (9e-4) 0.448 (9e-4) 0.553 (6e-4) 27.4
GL + DDPM + task bias 0.650 (8e-4) 0.593 (1e-3) 0.620 (1e-3) 23.5
GL + DDPM + task loss 0.810 (8e-4) 0.682 (7e-4) 0.741 (6e-4) 8.5
GL + TGBDM (ours) 0.766 (7e-4) 0.726 (5e-4) 0.745 (4e-4) 7.9

Table 4: Comparison with state-of-the-art human pose estimation algorithms on CrowdPose dataset.
Methods AP ↑ AP50 ↑ AP75 ↑ AR ↑ AR50 ↑ AR75 ↑ APeasy ↑ APmedium ↑ APhard ↑

Bottom-up
OpenPose (Cao et al., 2021) - - - - - - 62.7 58.7 32.3
HigherHRNet (Cheng et al., 2020) 65.9 86.4 70.6 - - - 73.3 66.5 57.9
HigherHRNet Multi-scale (Cheng et al., 2020) 67.6 87.4 72.6 - - - 75.8 68.1 58.9
SPM (Nie et al., 2019) 63.7 85.9 68.7 - - - 70.3 64.5 55.7
DEKR (Geng et al., 2021) 65.7 85.7 70.4 - - - 73.0 66.4 57.5
DEKR Multi-scale (Geng et al., 2021) 67.0 85.4 72.4 - - - 75.5 68.0 56.9
PINet (Wang et al., 2021a) 68.9 88.7 74.7 - - - 75.4 69.6 61.5
PINet Multi-scale (Wang et al., 2021a) 69.9 89.1 75.6 - - - 76.4 70.5 62.2

Top-down
Mask R-CNN (He et al., 2017) 57.2 83.5 60.3 65.9 89.5 69.4 69.4 57.9 45.8
AlphaPose(Fang et al., 2017) 61.0 81.3 66.0 67.6 86.7 71.8 71.2 61.4 51.1
Simple baseline (Xiao et al., 2018) 60.8 81.4 65.7 67.3 86.3 71.8 71.4 61.2 51.2
CrowdPose (Li et al., 2019) 66.0 84.2 71.5 72.7 89.5 77.5 75.5 66.3 57.4
OPEC-Net (Qiu et al., 2020) 70.6 86.8 75.6 - - - - - -
HRNet (Sun et al., 2019) 71.3 91.1 77.5 - - - 80.5 71.4 62.5
HRNet† (Sun et al., 2019) 72.8 92.1 78.7 - - - 81.3 73.3 65.5
TransPose-H (Yang et al., 2021) 71.8 91.5 77.8 75.2 92.7 80.4 79.5 72.9 62.2
HRFormer-B (Yuan et al., 2021) 72.4 91.5 77.9 75.6 92.7 81.0 80.0 73.5 62.4
HRFormer-B + TGBDM 73.6 92.5 79.8 76.7 93.1 82.2 81.1 74.4 63.6
I2R-Net (Ding et al., 2022) 77.4 93.6 83.3 80.3 94.5 85.5 83.8 78.1 69.3
I2R-Net + TGBDM 77.8 93.5 84.2 80.7 94.7 86.0 84.2 78.6 69.7

where the conditioning GL localization map is simply concatenated with the noisy image. The
table shows that standard conditioning does not work for localization, even degrading the perfor-
mance of GL. Introducing the bias of Section 3.2.2 (GL+DDPM+task bias) substantially improves
the DDPM refinement but not enough to recover the original GL performance. Adding the task loss
of Section 3.2.3 without bias (GL+DDPM+task loss) produces even larger gains, outperforming GL.
However, the best results are obtained when bias and task loss are combined (TGBDM), leading to
a significant gain over GL (F-1 score of 0.745 v.s. 0.697). In addition, the variances (in braces) are
smaller with task loss, showing that the latter reduces the stochastic effect of diffusion models.

To better understand the difference between predictions obtained with different seeds, we compute
the average distance (Avg. dist.) between two predicted point sets. The correspondence between
the point sets is computed with bipartite graph matching and the average distance between corre-
sponding points used to measure the difference between predictions. Table 3 shows that the average
distance decreases dramatically when the task-guided loss is used. Figure 4 visualizes predictions
with and without task-guided loss. Red crosses and blue circles are generated with two different
seeds. The predictions generated with task-guided loss are much more consistent, illustrating how
the loss reduces the effects of seed stochasticity.

4.2.3 CONVERGENCE SPEED

Table 3 shows that methods with task bias usually have higher recall and F1 score, indicating they
detect more heads in the crowd. In addition, as shown in Figures 5(c) and 5(d), the biased DDPM
only requires 100 time steps to achieve its best performance, far less than GL + DDPM , which
requires 300 steps and never reaches similar performance. The biased DDPM mostly increases
recall over time. Further increasing the time steps fails to improve performance because precision
decreases. The localization maps have more peaks above threshold, but their localization is less
precise. This is likely because as the head density increases, there are more interactions between
adjacent peaks and it is difficult to maintain the same precision. Interestingly, the same does not
happen with the standard DDPM, for which recall never increases. It seems that, with standard
conditioning, the DDPM is not able to create more complex crowd scenes, just to refine the precision
of the initial head locations. It localizes much fewer heads with higher precision. These observations
are also consistent with the comparison of the DDPM and biased DDPM in Figure 3. For the biased
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Table 5: Comparison with state-of-the-art cell localization algorithms on Nuclei dataset.
Methods MAE ↓ GAME (L=1) ↓ GAME (L=2) ↓ GAME (L=3) ↓ GAME (L=4) ↓ mAP ↑
S-UNet (Falk et al., 2019) 62.4 66.9 75.1 95.3 138.4 66.8
D-CSRNet (Li et al., 2018) 37.3 45.7 58.2 77.6 100.5 27.7
FRCNN (Ren et al., 2015) 96.5 103.8 112.6 133.9 168.2 57.9
GL (Wan et al., 2021) 32.4 36.7 50.8 77.2 120.9 71.1
GL + TGBDM 31.8 34.2 46.3 69.0 111.4 74.5

image baseline ours image baseline ours

(a) pose estimation (b) cell localization

Figure 6: Visualization of (a) pose estimation and (b) cell localization. The baseline predictions are
smooth while our predictions are sharper. Please zoom in for more details.

DDPM, the mean of xt approaches the mean of x0 for larger time steps, making the prediction easier.
For the DDPM the mean decreases to 0, which makes the prediction harder.

4.3 COMPARISON WITH STATE-OF-THE-ART

4.3.1 CROWD LOCALIZATION

For crowd localization, we compare the TGBDM with state-of-the-art algorithms on two datasets.
Since the GL + TGBDM method already improves on the state-of-the-art method GL (Wan et al.,
2021), which is used to produce the initial predictions, it is not suprising that it achieves state-of-
the-art results on this task. This is shown in Table 1 for NPWU-Crowd and Table 2 for UCF-QNRF.

4.3.2 HUMAN POSE ESTIMATION

Table 4 compares the localization performance of the TGBDM to previous methods for pose estima-
tion on the CrowdPose dataset. We apply the TGBDM with initial predictions from two state-of-the-
art methods: HRFormer-B Yuan et al. (2021) and I2R-Net Ding et al. (2022). Performance improves
in both cases, establishing a new state-of-the-art for the combination of I2R-Net and TGBDM. We
further visualize the prediction in Figure 6 (a) where our prediction is sharper than the baseline.

4.4 CELL LOCALIZATION

Cell localization is a challenging localization task since the background can contain similar textures
to those of foreground objects. Moreover, datasets are small, e.g. Nuclei only contains 100 im-
ages, usually not enough to train an effective diffusion model. Nevertheless, as shown in Table 5,
the combination of GL + TGBDM achieves a new state-of-the-art on this task, significantly out-
performing classical approaches like the segmentation-based S-UNet, density-based D-CSRNet (Li
et al., 2018), detection-based FRCNN (Ren et al., 2015), and GL itself, which is based on distribu-
tion matching (Wang et al., 2020a). As shown in Table 5, GL + TGBDM achieves the best MAE,
GAME, and MAP, confirming its effectiveness for challenging localization tasks even with limited
training examples. A visualization is shown in Figure 6 (b).

5 CONCLUSION

In this work, we proposed the TGBDM model for accurate and efficient point localization. This
combines a biased DDPM, which improves inference speed and accuracy by simplifying the reverse
diffusion process, and a task-guided loss, which decreases the variance of predictions from differ-
ent sampling seeds. We demonstrated that, with these contributions, diffusion processes become
a powerful mechanism to refine the predictions of state-of-the-art point localization approaches,
producing predictions that are both sharper and can recover more points. The effectiveness of the
TGBDM model has been demonstrated with experiments on three challenging point localization
tasks. Future work will concentrate on enhancing efficiency since the primary limitation of our
method is its computational demand.
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A APPENDIX

Full derivation of xt.

xt =
√
αtxt−1 +

√
1− αtx̃ +

√
1− αtϵt−1

=
√
αt(

√
αt−1xt−2 +

√
1− αt−1x̃ +

√
1− αt−1ϵt−2) +

√
1− αtx̃ +

√
1− αtϵt−1

=
√
αtαt−1xt−2 + (

√
αt(1− αt−1) +

√
1− αt)x̃ +

√
αt(1− αt−1)ϵt−2 +

√
1− αtϵt−1,

(10)
where ϵi ∼ N (0, I). For two independent Gaussians r.v.s, ν1 ∼ N (0, σ2

1I) and ν2 ∼ N (0, σ2
2I),

their sum is another Gaussian r.v. ν3 ∼ N (0, (σ2
1 + σ2

2)I). In other words, if ϵ1, ϵ2, ϵ3 are indepen-
dent Gaussians N (0, I), then σ1ϵ1 + σ2ϵ2 =

√
σ2
1 + σ2

2ϵ3. Therefore, we have

xt =
√
αtαt−1xt−2 + (

√
αt(1− αt−1) +

√
1− αt)x̃ +

√
1− αtαt−1ϵ̄t−2

= . . .

=
√
ᾱtx0 + γtx̃ +

√
1− ᾱtϵ,

(11)

where ϵ̄i, ϵ ∼ N (0, I), ᾱ =
∏t

i=1 αi, and

γt =
√
1− αt +

√
αt(1− αt−1) + ...+

√
αt · · ·α2(1− α1) =

t∑
j=1

√
(1− αj)

∏t

i=j+1
αi.

(12)
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