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Polynomial Convergence of Bandit No-Regret Dynamics in Congestion Games
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Abstract
We present an online learning algorithm in the
bandit feedback model that, once adopted by all
agents of a congestion game, results in game-
dynamics that converge to an ϵ-approximate Nash
Equilibrium in a polynomial number of rounds
with respect to 1/ϵ, the number of players and
the number of available resources. The proposed
algorithm also guarantees sublinear regret to any
agent adopting it. As a result, our work answers
an open question from (Cui et al., 2022) and ex-
tends the recent results of (Panageas et al., 2023)
to the bandit feedback model. Our algorithm can
be implemented in polynomial time for the impor-
tant special case of Network Congestion Games
on Directed Acyclic Graphs (DAG) as barycentric
spanners can efficiently be constructed in this case.
We complete our work by further proposing a nat-
ural, exact, 1-barycentric spanner construction for
DAGs.

1. Introduction
Congestion games represent a class of multi-agent games
where n self-interested agents compete over m resources.
Each agent chooses a subset of these resources, and their
individual costs depend on the utilization of each selected
resource (i.e., the number of other agents utilizing the same
resource). For instance, in Network Congestion Games, a
graph is given, and each agent i aims to travel from an initial
vertex si to a designated destination vertex ti. The agent
must then select a set of edges (i.e resources) constituting
a valid (si, ti)-path in the graph, while also trying to avoid
congested edges.

Congestion games have been extensively studied over the
years due to their wide-ranging applications (Koutsoupias
& Papadimitriou, 1999; Roughgarden & Tardos, 2002;
Christodoulou & Koutsoupias, 2005; Fotakis et al., 2005;
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de Keijzer et al., 2010; Roughgarden, 2009). They always
admit a Nash Equilibrium (NE) which is a steady state at
which no agent can decrease their cost by unilaterally de-
viating to another selection of resources (Rosenthal, 1973).
A Nash equilibrium is a static solution concept meaning
that it does not describe how agents can end up in such an
equilibrium state nor it indicates how agents should update
their strategies. It is well-known that better response dy-
namics, in which agents sequentially update their resource
selection, converges to a Nash Equilibrium and achieves
accelerated rates for interesting special cases of congestion
games (Chien & Sinclair, 2007; Gairing et al., 2004).

Despite these positive convergence results, better response
dynamics admit several drawbacks. In case of simultane-
ous updates by agents, better response dynamics may not
converge to NE. Moreover a better response comes with the
assumption that the agents are aware of the loads of all the
available resources (Chien & Sinclair, 2007). Finally, better
response does not come with any kind of guarantees to in-
dividual agents, which raises concerns as to why a selfish
agent should behave according to best-response.

Fortunately the online learning framework (Hazan, 2019)
provides a very concrete answer as to what natural strategic
behavior means (Even-Dar et al., 2009). There are vari-
ous no-regret algorithms that a selfish agent can adopt in
the context of repeated game-playing in order to guarantee
that no matter the actions of the other agents, the agent
suffers a cost comparable to the cost of the best fixed ac-
tion (Arora et al., 2012; Zinkevich, 2003) chosen in hind-
sight. The guarantee holds even under a bandit feedback
model in which the agent only learns the total cost of its
selected actions (resource-selection in the context of conges-
tion games) (Auer et al., 2002; Audibert & Bubeck, 2009).
Due to the merits of such no-regret schemes, there exists
a long line of research providing no-regret algorithms un-
der bandit feedback in the context of congestion games,
which are studied under the name of online routing or lin-
ear bandits in the online learning literature (Awerbuch &
Kleinberg, 2004; Dani et al., 2007a; György et al., 2007;
Bubeck et al., 2012; Cesa-Bianchi & Lugosi, 2012; Kalai &
Vempala, 2005; Neu & Bartók, 2013; Audibert et al., 2014).

Despite the long interest in bandit online learning algorithms
for congestion games, the convergence to Nash Equilibrium
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of such bandit no-regret learning algorithms is not as well
explored. The broad question under consideration here is
whether or not the uncoordinated selfish behavior of agents
can converge to equilibrium. In this area, the seminal work
of (Blum et al., 2006) studied the context of non-atomic
congestion games, i.e., infinitesimal agents, and established
that the behavior of any no-regret learning algorithm con-
verges in the average sense to a Wardrop equilibrium. The
non-atomic setting has the advantage of convex landscapes
and the fact that Coarse Correlated and Wardrop equilibria
coincide. The same does not hold in atomic games (i.e finite
agents).

To the best of our knowledge (Cui et al., 2022) were the
first to provide an update rule (performing under bandit
feedback) that once adopted by all agents of an atomic
congestion game, the resulting strategies converge to an
ϵ-approximate Nash Equilibrium with rate polynomial in n,
m and 1/ϵ. However their method does not guarantee the
no-regret property. As a result, (Cui et al., 2022) asked the
following question:

Is there a no-regret algorithm, in the bandit feedback model,
that once adopted by all agents, results in strategies that

converge to an ϵ-approximate Nash Equilibrium in
poly(n,m, 1/ϵ) rounds?

In their recent work (Panageas et al., 2023) provided a pos-
itive answer for the semi-bandit feedback model in which
the agents learn the cost of every single selected resource.
In contrast, under bandit feedback, the agents only learns
the overall, total sum, cost of the selected resources and
thus does not have access to the more granular information
accessible in semi-bandit feedback.

1.1. Our Contribution and Techniques

The main contribution of our work consists in providing a
positive answer to the open question of (Cui et al., 2022).
More precisely, we provide an online learning algorithm,
called Online Gradient Descent with Caratheodory Explo-
ration (BGD− CE), that simultaneously provides both re-
gret guarantees and convergence to Nash Equilibrium.

Informal Theorem There exists an online learning al-
gorithm (BGD− CE) that performs under bandit feed-
back and guarantees O(m2.8T 4/5) regret to any agent that
adopts it. Moreover if all agent adopt BGD− CE, then the
resulting strategies converge to an ϵ-Nash Equilibrium after
O(n13.5m13/ϵ5) steps.

Our proposed online learning algorithm additionally im-
proves on the convergence rate of the algorithm of (Cui
et al., 2022). The table 1 summarizes the regret bounds
and the convergence results of the various online learning
algorithms proposed over the years.

Table 1. Comparison with previous related work. ⋆A regret bound
of O

(
m3T 3/4

)
can be obtained under a different choice of step

size and exploration coefficients. (B:Bandit, SB: Semi-Bandit)
Regret Gurantees and Convergence rates

Method Regret Guarantees Convergence to NE Feedback
(Auer et al., 2002) O(

√
2mT ) No B

(Awerbuch & Kleinberg, 2004) O(m5/3T 2/3) No B
(Dani et al., 2007a) O(m1.5

√
T ) No B

(Cui et al., 2022) Not Available O(n11m12/ϵ6) B
(Panageas et al., 2023) O(m2T 4/5) O(n6m7/ϵ5) SB
BGD-CE (This Work) O(m2.8T 4/5)⋆ O(n13.5m13/ϵ5) B

All the aforementioned online learning algorithms concern
general congestion games in which the strategy spaces of
the agents do not admit any kind of combinatorial struc-
ture. As a result, all of the above online learning algorithms
require exponential time with respect to the number of re-
sources. For the important special case of Network Conges-
tion Games over DAGs, there is a combinatorial structure
that allows for polynomial time schemes as in (Awerbuch
& Kleinberg, 2004; Fotakis et al., 2020; 2012; Angelidakis
et al., 2013; Fotakis et al., 2015). We provide a variant of
our algorithm that preserves the above guarantees while
running in polynomial time with respect to the number of
edges.

Informal Theorem For Network Congestion games in
Acyclic Directed Graphs (DAGs), Online Gradient Descent
with Caratheodory Exploration, can be implemented in poly-
nomial time.

The above result follows from strategy spaces admitting
polynomial size descriptions in this setting. We further
exploit the specific structure of DAGs to compute exact
1-barycentric-spanners, which as noted in (Awerbuch &
Kleinberg, 2004; Cesa-Bianchi & Lugosi, 2012) are not triv-
ial to obtain for DAGs. We underline that exact spanners are
not necessary, and the approximate method of (Awerbuch
& Kleinberg, 2004) is perfectly suitable. However, our ap-
proach is simple, more efficient, and can be of independent
interest.

Our Techniques The fundamental difficulty in designing no-
regret online learning algorithms under bandit feedback is
to guarantee that each resource is sufficiently explored. Un-
fortunately, standard bandit algorithms such as EXP3 (Auer
et al., 2002) result in regret bounds of the formO(2m/2

√
T ),

that scale exponentially with respect to m. However, a long
line of research in combinatorial bandits has produced algo-
rithms with a regret polynomially dependent on m (Awer-
buch & Kleinberg, 2004; Dani et al., 2007a; György et al.,
2007; Bubeck et al., 2012; Cesa-Bianchi & Lugosi, 2012;
Kalai & Vempala, 2005; Neu & Bartók, 2013; Audibert
et al., 2014). These algorithms, in order to overcome the ex-
ploration problem, use various techniques that can roughly
be categorized two camps, simultaneous exploration ver-
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sus alternating explore-exploit, as described by (Abernethy
et al., 2009). However, to the best of our knowledge, none
of these algorithms have been shown to converge to NE in
congestion games once adopted by all agents.

Our online learning algorithm, guaranteeing both no-regret
and convergence to equilibrium, is based on combining On-
line Gradient Descent (Zinkevich, 2003) with a novel explo-
ration scheme, much like (Flaxman et al., 2004). Our explo-
ration strategy is based on coupling the notion of barycentric
spanners (Awerbuch & Kleinberg, 2004) with the notion of
Bounded-Away Polytopes proposed by (Panageas et al.,
2023) for the semi-bandit case. More precisely, (Panageas
et al., 2023) introduced the notion of µ-Bounded Away
Polytope which corresponds to the description polytope of
the strategy space (convex hull of all pure strategies) with
the additional constraint that each resource is selected with
probability at least µ > 0. Projecting on this polytope en-
sures that the variance of the unobserved cost estimators
remains bounded. In order to capture bandit estimators,
we extend the notion of µ-Bounded Away Polytope to de-
note the subset of the description polytope for which each
point admits a decomposition with least µ weight on a pre-
selected barycentric spanner B.

This technique of projecting on µ-Bounded polytopes
closely ressembles the mixing strategies employed in on-
line learning schemes that have alternating explore-exploit
rounds. In those strategies, a fixed measure is added to
bias the algorithm’s chosen strategy. The projection on µ-
Bounded polytopes, however, scales the point before adding
a bias, and, in some rounds, does not alter the point. It is
therefore a mix of simultaneous and alternating exploration,
depending on the round.

Finally, in order to provide a polynomial-time implemen-
tation of OGD− CE for Network Congestion Games on
Directed Acyclic Graphs we need exploit its well disposed
combinatorial structure. In Section C.2, we propose a novel
construction of barycentric spanners for DAGs that outputs a
1-barycentric spanner in polynomial time (see Algorithm 4)
and yields an efficient selfish routing scheme that converges
to an equilibrium.

2. Presentation of our formal result
In this section, we provide the necessary notation on con-
gestion games and the bandit feedback model and to present
the formal version of our result.

2.1. Congestion games

In congestion games, there exist a set of n selfish agent and a
set of m resources E. Each agent i ∈ [n] can select a subset
of the resources pi ∈ Si ⊆ 2E . A selection of resources
pi ∈ Si is also called a pure strategy while the set of all pure

strategies Si is also called strategy space. A selection of
pure strategies profiles p = (p1, . . . , pn) ∈ S1×· · ·×Sn is
called joint strategy profile and the set S := S1 × · · · × Sn
is called joint strategy space. For a joint strategy profile
p ∈ S, we also use the notation p = (pi, p−i) to isolate
(only in syntax) the strategy pi of agent i from the rest of
the strategies p−i of the other agents.

Given p = (p1, . . . , pn) ∈ S, the load of resource e ∈ E,
denoted as ℓe(p), equals ℓe(p) =

∑n
i=1 1 (e ∈ pi) . and

corresponds to the number of agents who have selected
e in their pure strategy. Each resource is additionally
associated with a non-negative, non-decreasing conges-
tion cost function ce : N → [0, cmax] that associates a
cost ce(ℓ) for a given load ℓ. For a joint strategy pro-
file p = (pi, p−i) ∈ S, the cost of agent i ∈ [n] equals,
Ci(pi, p−i) =

∑
e∈pi

ce(ℓe(pi, p−i)) and captures the con-
gestion cost ce(ℓe(p)) of using resource e ∈ pi.
Definition 2.1 (Nash equilibrium). A joint strategy profile
p = (p1, . . . , pn) ∈ S is called an ϵ-approximate pure
Nash equilibrium if and only if for all agents i ∈ [n],
Ci(pi, p−i) ≤ Ci(p

′
i, p−i) + ϵ for any p′i ∈ Si

To simplify notation we note that a pure strategy pi ∈ Si

can also be viewed as a 0/1 vector xpi ∈ {0, 1}m. More-
over given a joint strategy profile p = (pi, p−i) ∈ Si, we
can construct a cost vector c(ℓ(p)) ∈ Rm where ce(ℓ(p)) =
ce(ℓe(pi, p−i)). Then the cost of agent i ∈ [n] can be
concisely described by an inner product as, Ci(pi, p−i) =∑

e∈pi
ce(ℓe(pi, p−i)) = ⟨c(ℓ(p)), pi⟩ .. An agent i ∈ [n]

can also select a probability distribution over its pure strate-
gies Si. Such a probability distribution πi ∈ ∆(Si) is
called a mixed strategy. Given joint mixed strategy pro-
file π = (πi, π−i), the expected cost of agent i, equals
Ci(πi, π−i) := Ep∼(πi,π−i) [Ci(p)]. The notion of Nash
Equilibrium provided in Definition 2.1 can be naturally ex-
tended in the context of mixed strategies.
Definition 2.2 (Mixed Nash equilibrium). A mixed joint
strategy profile π := (π1, . . . , πn) ∈ ∆(S1)× · · · ×∆(Sn)
is called an ϵ-approximate mixed Nash equilibrium if and
only if for all agents i ∈ [n], Ci(πi, π−i) ≤ Ci(π

′
i, π−i) +

ϵ for any π′
i ∈ ∆(Si).

2.2. Bandit Dynamics in Congestion Games

When a congestion game is repeatedly played over T rounds,
each agent i selects a new mixed strategy πt

i ∈ ∆(Si)
at each round t ∈ [T ] in their attempt to minimize their
overall cost. The only feedback received by agent i af-
ter picking pti is the cost Ci(p

t
i, p

t
−i). This limited feed-

back is referred to as bandit feedback (Cui et al., 2022).
This contrasts with the full information feedback where
the agents observes the cost of all the available resources
{ce(ℓ(pt)) : for all e ∈ E} (Hazan, 2019) and the
semi-bandit feedback setting where the agent observes the
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cost of each of the individual resources it has selected
{ce(ℓ(pt)) : for all e ∈ pti} (Panageas et al., 2023).

Each agent i ∈ [n] tries to selects the mixed strategies
πt
i ∈ ∆(Si) so as to minimize their overall cost over the T

rounds of play. Since the cost of the edges are determined by
the strategies of the other agents that are unknown to agent
i, the agent i can assume that the cost of each agents are
selected in an arbitrary and adversarial manner. Recalling
that the cost Ci(p

t
i, p

t
−i) is linear in pti, the problem at hand

is a particular instance of the Online Resource Selection
under Bandit Feedback (Audibert & Bubeck, 2009).

The template of Online Resource Selection under Bandit
Feedback is the following. Agent i picks a mixed strategy
πt
i ∈ ∆(Si). An adversary picks a cost vector ct ∈ Rm,

with ∥ct∥∞ ≤ cmax. Agent i samples a pure strategy pti ∼
πt
i and incurs cost lti = ⟨ct, pti⟩ . Agent i observes lti and

updates its distribution πt+1
i ∈ ∆(Si).

The agent’s goal is therefore to output a sequence of strate-
gies p1:Ti that minimize the incurred costs against any ad-
versarially chosen sequence of cost vectors c1:T where ct

can even depend on π1:t−1
i . The quality of a sequence of

play p1:Ti is measured in terms of regret, capturing its sub-
optimality with respect to the best fixed strategy.

Definition 2.3 (Regret). The regret of the sequence
p1:Ti with respect to the cost sequence c1:T equals
R
(
p1:Ti , c1:T

)
:=
∑T

t=1 ⟨ct, pti⟩ −minu∈Si

∑T
t=1 ⟨ct, u⟩ .

As already mentioned there are various online learning al-
gorithms that even under the bandit feedback model are
able guarantee sublinear regret almost surely. In the online
learning literature such algorithms are called no-regret.

Definition 2.4 (No-Regret). An online learning algorithm
A for Linear Bandit Optimization is called no-regret
if and only if for any cost vector sequence c1, . . . , cT ,
A produces a sequence of mixed strategies π1

i , . . . , π
T
i

(πt+1
i = A(l1i , . . . , lti)) such that with high probability
R
(
p1:Ti , c1:T

)
= o(T ).

2.3. Our Results

The main contribution of our work is the design of a no-
regret online learning algorithm under bandit feedback with
the property that when adopted by all agents of a congestion
game, leads to convergence to a Nash Equilibrium. The
no-regret property of our algorithm is formally stated and
established in Theorem 2.5 while its convergence properties
to Nash Equilibrium are presented in Theorem 2.6.

Theorem 2.5. There exists a no-regret algorithm, Bandit
Gradient Descent with Caratheodory Exploration (BGD-
CE) such that for any cost vector sequence c1, . . . , cT ∈
[0, cmax]

m and δ > 0, the regret R
(
p1:Ti , c1:T

)
:=

∑T
t=1

∑
e∈pt

i
cte −minp⋆

i ∈Si

∑T
t=1

∑
e∈p⋆

i
cte verifies

R
(
p1:Ti , c1:T

)
≤ Õ

(
m5.5c2maxT

4/5

√
log

1

δ

)

with probability 1− δ.

Theorem 2.6 (Converge to NE). Let π1, . . . , πT ∈ ∆(S1)×
. . .×∆(S1) the sequence of strategy profiles produced if all
agents adopt Bandit Gradient Descent with Caratheodory
Exploration (BGD-CE). Then for all T ≥ Θ

(
n13m13/ϵ5

)
,

1

T
E

[
T∑

t=1

max
i∈[n]

[
ci(π

t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]]
≤ ϵ.

We note that the exact same notion of best-iterate conver-
gence (as in Theorem 2.6) is considered in (Cui et al., 2022;
Leonardos et al., 2022; Ding et al., 2022; Anagnostides
et al., 2022c; Panageas et al., 2023). In Corollary 2.7 we
present a clearer interpretation of Theorem 2.6.

Corollary 2.7. In case all agents adopt BGD-CE for T ≥
Θ(m13m13/ϵ5) then with probability ≥ 1− δ,

• (1− δ)T of the strategy profiles π1, . . . , πT are ϵ/δ2-
approximate Mixed NE.

• πt is an ϵ/δ-approximate Mixed NE once t is sampled
uniformly at random in {1, . . . , T}

The running time of BGD− CE is exponential in general
congestion games for which the strategy space Si does not
admit any combinatorial structure. In Theorem 2.8 we estab-
lish that for Network Congestion Games in Directed Acyclic
Networks BGD− CE can be implemented in polynomial
time.

Theorem 2.8. For Network Congestion Games over DAGs,
BGD−CE (Algorithm 3) can be implemented in polynomial
time.

The appendix is organized as follows. In Section B we
present, BGD-CE (Algorithm 2) and explain the two main
ideas behind its design. In Section C we present the
polynomial-time implementation of BGD-CE (Algorithm 3)
for the special case of Network Congestion Games over
DAGs. Finally in Section D, we present the proofs for
establishing Theorem 2.6 and Theorem 2.8.
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A. Related work
A.1. Related Work

Online Learning and Nash Equilibrium Our work falls squarely within the recent line of research studying the convergence
properties of online learning dynamics in the context of repeated games (Piliouras et al., 2022; Anagnostides et al., 2022a;
Daskalakis et al., 2021; Anagnostides et al., 2022b; Farina et al., 2022; Hsieh et al., 2022; Zhou et al., 2018; Mertikopoulos
& Zhou, 2019; Cohen et al., 2017). Specifically (Heliou et al., 2017; Palaiopanos et al., 2017; Mertikopoulos & Zhou, 2019;
Zhou et al., 2018) establish asymptotic convergence guarantees for potential normal form games; congestion games are
known to be isomorphic to potential games (Monderer & Shapley, 1996). Most of the aforementioned works use techniques
from stochastic approximation and are orthogonal to ours. Furthermore, (Chen & Lu, 2016; Vu et al., 2021) study the
convergence properties of first-order methods in non-atomic congestion games; non-atomic congestion games capture
continuous populations and result in convex landscapes. On the other hand, atomic congestion games (the focus of this
paper) result in non-convex landscapes.

Bandits and Online Learning As already mentioned, congestion games have been studied within the realm of online
learning and bandits, where several no-regret algorithms have been proposed. The main difference between our and previous
works is that, once the previously proposed algorithms are adopted by all agents, the overall system only converges to a
Coarse Correlated Equilibrium and not necessarily to a Nash equilibrium as our algorithm guarantees (see (Panageas et al.,
2023)). The design of no-regret algorithms for this setting began with (Awerbuch & Kleinberg, 2004) where a O(T 2/3)
regret bound was achieved for linear bandit optimization against an oblivious adversary via introducing the notion of
barycentric spanners. Follow up work (McMahan & Blum, 2004; György et al., 2007) built on this to propose a O(T 3/4)
algorithms for linear bandits against adaptive adversaries. The optimal rates were then obtained by (Dani et al., 2007b)
who establish O(

√
T ) expected regret for the geometric hedge algorithm and closely followed by (Abernethy et al., 2009)

who achieved the same expected regret using self-concordant barriers. Both these optimal rates were obtained with barriers
(entropic or self-concordant) that diverge as points get close to the boundary of the strategy space. Unfortunately such
barriers significantly degrade convergence rates to equilibria so we instead use ℓ2 regularization in our work.

Relatively recent papers have focused on providing efficient algorithms with high-probability guarantees against adaptive
adversaries (Braun & Pokutta, 2016; Lee et al., 2020; Zimmert & Lattimore, 2022). See also (Cesa-Bianchi & Lugosi, 2012)
for a general framework on combinatorial bandits.

Existence and Equilibrium Efficiency In the context of congestion games, the problem of equilibrium selection and
efficiency has received a lot of interest. In (Koutsoupias & Papadimitriou, 1999), the notion of Price of Anarchy (PoA) was
introduced that captures the ratio between the worst-case equilibrium and the optimal path assignment. Later works provided
bounds on PoA (Roughgarden & Tardos, 2002; Christodoulou & Koutsoupias, 2005; Fotakis et al., 2005; de Keijzer et al.,
2010; Bhawalkar et al., 2014; Mavronicolas & Spirakis, 2001) for both atomic and non-atomic settings. Another line of work
has to do with the computational complexity of computing Nash equilibria in Network congestion games (Fabrikant et al.,
2004; Ackermann et al., 2008; Klimm & Warode, 2020). Notably in (Fabrikant et al., 2004) it was shown that computing a
Nash equilibrium in symmetric Network Congestion games can be done in polynomial time and also showed that in the
asymmetric case, computing a pure Nash equilibrium belongs to class PLS (believed to be larger class than P). Further
works appearred that investigate deterministic or randomized polynomial time approximation schemes for approximating a
Nash equilibrium (Fotakis et al., 2009; 2008; Caragiannis et al., 2011; 2012; Caragiannis & Fanelli, 2019; Caragiannis &
Jiang, 2023; Christodoulou et al., 2023; Giannakopoulos & Poças, 2023; Giannakopoulos et al., 2022; Kleer & Schäfer,
2021; Kleer, 2021; Audibert & Bubeck, 2009).

B. Bandit Online Gradient Descent with Caratheodory Exploration
In this section, we present our online learning algorithm for general congestion games, called Bandit Online Gradient
Descent with Caratheodory Exploration. The formal description of our algorithm lies in Section B.3 (Algorithm 2). We
begin the section by introducing two essential ingredients. In Section B.1 we present the notion of Implicit Description
Polytopes for Congestion Games and in Section B.2 the notion of Barycentric Spanners (Awerbuch & Kleinberg, 2004).

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Polynomial Convergence of Bandit No-Regret Dynamics in Congestion Games

B.1. Implicit Description and Strategy Sampling

The set of resources can be numbered such that E = {1, . . . ,m}. The latter allows for the strategy space Si to be embedded
in the vertices of the m dimensional hypercube. Indeed any pi ∈ Si can be described, with a slight abuse of notation, by the
vertex pi ∈ {0, 1}m where pie = 1 if and only if e ∈ pi. The following definition formalizes this embedding.
Definition B.1 (Implicit description polytope). For any element in Si, let pi ∈ {0, 1}m denote its encoding as a vertex in
the hypercube. The implicit description polytope Xi is given by the following convex hull

Xi := conv ({pi ∈ {0, 1}m, pi ∈ Si}) ,

Xi is a closed convex polytope so there exists Ai ∈ Rri×m and di ∈ Rri , for some ri ∈ N, such that

Xi = {x ∈ Rm, Aix ≤ di}

The polytope is therefore defined by the pair (Ai, di) and its size is given by ri and m.

This implicit description polytope is of interest because the strategy space Si corresponds to its extreme points. Moreover,
the set of distribution over the strategy space ∆(Si) is also captured by the polytope as shown by the following definition.
Definition B.2 (Marginalization). For any πi ∈ ∆(Si) we can associate a point xπi ∈ Xi defined as

xπi =
∑
pi∈Si

Pr
u∼πi

[u = pi] pi.

The reverse correspondence of obtaining a distribution πi ∈ ∆(Si) from a point xi ∈ Xi can also established thanks to a
result of Caratheodory (Carathéodory, 1907).
Definition B.3 (Caratheodory decomposition). Let xi ∈ Xi. By Caratheodory’s theorem, there exists m + 1 strategies
v1i , . . . v

m+1
i and scalars λ1, . . . , λm+1 such that

xi =

m+1∑
j=1

λjv
j
i (CD)

with λj ≥ 0 and
∑

j λj = 1. The set Ci =
{
(v1i , λ1), . . . , (v

m+1
i , λm+1)

}
is called a Caratheodory decomposition of xi

With the above, any point in Xi can be associated to a distribution that can be sampled easily.

B.2. Barycentric Spanners and Bounded Away Polytopes

This section introduces the important concept of barycentric spanners (Awerbuch & Kleinberg, 2004). We will leverage
barycentric spanners to ensure sufficient exploration of the resources set and hence guarantee low variance of the cost
estimators.
Definition B.4 (ϑ-spanners). A subset of independent vectors {b1, . . . , bs} ⊆ Xi, with s ≤ m, is said to be ϑ-spanner of
Xi, with ϑ ≥ 1, if, for all x ∈ Xi, there exists α ∈ Rs such that

x =

s∑
k=1

αkbk and α2
i ≤ ϑ2, for all k ∈ [s].

Such collections of vectors can always be found as shown by the following theorem.
Theorem B.5 (Existence of spanners ((Awerbuch & Kleinberg, 2004), Proposition 2.2)). Any compact set Xi ⊂ Rm admits
an O(1)-spanner.

We adopt barycentric spanners as a key ingredient in our algorithm. Since barycentric spanners essentially form a kind of
basis of the polytope Xi, we can introduce the basis polytope Di in the following defintion.
Definition B.6 (Basis polytope). Let Bi be the matrix whose columns are ϑ-barycentric spanners b1, . . . , bs of Xi. The
polytope defined as

Di = {α ∈ [−ϑ, ϑ]s, Biα ∈ Xi}
is referred to as the basis polytope.

10
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Polynomial Convergence of Bandit No-Regret Dynamics in Congestion Games

It is in this polytope that we can achieve fine control of norms necessary for our proofs, for this reason agents will operate
in their respective basis polytopes. Moreover to ensure sufficient exploration, the boundaries of the polytope need to be
avoided. More precisely, we introduce the notion of µ-Bounded-Away Basis Polytope that will be central for our proposed
algorithm.

Definition B.7. Let µ > 0 be an exploration parameter. The µ-Bounded-Away basis Polytope, denoted as Dµ
i , is defined as

Dµ
i ≜ (1− µ)Di +

µ

s
1. (1)

We remark that the µ-Bounded-Away Polytope Dµ
i is always non empty as it contains 1

s1, moreover, Dµ
i ⊆ Di. A simplified

version of this idea has been shown successful for the semi-bandit feedback model (Panageas et al., 2023) and it appeared in
(Chen et al., 2021) that used it in the context of online predictions with experts advice.

Equation (1) shows that any point αi ∈ Di admits a decomposition where 1
s1 appears with coefficient µ. Mapping back to

the implicit description polytope, this implies that the point xi = Biαi admits a decomposition that assigns a weight µ > 0
to bi =

1
|Bi|

∑
b∈Bi

b, which can be understood as the uniform distribution over the spanners. In fact, there is a tractable way
of obtaining this decomposition as evidenced by the following definition.

Definition B.8 (Shifted Caratheodory decomposition). Given a barycentric spanner Bi and the respective µ-bounded away
basis polytope Di, for any α ∈ Dµ

i , with α = (1− µ)z + µ
s1 for some z ∈ Di, the shifted Caratheodory decomposition of

x = Biα is given by

x = (1− µ)

 ∑
(p,λp)∈Ci

λp · p

+
µ

|Bi|
∑
b∈Bi

bi

where Ci is the Caratheodory decomposition of Biz ∈ Xi.

In Algorithm 1 we present how, for any α ∈ Dµ
i , a point x = Biα ∈ Xi can be decomposed to a probability distribution

πx ∈ ∆(Si).

Algorithm 1 CaratheodoryDistribution
Input: x ∈ Xi, exploration parameter µ > 0, spanner Bi = {b1, . . . , bs}. Consider the shifted decomposition of x (see
Definition B.8) with b̄i =

1
|Bi|

∑
b∈Bi

b, i.e.

x = (1− µ)

 ∑
(p,λp)∈Ci

λp · p

+
µ

|Bi|
∑
b∈Bi

bi

where Ci = {(λ1, v
1
i ), . . . , (λm+1, v

m+1
i )} is the Caratheodory decomposition of 1

1−µ (x−
µ

|Bi|
∑

b∈Bi
bi).

Output πx ∈ ∆(Si) with supp(π) = {v1i , . . . , v
m+1
i } ∪ Bi such that

• Pru∼πx [u = vk] = (1− µ)λk for all k ∈ [m+ 1]

• Pru∼πx
[u = bs] =

µ
|Bi| for all bs ∈ Bi

B.3. Bandit Gradient Descent with Caratheodory Exploration

In this section we present our algorithm, called Bandit Gradient Descent with Caratheodory Exploration (BGD − CE)
described in Algorithm 2.

Algorithm 2 and is based on Projected Online Gradient Descent (Zinkevich, 2003) but it includes two important variations
leveraging the technical tools introduced in the previous sections.

Resources sampling In Step 6 of Algorithm 2 we need to sample from a distribution over Si. As this set can be exponentially
large, this sampling procedure might have complexity exponential in m. To avoid such a computational complexity, we do

11
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Polynomial Convergence of Bandit No-Regret Dynamics in Congestion Games

Algorithm 2 Bandit Gradient Descent with Caratheodory Exploration and Bounded Away polytopes
Agent i computes a O(1)-barycentric spanner (see Definition B.4) B = {b1, . . . , bs}.
Agent i sets Bi ∈ Rm×s to be the matrix with columns {b1, . . . , bs}.
Agent i selects an arbitrary α1

i ∈ D
µ1

i .
for each round t = 1, . . . , T do

Define xt
i = Biα

t
i.

Agent i samples pti ∼ πt
i where πt

i = CaratheodoryDistribution(xt
i;µt,B) (Algorithm 1).

Agent i suffers cost, lti := ⟨ct, pti⟩.
Agent i sets ĉt ← lti ·M

+
i,tp

t
i where Mi,t = Ev∼πt

i
[vv⊤].

Agent i updates αt+1
i = ΠD

µt+1
i

(αt
i − γtB

⊤
i ĉt).

end for

not track distriutions but rather their maginalization xt
i and we sample from the Caratheodory distribution πt

i which has
sparse support.

Bounded variance estimator Since we work under bandit feedback, we can not directly observe all the entries of the cost
vector. To circumvent this challenge, we adopt the standard estimator for online linear optimization with bandit feedback
proposed in (Dani et al., 2007b) which is ĉt ← lti ·M

+
i,tp

t
i where Mi,t = Eu∼πt

i

[
uu⊤]. The bounds on the variance of this

estimator depends on the inverse of the smallest nonzero eigenvalue of Mi,t (see Lemma E.1) but unfortunately this could
be arbitrary small for points close to the boundaries of the polytope Xi. For this reason, in Step 8 of Algorithm 2 we project
on the set shrunk down polytope, Dµ

i , that ensures we are µ away from the boundary. Thanks to this, we can prove the
following result concerning the cost estimator.

Lemma B.9. The estimator ĉt = lti ·M
+
i,tp

t
i satisfies

1. E [⟨ĉt, x⟩] = ⟨ct, x⟩ for x ∈ Xi (Orthogonal Bias).

2. ∥B⊤
i ĉt∥2 ≤ ϑm5/2

µt
cmax. (Boundness).

3. E
[∥∥B⊤

i ĉt
∥∥2
2

]
≤ nm4c2max

µt
(Second Moment)

Using Lemma B.9 we are able to establish both the no-regret property of Algorithm 2 as well as its convergence properties
of Nash Equilibrium in case Algorithm 2 is adopted by all agents. In Theorem B.10 we formally stated and establish the
no-regret property of Algorithm 2.

Theorem B.10 (No-Regret). Let δ ∈ (0, 1). If agent i ∈ [n] generates its strategies p1:T using Algorithm 2 with step

sizes γt =
√

cmaxµt

ϑn3m6t and biases µt = min
{

n1/5

m7/5t1/5c
1/5
max

, 0.5
}

, then, for any adversarial adaptive sequence c1:T ,

R
(
p1:Ti , c1:T

)
≤ Õ

(
m5.5c2T 4/5

√
log

1

δ

)

with probability 1− δ.

In Theorem B.11 we establish the convergence properties of Algorithm 2 to Nash Equilibrium.

Theorem B.11 (Convergence to Nash). Let all the agents adopt Algorithm 2 with step sizes γt =
√

cmaxµt

n3m6t and

biases µt = n1/5

m7/5t1/5c
1/5
max

. We denote by π1, . . . , πT the sequence of joint strategy profiles produced. Then, for T ≥
Θ(m13m13.5/ϵ5),

1

T
E

[
T∑

t=1

max
i∈[n]

[
ci(π

t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]]
≤ ϵ.

In Section D, we present the proof sketches of both Theorem B.10 and Theorem B.11.

12
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Polynomial Convergence of Bandit No-Regret Dynamics in Congestion Games

We remark that the complexity of Algorithm 2 is polynomial with respect to the size of implicit polytope Xi. However the for
general congestion games the size of Xi can be exponential in m. Moreover constructing an O(1)-barycentric spanner for
general congestion games also requires exponential time in m (Awerbuch & Kleinberg, 2004) when the size of the polytope
is exponential. In the next section, we tailor the algorithm to cases when the polytope admits a convenient structure.

C. Implementing Algorithm 2 in Polynomial-Time for DAGs
In this section we present how Algorithm 2 can be implemented in polynomial time for the special case of DAGs. The latter
involves two key steps. The first one consists in computing barycentric spanners in polynomial time while the second in
efficiently computing a Caratheorody Decomposition. We remark that none of the above steps can be done in polynomial
time for general congestion games. To tackle the first challenge in Algorithm 4 we present a novel and efficient procedure
for spanner construction which also consists the main technical contribution of this section. To tackle the second challenge,
we use the approach introduced in the previous work of (Panageas et al., 2023). Overall, we present the computationally
efficient version of Algorithm 2 for the case of Network Congestion Games over DAGs in Algorithm 3.

C.1. Complexity for general congestion games

For ϑ = O(1) but with ϑ > 1, (Awerbuch & Kleinberg, 2004) shows that it is possible to compute a ϑ-spanner for any
compact set with a polynomial number of calls to a linear minimization oracle. The time complexity of this oracle depends
polynomially on ri and m where ri is the number of rows in (Ai, di), the implicit description of Xi. The updates of
Algorithm 2 further require a Caratheodory decomposition for sampling at step 3, the inversion of a m×m matrix Mi,t

and finally a projection onto Di. Overall the complexity of a single update is therefore poly(ri,m). For general congestion
games, it can be the case that ri is exponential in m. For the special case of network games however, Xi corresponds to the
flow polytope for which ri ≤ m. We discuss this special case in the next section.

C.2. Efficient implementation of Algorithm 2 for DAGs

An efficient implementation is possible if the set of resources correspond to the edges of a DAG. First, recall that the implicit
description polytope Xi admits a polynomial description. Indeed, in network congestion games X has the following simple
form.

Definition C.1 (Flow polytope). The implicit description polytope of a Network Congestion Game over a directed acyclic
graph G(V,E) with start and target node si, ti ∈ V is given by

Xi ≜

{
x ∈ {0, 1}m :

∑
e∈Out(si)

xe = 1

∑
e∈In(v)

xe =
∑

e∈Out(v)

xe ∀v ∈ V \ {si, ti}

∑
e∈In(ti)

xe = 1

}

Notice that the number of constraints is simply |V |. Therefore, a DAG admits an implicit description with ri = |V | < m.
Moreover, we have the following important characterization of the extreme points.

Lemma C.2. (?)Lemma 11]panageas2023semi The extreme points of the (si, ti)-path polytope Xi correspond to (si, ti)-
paths of G(V,E) and vice versa.

Therefore, despite the fact that there potentially exponentially many extreme points of Xi, the set Xi is described concisely
by |V | constraints. The first important consequence of this result is that by invoking the following theorem we can ensure
that Step 5 in Algorithm 2 runs in polynomial time.

Theorem C.3. (Grötschel et al., 1988) Let x ∈ Xi = {u ∈ [0, 1]m, Aiu ≤ di}, with Ai ∈ Rri×m and di ∈ Rm. Then a
Caratheodory decomposition can be computed in polymomial time with respect to ri and m.

Given a shortest path algorithm, this can be done using (?)Algorithm 1]panageas2023semi. Moreover, also the projection
in Step 8 of Algorithm 2 can be computed up to arbitrary accuracy in polynomial time given that X can be represented

13
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s b

c

d e f

g
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Figure 1. Construction of a 1-spanner for DAGs. We illustrate Algorithm 4 on a simple graph. We can select the three red edges as the, non-
redundant, key edges. We cover these using 3 paths that will constitute the basis. For edge s → b, we select s → b → d → e → g → t.
For the edge s → c, we first check if is reachable from edge s → b, we notice it is not. We then find a path starting from s. In this case,
we select s → c → d → e → g → t. For edge e → f we check if is reachable from the last covered edge (in topological order), we
notice it is reachable from edge s → c so we select s → c → d → e → f → t. The key idea we use to construct a 1-spanner is to ensure
that when we cover edges, we first try to reach them with the previously covered edges going in reverse topological order. This prefix
property ensures the 1-spanner property.

via |V | affine constraints. The second computational bottleneck in the general case is the spanner computation. However,
for the special case of DAGs, we present next an algorithm that construct exact 1-spanner which has better computational
complexity compared to (Awerbuch & Kleinberg, 2004). The improvement is possible because the approach by (Awerbuch
& Kleinberg, 2004) does not exploit the specific structure of DAGs although it is polynomial-time for DAGs. We propose,
instead, an algorithm that stays in the natural parametrization of the problem and outputs a 1-spanner. The construction is
detailed in Algorithm 4 and rests on a clever use of prefix paths. All in all, we have the next formal result.

Theorem C.4. Given a Directed Acyclic Graph G = (V,E) with source si ∈ V and sink ti ∈ V , there exists a polynomial
time algorithm (i.e. Algorithm 4) computing an exact 1-spanner for Xi.

We give a constructive proof of Theorem C.4 in Section C.3. Overall, we propose the following simple algorithm that runs in
polynomial time where the difference with the general case is that in Step 2 the spanner is computed efficiently by invoking
Algorithm 4.

Algorithm 3 Bandit Gradient Descent with Caratheodory Exploration and Bounded Away polytopes (Agent’s i perspective)
for DAGs

Input: Step size sequence (γt)t, bias coefficients (µt)t, a constant ϑ.
Agent i computes a 1-barycentric spanner B = {b1, . . . , bs} with Algorithm 4.
Agent i selects an arbitrary x1

i ∈ Xi.
for each round t = 1, . . . , T do

Agent i sets xt
i = Biα

t
i.

Agent i samples pti ∼ πt
i where πt

i = CaratheodoryDistribution(xt
i;µt,B) (Algorithm 1).

Agent i suffers cost, lti := ⟨ct, pti⟩.
Agent i sets ĉt ← lti ·M

+
i,tp

t
i where Mi,t = Ev∼πt

i
[vv⊤].

Agent i updates αt+1
i as, αt+1

i = ΠD
µt+1
i

(αt
i − γtB

T
i ĉ

t).
end for

C.3. Constructing the spanner of DAGs

In this section we present Algorithm 4 that computes an 1-barycentric spanner for the special case of DAGs. To simplify
notation for a given agent i ∈ [n], we denote by Si ⊂ Rm, the strategy space corresponding to set of all paths connecting
si to ti. We can restrict our attention to the subgraph Gi = (Vi, Ei) where Vi and Ei corresponds to the nodes and edges
appearing in at least one path in Si.

C.3.1. REDUNDANT EDGES

The convex hull of the strategy space Si forms the path polytope Xi = conv(Si). This polytope is included in a subspace of
Rm of dimension mi − ni + 2, where ni = |Vi|. Indeed, for each node v ∈ V \{si, ti}, we can pick one outgoing edge
e∗v ∈ out(v) such that for any x ∈ Pi, we have

xe∗v
=

∑
e∈in(v)

xe −
∑

e∈out(v),e̸=e∗v

xe (2)

14
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for all v ∈ V \{si, ti}. These equations come from reasoning about flow preservation. Consequently, Xi belongs to the
intersection of ni − 2 hyperplanes, which is of dimension at most mi − ni + 2. In other words, although the strategy space
is of dimension mi, the degrees of freedom are restricted by the graph structure as some coordinates are redundant and
predictable from other coordinates (see (2)). We single out these redundant edges in the following definition.

Definition C.5. For all v ∈ Vi\{si, ti} (i.e all nodes except the source and termination nodes), we arbitrarily pick one edge
denoted e∗v ∈ out(v) that will be referred to as a redundant edge.

The remaining edges will be referred to as a key edges. These key edges will aid us in constructing a 1-spanner. Indeed,
from equation (2), we can see that the coordinates corresponding to redundant edges can be determined by the values at the
key edges.

C.3.2. BASIS CONSTRUCTION

In order to construct the basis, we first need to perform a topological ordering of the nodes. A topological ordering of the
nodes of a graph is a total ordering of the nodes such that for every directed edge with source vertex u ∈ V and destination
vertex v ∈ V , the node u comes before v in the ordering. We will use the < symbol to denote such an ordering.

Let v1 = si, v2, . . . , vn = ti be a topological ordering of the nodes of Gi. This induces a topological ordering on the edges
(sorted according to their origin node). We will construct a 1-spanner for Xi following this ordering. The following simple
lemma (proved in Appendix H) about redundant paths will be essential.

Definition C.6 (Redundant path). A path in Gi is said to be a redundant path if consists entirely of redundant edges.

Lemma C.7 (Redundant path lemma). For any node vk ∈ Vi\{si}, there exists a redundant path connecting vk to vn = ti.

We now have all the tools needed for the construction of the basis b1, . . . , bs where s = mi − ni + 2 is the total number of
key edges. We provide the procedure in Algorithm 4.

Algorithm 4 Edge covering basis
Input: Key edges e1, . . . , es in topological order.
Basis← ∅
for h = 1 to s do

Let peh→ti be a redundant path connecting dest(eh) to ti (given by Lemma C.7).
for k = h− 1 to 1 do

if there exists a path pk→h joining dest(ek) to source(eh) then
Set bh ← Truncate(bk, ek) | pk→h | peh→ti

Set Prefix(h)← k
break

end if
end for
if there is no preceding key edge connected to eh then

Let psi→eh be a redundant path connecting si to dest(eh).
Set bh ← psi→eh | peh→ti

Set Prefix(h)← ⊥
end if
Basis← Basis ∪ {bh}

end for
return Basis

Proposition C.8 (Prefix property). Consider a covering basis generated by Algorithm 4. Let ek < el be two key edges. If
ek and el are connected in G(Vi, Ei), then Prefix(k) ̸= Prefix(l) where Prefix is the value set at lines 8 and 13 of
Algorithm 4.

This prefix property is the central ingredient needed to prove that the generated basis is a 1-barycentric spanner. Its proof
can be found in Appendix H. With this, we can state the main result.

Theorem C.9 (1-Spanner). Let b1, . . . , bs be the covering basis generated by Algorithm (4). For any x ∈ Xi, there
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exists α ∈ Rs such that

x =

s∑
h=1

αhbi and α2
h ≤ 1

Proof. It suffices to prove the result for x ∈ Si, the extreme points of Xi. Let rx = Key(x) ∈ Rs where Key is the linear
operator selecting the coordinates corresponding to the key edges. Correspondingly, let us define r1, . . . , rs such that

rh = Key(bh)

for h = 1, . . . , s. Observe that the canonical basis vectors v1, . . . , vs of Rs can be expressed as

vh = rh − rPrefix(h)

for h = 1, . . . , s, and taking r⊥ = 0s. Consequently,

rx =
∑
h∈rx

vh =
∑
h∈rx

(
rh − rPrefix(h)

)
=

s∑
h=1

αhrh

for some α ∈ Rs. Now it remains to prove that |αh| ≤ 1. We know, by the prefix property C.8, that the mapping
Prefix : {h : h ∈ rx} → [s− 1] ∪ {⊥} is injective since the edges in {h : h ∈ rx} are connected. In other words, there
are no duplicates in {Prefix(h), h ∈ rx}. We express rx in the following convenient form.

rx =
∑
h∈rx

rh −
∑

h∈{Prefix(h),h∈rx}

rh

With this, we can reason on a case by case basis for each coordinate as follows. Let h ∈ [s]. We first consider the case where
h ∈ rx. Since there are no duplicates, if we also have that h ∈ {Prefix(h), h ∈ rx}, then αh = 0 otherwise αh = 1.
Similarly, if h /∈ rx, then we either have h ∈ {Prefix(h), h ∈ rx} in which case αh = −1 or if not αh = 0. We thus find
that α2

h ≤ 1. Now to conclude, we know from (2) that there exists a linear operator Fill: Rs → Rm that fills in the values of
the redundant edges from the coordinate values of the key edges, hence x = Fill (Key (x)), which yields,

x = Fill

[
s∑

h=1

αhrh

]
=

s∑
h=1

αhFill [rh] =
s∑

h=1

αhbh.

D. Proof sketches
In this section we provide the basic steps for establishing Theorem B.10 and Theorem B.11.

D.1. Regret analysis

The main observation needed to prove Theorem 1 is to notice that at Step 8 of Algorithm 2 the sequence α1:T
i is obtained

performing a close variant of Online Gradient Descent (OGD) on the sequence of gradient estimates B⊤ĉ1:T . The subtle
difference here is that the projection is done on Dµt

i , a time varying polytope. Luckily, a small variation in the analysis
allows us to establish a guarantee similar to that of online gradient descent, with an added µt dependent error term.

We first slightly expand the definition of regret to include a fixed comparator u ∈ Xi. We define the regret with respect to a
comparator as follows

R
(
p1:Ti , c1:T ;u

)
:=

T∑
t=1

〈
ct, pti − u

〉
.

It is easy to see that the regret defined earlier is obtained by taking the fixed action comparator u⋆ = minu∈Si

∑T
t=1 ⟨ct, u⟩,

which is the best fixed action in hindsight. With this extended notion of regret, we can prove the following result on the
approximate online gradient descent scheme performed by our algorithm.
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Lemma D.1 (Moving OGD). Let x1:T
i and ĉ1:Ti be the sequences produced by Algorithm 2,

R
(
x1:T
i , ĉ1:T ;u

)
≤ 2m

γT
+ 2

T∑
t=1

γt∥ĉt∥22 + 2mcmax

T∑
t=1

µt. (3)

Now for us to use this result to control the regret of the algorithm, we have to pay attention to the following two points.
First, the algorithm is not playing x1:T

i but rather the samples p1:Ti and, second, it is incurring costs with respect to c1:T and
not ĉ1:T . The regret of the algorithm is therefore measured byR

(
p1:Ti , c1:T ;u

)
. We have to relate this quantity to the regret

bounded in equation (3). This can be done in two steps. The first is going from the samples p1:Ti to the marginalizations
x1:T
i .

Lemma D.2 (First concentration lemma). Let p1i , . . . , p
T
i ∈ Pi be the sequences of strategies produced by Algorithm 2

for the sequence of costs c1, . . . , cT . We have with probability 1− δ,

R
(
p1:Ti , c1:T ;u

)
≤ R

(
x1:T
i , c1:T ;u

)
+ cmaxm

√
T log

(
1

δ

)
. (4)

All that remains now is swapping the cost vectors from the true c1:T to the estimated ĉ1:T , which can be achieved by
invoking a second concentration argument.
Lemma D.3 (Second concentration lemma). Let ĉ1, . . . , ĉT the sequence produced in Step 7 of Algorithm 2 run on the
sequence of costs c1, . . . , cT . Then with probability 1− δ,

R
(
x1:T
i , c1:T ;u

)
≤ R

(
x1:T
i , ĉ1:T ;u

)
+m3cmaxϑ

3/2

√√√√ T∑
t=1

1

µ2
t

log(1/δ). (5)

Now to prove Theorem B.10, it suffices to simply plug (5) inside (4) to upper bound the regret of the algorithm with the
regret of online gradient descent. Then, invoking Lemma D.1 which controls the regret of the latter, we can obtain bound on
the regret of the algorithm with respect to a comparator u ∈ Xi. To conclude and obtain B.10, a simple union bound over all
u ∈ Xi yields the result. We detail the proof in Appendix F.

D.2. Convergence to Nash (Proof of Theorem B.11)

In this section, we prove Theorem B.11. We will be using the fact that congestion games always admit a potential function
(Monderer & Shapley, 1996) capturing the change in cost when a sole agent alters its strategy. The potential function of
congestion games is given by the following function.

Theorem D.4. The potential function Φ : S → R+ given by Φ(p) =
∑

e

∑ℓe(p)
i=1 ce(i), has the property that Ci(p

′
i, p−i)−

Ci(pi, p−i) = Φ(p′i, p−i)− Φ(pi, p−i).

The key observation here is that the potential function is a shared function that measures the change in cost when any agent
deviates from a joint profile. This same function also captures the change in expected cost once it is viewed as a function
over the polytope X ≜ X1 × · · · × Xn.

Definition D.5. The function Φ : X → R+, defined as Φ(x) =
∑

S⊆[n]

∏
j∈S xje

∏
j /∈S(1− xje)

∑|S|
ℓ=0 ce(ℓ) verifies

Ci(πi, π−i)− Ci(π
′
i, π−i) = Φ(xi, x−i)− Φ(x′

i, x−i)

for any π ∈ ∆(S1)× · · · ×∆(Sn), with marginilization x ∈ X , and any i ∈ [n], where π′
i ∈ ∆(Si), with marginalization

x′
i.

The function Φ is not convex over X but it is smooth making it friendly to gradient based optimization. We can show that
the function Φ is differentiable and its gradient ∇Φ is Lipschitz continuous with constant (2n2

√
mcmax). However, since

we operate in the basis polytope D = D1 × · · · × Dn, we are interested in the function Φ̃ defined as

Φ̃ : α 7→ Φ(Bα),

where B is the block diagonal matrix with B1, . . . , Bn as its diagonal elements. This function inherits all the nice properties
of Φ up to some additional factors. Indeed with a simple computation, we can show the following result.
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Proposition D.6. The function Φ̃ is 1
λ -smooth with λ = (2n2m7/2cmax)

−1.

Stationary points of Φ correspond to Nash equilibria (Monderer & Shapley, 1996), thus making the function Φ the essential
tool used for proving our result. Indeed in the sequel we technically prove convergence to stationary points of the potential
function. Stationary points are defined as follows.

Definition D.7 (Stationarity). A point α ∈ Dµ is called an (ϵ, µ)-stationary point if

Gµ(α) ≜

∥∥∥∥α−ΠDµ

[
α− λ

2
∇Φ̃(α)

]∥∥∥∥
2

≤ ϵ.

Given an (ϵ, µ)-stationary point α, then any mixed strategy with marginalization x = Bα is an approximate mixed Nash
equilibrium. We formalize this in the following result.

Proposition D.8 (From Stationarity to Nash). Let π ∈ ∆(S1)× · · · ×∆(Sn). Let x ∈ X be the marginalization of π. If
x = Bα, with α ∈ D an (ϵ, µ)-stationary point, then π is a 4n2.5m4cmax (ϵ+ µ)-mixed Nash equilibrium.

We have thus reduced the problem of finding mixed nash equilibria to that of finding stationary points of Φ̃. We will find
such stationary points by studying the joint vector of the iterates. We initiate our study by recalling the notation of the joint
strategies of the players. For each t ∈ [T ], we collect each player’s iterates in one vector in D defined as αt ≜ [αt

1, . . . , α
t
n].

It is easy to see that when all players play according to Algorithm 2, the produced sequence of vectors α1, . . . , αT verifies

αt+1 = ΠDµt+1

[
αt − γt · ∇t

]
(6)

where∇t ≜
[
B⊤

1 ĉt1, . . . , B
⊤
n ĉtn

]
. It turns out that that∇t is an estimator for∇Φ̃ as shown by the following lemma.

Lemma D.9 (Estimator property). Let t ∈ [T ] and Ft be the sigma-field generated by α1, . . . , αt and denote the conditional
expectation as Et [·] ≜ E [·|Ft]. It holds that

1. Et[∇t] = ∇Φ̃(αt),

2. Et[∥∇t∥22] ≤
nm4c2max

µt

Our goal will be to show that the sequence α1, . . . , αT visits a point with a small stationarity gap. To prove this, the time
varying Moreau envelope M t

λΦ̃
of Φ̃, defined as

M t
λΦ̃

(α) ≜ min
y∈Dµt

{
Φ̃(y) +

1

λ
∥α− y∥22

}
,

will play a central role as is shown by the following lemma.

Lemma D.10 (Gap control). Let Gt(α) := ∥ΠDµt

[
α− λ

2∇Φ̃(α)
]
− x∥2 denote the µt-stationarity gap. We have that for

any α ∈ Dµt ,
Gt(α) ≤ λ∥∇M t

λΦ̃
(α)∥2

Controlling the stationarity gap of an iterate therefore boils down to bounding the norm of the gradient of M t
λΦ̃

along the
sequence. By observing that the update rule (6) closely corresponds to performing stochastic gradient descent step on M t

λΦ̃
,

we are able to show the following result.

Theorem D.11 (Stochastic gradient descent). Consider the sequence α1, . . . , αT produced by Equation 6. Then,

1

T

T∑
t=1

E
[
∥∇M t

λΦ̃
(αt)∥2

]
≤ 2n1.5

√√√√2m1.5cmax

γTT
+

n3m7.5

γTT

T∑
t=1

γ2
t

µt

Finally, in order to obtain Theorem B.11, it suffices to combine the stochastic gradient descent result in Theorem D.11 with
Lemma D.10 and observe that the sequence of iterates visits a point with a small stationarity gap. Combining this with
proposition D.8 which relates stationarity to Nash equilibria yields the result. We provide a complete proof in section G.2.
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E. Properties of the estimator ĉt

The central difficulty of bandit feedback lies in the construction of a low variance estimator for the unobserved cost vector
ct at each round t ∈ [T ]. In what follows we prove two results on ĉt, the estimator constructed in step 7 of Algorithm 2
that will be instrumental to both the regret analysis and the convergence to equilibrium.

First we show that the estimator is bounded almost surely.

Lemma E.1 (Bounded estimator). For any t ∈ [T ], the estimator ĉt = lti ·M
+
i,tp

t
i is almost surely bounded and

∥B⊤
i ĉt∥2 ≤ ϑ

m5/2

µt
cmax.

Proof. Let i ∈ [n], t ∈ [T ]. Recall that Bi ∈ Rm×s is the matrix whose columns are the s elements of the barycentric
spanner. Let us write Mi,t in a more convenient form. Recall that πt

i is the Caratheodory distribution computed by Algorithm
1. It then follows (from step 3 in Algorithm 1) that

πt
i = (1− µt)τ

t
i + µtνi

where νi is the uniform distribution over the barycentric spanners and τi is the distribution supported on the Caratheodory
decomposition. We can then express Mi,t as follows.

Mi,t = Eu∼πt
i

[
uu⊤]

= (1− µt)Eu∼τt
i

[
uu⊤]+ µtEu∼νi

[
uu⊤]

= (1− µt)Bi

(
Eu∼τt

i

[
αuα

⊤
u

])
B⊤

i +
µt

s
Bi

(
s∑

k=1

eke
⊤
k

)
B⊤

i

= BiNi,tB
⊤
i

where we defined Ni,t := (1− µt)Eu∼τt
i

[
αuα

⊤
u

]
+ µt

s Is. Notice here that it is easy to see that Ni,t ⪰ µt

s Is which implies
that

N+
i,t ⪯

s

µt
Is. (7)

Now, since Bi has independent columns, we have that

M+
i,t =

(
B⊤)+ N+

i,tB
+ (8)

Moreover, we know there exists αi,t ∈ Rs such that pti = Bαi,t. With these in hand, let us analyze the estimator ĉt. We
have that

ĉt =
〈
ct, pti

〉
M+

i,tp
t
i =

〈
ct, pti

〉
M+

i,tBαi,t

By plugging in (8), we find that
B⊤

i ĉt =
〈
ct, pti

〉
N+

i,tαi,t (9)

Consequently, ∥∥B⊤
i ĉt
∥∥ ≤ mcmaxϑ

s3/2

µt

which allows us to conclude by using that using s ≤ m.

Lemma E.2 (Orthogonal Bias). For any t ∈ [T ], for any x ∈ Xi,

⟨ct − Eπt
i
[ĉt], x⟩ = 0.

Proof. Let M = Eπt
i

[
pp⊤

]
. Recall that ĉt = M+pti ⟨pti, ct⟩. We have that

Eπt
i
[ĉt] = M+

i,tMi,tc
t =

(
B⊤

i

)+
B⊤

i ct.
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where the second equality is obtained using (8). It follows that for any x ∈ Xi, which we know can be written x = Biαx,
we have that 〈

M+
i,tMi,tc

t, x
〉
=
〈(

B⊤
i

)+
B⊤

i ct, x
〉
=
〈
c,BiB

+
i x
〉

=
〈
c,BiB

+
i Biαx

〉
= ⟨c, x⟩

where the last line follows from the fact that B+
i is a right inverse when Bi has independent columns, which is true by

construction.

F. Regret analysis: Proof of Theorem B.10
In this section, we provide a complete proof of the regret bound. We first prove the two lemmas that relate the regret of the
algorithm to the quantity bounded by the moving online gradient descent lemma. We then prove the online gradient descent
lemma and conclude the section with a complete proof of Theorem B.10.

Lemma F.1 (First concentration lemma). Let p1i , . . . , p
T
i ∈ Pi be the sequences of strategies produced by Algorithm 2

for the sequence of costs c1, . . . , cT . We have with probability 1− δ,

R
(
p1:Ti , c1:T ;u

)
≤ R

(
x1:T
i , c1:T ;u

)
+ cmaxm

√
T log

(
1

δ

)
. (4)

Proof. The result is obtained by a straightforward application of Azuma-Hoeffding’s inequality. Indeed,

Et

[〈
ct, pti

〉
−
〈
ct, xt

i

〉]
= 0

and | ⟨ct, pti⟩ − ⟨ct, xt
i⟩ | ≤ mcmax almost surely. The sequence (⟨ct, pti⟩ − ⟨ct, xt

i⟩)t is a sequence of bounded martingale
increments. We can thus apply Azuma-Hoeffding’s inequality.

The following second lemma swaps out the real cost vectors with their estimates.

Lemma F.2 (Second concentration lemma). Let ĉ1, . . . , ĉT the sequence produced in Step 7 of Algorithm 2 run on the
sequence of costs c1, . . . , cT . Then with probability 1− δ,

R
(
x1:T
i , c1:T ;u

)
≤ R

(
x1:T
i , ĉ1:T ;u

)
+m3cmaxϑ

3/2

√√√√ T∑
t=1

1

µ2
t

log(1/δ). (5)

Proof. This result is again a straightforward application of Azuma-Hoeffding’s concentration inequality. Indeed, by the
Orthogonal Bias Lemma E.2, we have that

Et

[〈
ct − ĉt, xt

i − u
〉]

= 0

It remains to show that | ⟨ct − ĉt, xt
i − u⟩ | is bounded almost surely. Since Bi is a ϑ-spanner, notice that there exists

αu ∈ Rs such that u = Bαu. We can thus write

|
〈
ct − ĉt, xt

i − u
〉
| = |

〈
B⊤

i

(
ct − ĉt

)
, αt

i − αu
〉
|

≤ ∥B⊤
i

(
ct − ĉt

)
∥2∥αt

i − αu∥2,

where the last inequality was obtained by Cauchy-Schwartz. Now recalling the definition of ĉt, we have that

B⊤
i

(
ct − ĉt

)
=
(
B⊤

i −B⊤
i M+

i,tBiαi,tα
⊤
i,tB

⊤
i

)
ct

=
(
I −B⊤

i M+
i,tBiαi,tα

⊤
i,t

)
B⊤

i ct

Recalling (8), we have that (
I −B⊤

i M+
i,tBiαi,tα

⊤
i,t

)
⪯ |1− ϑ2 s

2

µt
|Im ⪯ ϑ2 s

2

µt
Im

for µt ≤ s2ϑ. We therefore get that

∥B⊤
i

(
ct − ĉt

)
∥2 ≤ ϑ2 s

5/2cmax

µt
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This allows us to conclude that 〈
ct − ĉt, xt

i − u
〉
≤ m3cmaxϑ

3

µt

(using s ≤ m). The sequence (⟨ct − ĉt, xt
i − u⟩)t is therefore a bounded sequence of martingale increments. We can apply

Azuma-Hoeffding’s inequality.

By plugging (5) into (4), we have reduced the problem of bounding the regret to controlling the regret of moving OGD
given byR

(
x1:T
i , ĉ1:T ;u

)
.

Lemma F.3 (Moving OGD). Let x1:T
i and ĉ1:Ti be the sequences produced by Algorithm 2,

R
(
x1:T
i , ĉ1:T ;u

)
≤ 2m

γT
+ 2

T∑
t=1

γt∥ĉt∥22 + 2mcmax

T∑
t=1

µt. (3)

Proof. The idea here will be to relate α1:T
i to a sequence that is almost performing Online Gradient Descent on the fixed

polytope Di. To this end, we introduce the auxiliary sequence α̃1:T
i defined as

α̃t
i =

1

1− µt
(αt

i −
µt

s
1)

and its corresponding point x̃t
i = Biα̃

t
i. Since αt

i ∈ D
µt

i , we have that α̃t
i ∈ Di. Moreover, a simple re-arrangement gives

αt
i = (1− µt)α̃

t
i +

µt

s 1 With this in hand, we can write that〈
ĉt, xt

i − u
〉
= (1− µt)

〈
ĉt, x̃t

i − u
〉
+ µt

〈
ĉt, b̄i

〉
≤
〈
(1− µt)ĉ

t, x̃t
i − u

〉
+mcmaxµt

≤
〈
ĉt, x̃t

i − u
〉
+ 2mcmaxµt

It then follows that

R
(
x1:T
i , ĉ1:T ;u

)
≤ R

(
x̃1:T
i , ĉ1:T ;u

)
+ 2mcmax

T∑
t=1

µt (10)

It remains to show that this regret term of the auxiliary sequence is controllable. This will follow from a simple observation
on the update rule. Recall that this update rule in Step 8 of Algorithm 2 is given by

αt+1
i = ΠDµt+1

[
αt
i − γtB

⊤
i ĉt
]

By Lemma I.1, we know that we can express ΠD
µt+1
i

in terms of ΠDi , which allows us to write that

αt+1
i = (1− µt+1)ΠDi

[
1

1− µt+1
(αt

i − γtB
⊤
i ĉt − µt

s
1)

]
+

µt

s
1

Rearranging we find that

α̃t+1
i = ΠDi

[
α̃t
i −

γt
1− µt+1

B⊤
i ĉt + (µt+1 − µt)

(
αt
i − 1

s1

(1− µt)(1− µt+1)

)]
The last term in the projection is an error term that can easily be handled, we denote it by et :=

(
αt

i− 1
s1

(1−µt)(1−µt+1)

)
. We thus

have that the auxiliary sequence is performing online gradient descent with a small error term since

α̃t+1
i = ΠX

[
α̃t
i − γ̃tB

⊤
i ĉt + (µt+1 − µt)et

]
where γ̃t :=

γt

1−µt+1
. To control the regret of this approximate OGD, we consider the regret incurred on a single update.

Recall that u ∈ Xi and that there exists αu ∈ Di such that u = Biα
u. We know by the contractive property of the projection

that

∥α̃t+1
i − αu∥22 ≤ ∥α̃t

i − αu − γ̃tB
⊤
i ĉt + (µt+1 − µt)et∥22

≤ ∥α̃t
i − αu∥22 − 2γ̃t

〈
ĉt, x̃t

i − u
〉
+ 2γ̃2

t ∥B⊤
i ĉt∥22 + 2(µt+1 − µt)

〈
et, α̃

t
i − αu

〉
+ 2(µt+1 − µt)

2∥et∥22
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where the second inequality follows from Young’s inequality. Now since 0 ≤ µt ≤ 1
2 for t ≥ 32m4n

cmax
, we have that

∥et∥2 ≤ 2
√
m and (µt+1 − µt)

2 ≤ 1
2 (µt − µt+1). Consequently,

∥α̃t+1
i − αu∥22 ≤ ∥α̃t

i − αu∥22 − 2γ̃t
〈
ĉt, x̃t

i − u
〉
+ 2γ̃2

t ∥B⊤
i ĉt∥22 + 8m(µt − µt+1)

Rearranging, we obtain that〈
ĉt, x̃t

i − u
〉
≤ 1

2γ̃t

(
∥α̃t

i − αu∥22 − ∥α̃t+1
i − αu∥22

)
+ γ̃t∥B⊤

i ĉt∥22 +
8m

γ̃t
(µt − µt+1)

By summing from t = t̄ := 32m4n
cmax

to t = T and using the telescoping Lemma I.3, we find that

R
(
x̃t̄:T
i , ĉt̄:T ;u

)
≤ 5m

γT
+ 2

T∑
t=t̄

γt∥B⊤
i ĉt∥22

where we have used the fact that γt ≤ γ̃t ≤ 2γt and m ≥ 2 to simplify the expression. Finally, using that

R
(
x̃1:t̄
i , ĉ1:t̄;u

)
≤ 32nm4,

we conclude that

R
(
x̃1:T
i , ĉ1:T ;u

)
≤ 5m

γT
+ 2

T∑
t=1

γt∥ĉ∥22 + 32nm4

We obtain the result by plugging the inequality above inside (10).

We now dispose of all the necessary results to prove Theorem B.10.

Proof. Let u ∈ Si. Let δ ∈ (0, 1). By invoking Lemma D.2, then Lemma D.3 then finally Lemma D.1, we find that, with
probability 1− δ/|Si|

R
(
p1:Ti , c1:T ;u

)
≤ 5m

γT
+ 2

T∑
t=1

γt∥ĉt∥22 + 2mcmax

T∑
t=1

µt +m3cmaxϑ
3/2

√√√√ T∑
t=1

1

µ2
t

log(|Si|/δ)

+ cmaxm

√
T log

(
|Si|
δ

)
+ 32nm4

By invoking Lemma E.1,

R
(
p1:Ti , c1:T ;u

)
≤ 5m

γT
+ 2

T∑
t=1

γtm
5c2maxϑ

2

µ2
t

+ 2mcmax

T∑
t=1

µt +m3cmaxϑ
3/2

√√√√ T∑
t=1

1

µ2
t

log(|Si|/δ)

+ cmaxm

√
T log

(
|Si|
δ

)
+ 32nm4

Now plugging in the choice of step-sizes γt =
√

cmaxµt

ϑn3m3t and µt =
m4/5n1/5ϑ1/5

t1/5c
1/5
max

, we have that

R
(
p1:Ti , c1:T ;u

)
≤ Õ

(
m2.3c2.8

√
log
|Si|
δ

T 4/5

)
Finally, using a union bound, the regret above holds uniformly for any u ∈ Si with probability 1− δ. In particular it holds
for the fixed strategy in hindsight. Consequently,

R
(
p1:Ti , c1:T

)
≤ Õ

(
m2.8c2.8T 4/5

√
log

1

δ

)
where we have used the fact that log |Si| ≤ m.

Remark F.4. Notice that the choice of γt and µt are done to optimize the rate of convergence to NE. To optimize the regret
bound, we can choose γt =

µt

m2cmaxϑt
and µt =

1
2t1/4

to obtainR
(
p1:Ti , c1:T

)
≤ m3T 3/4.
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G. Nash convergence analysis
G.1. Properties of the potential function Φ

In this section we show that the potential function is bounded, Lipschitz and smooth. All three properties will be used in
later proofs. Recall that the potential function is given by

Φ(x) =
∑
e∈E

∑
S⊆[n]

∏
j∈S

xje

∏
j /∈S

(1− xje)

|S|∑
ℓ=0

ce(ℓ)

Lemma G.1 (Bounded potential function). The potential function Φ is bounded and for all x ∈ X ,

|Φ(x)| ≤ nmcmax

Proof. This can easiliy be seen by rewriting the potential function as follows

Φ(x) =
∑
e∈E

∑
S⊆[n]

∏
j∈S

xje

∏
j /∈S

(1− xje)

|S|∑
ℓ=0

ce(ℓ)

=
∑
e∈E

∑
S⊆[n]

P (“set of agents that picked e” = S)
|S|∑
ℓ=0

ce(ℓ)

≤ ncmax

∑
e∈E

∑
S⊆[n]

P (“set of agents that picked e” = S)

= ncmax

∑
e∈E

1

= nmcmax

Lemma G.2 (Lipschitz potential function). The gradient of Φ is bounded and

∥∇Φ(x)∥2 ≤
√
nmcmax

Proof. We start my computing the gradient coordinate at i, e for i ∈ [n] and e ∈ [m].

∂Φ(x)

∂xie
=

∑
S−i⊆[n−1]

∏
j∈S−i

xje

∏
j /∈S−i

(1− xje)

|S−i|+1∑
ℓ=0

ce(ℓ)−
∑

S−i⊆[n−1]

∏
j∈S−i

xje

∏
j /∈S−i

(1− xje)

|S−i|∑
ℓ=0

ce(ℓ) (11)

=
∑

S−i⊆[n−1]

∏
j∈S−i

xje

∏
j /∈S−i

(1− xje)ce (|S−i|+ 1) . (12)

Observe then that

0 ≤ ∂Φ(x)

∂xie
≤ cmax

Since the ℓ∞ norm is bounded by cmax, we obtain the ℓ2 norm bound by multiplying by the dimension.

Lemma G.3 (Smooth potential function). (Lemma 9 of (Panageas et al., 2023)) The gradient of Φ is Lipschitz continuous
and for any x, y ∈ X

∥∇Φ(x)−∇Φ(y)∥ ≤ 2n2
√
mcmax∥x− y∥2

With this lemma, proving that Φ̃ is smooth becomes immediate.

Proposition G.4. The function Φ̃ is 1
λ -smooth with λ = (2n2m7/2cmax)

−1.
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Proof. The operator norm of the matrix B can easily be bounded as it is a block diagonal matrix. Indeed we have that

∥B∥2 ≤ max
i=1,...,n

∥Bi∥2 ≤ max
i=1,...,n

∥Bi∥F ≤ m2.

Conseqently, the smoothness constant of Φ̃ is obtained by multiplying the smoothness constant of Φ by m2.

A final property we will use is the following which states that if all other players stay fixed, the cost incurred by a single
agent i is linear in terms of its strategy.

Lemma G.5 (Linearized cost). Let π ∈ ∆(S1)× . . .∆(Sn) with marginalization x ∈ X . Then, for all i ∈ [n],

Ci(πi, π−i) =

〈
∂Φ(x)

∂xi
, xi

〉
and ∂Φ(x)

∂xi
only depends on x−i.

Proof. Let i ∈ [n]. By definition of the cost,

Ci(πi, π−i) = E(pi,p−i)∼(πi,π−i)

[∑
e∈pi

ce(ℓe(pi, p−i))

]

= Epi∼πi

[
Ep−i∼π−i

[∑
e∈E

ce(ℓe(pi, p−i))1 [e ∈ pi]

∣∣∣∣∣pi
]]

=
∑
e∈E

Ep−i∼π−i [ce(ℓe(p−i) + 1)]Epi∼πi [1 [e ∈ pi]]

=
∑
e∈E

Ep−i∼π−i
[ce(ℓe(p−i) + 1)]xie

where the third equality follows form the fact that ce(ℓe(pi, p−i))1 [e ∈ pi] = ce(ℓe(p−i) + 1)1 [e ∈ pi]). We then observe
that Ep−i∼π−i

[ce(ℓe(p−i) + 1)] is precisely what is computed in equation (12) to find that

Ci(πi, π−i) =

〈
∂Φ(x)

∂xi
, xi

〉

G.2. Proof of Theorem B.11

As stated in section D.2, we show convergence to Nash equilibria by showing convergence to a stationary point of the
potential function. This strategy is valid because of the following result relating Nash equilibria with stationary points.

Proposition G.6 (From Stationarity to Nash). Let π ∈ ∆(S1)× · · · ×∆(Sn). Let x ∈ X be the marginalization of π. If
x = Bα, with α ∈ D an (ϵ, µ)-stationary point, then π is a 4n2.5m4cmax (ϵ+ µ)-mixed Nash equilibrium.

Proof. Let π′
i ∈ ∆(Xi) with marginalization x′

i ∈ Xi. Let x′ = [x1, . . . , x
′
i, . . . , xn] differ from x only at x′

i. By definition
of the potential function, we know that

Ci(πi, π−i)− Ci(π
′
i, π−i) = Φ(xi, x−i)− Φ(x′

i, x−i)

By further invoking Lemma G.5, and using the fact that ∂Φ(x)
∂xi

only depends on x−i, we have that

Ci(πi, π−i)− Ci(π
′
i, π−i) =

〈
∂Φ(x)

∂xi
, xi − x′

i

〉
= ⟨∇Φ(x), x− x′⟩

where the last equality comes from the fact that x− x′ is zero except on the xi block of coordinates. Since x−x′ = B(α−α′)
for some α′ ∈ D, we have that

Ci(πi, π−i)− Ci(π
′
i, π−i) =

〈
∇Φ̃(x), α− α′

〉
24
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We now exploit the fact that α is stationary. Let α+ = ΠDµ

[
α− λ

2 Φ̃(α)
]
. By definition of the projection, for any u ∈ Dµ,

it holds that 〈
α− λ

2
∇Φ̃(α)− α+, u− α+

〉
≤ 0

By rearranging, we find that 〈
∇Φ̃(α), α+ − u

〉
≤ 2

λ

〈
α− α+, α+ − u

〉
With this inequality in hand, we obtain that〈

∇Φ̃(α), α− u
〉
=
〈
∇Φ̃(α), α+ − u

〉
+
〈
∇Φ̃(x), α− α+

〉
≤ 2

λ

〈
α− α+, α+ − u

〉
+
〈
∇Φ̃(α), α− α+

〉
≤
(
2
√
nm

λ
+ ∥∇Φ̃(α)∥2

)
∥α+ − α∥2

≤
(
4n2.5m4cmax

)
Gµ(α).

To conclude we simply take u = (1− µ)α′ + µ 1
s1 which is necessarily in Dµ to find that〈

∇Φ̃(x), x− x′
〉
=
〈
∇Φ̃(x), x− u

〉
+
〈
∇Φ̃(x), u− x′

〉
≤
(
4n2.5m4cmax

)
Gµ(x) + nmcmaxµ

≤ 4n2.5m4cmax (G
µ(x) + µ)

Thanks to the proposition above we can focus our attention on proving convergence to stationary points.
Lemma G.7 (Estimator property). Let t ∈ [T ] and Ft be the sigma-field generated by α1, . . . , αt and denote the conditional
expectation as Et [·] ≜ E [·|Ft]. It holds that

1. Et[∇t] = ∇Φ̃(αt),

2. Et[∥∇t∥22] ≤
nm4c2max

µt

Proof. Let i ∈ [n] and e ∈ E. First, observe that from lemma G.5, we have that the linearized cost ct for agent i satisfies

Et

[
cte
]
=

∂Φ

∂xie
(xt)

Now using the tower property, we have that

Et [[∇t]i] = Et

[
B⊤

i ĉti
]
= B⊤

i Et

E
M+

i,tp
t
i

∑
e∈pt

i

cte

 |pti


= B⊤
i

∑
pk∈supp(πt

i)

P
(
pti = pk

)
M+

i,tpk
∑
e∈pk

Et

[
cte|pti = pk

]
= B⊤

i

∑
pk∈supp(πt

i)

P
(
pti = pk

)
M+

i,tpk
∑
e∈pk

∂Φ

∂xie
(xt)

= B⊤
i

∑
pk∈supp(πt

i)

P
(
pti = pk

)
M+

i,tpkp
T
k

∂Φ

∂xi
(xt)

= B⊤
i M+

i,tMi,t
∂Φ

∂xi
(xt)

= B⊤
i

∂Φ

∂xi
(xt)
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where the last equality follows from (8). We thus conclude that

Et [∇t] = ∇Φ̃(αt).

For the second point,we know from equation (9) in the proof of Lemma E.1 that

B⊤
i ĉt =

〈
ct, pti

〉
N+

i,tα
p
i,t (13)

We can then control the expectation of square norm of this estimator as follows

Et

[
∥B⊤

i ĉt∥22
]
≤ m2c2maxEt

[∥∥N+
i,tα

p
i,t

∥∥2
2

]
= m2c2maxEt

[
tr
(
N+

i,tα
p
i,tα

p⊤
i,t N

+⊤
i,t

)]
= m2c2maxtr

(
N+

i,tEt

[
αp
i,tα

p⊤
i,t

]
N+⊤

i,t

)
≤ m2c2maxtr

(
N+

i,t

)
≤ m4c2max

1

µt

where the last inequality follows from (7) where we have used that s ≤ m. Now, since ∇t is a concatenation of the
estimators B⊤

i ĉt, we find that

Et

[
∥∇t∥22

]
≤ nm4c2max

µt
.

Lemma G.8 (Gap control). Let Gt(α) := ∥ΠDµt

[
α− λ

2∇Φ̃(α)
]
− x∥2 denote the µt-stationarity gap. We have that for

any α ∈ Dµt ,
Gt(α) ≤ λ∥∇M t

λΦ̃
(α)∥2

Proof. The proof relies on introducing a fixed point y such that

y = ΠDµ

[
x− λ

2
∇Φ̃(y)

]
.

Luckily the point y = x− λ
2∇M

µ

λ ˜̃Φ
(x) is such a fixed point(see point 2 in I.2). Now we can write

Gµ(x) = ∥ΠDµ

[
x− λ

2
∇Φ̃(x)

]
− x∥2

≤ ∥ΠDµ

[
x− λ

2
∇Φ̃(x)

]
−ΠDµ

[
x− λ

2
∇Φ̃(y)

]
∥2 + ∥y − x∥2

≤ λ

2
∥∇Φ̃(x)−∇Φ̃(y)∥+ ∥y − x∥2

≤ 3

2
∥y − x∥2 =

3λ

4
∥∇Mµ

λΦ̃
(x)∥2 ≤ λ∥∇Mµ

λΦ̃
(x)∥2

Theorem D.11 (Stochastic gradient descent). Consider the sequence α1, . . . , αT produced by Equation 6. Then,

1

T

T∑
t=1

E
[
∥∇M t

λΦ̃
(αt)∥2

]
≤ 2n1.5

√√√√2m1.5cmax

γTT
+

n3m7.5

γTT

T∑
t=1

γ2
t

µt
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Proof. Let us first recall some of the notation we use. The time dependent Moreau envelope is given by

M t
λΦ̃

(x) ≜ min
y∈Dµt

{
Φ̃(y) +

1

λ
∥x− y∥22

}
,

Notice here that the envelope is taken with respect to a time varying polytope. The iterates α1:T are updated by the following
update rule

αt+1 = ΠDµt+1

[
αt − γt · ∇t

]
(14)

With this in mind, we proceed with the proof. Since M t
λΦ̃

is 2
λ -smooth (by point 4 of Lemma I.2), we have that

M t
λΦ̃

(αt+1) ≤M t
λΦ̃

(αt) +
〈
∇M t

λΦ̃
(αt), αt+1 − αt

〉
+

1

λ
∥αt+1 − αt∥22

Now since∇M t
λΦ̃

(αt) = 2
λ

(
αt − proxtλ

2 Φ̃
(αt)

)
(by point 3 of Lemma I.2), where we can invoke the contractive properties

of the projection in (14) to find that

M t
λΦ(α

t+1) ≤M t
λΦ(α

t)− γt
〈
∇M t

λΦ̃
(αt),∇t

〉
+

γ2
t

λ
∥∇t∥22

Taking the expectation, we have

E
[
M t

λΦ(α
t+1)

]
≤ E

[
M t

λΦ(α
t)
]
− γtE

[〈
∇M t

λΦ̃
(αt),Et [∇t]

〉]
+

γ2
t

λ
E
[
∥∇t∥22

]
Using Lemma D.9, we can replace the terms involving∇t on the right hand side to find that

E
[
M t

λΦ(α
t+1)

]
≤ E

[
M t

λΦ(α
t)
]
− γtE

[〈
∇M t

λΦ̃
(αt),∇Φ̃(αt)

〉]
+

nm4c2max

λ

γ2
t

µt

Invoking Lemma G.9, we obtain

E
[
M t

λΦ(α
t+1)

]
≤ E

[
M t

λΦ(α
t)
]
− γt

4
∥∇M t

λΦ̃
(αt)∥22 +

nm4c2max

λ

γ2
t

µt

By rearranging the terms, we can write that

γt
4
E
[
∥∇M t

λΦ̃
(αt)∥22

]
≤ E

[
M t

λΦ(α
t)
]
− E

[
M t

λΦ(α
t+1)

]
+

nm4c2max

λ

γ2
t

µt

At this point we notice that M t+1

λΦ̃
(αt+1) ≤M t

λΦ̃
(αt+1) since Dµt ⊂ Dµt+1 , which gives us

γt
4
E
[
∥∇M t

λΦ̃
(αt)∥22

]
≤ E

[
M t

λΦ(α
t)
]
− E

[
M t+1

λΦ (αt+1)
]
+

nm4c2max

λ

γ2
t

µt

Now summing from t = 1, . . . , T and telescoping, we find that

1

T

T∑
t=1

E
[
∥∇M t

λΦ̃
(αt)∥22

]
≤

8Mmax
λΦ̃

γTT
+ 4

nm4c2max

λγTT

T∑
t=1

γ2
t

µt

where we have used the fact that γT ≤ γt and defined Mmax
λΦ̃

:= maxt∈[T ] maxx∈Dµt M t
λΦ̃

(x). By taking the square root
and applying Jensen’s inequality, we have that

1

T

T∑
t=1

E
[
∥∇M t

λΦ̃
(αt)∥2

]
≤

√√√√8Mmax
λΦ̃

γTT
+ 4

nm4c2max

λγTT

T∑
t=1

γ2
t

µt

Finally by plugging in the values of Mmax
λΦ̃
≤ n3m3/2cmax and 1

λ = 2n2m7/2cmax, we find that

1

T

T∑
t=1

E
[
∥∇M t

λΦ̃
(αt)∥2

]
≤ 2n1.5

√√√√2m1.5cmax

γTT
+

ϑn3m7.5

γTT

T∑
t=1

γ2
t

µt
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Lemma G.9. For any t ∈ [T ], we have that〈
∇M t

λΦ̃
(αt),∇Φ̃(αt)

〉
≥ 1

4
∥∇M t

λΦ̃
(αt)∥22

Proof. This lemma is obtained by exploiting the smoothness of Φ. We begin by defining the gradient step yt := αt −
λ
2∇M

t
λΦ̃

(αt), which allows us to write〈
∇M t

λΦ̃
(αt),∇Φ̃(αt)

〉
= − 2

λ

〈
yt − αt,∇Φ̃(αt)

〉
. (15)

Now since Φ is 1
λ -smooth, we have that

−
〈
yt − αt,∇Φ̃(αt)

〉
≥ Φ̃(αt)− Φ̃(yt)− 1

2λ
∥yt − αt∥22

=

(
Φ̃(αt) +

1

λ
∥αt − αt∥22

)
−
(
Φ̃(yt) +

1

λ
∥yt − αt∥22

)
+

1

2λ
∥yt − αt∥22

≥ 1

2λ
∥yt − αt∥22 (because yt = argmin

y∈D
µt+1
i

Φ̃(y) +
1

λ
∥αt − y∥22)

=
λ

8
∥∇M t

λΦ̃
(αt)∥22.

Plugging this result into (15) gives 〈
∇M t

λΦ̃
(αt),∇Φ̃(αt)

〉
≥ 1

4
∥∇M t

λΦ̃
(αt)∥22.

We can now proceed to prove Theorem B.11.

Proof. Let u be sampled uniformly from [T ]. The joint strategy profile πu has marginalization αu ∈ Dµu , and therefore, by
lemma D.8 we have that

1

T
E

[
T∑

t=1

max
i∈[n]

[
ci(π

t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]]
≤ 4n2.5m4cmaxE [Gu(xu) + µu]

Expanding the right hand side, we have that

E [Gu(xu) + µu] ≤
1

T

T∑
t=1

E
[
Gt(xt)

]
+

1

T

T∑
t=1

µt

By Lemma D.10, we get that

E [Gu(xu) + µu] ≤
λ

T

T∑
t=1

E
[
∥∇M t(xt)∥2

]
+

1

T

T∑
t=1

µt

It then follows by Theorem D.11 that

E [Gu(xu) + µu] ≤ 2λn1.5

√√√√2m1.5cmax

γTT
+

n3m7.5

γTT

T∑
t=1

γ2
t

µt
+

1

T

T∑
t=1

µt

=
1√

nm4cmax

√√√√2m1.5cmax

γTT
+

n3m7.5

γTT

T∑
t=1

γ2
t

µt
+

1

T

T∑
t=1

µt
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Now, plugging in γt =
√

cmaxµt

n3m6t

E [Gu(xu) + µu] ≤
1√

nm4cmax

√
c1.5maxm

4.5n1.5 log T√
TµT

+
1

T

T∑
t=1

µt

≤ n1/4

m1.75c
1/4
max

√
3 log T√
TµT

+
1

T

T∑
t=1

µt

Finally, setting the exploration parameter µt =
n1/5

m7/5t1/5c
1/5
max

and using the fact that
∑T

t=1 t
−1/5 ≤ 5T 4/5

4 , we obtain

1

T
E

[
T∑

t=1

max
i∈[n]

[
ci(π

t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]]
≤ 4m2.6n2.7c

4/5
max

T 1/5
.

Therefore choosing T ≥ 45m13n13.5c4max

ϵ ensures

1

T
E

[
T∑

t=1

max
i∈[n]

[
ci(π

t
i , π

t
−i)− min

πi∈∆(Pi)
ci(πi, π

t
−i)

]]
≤ ϵ

We now have all the ingredients we need to prove Corollary 2.7.

Proof. Let u be sampled uniformly from [T ]. The joint strategy profile πu has marginalization αu ∈ Dµu , and therefore, by
lemma D.8, it is a

4n2.5m4cmax (G
u(xu) + µu)−mixed Nash equilibrium

Now let δ ∈ (0, 1). By Markov’s inequality and Theorem B.11,

max
i∈[n]

[
ci(π

u
i , π

u
−i)− min

πi∈∆(Pi)
ci(πi, π

u
−i)

]
≤ ϵ/δ

with probability 1− δ if T ≥ 45m13n13.5c4maxθ
ϵ . Finally, putting everything together we find that πu is a

Õ

(
n2.7m13/5c

4/5
max

δ
T−1/5

)

with probability 1− δ. Finally, to make the quantity n2.7m13/5c4/5max

δ T−1/5 equal to ϵ/δ we choose T ≥ Θ
(
m13n13.5/ϵ5

)
.

For the first statement of the corollary, we the set of time steps B := {t ∈ {1, t} : Et > ϵ/δ2} where Et :=

maxi∈[n]

[
ci(π

t
i , π

t
−i)−minπi∈∆(Pi) ci(πi, π

t
−i)
]

which is a random variable. With probability 1− δ,
∑T

t=1 Et ≤ ϵT
δ we

directly get that we probability 1 − δ, |B| ≤ δT . As a result, with probability ≥ 1 − δ, (1 − δ) fraction of the profiles
π1, . . . .πT are ϵ/δ2-Mixed NE.

H. Spanner construction omitted proofs
Proof of C.7. We proceed by induction on the topological ordering. For vn−1, we pick a redundant outgoing edge. By
definition of a topological ordering, the chosen edge will necessarily lead to vn = ti.

Now let k ∈ [2, n− 2] and assume that the lemma holds for all for l > k. We consider the node vk and pick an outgoing
redundant edge. It will lead to a node vl with l > k. By induction hypothesis, there exists a path connecting vl to ti that only
consists of redundant edges. Concatenating the picked outgoing edge with this path yields the result for vk so the lemma
holds for k.

Proof of C.8. Suppose i = Prefix(k) = Prefix(l). Then by construction ei < ek < el. On the other hand, since the
prefixes are set in reverse topological order and ek and el are connected, we must have Prefix(l) ≥ k. A contradiction.
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I. Technical Lemmas
Lemma I.1 (Projection lemma). Let Dµ

i be a bounded away polytope. For any z ∈ Rs, the projection on Dµ
i can be

expressed as

ΠDµ
i
[z] = (1− µ)ΠDi

[
1

1− µ
(z − µ

s
1)

]
+

µ

s
1

Proof. We first express the indicator function of Dµ
i in terms of the indicator of Di. We have that for any z ∈ Rs, by

definition of the bounded away polytope,

ιDµ
i
(z) = ιDi

(
1

1− µ
(z − µ

s
1)

)
, (16)

The indicator function of X µ
i is therefore obtained through an affine precomposition of the Xi indicator. We can determine

the prox of an affine precomposition by using properties (i) and (ii) in Table 10.1 of (Combettes & Pesquet, 2011), which
yields the simple formula given in equation (2.2) of (Parikh et al., 2014). We thus find that

ΠDµ
i
[z] = (1− µ)ΠDi

[
1

1− µ
(z − µ

s
1)

]
+

µ

s
1

Lemma I.2 (Moreau enveloppe and proximity operators). Let f : X 7→ R be a 1/λ-smooth function. Its Moreau-Yosida
regularization defined as

eηf(x) = inf
y∈X

f(y) +
1

2η
∥y − x∥22

verifies the following properties for η < λ,

1. The proximity operator given by the equation below is single valued

proxηf (x) = argmin
y∈X

f(y) +
1

2η
∥y − x∥22. (17)

2. By optimality conditions of (17),

proxηf (x) = ΠX
[
x− η∇f(proxηf (x))

]
3. eηf is continuously differentiable and

∇eηf(x) =
1

η

(
x− proxηf (x)

)
4. If η = λ/2, then∇eηf is 1

η smooth.

Proof. All these properties follow from (Hoheisel et al.) Corollary 3.4 because 1
λ smooth functions are 1

λ weakly convex
functions. In our paper, we work with the function MλΦ̃, notice that it corresponds to the Moreau-Yosida regularization

MλΦ = eλ
2
Φ̃

All the properties therefore follow with η = λ
2 .

Lemma I.3 (Telescoping Lemma). Let (γt)t be a non-increasing sequence. Let (ut)t ∈ RN
+ be a non-negative sequence

uniformly bounded by umax > 0, it holds that

T∑
t=1

1

γt
(ut − ut+1) ≤

umax

γT
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Proof.
T∑

t=1

1

γt
(ut − ut+1) =

T∑
t=1

ut

γt−1
− ut+1

γt
+

T∑
t=1

(
1

γt
− 1

γt−1

)
ut

≤
T∑

t=1

ut

γt−1
− ut+1

γt
+ umax

T∑
t=1

1

γt
− 1

γt−1

=
u1

γ0
− uT+1

γT
+

umax

γT
− umax

γ0

≤ umax

γT
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