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Abstract

We present an online learning algorithm in the
bandit feedback model that, once adopted by all
agents of a congestion game, results in game-
dynamics that converge to an e-approximate Nash
Equilibrium in a polynomial number of rounds
with respect to 1/e, the number of players and
the number of available resources. The proposed
algorithm also guarantees sublinear regret to any
agent adopting it. As a result, our work answers
an open question from (Cui et al., 2022) and ex-
tends the recent results of (Panageas et al., 2023)
to the bandit feedback model. Our algorithm can
be implemented in polynomial time for the impor-
tant special case of Network Congestion Games
on Directed Acyclic Graphs (DAG) as barycentric
spanners can efficiently be constructed in this case.
We complete our work by further proposing a nat-
ural, exact, 1-barycentric spanner construction for
DAGs.

1. Introduction

Congestion games represent a class of multi-agent games
where n self-interested agents compete over m resources.
Each agent chooses a subset of these resources, and their
individual costs depend on the utilization of each selected
resource (i.e., the number of other agents utilizing the same
resource). For instance, in Network Congestion Games, a
graph is given, and each agent ¢ aims to travel from an initial
vertex s; to a designated destination vertex ¢;. The agent
must then select a set of edges (i.e resources) constituting
a valid (s;, t;)-path in the graph, while also trying to avoid
congested edges.

Congestion games have been extensively studied over the
years due to their wide-ranging applications (Koutsoupias
& Papadimitriou, 1999; Roughgarden & Tardos, 2002;
Christodoulou & Koutsoupias, 2005; Fotakis et al., 2005;
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de Keijzer et al., 2010; Roughgarden, 2009). They always
admit a Nash Equilibrium (NE) which is a steady state at
which no agent can decrease their cost by unilaterally de-
viating to another selection of resources (Rosenthal, 1973).
A Nash equilibrium is a static solution concept meaning
that it does not describe how agents can end up in such an
equilibrium state nor it indicates how agents should update
their strategies. It is well-known that better response dy-
namics, in which agents sequentially update their resource
selection, converges to a Nash Equilibrium and achieves
accelerated rates for interesting special cases of congestion
games (Chien & Sinclair, 2007; Gairing et al., 2004).

Despite these positive convergence results, better response
dynamics admit several drawbacks. In case of simultane-
ous updates by agents, better response dynamics may not
converge to NE. Moreover a better response comes with the
assumption that the agents are aware of the loads of all the
available resources (Chien & Sinclair, 2007). Finally, better
response does not come with any kind of guarantees to in-
dividual agents, which raises concerns as to why a selfish
agent should behave according to best-response.

Fortunately the online learning framework (Hazan, 2019)
provides a very concrete answer as to what natural strategic
behavior means (Even-Dar et al., 2009). There are vari-
ous no-regret algorithms that a selfish agent can adopt in
the context of repeated game-playing in order to guarantee
that no matter the actions of the other agents, the agent
suffers a cost comparable to the cost of the best fixed ac-
tion (Arora et al., 2012; Zinkevich, 2003) chosen in hind-
sight. The guarantee holds even under a bandit feedback
model in which the agent only learns the total cost of its
selected actions (resource-selection in the context of conges-
tion games) (Auer et al., 2002; Audibert & Bubeck, 2009).
Due to the merits of such no-regret schemes, there exists
a long line of research providing no-regret algorithms un-
der bandit feedback in the context of congestion games,
which are studied under the name of online routing or lin-
ear bandits in the online learning literature (Awerbuch &
Kleinberg, 2004; Dani et al., 2007a; Gyorgy et al., 2007;
Bubeck et al., 2012; Cesa-Bianchi & Lugosi, 2012; Kalai &
Vempala, 2005; Neu & Bartok, 2013; Audibert et al., 2014).

Despite the long interest in bandit online learning algorithms
for congestion games, the convergence to Nash Equilibrium
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of such bandit no-regret learning algorithms is not as well
explored. The broad question under consideration here is
whether or not the uncoordinated selfish behavior of agents
can converge to equilibrium. In this area, the seminal work
of (Blum et al., 2006) studied the context of non-atomic
congestion games, i.e., infinitesimal agents, and established
that the behavior of any no-regret learning algorithm con-
verges in the average sense to a Wardrop equilibrium. The
non-atomic setting has the advantage of convex landscapes
and the fact that Coarse Correlated and Wardrop equilibria
coincide. The same does not hold in atomic games (i.e finite
agents).

To the best of our knowledge (Cui et al., 2022) were the
first to provide an update rule (performing under bandit
feedback) that once adopted by all agents of an atomic
congestion game, the resulting strategies converge to an
e-approximate Nash Equilibrium with rate polynomial in n,
m and 1/e. However their method does not guarantee the
no-regret property. As a result, (Cui et al., 2022) asked the
following question:

Is there a no-regret algorithm, in the bandit feedback model,
that once adopted by all agents, results in strategies that
converge to an e-approximate Nash Equilibrium in
poly(n, m, 1/€) rounds?

In their recent work (Panageas et al., 2023) provided a pos-
itive answer for the semi-bandit feedback model in which
the agents learn the cost of every single selected resource.
In contrast, under bandit feedback, the agents only learns
the overall, total sum, cost of the selected resources and
thus does not have access to the more granular information
accessible in semi-bandit feedback.

1.1. Our Contribution and Techniques

The main contribution of our work consists in providing a
positive answer to the open question of (Cui et al., 2022).
More precisely, we provide an online learning algorithm,
called Online Gradient Descent with Caratheodory Explo-
ration (BGD — CE), that simultaneously provides both re-
gret guarantees and convergence to Nash Equilibrium.

Informal Theorem There exists an online learning al-
gorithm (BGD — CE) that performs under bandit feed-
back and guarantees O(m2'8T4/ °) regret to any agent that
adopts it. Moreover if all agent adopt BGD — CE, then the
resulting strategies converge to an e-Nash Equilibrium after
O(n*35m13/ed) steps.

Our proposed online learning algorithm additionally im-
proves on the convergence rate of the algorithm of (Cui
et al., 2022). The table 1 summarizes the regret bounds
and the convergence results of the various online learning
algorithms proposed over the years.

Table 1. Comparison with previous related work. *A regret bound
of O (m3T3/ 4) can be obtained under a different choice of step
size and exploration coefficients. (B:Bandit, SB: Semi-Bandit)

Regret Gurantees and Convergence rates

Method Regret Guarantees Convergence to NE ~ Feedback
(Auer et al., 2002) O(v2mT) No B
(Awerbuch & Kleinberg, 2004)  O(m5/3T2/3) No B
(Dani et al., 2007a) O(m'5VT) No B
(Cui et al., 2022) Not Available O(n'tm!?/e%) B
(Panageas et al., 2023) O(m2T/?) OnSm7/e%) SB
BGD-CE (This Work) O(m*8T4/%)* O(n'3>m13/ed) B

All the aforementioned online learning algorithms concern
general congestion games in which the strategy spaces of
the agents do not admit any kind of combinatorial struc-
ture. As a result, all of the above online learning algorithms
require exponential time with respect to the number of re-
sources. For the important special case of Network Conges-
tion Games over DAGs, there is a combinatorial structure
that allows for polynomial time schemes as in (Awerbuch
& Kleinberg, 2004; Fotakis et al., 2020; 2012; Angelidakis
et al., 2013; Fotakis et al., 2015). We provide a variant of
our algorithm that preserves the above guarantees while
running in polynomial time with respect to the number of
edges.

Informal Theorem For Network Congestion games in
Acyclic Directed Graphs (DAGs), Online Gradient Descent
with Caratheodory Exploration, can be implemented in poly-
nomial time.

The above result follows from strategy spaces admitting
polynomial size descriptions in this setting. We further
exploit the specific structure of DAGs to compute exact
1-barycentric-spanners, which as noted in (Awerbuch &
Kleinberg, 2004; Cesa-Bianchi & Lugosi, 2012) are not triv-
ial to obtain for DAGs. We underline that exact spanners are
not necessary, and the approximate method of (Awerbuch
& Kleinberg, 2004) is perfectly suitable. However, our ap-
proach is simple, more efficient, and can be of independent
interest.

Our Techniques The fundamental difficulty in designing no-
regret online learning algorithms under bandit feedback is
to guarantee that each resource is sufficiently explored. Un-
fortunately, standard bandit algorithms such as EXP3 (Auer
etal., 2002) result in regret bounds of the form O(2™/2y/T),
that scale exponentially with respect to m. However, a long
line of research in combinatorial bandits has produced algo-
rithms with a regret polynomially dependent on m (Awer-
buch & Kleinberg, 2004; Dani et al., 2007a; Gyorgy et al.,
2007; Bubeck et al., 2012; Cesa-Bianchi & Lugosi, 2012;
Kalai & Vempala, 2005; Neu & Bartok, 2013; Audibert
et al., 2014). These algorithms, in order to overcome the ex-
ploration problem, use various techniques that can roughly
be categorized two camps, simultaneous exploration ver-
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sus alternating explore-exploit, as described by (Abernethy
et al., 2009). However, to the best of our knowledge, none
of these algorithms have been shown to converge to NE in
congestion games once adopted by all agents.

Our online learning algorithm, guaranteeing both no-regret
and convergence to equilibrium, is based on combining On-
line Gradient Descent (Zinkevich, 2003) with a novel explo-
ration scheme, much like (Flaxman et al., 2004). Our explo-
ration strategy is based on coupling the notion of barycentric
spanners (Awerbuch & Kleinberg, 2004) with the notion of
Bounded-Away Polytopes proposed by (Panageas et al.,
2023) for the semi-bandit case. More precisely, (Panageas
et al., 2023) introduced the notion of u-Bounded Away
Polytope which corresponds to the description polytope of
the strategy space (convex hull of all pure strategies) with
the additional constraint that each resource is selected with
probability at least ;4 > 0. Projecting on this polytope en-
sures that the variance of the unobserved cost estimators
remains bounded. In order to capture bandit estimators,
we extend the notion of y-Bounded Away Polytope to de-
note the subset of the description polytope for which each
point admits a decomposition with least ;¢ weight on a pre-
selected barycentric spanner 5.

This technique of projecting on p-Bounded polytopes
closely ressembles the mixing strategies employed in on-
line learning schemes that have alternating explore-exploit
rounds. In those strategies, a fixed measure is added to
bias the algorithm’s chosen strategy. The projection on u-
Bounded polytopes, however, scales the point before adding
a bias, and, in some rounds, does not alter the point. It is
therefore a mix of simultaneous and alternating exploration,
depending on the round.

Finally, in order to provide a polynomial-time implemen-
tation of OGD — CE for Network Congestion Games on
Directed Acyclic Graphs we need exploit its well disposed
combinatorial structure. In Section C.2, we propose a novel
construction of barycentric spanners for DAGs that outputs a
1-barycentric spanner in polynomial time (see Algorithm 4)
and yields an efficient selfish routing scheme that converges
to an equilibrium.

2. Presentation of our formal result

In this section, we provide the necessary notation on con-
gestion games and the bandit feedback model and to present
the formal version of our result.

2.1. Congestion games

In congestion games, there exist a set of n selfish agent and a
set of m resources E. Each agent i € [n] can select a subset
of the resources p; € S; C 2F. A selection of resources
p; € S; is also called a pure strategy while the set of all pure

strategies S; is also called strategy space. A selection of
pure strategies profiles p = (p1,...,pn) € S1 X -+ xSy, is
called joint strategy profile and the set S := &1 X -+ X S,
is called joint strategy space. For a joint strategy profile
p € S, we also use the notation p = (p;, p—;) to isolate
(only in syntax) the strategy p; of agent ¢ from the rest of
the strategies p_; of the other agents.

Given p = (p1,...,pn) € S, the load of resource e € F,
denoted as /.(p), equals lc(p) = >, 1(e €p;). and
corresponds to the number of agents who have selected
e in their pure strategy. Each resource is additionally
associated with a non-negative, non-decreasing conges-
tion cost function ¢, : N — [0, cmax] that associates a
cost c.(¢) for a given load £. For a joint strategy pro-
file p = (pi,p—i) € S, the cost of agent ¢ € [n] equals,
Cil(pisp—i) = Soc,, Ce(le(pi, p—i)) and captures the con-
gestion cost ¢, (¢ (p)) of using resource e € p;.

Definition 2.1 (Nash equilibrium). A joint strategy profile
p = (p1,.-.,pn) € S is called an e-approximate pure
Nash equilibrium if and only if for all agents i € [n],
Ci(pi,p—i) < Ci(p;,p—i) + ¢ foranyp; € S;

To simplify notation we note that a pure strategy p; € .S;
can also be viewed as a 0/1 vector 2P € {0,1}™. More-
over given a joint strategy profile p = (p;, p—;) € S;, we
can construct a cost vector c(¢(p)) € R™ where c.(¢(p)) =
Ce(le(pi,p—;)). Then the cost of agent i € [n] can be
concisely described by an inner product as, C;(p;, p—;) =
S ey, Cellepisp—s)) = (c(£(p)).py) . An agenti € [n]
can also select a probability distribution over its pure strate-
gies S;. Such a probability distribution m; € A(S;) is
called a mixed strategy. Given joint mixed strategy pro-
file 7 = (m;, m—;), the expected cost of agent ¢, equals
Ci(mi,m—i) := Ep(n, x_.) [Ci(p)]. The notion of Nash
Equilibrium provided in Definition 2.1 can be naturally ex-
tended in the context of mixed strategies.

Definition 2.2 (Mixed Nash equilibrium). A mixed joint
strategy profile m := (71,...,m,) € A(S1) X -+ x A(Sy)
is called an e-approximate mixed Nash equilibrium if and
only if for all agents ¢ € [n], C;(m;,7—;) < Ci(m), m_;) +
e forany 7} € A(S;).

2.2. Bandit Dynamics in Congestion Games

When a congestion game is repeatedly played over 7" rounds,
each agent i selects a new mixed strategy 7! € A(S;)
at each round ¢ € [T in their attempt to minimize their
overall cost. The only feedback received by agent ¢ af-
ter picking p! is the cost C;(pt,p’ ;). This limited feed-
back is referred to as bandit feedback (Cui et al., 2022).
This contrasts with the full information feedback where
the agents observes the cost of all the available resources
{ce(¢(ph)) foralle € E} (Hazan, 2019) and the

semi-bandit feedback setting where the agent observes the
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cost of each of the individual resources it has selected
{ce(£(p")) : forall e € pt} (Panageas et al., 2023).

Each agent ¢ € [n] tries to selects the mixed strategies
wt € A(S;) so as to minimize their overall cost over the T
rounds of play. Since the cost of the edges are determined by
the strategies of the other agents that are unknown to agent
i, the agent ¢ can assume that the cost of each agents are
selected in an arbitrary and adversarial manner. Recalling
that the cost C;(pt, p' ;) is linear in pf, the problem at hand
is a particular instance of the Online Resource Selection
under Bandit Feedback (Audibert & Bubeck, 2009).

The template of Online Resource Selection under Bandit
Feedback is the following. Agent ¢ picks a mixed strategy
wt € A(S;). An adversary picks a cost vector ¢! € R™,
with ||c!|| o < Cmax. Agent i samples a pure strategy pl ~
7t and incurs cost I! = (¢!, pl). Agent i observes [} and
updates its distribution 7/ 7! € A(S;).

The agent’s goal is therefore to output a sequence of strate-
gies p=T that minimize the incurred costs against any ad-
versarially chosen sequence of cost vectors 7" where c*
can even depend on 7ril:t_1. The quality of a sequence of
play p}T is measured in terms of regret, capturing its sub-
optimality with respect to the best fixed strategy.

Definition 2.3 (Regret). The regret of the sequence
prT with respect to the cost sequence c:T equals

: . T . T
R (pzl'T7cl'T) =D e (', pf) — minyes, D=1 (' u).

As already mentioned there are various online learning al-
gorithms that even under the bandit feedback model are
able guarantee sublinear regret almost surely. In the online
learning literature such algorithms are called no-regret.

Definition 2.4 (No-Regret). An online learning algorithm
A for Linear Bandit Optimization is called no-regret
if and only if for any cost vector sequence c',...,cT,
A produces a sequence of mixed strategies 7},...,m}
(it = A(I},...,1})) such that with high probability
R (p}:T,Cl:T) — O(T)

2.3. Our Results

The main contribution of our work is the design of a no-
regret online learning algorithm under bandit feedback with
the property that when adopted by all agents of a congestion
game, leads to convergence to a Nash Equilibrium. The
no-regret property of our algorithm is formally stated and
established in Theorem 2.5 while its convergence properties
to Nash Equilibrium are presented in Theorem 2.6.

Theorem 2.5. There exists a no-regret algorithm, Bandit
Gradient Descent with Caratheodory Exploration (BGD-
CE) such that for any cost vector sequence cy,...,cr €
[0, cmax]™ and § > 0, the regret R (pFT,ctT) =

T . T .
S Sy b~ mingres, S, Yo, ch verifies

. . ~ 5 5 1
R(piT.cT) <0 <m°'5ciaXT4/ *\/log 5)

with probability 1 — 6.

Theorem 2.6 (Converge to NE). Let !, ..., 77 € A(Sy)x
... X A(S1) the sequence of strategy profiles produced if all
agents adopt Bandit Gradient Descent with Caratheodory
Exploration (BGD-CE). Then for allT > © (n13m13/65),

T
1
—E

T i€[n] i €A(P:)

ci(m,ﬂ't_i)” <e

max |:Ci(ﬂ'zt»771't_i) — min
t=1

We note that the exact same notion of best-iterate conver-
gence (as in Theorem 2.6) is considered in (Cui et al., 2022;
Leonardos et al., 2022; Ding et al., 2022; Anagnostides
et al., 2022c; Panageas et al., 2023). In Corollary 2.7 we
present a clearer interpretation of Theorem 2.6.

Corollary 2.7. In case all agents adopt BGD-CE for T >
O(m*3m!3/e®) then with probability > 1 — 6,

» (1 —8)T of the strategy profiles 7', ..., 71 are ¢/5°-
approximate Mixed NE.

7t is an €/§-approximate Mixed NE once t is sampled
uniformly at random in {1,...,T}

The running time of BGD — CE is exponential in general
congestion games for which the strategy space S; does not
admit any combinatorial structure. In Theorem 2.8 we estab-
lish that for Network Congestion Games in Directed Acyclic
Networks BGD — CE can be implemented in polynomial
time.

Theorem 2.8. For Network Congestion Games over DAGs,
BGD—CE (Algorithm 3) can be implemented in polynomial
time.

The appendix is organized as follows. In Section B we
present, BGD-CE (Algorithm 2) and explain the two main
ideas behind its design. In Section C we present the
polynomial-time implementation of BGD-CE (Algorithm 3)
for the special case of Network Congestion Games over
DAGs. Finally in Section D, we present the proofs for
establishing Theorem 2.6 and Theorem 2.8.

References

Abernethy, J. D., Hazan, E., and Rakhlin, A. Competing
in the dark: An efficient algorithm for bandit linear opti-
mization. 2009.



Polynomial Convergence of Bandit No-Regret Dynamics in Congestion Games

Ackermann, H., Roglin, H., and Vocking, B. On the impact
of combinatorial structure on congestion games. Journal
of the ACM (JACM), 55(6):1-22, 2008.

Anagnostides, 1., Daskalakis, C., Farina, G., Fishelson,
M., Golowich, N., and Sandholm, T. Near-optimal no-
regret learning for correlated equilibria in multi-player
general-sum games. In Leonardi, S. and Gupta, A.
(eds.), STOC ’22: 54th Annual ACM SIGACT Sym-
posium on Theory of Computing, Rome, Italy, June
20 - 24, 2022, pp. 736-749. ACM, 2022a. doi: 10.
1145/3519935.3520031. URL https://doi.org/
10.1145/3519935.3520031.

Anagnostides, 1., Farina, G., Kroer, C., Lee, C., Luo,
H., and Sandholm, T. Uncoupled learning dy-
namics with O(log T) swap regret in multiplayer

games. In NeurIPS, 2022b. URL http://papers.

nips.cc/paper_files/paper/2022/hash/

Bhawalkar, K., Gairing, M., and Roughgarden, T. Weighted
congestion games: the price of anarchy, universal worst-
case examples, and tightness. ACM Transactions on Eco-
nomics and Computation (TEAC), 2(4):1-23, 2014.

Blum, A., Even-Dar, E., and Ligett, K. Routing with-
out regret: On convergence to nash equilibria of regret-
minimizing algorithms in routing games. In Proceedings
of the twenty-fifth annual ACM symposium on Principles
of distributed computing, pp. 45-52, 2006.

Braun, G. and Pokutta, S. An efficient high-probability algo-
rithm for Linear Bandits, October 2016. URL http://
arxiv.org/abs/1610.02072. arXiv:1610.02072
[cs].

Bubeck, S., Cesa-Bianchi, N., and Kakade, S. M. Towards
minimax policies for online linear optimization with ban-
dit feedback. In Mannor, S., Srebro, N., and Williamson,
R. C. (eds.), COLT 2012 - The 25th Annual Conference

15d45097£9806983£0629a77e93ee60f-Abstract-GRPégntiyCFheory, June 25-27, 2012, Edinburgh, Scot-

html.

Anagnostides, 1., Panageas, 1., Farina, G., and Sandholm, T.
On last-iterate convergence beyond zero-sum games. In
International Conference on Machine Learning, ICML

2022, 17-23 July 2022, Baltimore, Maryland, USA, vol-

ume 162 of Proceedings of Machine Learning Research,
pp. 536-581. PMLR, 2022c.

Angelidakis, H., Fotakis, D., and Lianeas, T. Stochastic
congestion games with risk-averse players. In Vocking,
B. (ed.), Algorithmic Game Theory - 6th International

Symposium, SAGT 2013, Aachen, Germany, October 21-

23, 2013. Proceedings, volume 8146 of Lecture Notes in
Computer Science, pp. 86—97. Springer, 2013.

Arora, S., Hazan, E., and Kale, S. The multiplicative

weights update method: a meta-algorithm and applica-

tions. Theory Comput., 8(1):121-164, 2012.

Audibert, J. and Bubeck, S. Minimax policies for adver-

sarial and stochastic bandits. In COLT 2009 - The 22nd
Conference on Learning Theory, 2009.

Audibert, J.-Y., Bubeck, S., and Lugosi, G. Regret in online
combinatorial optimization. Math. Oper. Res., 39(1):
3145, 02 2014.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.

The nonstochastic multiarmed bandit problem. STAM J.
Comput., 32(1):48-77, 2002.

Awerbuch, B. and Kleinberg, R. D. Adaptive routing with
end-to-end feedback: Distributed learning and geometric
approaches. In Proceedings of the thirty-sixth annual

ACM symposium on Theory of computing, pp. 45-53,

2004.

land, volume 23 of JMLR Proceedings, pp. 41.1-41.14.
JMLR.org, 2012.

Caragiannis, I. and Fanelli, A. On approximate pure nash
equilibria in weighted congestion games with polynomial
latencies. In Baier, C., Chatzigiannakis, 1., Flocchini, P.,
and Leonardi, S. (eds.), 46th International Colloquium on
Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs,
pp- 133:1-133:12. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2019.

Caragiannis, 1. and Jiang, Z. Computing better approxi-
mate pure nash equilibria in cut games via semidefinite
programming. In Saha, B. and Servedio, R. A. (eds.),
Proceedings of the 55th Annual ACM Symposium on The-
ory of Computing, STOC 2023, Orlando, FL, USA, June
20-23, 2023, pp. 710-722. ACM, 2023.

Caragiannis, 1., Fanelli, A., Gravin, N., and Skopalik, A.
Efficient computation of approximate pure nash equilibria
in congestion games. In Ostrovsky, R. (ed.), IEEE 52nd
Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011, pp. 532-541. IEEE Computer Society, 2011.

Caragiannis, 1., Fanelli, A., Gravin, N., and Skopalik, A.
Approximate pure nash equilibria in weighted congestion
games: existence, efficient computation, and structure. In
Faltings, B., Leyton-Brown, K., and Ipeirotis, P. (eds.),
Proceedings of the 13th ACM Conference on Electronic
Commerce, EC 2012, Valencia, Spain, June 4-8, 2012, pp.
284-301. ACM, 2012.

Carathéodory, C. Uber den variabilititsbereich der koef-
fizienten von potenzreihen, die gegebene werte nicht an-
nehmen. Mathematische Annalen, 64(1):95-115, 1907.


https://doi.org/10.1145/3519935.3520031
https://doi.org/10.1145/3519935.3520031
http://papers.nips.cc/paper_files/paper/2022/hash/15d45097f9806983f0629a77e93ee60f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/15d45097f9806983f0629a77e93ee60f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/15d45097f9806983f0629a77e93ee60f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/15d45097f9806983f0629a77e93ee60f-Abstract-Conference.html
http://arxiv.org/abs/1610.02072
http://arxiv.org/abs/1610.02072

Polynomial Convergence of Bandit No-Regret Dynamics in Congestion Games

Cesa-Bianchi, N. and Lugosi, G. Combinatorial bandits.
Journal of Computer and System Sciences, 78(5):1404—
1422, 2012.

Chen, L., Luo, H., and Wei, C.-Y. Impossible tuning made
possible: A new expert algorithm and its applications. In
Conference on Learning Theory, pp. 1216-1259. PMLR,
2021.

Chen, P.-A. and Lu, C.-J. Generalized mirror descents in
congestion games. Artificial Intelligence, 241:217-243,
2016.

Chien, S. and Sinclair, A. Convergence to approximate
nash equilibria in congestion games. In Bansal, N., Pruhs,
K., and Stein, C. (eds.), Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2007, New Orleans, Louisiana, USA, January 7-9,
2007, pp. 169-178. SIAM, 2007.

Christodoulou, G. and Koutsoupias, E. The price of anarchy
of finite congestion games. STOC, pp. 67-73, 2005.

Christodoulou, G., Gairing, M., Giannakopoulos, Y., Pogas,
D., and Waldmann, C. Existence and complexity of ap-
proximate equilibria in weighted congestion games. Math.
Oper. Res., 48(1):583-602, 2023.

Cohen, J., Héliou, A., and Mertikopoulos, P. Hedging under
uncertainty: Regret minimization meets exponentially
fast convergence. In Bilo, V. and Flammini, M. (eds.), Al-
gorithmic Game Theory - 10th International Symposium,
SAGT 2017, L’Aquila, Italy, September 12-14, 2017, Pro-
ceedings, volume 10504 of Lecture Notes in Computer
Science, pp. 252-263. Springer, 2017.

Combettes, P. L. and Pesquet, J.-C. Proximal splitting meth-
ods in signal processing. Fixed-point algorithms for in-
verse problems in science and engineering, pp. 185-212,
2011.

Cui, Q., Xiong, Z., Fazel, M., and Du, S. S. Learning in
congestion games with bandit feedback, 2022.

Dani, V., Hayes, T. P, and Kakade, S. M. The price of ban-
dit information for online optimization. In Proceedings
of the 20th International Conference on Neural Infor-
mation Processing Systems, NIPS’07, pp. 345-352, Red
Hook, NY, USA, 2007a. Curran Associates Inc. ISBN
9781605603520.

Dani, V., Kakade, S. M., and Hayes, T. The price of bandit
information for online optimization. Advances in Neural
Information Processing Systems, 20, 2007b.

Daskalakis, C., Fishelson, M., and Golowich, N. Near-
optimal no-regret learning in general games. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and

Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, De-
cember 6-14, 2021, virtual, pp. 27604-27616, 2021.

de Keijzer, B., Schifer, G., and Telelis, O. A. On the ineffi-

ciency of equilibria in linear bottleneck congestion games.
In Kontogiannis, S., Koutsoupias, E., and Spirakis, P.
(eds.), Algorithmic Game Theory, volume 6386 of Lec-
ture Notes in Computer Science, pp. 335-346. Springer
Berlin Heidelberg, 2010. ISBN 978-3-642-16169-8. doi:
10.1007/978-3-642-16170-429. URL http://dx.
doi.org/10.1007/978-3-642-16170-4_209.

Ding, D., Wei, C., Zhang, K., and Jovanovic, M. R. Inde-

pendent policy gradient for large-scale markov potential
games: Sharper rates, function approximation, and game-
agnostic convergence. In Chaudhuri, K., Jegelka, S.,
Song, L., Szepesvari, C., Niu, G., and Sabato, S. (eds.),
International Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA, vol-
ume 162 of Proceedings of Machine Learning Research,
pp- 5166-5220. PMLR, 2022.

Even-Dar, E., Mansour, Y., and Nadav, U. On the conver-

gence of regret minimization dynamics in concave games.
In Mitzenmacher, M. (ed.), Proceedings of the 41st An-
nual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 - June 2, 2009, pp.
523-532. ACM, 2009.

Fabrikant, A., Papadimitriou, C., and Talwar, K. The com-

plexity of pure Nash equilibria. In ACM Symposium on
Theory of Computing (STOC), pp. 604—-612. ACM, 2004.

Farina, G., Anagnostides, 1., Luo, H., Lee, C., Kroer, C., and

Sandholm, T. Near-optimal no-regret learning dynamics
for general convex games. In NeurlPS, 2022.

Flaxman, A. D., Kalai, A. T., and McMahan, H. B. On-

line convex optimization in the bandit setting: gradient
descent without a gradient. arXiv preprint cs/0408007,
2004.

Fotakis, D., Kontogiannis, S., and Spirakis, P. Selfish

unsplittable flows.  Theoretical Computer Science,
348(2-3):226-239, 2005. ISSN 0304-3975. doi:
http://dx.doi.org/10.1016/j.tcs.2005.09.024. URL
http://www.sciencedirect.com/science/
article/pii/S0304397505005347. Automata,
Languages and Programming: Algorithms and Com-
plexity (ICALP-A 2004)Automata, Languages and
Programming: Algorithms and Complexity 2004.

Fotakis, D., Kaporis, A. C., and Spirakis, P. G. Atomic con-

gestion games: Fast, myopic and concurrent. In Monien,
B. and Schroeder, U. (eds.), Algorithmic Game Theory,


http://dx.doi.org/10.1007/978-3-642-16170-4_29
http://dx.doi.org/10.1007/978-3-642-16170-4_29
http://www.sciencedirect.com/science/article/pii/S0304397505005347
http://www.sciencedirect.com/science/article/pii/S0304397505005347

Polynomial Convergence of Bandit No-Regret Dynamics in Congestion Games

First International Symposium, SAGT 2008, Paderborn,
Germany, April 30-May 2, 2008. Proceedings, volume
4997 of Lecture Notes in Computer Science, pp. 121-132.
Springer, 2008.

Fotakis, D., Kaporis, A. C., and Spirakis, P. G. Effi-
cient methods for selfish network design. In Albers, S.,
Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S. E.,
and Thomas, W. (eds.), Automata, Languages and Pro-
gramming, 36th Internatilonal Colloquium, ICALP 2009,
Rhodes, Greece, July 5-12, 2009, Proceedings, Part I,
volume 5556 of Lecture Notes in Computer Science, pp.
459-471. Springer, 2009.

Fotakis, D., Kaporis, A. C., Lianeas, T., and Spirakis, P. G.
On the hardness of network design for bottleneck routing
games. In Serna, M. J. (ed.), Algorithmic Game Theory
- 5th International Symposium, SAGT 2012, Barcelona,
Spain, October 22-23, 2012. Proceedings, volume 7615
of Lecture Notes in Computer Science, pp. 156—167.
Springer, 2012.

Fotakis, D., Kalimeris, D., and Lianeas, T. Improving self-
ish routing for risk-averse players. In Markakis, E. and
Schifer, G. (eds.), Web and Internet Economics - 11th
International Conference, WINE 2015, Amsterdam, The
Netherlands, December 9-12, 2015, Proceedings, volume
9470 of Lecture Notes in Computer Science, pp. 328-342.
Springer, 2015.

Fotakis, D., Kandiros, A. V., Lianeas, T., Mouzakis, N.,
Patsilinakos, P., and Skoulakis, S. Node-max-cut and
the complexity of equilibrium in linear weighted con-
gestion games. In Czumaj, A., Dawar, A., and Merelli,
E. (eds.), 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11,
2020, Saarbriicken, Germany (Virtual Conference), vol-
ume 168 of LIPIcs, pp. 50:1-50:19. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2020.

Gairing, M., Liicking, T., Mavronicolas, M., and Monien, B.
Computing nash equilibria for scheduling on restricted
parallel links. In Babai, L. (ed.), Proceedings of the
36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, pp. 613-622. ACM,
2004.

Giannakopoulos, Y. and Pocgas, D. A unifying approximate
potential for weighted congestion games. Theory Comput.
Syst., 67(4):855-876, 2023.

Giannakopoulos, Y., Noarov, G., and Schulz, A. S. Comput-
ing approximate equilibria in weighted congestion games
via best-responses. Math. Oper. Res., 47(1):643-664,
2022.

Grotschel, M., Lovasz, L., and Schrijver, A. Geometric
Algorithms and Combinatorial Optimization, volume 2
of Algorithms and Combinatorics. Springer, 1988.

Gyorgy, A., Linder, T., Lugosi, G., and Ottucsdk, G. The
on-line shortest path problem under partial monitoring. J.
Mach. Learn. Res., 8:2369-2403, 2007.

Gyorgy, A., Linder, T., Lugosi, G., and Ottucsdk, G. The
on-line shortest path problem under partial monitoring.
Journal of Machine Learning Research, 8(10), 2007.

Hazan, E. Introduction to online convex optimization.
CoRR, abs/1909.05207, 2019. URL http://arxiv.
org/abs/1909.05207.

Heliou, A., Cohen, J., and Mertikopoulos, P. Learning with
Bandit Feedback in Potential Games. In Advances in
Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://papers.
nips.cc/paper_files/paper/2017/hash/
39%9ae2edllbld4adccb41d35e9dlbabdll-Abstract.
html.

Hoheisel, T., Laborde, M., and Oberman, A. On proximal
point-type algorithms for weakly convex functions and
their connection to the backward euler method. Optimiza-
tion Online ().

Hsieh, Y., Antonakopoulos, K., Cevher, V., and Mer-
tikopoulos, P. No-regret learning in games with noisy
feedback: Faster rates and adaptivity via learning rate
separation. In NeurIPS, 2022. URL http://papers.
nips.cc/paper_files/paper/2022/hash/
2abad9fd438b40604ddaabe75e6c51ldd-Abstract-Confere
html.

Kalai, A. and Vempala, S. Efficient algorithms for
online decision problems. Journal of Computer and
System Sciences, 71(3):291-307, 2005. ISSN 0022-
0000. doi: https://doi.org/10.1016/].jcss.2004.10.016.
URL https://www.sciencedirect.com/
science/article/pii/S0022000004001394.
Learning Theory 2003.

Kleer, P. Sampling from the gibbs distribution in congestion
games. In Bird, P., Chawla, S., and Echenique, F. (eds.),
EC ’21: The 22nd ACM Conference on Economics and
Computation, Budapest, Hungary, July 18-23, 2021, pp.
679-680. ACM, 2021.

Kleer, P. and Schifer, G. Computation and efficiency of po-
tential function minimizers of combinatorial congestion
games. Math. Program., 190(1):523-560, 2021.

Klimm, M. and Warode, P. Complexity and parametric
computation of equilibria in atomic splittable congestion
games via weighted block laplacians. In Proceedings of


http://arxiv.org/abs/1909.05207
http://arxiv.org/abs/1909.05207
https://papers.nips.cc/paper_files/paper/2017/hash/39ae2ed11b14a4ccb41d35e9d1ba5d11-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/39ae2ed11b14a4ccb41d35e9d1ba5d11-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/39ae2ed11b14a4ccb41d35e9d1ba5d11-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/39ae2ed11b14a4ccb41d35e9d1ba5d11-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/2abad9fd438b40604ddaabe75e6c51dd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/2abad9fd438b40604ddaabe75e6c51dd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/2abad9fd438b40604ddaabe75e6c51dd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/2abad9fd438b40604ddaabe75e6c51dd-Abstract-Conference.html
https://www.sciencedirect.com/science/article/pii/S0022000004001394
https://www.sciencedirect.com/science/article/pii/S0022000004001394

Polynomial Convergence of Bandit No-Regret Dynamics in Congestion Games

the Fourteenth Annual ACM-SIAM Symposium on Dis- Panageas, 1., Skoulakis, S., Viano, L., Wang, X., and Cevher,
crete Algorithms, pp. 2728-2747. SIAM, 2020. V. Semi bandit dynamics in congestion games: Conver-
gence to nash equilibrium and no-regret guarantees. 2023.
Koutsoupias, E. and Papadimitriou, C. H. Worst-case equi-
libria. In STACS, pp. 404—413, 1999. Parikh, N., Boyd, S., et al. Proximal algorithms. Founda-
tions and trends® in Optimization, 1(3):127-239, 2014.
Lee, C.-W., Luo, H., Wei, C.-Y., and Zhang, M. Bias . ) )
no more: high-probability data-dependent regret  Filiouras, G. Sim, R., and Skoulakis, S. ~ Beyond
bounds for adversarial bandits and MDPs. In Ad- time-average convergence: Near-optimal uncoupled
vances in Neural Information Processing Systems, online learning via clairvoyant multiplicative weights
volume 33, pp. 15522-15533. Curran Associates, update. In NeurIPS, 2022. URL http://papers.
Inc., 2020. URL https://proceedings. nips.cc/paper_files/paper/2022/hash/
neurips.cc/paper/2020/hash/ 8bd5148caced2d73cea7b6961a874a49-Abstract-Confere

b2ea5e977c5fclccfalal71a9723dd61-Abst ract . ptml.

html. Rosenthal, R. W. A class of games possessing pure-strategy

nash equilibria. International Journal of Game Theory,

Leonardos, S., Overman, W., Panageas, 1., and Piliouras, 2:65-67. 1973.

G. Global convergence of multi-agent policy gradient

in markov potential games. In International Conference Roughgarden, T. Intrinsic robustness of the price of anarchy.
on Learning Representations, 2022. URL https:// In Proc. of STOC, pp. 513-522, 2009.
openreview.net/forum?id=gfwON7rAm4. )
Roughgarden, T. and Tardos, E. How bad is selfish routing?
Mavronicolas, M. and Spirakis, P. G. The price of selfish Journal of the ACM (JACM), 49(2):236-259, 2002.
routing. In Vitter, J. S., Spirakis, P. G., and Yannakakis, )
M. (eds.), Proceedings on 33rd Annual ACM Symposium Vu, D. Q., Antonakopoulos, K., and Mertikopoulos, P. Fast

on Theory of Computing, July 6-8, 2001, Heraklion, Crete, routing under uncertainty: Adaptive learning in conges-

Greece, pp. 510-519. ACM, 2001. tion games via exponential weights. In Ranzato, M.,

Beygelzimer, A., Dauphin, Y. N., Liang, P., and Vaughan,

McMahan, H. B. and Blum, A. Online geometric optimiza- J. W. (eds.), Advances in Neural Information Processing

tion in the bandit setting against an adaptive adversary. Systems 34: Annual Conference on Neural Information

In Learning Theory: 17th Annual Conference on Learn- Processing Systems 2021, NeurIPS 2021, December 6-14,
ing Theory, COLT 2004, Banff, Canada, July 1-4, 2004. 2021, virtual, pp. 14708-14720, 2021.

Proceedings 17, pp. 109—123. Spri , 2004, .
roceedings pp PrInger Zhou, Z., Mertikopoulos, P., Athey, S., Bambos, N., Glynn,

Mertikopoulos, P. and Zhou, Z. Learning in games with P. W, and Ye, Y. Learning in games with lossy feedback.
continuous action sets and unknown payoff functions. In Advances in Neural Information Processing Systems
Math. Program., 173(1-2):465-507, 2019. 31: Annual Conference on Neural Information Process-

ing Systems 2018, NeurIPS 2018, December 3-8, 2018,

Monderer, D. and Shapley, L. S. Potential games. Games Montréal, Canada, pp. 5140-5150, 2018.

and Economic Behavior, pp. 124-143, 1996. ) ) .
Zimmert, J. and Lattimore, T. Return of the bias: Almost

Neu, G. and Bartdk, G. An efficient algorithm for learn- minimax optimal high probability bounds for adversarial
ing with semi-bandit feedback. In Jain, S., Munos, R., linear bandits. In Proceedings of Thirty Fifth Confer-
Stephan, F., and Zeugmann, T. (eds.), Algorithmic Learn- ence on Learning Theory, pp. 3285-3312. PMLR, June
ing Theory - 24th International Conference, ALT 2013, 2022. URL https://proceedings.mlr.press/
Singapore, October 6-9, 2013. Proceedings, volume 8139 v178/zimmert22b.html. ISSN: 2640-3498.

of Lecture Notes in Computer Science, pp. 234-248.

Springer, 2013. Zinkevich, M. Online convex programming and generalized

infinitesimal gradient ascent. In Fawcett, T. and Mishra,
N. (eds.), Machine Learning, Proceedings of the Twenti-
eth International Conference (ICML 2003), August 21-24,
2003, Washington, DC, USA, pp. 928-936. AAAI Press,
2003.

Palaiopanos, G., Panageas, 1., and Piliouras, G. Multiplica-
tive weights update with constant step-size in congestion
games: Convergence, limit cycles and chaos. In Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5872-5882, 2017.


https://proceedings.neurips.cc/paper/2020/hash/b2ea5e977c5fc1ccfa74171a9723dd61-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b2ea5e977c5fc1ccfa74171a9723dd61-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b2ea5e977c5fc1ccfa74171a9723dd61-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b2ea5e977c5fc1ccfa74171a9723dd61-Abstract.html
https://openreview.net/forum?id=gfwON7rAm4
https://openreview.net/forum?id=gfwON7rAm4
http://papers.nips.cc/paper_files/paper/2022/hash/8bd5148caced2d73cea7b6961a874a49-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bd5148caced2d73cea7b6961a874a49-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bd5148caced2d73cea7b6961a874a49-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bd5148caced2d73cea7b6961a874a49-Abstract-Conference.html
https://proceedings.mlr.press/v178/zimmert22b.html
https://proceedings.mlr.press/v178/zimmert22b.html

Polynomial Convergence of Bandit No-Regret Dynamics in Congestion Games

A. Related work
A.1. Related Work

Online Learning and Nash Equilibrium Our work falls squarely within the recent line of research studying the convergence
properties of online learning dynamics in the context of repeated games (Piliouras et al., 2022; Anagnostides et al., 2022a;
Daskalakis et al., 2021; Anagnostides et al., 2022b; Farina et al., 2022; Hsieh et al., 2022; Zhou et al., 2018; Mertikopoulos
& Zhou, 2019; Cohen et al., 2017). Specifically (Heliou et al., 2017; Palaiopanos et al., 2017; Mertikopoulos & Zhou, 2019;
Zhou et al., 2018) establish asymptotic convergence guarantees for potential normal form games; congestion games are
known to be isomorphic to potential games (Monderer & Shapley, 1996). Most of the aforementioned works use techniques
from stochastic approximation and are orthogonal to ours. Furthermore, (Chen & Lu, 2016; Vu et al., 2021) study the
convergence properties of first-order methods in non-atomic congestion games; non-atomic congestion games capture
continuous populations and result in convex landscapes. On the other hand, atomic congestion games (the focus of this
paper) result in non-convex landscapes.

Bandits and Online Learning As already mentioned, congestion games have been studied within the realm of online
learning and bandits, where several no-regret algorithms have been proposed. The main difference between our and previous
works is that, once the previously proposed algorithms are adopted by all agents, the overall system only converges to a
Coarse Correlated Equilibrium and not necessarily to a Nash equilibrium as our algorithm guarantees (see (Panageas et al.,
2023)). The design of no-regret algorithms for this setting began with (Awerbuch & Kleinberg, 2004) where a O(TQ/ %)
regret bound was achieved for linear bandit optimization against an oblivious adversary via introducing the notion of
barycentric spanners. Follow up work (McMahan & Blum, 2004; Gyorgy et al., 2007) built on this to propose a O(T3/4)
algorithms for linear bandits against adaptive adversaries. The optimal rates were then obtained by (Dani et al., 2007b)
who establish O(\/T) expected regret for the geometric hedge algorithm and closely followed by (Abernethy et al., 2009)
who achieved the same expected regret using self-concordant barriers. Both these optimal rates were obtained with barriers
(entropic or self-concordant) that diverge as points get close to the boundary of the strategy space. Unfortunately such
barriers significantly degrade convergence rates to equilibria so we instead use ¢5 regularization in our work.

Relatively recent papers have focused on providing efficient algorithms with high-probability guarantees against adaptive
adversaries (Braun & Pokutta, 2016; Lee et al., 2020; Zimmert & Lattimore, 2022). See also (Cesa-Bianchi & Lugosi, 2012)
for a general framework on combinatorial bandits.

Existence and Equilibrium Efficiency In the context of congestion games, the problem of equilibrium selection and
efficiency has received a lot of interest. In (Koutsoupias & Papadimitriou, 1999), the notion of Price of Anarchy (PoA) was
introduced that captures the ratio between the worst-case equilibrium and the optimal path assignment. Later works provided
bounds on PoA (Roughgarden & Tardos, 2002; Christodoulou & Koutsoupias, 2005; Fotakis et al., 2005; de Keijzer et al.,
2010; Bhawalkar et al., 2014; Mavronicolas & Spirakis, 2001) for both atomic and non-atomic settings. Another line of work
has to do with the computational complexity of computing Nash equilibria in Network congestion games (Fabrikant et al.,
2004; Ackermann et al., 2008; Klimm & Warode, 2020). Notably in (Fabrikant et al., 2004) it was shown that computing a
Nash equilibrium in symmetric Network Congestion games can be done in polynomial time and also showed that in the
asymmetric case, computing a pure Nash equilibrium belongs to class PLS (believed to be larger class than P). Further
works appearred that investigate deterministic or randomized polynomial time approximation schemes for approximating a
Nash equilibrium (Fotakis et al., 2009; 2008; Caragiannis et al., 2011; 2012; Caragiannis & Fanelli, 2019; Caragiannis &
Jiang, 2023; Christodoulou et al., 2023; Giannakopoulos & Pocas, 2023; Giannakopoulos et al., 2022; Kleer & Schifer,
2021; Kleer, 2021; Audibert & Bubeck, 2009).

B. Bandit Online Gradient Descent with Caratheodory Exploration

In this section, we present our online learning algorithm for general congestion games, called Bandit Online Gradient
Descent with Caratheodory Exploration. The formal description of our algorithm lies in Section B.3 (Algorithm 2). We
begin the section by introducing two essential ingredients. In Section B.1 we present the notion of Implicit Description
Polytopes for Congestion Games and in Section B.2 the notion of Barycentric Spanners (Awerbuch & Kleinberg, 2004).
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B.1. Implicit Description and Strategy Sampling

The set of resources can be numbered such that £ = {1,...,m}. The latter allows for the strategy space S; to be embedded
in the vertices of the m dimensional hypercube. Indeed any p; € S; can be described, with a slight abuse of notation, by the
vertex p; € {0, 1} where p;, = 1if and only if e € p;. The following definition formalizes this embedding.

Definition B.1 (Implicit description polytope). For any element in S;, let p; € {0, 1}™ denote its encoding as a vertex in
the hypercube. The implicit description polytope X is given by the following convex hull
X; :=conv ({p; € {0,1}™, p; € S;}),
AX; is a closed convex polytope so there exists A; € R™*™ and d; € R, for some r; € N, such that
X ={z e R"™ Az < d;}
The polytope is therefore defined by the pair (A;, d;) and its size is given by r; and m.

This implicit description polytope is of interest because the strategy space S; corresponds to its extreme points. Moreover,
the set of distribution over the strategy space A(S;) is also captured by the polytope as shown by the following definition.

Definition B.2 (Marginalization). For any m; € A(S;) we can associate a point ™ € X; defined as

T = Z ul:; [u = p;] ;.

The reverse correspondence of obtaining a distribution 7; € A(S;) from a point z; € &; can also established thanks to a
result of Caratheodory (Carathéodory, 1907).

Definition B.3 (Caratheodory decomposition). Let z; € X;. By Caratheodory’s theorem, there exists m + 1 strategies

v} v and scalars Ay, . .., Ay such that

iU
m—+1

T = Z Ao (CD)
j=1

with A; > 0 and Zj Aj =1.ThesetC; = {(v}, A)yeens (vZ”H, )\m_H)} is called a Caratheodory decomposition of z;

With the above, any point in &; can be associated to a distribution that can be sampled easily.

B.2. Barycentric Spanners and Bounded Away Polytopes

This section introduces the important concept of barycentric spanners (Awerbuch & Kleinberg, 2004). We will leverage
barycentric spanners to ensure sufficient exploration of the resources set and hence guarantee low variance of the cost
estimators.

Definition B.4 (¢-spanners). A subset of independent vectors {by,...,bs} C A;, with s < m, is said to be J-spanner of
X;, with ¢ > 1, if, for all z € A, there exists o € R® such that

x =Y ogby and of <97, forall k € [s].
k=1

Such collections of vectors can always be found as shown by the following theorem.

Theorem B.5 (Existence of spanners ((Awerbuch & Kleinberg, 2004), Proposition 2.2)). Any compact set X; C R™ admits
an O(1)-spanner.

We adopt barycentric spanners as a key ingredient in our algorithm. Since barycentric spanners essentially form a kind of

basis of the polytope X;, we can introduce the basis polytope D; in the following defintion.

Definition B.6 (Basis polytope). Let B; be the matrix whose columns are 1J-barycentric spanners b1, . .., bs of X;. The
polytope defined as
Di = {a € [*19,’[9}8, BiOé S Xz}

is referred to as the basis polytope.
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It is in this polytope that we can achieve fine control of norms necessary for our proofs, for this reason agents will operate
in their respective basis polytopes. Moreover to ensure sufficient exploration, the boundaries of the polytope need to be
avoided. More precisely, we introduce the notion of p-Bounded-Away Basis Polytope that will be central for our proposed
algorithm.

Definition B.7. Let 1 > 0 be an exploration parameter. The ;i-Bounded-Away basis Polytope, denoted as D', is defined as

Dh 2 (1—N)Di+%]l. (1)

We remark that the ;i-Bounded-Away Polytope D! is always non empty as it contains %IL, moreover, D! C D;. A simplified
version of this idea has been shown successful for the semi-bandit feedback model (Panageas et al., 2023) and it appeared in
(Chen et al., 2021) that used it in the context of online predictions with experts advice.

Equation (1) shows that any point o; € D; admits a decomposition where %]l appears with coefficient ;. Mapping back to
the implicit description polytope, this implies that the point z; = B;«; admits a decomposition that assigns a weight p > 0
tob; = ﬁ Zbe B, b, which can be understood as the uniform distribution over the spanners. In fact, there is a tractable way
of obtaining this decomposition as evidenced by the following definition.

Definition B.8 (Shifted Caratheodory decomposition). Given a barycentric spanner 53; and the respective p-bounded away

basis polytope D;, for any a € D, witha = (1 — p)z + E1 for some z € D, the shifted Caratheodory decomposition of
x = B;a is given by

x=(1—p) Z Ap D +|g|2bz

(p,Ap)€C; beB;

where C; is the Caratheodory decomposition of B;z € Aj.

In Algorithm 1 we present how, for any a € DY, a point 2 = B;a € X; can be decomposed to a probability distribution
Ty € A(SZ)

Algorithm 1 CaratheodoryDistribution

Input: = € X;, exploration parameter 1 > 0, spanner B; = {b1,...,bs}. Consider the shifted decomposition of z (see
Definition B.8) with b; = IBl’I Zbe& b, i.e.

r=(1-p) Z Ap D +|g‘zb1
(P Ap)EC; U peB;
where C; = {(A1,0}), .-, (Am41,v]" 1)} is the Caratheodory decomposition of = (z — 1B 2ves; bi)-
Output 7, € A(S;) with supp(r) = {v},...,v/" "'} U B; such that

* Pryr [u=2v;] =(1—p)Aforall k € [m + 1]

* Pryor, [u=0s] = |ZATLi| for all bs € B;

B.3. Bandit Gradient Descent with Caratheodory Exploration

In this section we present our algorithm, called Bandit Gradient Descent with Caratheodory Exploration (BGD — CE)
described in Algorithm 2.

Algorithm 2 and is based on Projected Online Gradient Descent (Zinkevich, 2003) but it includes two important variations
leveraging the technical tools introduced in the previous sections.

Resources sampling In Step 6 of Algorithm 2 we need to sample from a distribution over S;. As this set can be exponentially
large, this sampling procedure might have complexity exponential in m. To avoid such a computational complexity, we do
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Algorithm 2 Bandit Gradient Descent with Caratheodory Exploration and Bounded Away polytopes

Agent i computes a O(1)-barycentric spanner (see Definition B.4) B = {by,...,bs}.
Agent i sets B; € R™*% to be the matrix with columns {by, ..., bs}.
Agent i selects an arbitrary o} € DI,
for eachroundt =1,...,7T do
Define x! = B;al.
Agent i samples p! ~ 7! where 7! = CaratheodoryDistribution(z!;us, B) (Algorithm 1).
Agent i suffers cost, I} := (c!, pt).
Agent i sets & « I} - M%,p! where M; ; = E, _t[ov'].
Agent i updates o/ ™! =TI i1 (af — B/ ¢t).

end for

not track distriutions but rather their maginalization x! and we sample from the Caratheodory distribution 7! which has
sparse support.

Bounded variance estimator Since we work under bandit feedback, we can not directly observe all the entries of the cost
vector. To circumvent this challenge, we adopt the standard estimator for online linear optimization with bandit feedback
proposed in (Dani et al., 2007b) which is ¢* < [} - thp’; where M; ; = E, [uu]. The bounds on the variance of this
estimator depends on the inverse of the smallest nonzero eigenvalue of M; ; (see Lemma E.1) but unfortunately this could
be arbitrary small for points close to the boundaries of the polytope &;. For this reason, in Step 8 of Algorithm 2 we project
on the set shrunk down polytope, D!, that ensures we are ; away from the boundary. Thanks to this, we can prove the
following result concerning the cost estimator.

Lemma B.9. The estimator ¢ = I} - M, pl satisfies

1. E[(¢, z)] = (¢, x) forz € X; (Orthogonal Bias).

/

2
— Cmax- (Boundness).

2 ||Bf 2 <9

771,5
©w

3. E ||l

2 4 2
2} < B Cwmax (Second Moment)

Kt

Using Lemma B.9 we are able to establish both the no-regret property of Algorithm 2 as well as its convergence properties
of Nash Equilibrium in case Algorithm 2 is adopted by all agents. In Theorem B.10 we formally stated and establish the
no-regret property of Algorithm 2.

Theorem B.10 (No-Regret). Let § € (0,1). If agent i € [n] generates its strategies p*! using Algorithm 2 with step
n'/? 75 ,0.5}, then, for any adversarial adaptive sequence c'*T,

m7/5t1/50max

. . ~ 1
R (pzl.T,Cl.T) <O <m5.562T4/5 lOg 5)

In Theorem B.11 we establish the convergence properties of Algorithm 2 to Nash Equilibrium.

sizes ¢ = /5225 and biases p; = min {

with probability 1 — 6.

Theorem B.11 (Convergence to Nash). Let all the agents adopt Algorithm 2 with step sizes vy = +/ 525+ and
biases py = % . We denote by 7', ..., 7T the sequence of joint strategy profiles produced. Then, for T >
mf/® ? Cmax

O(mi3m135 /e%),
1 T
—E
T

max [ci(wfﬂrti) — min )Ci(ﬁithi)H <e.

=1 7/6["] WiEA(’Pi,
In Section D, we present the proof sketches of both Theorem B.10 and Theorem B.11.
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We remark that the complexity of Algorithm 2 is polynomial with respect to the size of implicit polytope X;. However the for
general congestion games the size of X; can be exponential in m. Moreover constructing an O(1)-barycentric spanner for
general congestion games also requires exponential time in m (Awerbuch & Kleinberg, 2004) when the size of the polytope
is exponential. In the next section, we tailor the algorithm to cases when the polytope admits a convenient structure.

C. Implementing Algorithm 2 in Polynomial-Time for DAGs

In this section we present how Algorithm 2 can be implemented in polynomial time for the special case of DAGs. The latter
involves two key steps. The first one consists in computing barycentric spanners in polynomial time while the second in
efficiently computing a Caratheorody Decomposition. We remark that none of the above steps can be done in polynomial
time for general congestion games. To tackle the first challenge in Algorithm 4 we present a novel and efficient procedure
for spanner construction which also consists the main technical contribution of this section. To tackle the second challenge,
we use the approach introduced in the previous work of (Panageas et al., 2023). Overall, we present the computationally
efficient version of Algorithm 2 for the case of Network Congestion Games over DAGs in Algorithm 3.

C.1. Complexity for general congestion games

For ¢ = O(1) but with ¥ > 1, (Awerbuch & Kleinberg, 2004) shows that it is possible to compute a ¥-spanner for any
compact set with a polynomial number of calls to a linear minimization oracle. The time complexity of this oracle depends
polynomially on 7; and m where r; is the number of rows in (A;, d;), the implicit description of X;. The updates of
Algorithm 2 further require a Caratheodory decomposition for sampling at step 3, the inversion of a m x m matrix M, ¢
and finally a projection onto D;. Overall the complexity of a single update is therefore poly(r;, m). For general congestion
games, it can be the case that r; is exponential in m. For the special case of network games however, &; corresponds to the
flow polytope for which r; < m. We discuss this special case in the next section.

C.2. Efficient implementation of Algorithm 2 for DAGs

An efficient implementation is possible if the set of resources correspond to the edges of a DAG. First, recall that the implicit
description polytope & admits a polynomial description. Indeed, in network congestion games X has the following simple
form.

Definition C.1 (Flow polytope). The implicit description polytope of a Network Congestion Game over a directed acyclic
graph G(V, E') with start and target node s;,t; € V is given by

Xié{xe{o,l}m: > owe=1

ecOut(s;)

Z Te = Z xe Yo eV\{s;,t}
e€ln(v) e€Out(v)

> a-1
e€In(t;)

Notice that the number of constraints is simply |V'|. Therefore, a DAG admits an implicit description with r; = |V| < m.
Moreover, we have the following important characterization of the extreme points.

Lemma C.2. (?)Lemma 11]panageas2023semi The extreme points of the (s;,t;)-path polytope X; correspond to (s;,t;)-
paths of G(V, E) and vice versa.

Therefore, despite the fact that there potentially exponentially many extreme points of A, the set X; is described concisely
by |V| constraints. The first important consequence of this result is that by invoking the following theorem we can ensure
that Step 5 in Algorithm 2 runs in polynomial time.

Theorem C.3. (Grotschel et al., 1988) Let x € X; = {u € [0,1]™, Aju < d;}, with A; € R"*™ and d; € R™. Then a
Caratheodory decomposition can be computed in polymomial time with respect to r; and m.

Given a shortest path algorithm, this can be done using (?)Algorithm 1]panageas2023semi. Moreover, also the projection
in Step 8 of Algorithm 2 can be computed up to arbitrary accuracy in polynomial time given that &’ can be represented
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Figure 1. Construction of a 1-spanner for DAGs. We illustrate Algorithm 4 on a simple graph. We can select the three red edges as the, non-
redundant, key edges. We cover these using 3 paths that will constitute the basis. For edge s — b, we selects - b —d —-e — g — t.
For the edge s — ¢, we first check if is reachable from edge s — b, we notice it is not. We then find a path starting from s. In this case,
we select s > ¢ — d — e — g — t. For edge e — f we check if is reachable from the last covered edge (in topological order), we
notice it is reachable from edge s — ¢ so we select s — ¢ — d — e — f — t. The key idea we use to construct a 1-spanner is to ensure
that when we cover edges, we first try to reach them with the previously covered edges going in reverse topological order. This prefix
property ensures the 1-spanner property.

via |V| affine constraints. The second computational bottleneck in the general case is the spanner computation. However,
for the special case of DAGs, we present next an algorithm that construct exact 1-spanner which has better computational
complexity compared to (Awerbuch & Kleinberg, 2004). The improvement is possible because the approach by (Awerbuch
& Kleinberg, 2004) does not exploit the specific structure of DAGs although it is polynomial-time for DAGs. We propose,
instead, an algorithm that stays in the natural parametrization of the problem and outputs a 1-spanner. The construction is
detailed in Algorithm 4 and rests on a clever use of prefix paths. All in all, we have the next formal result.

Theorem C.4. Given a Directed Acyclic Graph G = (V, E)) with source s; € V and sink t; € V, there exists a polynomial
time algorithm (i.e. Algorithm 4) computing an exact 1-spanner for X;.

We give a constructive proof of Theorem C.4 in Section C.3. Overall, we propose the following simple algorithm that runs in
polynomial time where the difference with the general case is that in Step 2 the spanner is computed efficiently by invoking
Algorithm 4.

Algorithm 3 Bandit Gradient Descent with Caratheodory Exploration and Bounded Away polytopes (Agent’s ¢ perspective)
for DAGs
Input: Step size sequence (¢ )¢, bias coefficients (u):, a constant ¥
Agent i computes a 1-barycentric spanner B = {b1, ..., bs} with Algorithm 4.
Agent i selects an arbitrary z} € AX;.
for eachroundt =1,...,7 do
Agent i sets 2! = B;al.
Agent i samples p! ~ 7! where 7! = CaratheodoryDistribution(az; u, B) (Algorithm 1).
Agent i suffers cost, I := (c!, pt).
Agentii sets ¢« I} - M, pl where M; ; = E,,_«[vv

f“ as, aﬁ“ =1I

7.

Agent i updates « Pl (af — v BFét).

end for

C.3. Constructing the spanner of DAGs

In this section we present Algorithm 4 that computes an 1-barycentric spanner for the special case of DAGs. To simplify
notation for a given agent i € [n], we denote by S; C R™, the strategy space corresponding to set of all paths connecting
s; to t;. We can restrict our attention to the subgraph G; = (V;, E;) where V; and E; corresponds to the nodes and edges
appearing in at least one path in S;.

C.3.1. REDUNDANT EDGES

The convex hull of the strategy space S; forms the path polytope X; = conv(S;). This polytope is included in a subspace of
R™ of dimension m; — n; + 2, where n; = |V;|. Indeed, for each node v € V\{s;, t;}, we can pick one outgoing edge
e € out(v) such that for any = € P;, we have

Tex = Z Te — Z Le 2

e€in(v) ecout(v),eF#e’
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for all v € V\{s;,t;}. These equations come from reasoning about flow preservation. Consequently, X; belongs to the
intersection of n; — 2 hyperplanes, which is of dimension at most m; — n; + 2. In other words, although the strategy space
is of dimension m;, the degrees of freedom are restricted by the graph structure as some coordinates are redundant and
predictable from other coordinates (see (2)). We single out these redundant edges in the following definition.

Definition C.5. For all v € V;\{s;,t;} (i.e all nodes except the source and termination nodes), we arbitrarily pick one edge
denoted e} € out(v) that will be referred to as a redundant edge.

The remaining edges will be referred to as a key edges. These key edges will aid us in constructing a 1-spanner. Indeed,
from equation (2), we can see that the coordinates corresponding to redundant edges can be determined by the values at the
key edges.

C.3.2. BASIS CONSTRUCTION

In order to construct the basis, we first need to perform a topological ordering of the nodes. A topological ordering of the
nodes of a graph is a total ordering of the nodes such that for every directed edge with source vertex u € V" and destination
vertex v € V, the node u comes before v in the ordering. We will use the < symbol to denote such an ordering.

Let vy = s;,v9,...,v, = t; be a topological ordering of the nodes of GG;. This induces a topological ordering on the edges
(sorted according to their origin node). We will construct a 1-spanner for &; following this ordering. The following simple
lemma (proved in Appendix H) about redundant paths will be essential.

Definition C.6 (Redundant path). A path in G is said to be a redundant path if consists entirely of redundant edges.
Lemma C.7 (Redundant path lemma). For any node vy, € V;\{s;}, there exists a redundant path connecting vy, to v, = t;.

‘We now have all the tools needed for the construction of the basis b1, ..., bs where s = m; — n; + 2 is the total number of
key edges. We provide the procedure in Algorithm 4.

Algorithm 4 Edge covering basis

Input: Key edges ey, . . ., es in topological order.
Basis «+ @
for h = 1to s do
Let pc, —+, be a redundant path connecting dest(ey, ) to ¢; (given by Lemma C.7).
fork =h—1to1do
if there exists a path py_,;, joining dest(ey) to source(ey, ) then
Set by, <— Truncate(by, ex) | Pk—h | Pe,—t;
SetPrefix(h) « k
break
end if
end for
if there is no preceding key edge connected to e, then
Let ps, ., be a redundant path connecting s; to dest(ep,).
Set by, <= Ds; ey | Pen—t
SetPrefix(h) + L
end if
Basis < Basis U {by}
end for
return Basis

Proposition C.8 (Prefix property). Consider a covering basis generated by Algorithm 4. Let ey, < e; be two key edges. If
e, and e; are connected in G(V;, E;), then Prefix(k) # Prefix(l) where Prefix is the value set at lines 8 and 13 of
Algorithm 4.

This prefix property is the central ingredient needed to prove that the generated basis is a 1-barycentric spanner. Its proof
can be found in Appendix H. With this, we can state the main result.

Theorem C.9 (1-Spanner). Let by, ..., bs be the covering basis generated by Algorithm (4). For any x € X;, there
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exists o € R such that

x:Zahbi anda%ﬁl

Proof. Tt suffices to prove the result for € S;, the extreme points of X;. Let r, = Key(z) € R® where Key is the linear

operator selecting the coordinates corresponding to the key edges. Correspondingly, let us define 1, ..., 75 such that
Th = Key(bh)
for h =1,...,s. Observe that the canonical basis vectors vy, ..., v, of R® can be expressed as

Uh = Th — Tprefix(h)

forh=1,...,s, and taking r; = 0. Consequently,
S
Ty = Z Up = Z (Th - TPrefix(h)) = Z QRpTh
heEry hE€ry h=1

for some o € R®. Now it remains to prove that |ap| < 1. We know, by the prefix property C.8, that the mapping
Prefix:{h:hery} — [s— 1] U{L} is injective since the edges in {h : h € 7, } are connected. In other words, there
are no duplicates in {Prefix(h), h € r,}. We express r,, in the following convenient form.

Ty = § Tn — E Th

heEry he{prefix(h),h€ry}

With this, we can reason on a case by case basis for each coordinate as follows. Let h € [s]. We first consider the case where
h € 7. Since there are no duplicates, if we also have that h € {Prefix(h),h € r,}, then a, = 0 otherwise oy, = 1.
Similarly, if & ¢ r,, then we either have h € {Prefix(h),h € r,} in which case o, = —1 or if not vy, = 0. We thus find
that aﬁ < 1. Now to conclude, we know from (2) that there exists a linear operator Fill: R® — R™ that fills in the values of
the redundant edges from the coordinate values of the key edges, hence = = Fill (Key (x)), which yields,

x = Fill [i Othh‘| Z Othlll ’I“h Z apby,.
h=1

D. Proof sketches

In this section we provide the basic steps for establishing Theorem B.10 and Theorem B.11.

D.1. Regret analysis

The main observation needed to prove Theorem 1 is to notice that at Step 8 of Algorithm 2 the sequence o7 is obtained
performing a close variant of Online Gradient Descent (OGD) on the sequence of gradient estimates B ¢'7". The subtle
difference here is that the projection is done on D!, a time varying polytope. Luckily, a small variation in the analysis
allows us to establish a guarantee similar to that of online gradient descent, with an added y; dependent error term.

We first slightly expand the definition of regret to include a fixed comparator u € &;. We define the regret with respect to a
comparator as follows

T
R (p%:Tv v Z 7p1 - U
t=1

It is easy to see that the regret defined earlier is obtained by taking the fixed action comparator ©* = min,cs, Zthl (ct,u),
which is the best fixed action in hindsight. With this extended notion of regret, we can prove the following result on the
approximate online gradient descent scheme performed by our algorithm.
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Lemma D.1 (Moving OGD). Let T and ¢+ be the sequences produced by Algorithm?2,

R («}T,e"5u) < 7+2va||ct||2+2mcmax2m 3)
t=1

Now for us to use this result to control the regret of the algorithm, we have to pay attention to the following two points.
First, the algorithm is not playing x}'7 but rather the samples p}*7 and, second, it is incurring costs with respect to 7 and
not ¢1'7. The regret of the algorithm is therefore measured by R ( LT LT ) We have to relate this quantity to the regret

bounded in equation (3). This can be done in two steps. The first is gomg from the samples p;7 to the marginalizations
LT

x’L
Lemma D.2 (First concentration lemma). Let p},...,pl € P; be the sequences of strategies produced by Algorithm 2
for the sequence of costs c', . .., cT. We have with probability 1 — 6,

R (pFT, T u) < R (21T, T u) + Cmaxmm, “

All that remains now is swapping the cost vectors from the true c**7 to the estimated ¢%7', which can be achieved by
invoking a second concentration argument.

Lemma D.3 (Second concentration lemma). Let &', ..., ¢7 the sequence produced in Step 7 of Algorithm 2 run on the
sequence of costs c*, ..., cT. Then with probability 1 — 6,

R (mltT,c1 ) <R ( BT ) +m cmdxﬁgﬂ 5)

Now to prove Theorem B.10, it suffices to simply plug (5) inside (4) to upper bound the regret of the algorithm with the
regret of online gradient descent. Then, invoking Lemma D.1 which controls the regret of the latter, we can obtain bound on
the regret of the algorithm with respect to a comparator © € X;. To conclude and obtain B.10, a simple union bound over all
u € A yields the result. We detail the proof in Appendix F.

D.2. Convergence to Nash (Proof of Theorem B.11)

In this section, we prove Theorem B.11. We will be using the fact that congestion games always admit a potential function
(Monderer & Shapley, 1996) capturing the change in cost when a sole agent alters its strategy. The potential function of
congestion games is given by the following function.

Theorem D.4. The potential function ® : S — R given by ®(p) =, Zf (f ce(#), has the property that C;(p}, p—;) —
Ci(pisp—i) = ©(p}, p—i) — (pi, p—i)-

The key observation here is that the potential function is a shared function that measures the change in cost when any agent
deviates from a joint profile. This same function also captures the change in expected cost once it is viewed as a function
over the polytope X £ X] x --- x X,,.

Definition D.5. The function ® : X — R, defined as ®(z) = > gy [jes @je [1j¢s(1 — zj¢) ‘5 |0 ce(£) verifies
Cimiym_i) = Cilmi, mi) = ®(x,25) — P(x, 2 )
forany m € A(Sy) X -+ - x A(S,,), with marginilization « € X, and any ¢ € [n], where 7, € A(S;), with marginalization

The function @ is not convex over X but it is smooth making it friendly to gradient based optimization. We can show that
the function @ is differentiable and its gradient V& is Lipschitz continuous with constant (2n2\/ Memax ). However, since
we operate in the basis polytope D = D; x --- x D,,, we are interested in the function ® defined as

$:a — ®(Ba),

where B is the block diagonal matrix with By, ..., B,, as its diagonal elements. This function inherits all the nice properties
of ® up to some additional factors. Indeed with a simple computation, we can show the following result.
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Proposition D.6. The function d is %-smooth with A = (2n2m7/ 2Cmax) !

Stationary points of @ correspond to Nash equilibria (Monderer & Shapley, 1996), thus making the function ® the essential
tool used for proving our result. Indeed in the sequel we technically prove convergence to stationary points of the potential
function. Stationary points are defined as follows.

Definition D.7 (Stationarity). A point o € D* is called an (e, u)-stationary point if

G (o) & <e.

2

a —Tpu {a - ;\Vé(a)}

Given an (e, u)-stationary point cv, then any mixed strategy with marginalization x = B is an approximate mixed Nash
equilibrium. We formalize this in the following result.

Proposition D.8 (From Stationarity to Nash). Letm € A(S1) X --- X A(S,,). Let © € X be the marginalization of 7. If
x = Ba, with o € D an (e, i)-stationary point, then 7 is a 4n>5m*cyax (€ + p)-mixed Nash equilibrium.

We have thus reduced the problem of finding mixed nash equilibria to that of finding stationary points of ®. We will find
such stationary points by studying the joint vector of the iterates. We initiate our study by recalling the notation of the joint
strategies of the players. For each ¢ € [T'], we collect each player’s iterates in one vector in D defined as af £ [a}, ..., al].

It is easy to see that when all players play according to Algorithm 2, the produced sequence of vectors o, ..., ol verifies

ot =Tlpuen [@f — 7, - V¢ (6)

where V, 2 [B]ét,..., B} ¢\ ]. It turns out that that V, is an estimator for V& as shown by the following lemma.
Lemma D.9 (Estimator property). Let t € [T| and F; be the sigma-field generated by oy, . . . , o and denote the conditional
expectation as E; || = E [-|F]. It holds that

1. ]Et[vt] = V(I)(Olt),

4 2
2. Be[|| V3] < =

Our goal will be to show that the sequence o, ..., a”

varying Moreau envelope M; 5 of ®, defined as

visits a point with a small stationarity gap. To prove this, the time

s 1
t A L2
M4 () nin, {‘I’(y) + 5l y||2}7

will play a central role as is shown by the following lemma.

Lemma D.10 (Gap control). Let G'(«) := || Upu [a - %Vé(a)] — || denote the i;-stationarity gap. We have that for

any o € DM,
G'(a) < M|VM; 4 ()]l

Controlling the stationarity gap of an iterate therefore boils down to bounding the norm of the gradient of M f\ 5 along the
sequence. By observing that the update rule (6) closely corresponds to performing stochastic gradient descent step on M ; &
we are able to show the following result.

1

Theorem D.11 (Stochastic gradient descent). Consider the sequence o', . .., o produced by Equation 6. Then,

5 = T
2m1¢)cmax n3m7.o th
yrT 1T =

T

1

=S E[IVM ()] < 201
t=1

Finally, in order to obtain Theorem B.11, it suffices to combine the stochastic gradient descent result in Theorem D.11 with
Lemma D.10 and observe that the sequence of iterates visits a point with a small stationarity gap. Combining this with
proposition D.8 which relates stationarity to Nash equilibria yields the result. We provide a complete proof in section G.2.
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E. Properties of the estimator ¢

The central difficulty of bandit feedback lies in the construction of a low variance estimator for the unobserved cost vector
c* at each round ¢ € [T']. In what follows we prove two results on ¢!, the estimator constructed in step 7 of Algorithm 2
that will be instrumental to both the regret analysis and the convergence to equilibrium.

First we show that the estimator is bounded almost surely.

Lemma E.1 (Bounded estimator). For any t € [T, the estimator ¢t =1t - M ;“tpf is almost surely bounded and

5/2
R m
||BiTct||2 < v [ Cmax-
t

Proof. Leti € [n],t € [T]. Recall that B; € R™** is the matrix whose columns are the s elements of the barycentric
spanner. Let us write M; ; in a more convenient form. Recall that 7} is the Caratheodory distribution computed by Algorithm
1. It then follows (from step 3 in Algorithm 1) that

™ = (1= ) 7] + v

where v; is the uniform distribution over the barycentric spanners and 7; is the distribution supported on the Caratheodory
decomposition. We can then express M, ; as follows.

M;; = IEUMT: [uuT]
= (1 - Ut)IEuNTf [uuT] + /I'tEuNVi [UUT]

— (1 - 1B (Euwf [auaID B + %Bi (}; ekeg) B

= B;N; B,
where we defined N, ; := (1 — p)E,, .+ [auaﬂ + EtT,. Notice here that it is easy to see that N; ; = £t 1, which implies
that s
N;ft =< —1I,. @)
et

Now, since B; has independent columns, we have that

M}, = (BT)' NS, B* ®)

7,t =

Moreover, we know there exists «; ; € R® such that p! = Ba; ;. With these in hand, let us analyze the estimator ¢/. We
have that

At t t 3 t t

c = <C 7pi>M:tpi = <C »p7:>M{;BOZi,t

By plugging in (8), we find that

B & = (¢, p}) N ai ©)
Consequently,
HB;ét < mcmaxﬁs—
et
which allows us to conclude by using that using s < m. O

Lemma E.2 (Orthogonal Bias). Foranyt € [T, for any x € X,
(c" — Ene [¢"],z) = 0.
Proof. Let M = E . [pp']. Recall that & = M*p} (p}, ¢*). We have that
Ei[¢] = M, M; ¢ = (B])" B ¢,
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where the second equality is obtained using (8). It follows that for any x € X;, which we know can be written z = B;a,
we have that N
(Mt Miactz) = ((BI)" Bl c',a) = (e, BB} )
= <c, BiB;rBiax> = (¢, z)
where the last line follows from the fact that B:’ is a right inverse when B; has independent columns, which is true by
construction. O

F. Regret analysis: Proof of Theorem B.10

In this section, we provide a complete proof of the regret bound. We first prove the two lemmas that relate the regret of the
algorithm to the quantity bounded by the moving online gradient descent lemma. We then prove the online gradient descent
lemma and conclude the section with a complete proof of Theorem B.10.

Lemma F.1 (First concentration lemma). Let p}, ... ,p;fp € P; be the sequences of strategies produced by Algorithm 2
for the sequence of costs c', . .., cT. We have with probability 1 — 6,

R (;DZLT, ClZT; ’LL) <R (le:Ta Cl:T; ’LL) + Cmaxm\/@' )

Proof. The result is obtained by a straightforward application of Azuma-Hoeffding’s inequality. Indeed,
Eq [(¢pf) = (sai)] =0

and | (', pl) — (", 2!} | < mcmax almost surely. The sequence ((c', p!) — (c',z!)), is a sequence of bounded martingale
increments. We can thus apply Azuma-Hoeffding’s inequality. O

The following second lemma swaps out the real cost vectors with their estimates.

Lemma F.2 (Second concentration lemma). Let ¢, ..., ¢ the sequence produced in Step 7 of Algorithm 2 run on the
sequence of costs ¢, ..., cT. Then with probability 1 — 6,

R (.’E}:T,Cl:T;u) < R (le:T,él:T;u) 4 mscmaxﬁ3/2

&)

Proof. This result is again a straightforward application of Azuma-Hoeffding’s concentration inequality. Indeed, by the
Orthogonal Bias Lemma E.2, we have that
E, [<ct —éat — u>] =0
to.t

It remains to show that | (¢' — ¢, 2t — u) | is bounded almost surely. Since B; is a J-spanner, notice that there exists
o € R? such that u = Ba®. We can thus write

|<ct—ét,:r'£—u>|:|<B;r (ct—ét),aﬁ—a“ﬂ

<|IB (" = &) llallef = a”[lo,
where the last inequality was obtained by Cauchy-Schwartz. Now recalling the definition of &, we have that
B (¢ —¢é") = (B] — B M}, Bia; 0 B) ¢!
=(I- B;M;Biai’tazt) B/ ¢
Recalling (8), we have that )

2
(I - B} M}, Bia; 0], < [1 = 9* |1, < 9?21,
’ ’ Mt e

for y1; < s219. We therefore get that

5/2
BT (¢ = &) [lp < 9?2—Cmax
H
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This allows us to conclude that

3 3
(& — ¢ ot — ) < T Comx¥”
Mt
(using s < m). The sequence ((¢! — &, z! — u)), is therefore a bounded sequence of martingale increments. We can apply
Azuma-Hoeffding’s inequality. O

By plugging (5) into (4), we have reduced the problem of bounding the regret to controlling the regret of moving OGD
given by R (T, eV u).
Lemma F.3 (Movmg OGD). Let z}'" and ¢}’ be the sequences produced by Algorithm?2,

T

. 2m
R (leT el T ) < —+2 Z’Yt”CtHQ + 2Mmcmax Zlut 3)
T =1 t=1

Proof. The idea here will be to relate }*T to a sequence that is almost performing Online Gradient Descent on the fixed
polytope D;. To this end, we introduce the auxiliary sequence &7 defined as

and its corresponding point ¢ = B;at. Since af € D!*, we have that &} € D;. Moreover, a simple re-arrangement gives
= (1 — p¢)a&t 4 E£1 With this in hand, we can write that

(e ot —u) = (1— pe) (€' @ — u) + py (6", b;)
< (1 = )", & — u) + Mmemaxpue
< <ét, Tt — u> + 2memax it

It then follows that -

R ()T e u) <R (217,67 u) + 2memax Y (10)
t=1

It remains to show that this regret term of the auxiliary sequence is controllable. This will follow from a simple observation
on the update rule. Recall that this update rule in Step 8 of Algorithm 2 is given by

t+1 __ t T At
ai = HDM+1 [Oéi — 'VtBi C ]

By Lemma 1.1, we know that we can express HDetﬂ in terms of Ilp,, which allows us to write that

af“ (1 — pg1)p, [ (al — ’thZ-Tét — 'l?]l)} + %]l

1 — pega

Rearranging we find that

— —]l
~t+1 ~t T A Ot
a; :Hia,-fch+ ( )]
P [ B e UNS (eer = ) (1—ut)(1—ut+1)

t7l1

=) A1)
have that the auxiliary sequence is performing online gradient descent with a small error term since

The last term in the projection is an error term that can easily be handled, we denote it by e, := ( ) We thus

att =Ty [af — 3B ¢ + (g1 — pue)ed]

where 7; 1= . To control the regret of this approximate OGD, we consider the regret incurred on a single update.

1- H
Recall that u € XZ— and that there exists o* € D; such that u = B;a™. We know by the contractive property of the projection
that

@t — a3 < [lal — o — 3B, & + (g1 — pe)edl|
<16 — a3 = 29 (&', & — u) + 2371 B €113 + 2(pneq1 — pe) {er, & — o) + 2(purg1 — pe)?[le3
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where the second inequality follows from Young’s inequality. Now since 0 < p; < % fort > %4”, we have that
letll2 < 2/mand (pre41 — Mt)2 < %(Mt — pt¢+1). Consequently,

&5 — a3 < llaf — (I3 — 27 (&', & — u) + 257 (| B &*[13 + 8m(ue — pre11)

Rearranging, we obtain that

(&t —u) <

32mnt0t:

(Ila—a“||2 165+ = at[I3) + 7l B &5 +

8m
% (Mt - Mt+1)

By summing from ¢ = ¢ := T and using the telescoping Lemma 1.3, we find that

Cmax

7 om
R (7,6 u) < 22 4 22% IBT &3
T t=t
where we have used the fact that v < 4; < 2v; and m > 2 to simplify the expression. Finally, using that
R (xg &b, ) < 32nm?,
we conclude that

. 5m
R (31T, u) < 22 4 2Z%||c||2 + 32nm?
YT =
We obtain the result by plugging the inequality above inside (10). [

We now dispose of all the necessary results to prove Theorem B.10.

Proof. Letu € S;. Let§ € (0,1). By invoking Lemma D.2, then Lemma D.3 then finally Lemma D.1, we find that, with
probability 1 — §/|S;]|

T T
. . om 1
R (pFT, ) < 22 4 QZ%HCtHQ + 2MCmax Zut P a2 | Y —5 10g(1S;]/6)
T t=1 t=1 =1 M
~+ Cmaxmy | T log (| (;) + 32nm*
By invoking Lemma E.1,
T T T
o1 5 P2 a0 : 1
R(p%.T’Cl. ) <ﬂ+2zw+2mcmaxZNt+m3Cmax193/2 272 |S|/§
T t=1 M t=1 =1 Mt
Si
4 Cmaxmy [ T log < 5 |> + 32nm?
L . . T mA/5pl/591/5
Now plugging in the choice of step-sizes vy = /g and py = *———5—, we have that

5 1/5
t1/5 Cpfax

R(plLT,CI:T;u) < 1) <m2‘302‘8 / S |T4/a>

Finally, using a union bound, the regret above holds uniformly for any u € S; with probability 1 — §. In particular it holds
for the fixed strategy in hindsight. Consequently,

R (pzl:T,cl:T) < (7) <m2'802'8T4/5 qu ;)

where we have used the fact that log |S;| < m. O
Remark F.4. Notice that the choice of vy, and are done to optimize the rate of convergence to NE. To optimize the regret
bound, we can choose 7y = s and ji; = 2t1/4 to obtain R (p}T, V') < m3T3/4.
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G. Nash convergence analysis

G.1. Properties of the potential function ¢

In this section we show that the potential function is bounded, Lipschitz and smooth. All three properties will be used in

later proofs. Recall that the potential function is given by

S|

@) => > [Twe [T =250 ce(®)
=0

e€ESC[n]jes  j¢S
Lemma G.1 (Bounded potential function). The potential function ® is bounded and for all x € X,

|@(2)] < nmemax

Proof. This can easiliy be seen by rewriting the potential function as follows

IS|
)= > [Tz [TO—250) > ce(®)
c€ESCn]jES  j¢S =0
S|
Z Z [P (“set of agents that picked ” = S) Z ce(£)
=0

c€B SC[n)

NCmax Z Z IP (“set of agents that picked ¢” = S)
c€E SC[n]

= NCmax § 1

eclE

IN

= NMCmax

Lemma G.2 (Lipschitz potential function). The gradient of ® is bounded and
||V'1>(a:)H2 < V/NMCmax

Proof. We start my computing the gradient coordinate at i, e for i € [n] and e € [m].

|S—il+1 |S—il

a;I)T(,Z): Z H Lje H (1_‘rj€) Z Ce(g)_ Z H Zje H (]-_xje) Zce(g)

S_iCln—1] jES_; JES_; =0 S_iCln—1]jE€S_; JES_s £=0

- Z H Tje H (1 —zje)ce (|S—i| +1).

S,ig[nfl]jeSﬂ ]¢571

Observe then that

Since the ¢, norm is bounded by c,,,x, we obtain the ¢, norm bound by multiplying by the dimension.

Y

(12)

O

Lemma G.3 (Smooth potential function). (Lemma 9 of (Panageas et al., 2023)) The gradient of ® is Lipschitz continuous

and forany x,y € X
[Ve(z) — Ve(y)| < 2n2\/%cmaXHx —Yll2

With this lemma, proving that ® is smooth becomes immediate.

7/2 —1

Proposition G.4. The function ® is %-smooth with A = (2n?m" % ciax)
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Proof. The operator norm of the matrix B can easily be bounded as it is a block diagonal matrix. Indeed we have that

2
[Blly < max [|Bifl, < max |[Bifp <m”.
i=1,...,n i=1,...,n
Consegently, the smoothness constant of d is obtained by multiplying the smoothness constant of ® by m?. O

A final property we will use is the following which states that if all other players stay fixed, the cost incurred by a single
agent ¢ is linear in terms of its strategy.

Lemma G.5 (Linearized cost). Let 7 € A(S1) X ... A(S,) with marginalization x € X. Then, for all i € [n],

Ci(mis ™) = <‘9§$),xi>

6;};?) only depends on x_;.

and

Proof. Leti € [n]. By definition of the cost,

Oi(ﬂ'ia ﬂ'—i) = E(phpf?')’\’(ﬂ'iﬂ'r—i) lz Ce(ge(pivp—i))]

eep;

=Ep,~m

Ep inms [Z ce(le(pisp—i))L e € p;]

eck

]

=Y By ir, ee(le(pi) + D] Ep,mm, [L]e € pil]
eelE

= Z Ep jor, [Ce(le(p—i) + 1)] e

eckE

where the third equality follows form the fact that c. (¢ (p;, p—:i))1 [e € pi] = ce(be(p—i) + 1)1 [e € p;]). We then observe
that E, ., [ce(le(p—i) + 1)] is precisely what is computed in equation (12) to find that

Ci(mis ™) = <8§af)’xi>

G.2. Proof of Theorem B.11

As stated in section D.2, we show convergence to Nash equilibria by showing convergence to a stationary point of the
potential function. This strategy is valid because of the following result relating Nash equilibria with stationary points.

Proposition G.6 (From Stationarity to Nash). Let 7 € A(S1) X -+ X A(S,,). Let x € X be the marginalization of m. If
x = Ba, with a € D an (e, pi)-stationary point, then 7 is a 4n>5m*cyax (€ + p)-mixed Nash equilibrium.

Proof. Let , € A(X;) with marginalization x} € X;. Letz’ = [z1,..., 2}, ..., x,] differ from z only at z}. By definition
of the potential function, we know that

Ci(mi,m—i) — Ci(my, m—y) = ®(a;, 2—;) — P(x], ;)

ag);f) only depends on x_;, we have that

By further invoking Lemma G.5, and using the fact that

Cylmiy i) — Cilmhy ) = <8§s),xi _ x> — (VO(2), 7 — )

where the last equality comes from the fact that z — 2’ is zero except on the z; block of coordinates. Since z—z’ = B(a—a’)
for some o € D, we have that

Ci(mi,m—y) — Ci(ml,m_;) = <V<i>(x), a— o/>
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We now exploit the fact that « is stationary. Let o™ = Tlpxu [a — %&)(a)} . By definition of the projection, for any u € DV,
it holds that

A .
<a - §V<I>(oz) —at u— a+> <0
By rearranging, we find that
~ 2
<V<I>(04),O¢+ - u> < S(a—at,at —u)

With this inequality in hand, we obtain that

<V<i>(a), a— u> = <V<i>(oz), at — u> + <V<i>(m),a - oz+>

2 -

< " (a—at,at —u) + <Vq>(a),a — a+>
< (254 1VE@s ) o - ol

< (4n2'5m4cmax) G ()

To conclude we simply take u = (1 — )’ + -1 which is necessarily in D* to find that

<V<f(x),xfx> = (Vd(x x7u>+<V§>(m),ufx/>

< (4712 5m Cmax) G'u( ) + NMCmax i
< 4n*Pmepay (G*(x) + 1)
O
Thanks to the proposition above we can focus our attention on proving convergence to stationary points.
Lemma G.7 (Estimator property). Lett € [T] and F; be the sigma-field generated by cvy, . . . , oy and denote the conditional

expectation as B, [] £ E[|F]. It holds that
1. B [V,] = Vd(ah),

nm402
2. B[V ]3] < 2

M

Proof. Leti € [n] and e € E. First, observe that from lemma G.5, we have that the linearized cost ¢t for agent ¢ satisfies

acp()

)= g

€

Now using the tower property, we have that

E, ([Vii]| =B [B ] = B/ B |E | Ml [ Yk | I}

eepg
_ BiT Z P (pi = pk) M;ftpk Z E; [Cé |pf = pk]
pr Esupp(mt) eept
_pT ¢
—57 Y PO =) Mim Y 2 Sota
prEsupp(r!) eep®
- " + T 8@ ¢
= B; Z P(pi:pk) Mi»tpkpkg(x)
pr Esupp(m?) '
0P
= B;M;}Mi,taixi(xt)
0P
-
i &CZ( )
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where the last equality follows from (8). We thus conclude that

Et [Vt] = V‘I’(at).

For the second point,we know from equation (9) in the proof of Lemma E.1 that

Bl ét = (c',pt) N, b, (13)

2,

We can then control the expectation of square norm of this estimator as follows

K3

=m?, K, {tr (N taftoszN+T)]

Ec (1B 3] < m?c e || Nt 2]

7

= m2 e (N [af ol T| NAT)

where the last inequality follows from (7) where we have used that s < m. Now, since V; is a concatenation of the
estimators B;' ¢, we find that

nm4cmax

E, [||Vt||§] <
O

Lemma G.8 (Gap control). Let G*() := ||Tpu, [a - %V(i)(a)} — || denote the p;-stationarity gap. We have that for
any o € DHt,

G'(@) < A[VMyg(a)ll2
Proof. The proof relies on introducing a fixed point y such that

A -
y=THpu |z = V(y)|.

Luckily the pointy = x — fVM " ( ) is such a fixed point(see point 2 in 1.2). Now we can write

G#) = Mo [~ 398 (0)| ~

A= A~
< Mo |2 = §V8()| ~ 1o 2= 578(0)| Iz + Iy - 21
P 5
< 21V a() - V@) + Iyl
3 3\ ) )
< 2y — o = 2wty @)l < NIV (@)

1

Theorem D.11 (Stochastic gradient descent). Consider the sequence o, . .., o produced by Equation 6. Then,

T
F YRVt ] < 2 2 0 508
= 'YTT 1T =

26



Polynomial Convergence of Bandit No-Regret Dynamics in Congestion Games

Proof. Let us first recall some of the notation we use. The time dependent Moreau envelope is given by

. ~ 1
Miglo) 2 mip {800 + 5l -3}

yEDHt

Notice here that the envelope is taken with respect to a time varying polytope. The iterates o*7 are updated by the following
update rule
Ott+1 = HDM+1 [Oét -Vt Vt} (14)

With this in mind, we proceed with the proof. Since M ; 518 %-smooth (by point 4 of Lemma 1.2), we have that

a3

1
Mf\&)(oﬁ'l) < M;é(at) + <VM§&>(at),at+1 —ay+ <

A
Now since VM f\ & (af)=2 (a prox, & (at)> (by point 3 of Lemma 1.2), where we can invoke the contractive properties
2

of the projection in (14) to find that

2
5
Mg (') < Mig(a) = 7 (VM5 (a"), Vi) + [ Vill3

Taking the expectation, we have

E [M{a(a"*")] < E [Mfg(a)] - wE (VM5 (a"). i [Vi)] + E [|V:]3]

Using Lemma D.9, we can replace the terms involving V on the right hand side to find that

T nm4012nax Y
E [Mfa(a"™)] < E [Mfg(a)] = E [ (VM5 ("), V(o) )| + e o
Invoking Lemma G.9, we obtain
4.2
Vt NI~ Chax ’7
B [Mia(a™™)] < B [Mhola')] - JITM(a") [ + st
By rearranging the terms, we can write that

4.2
L [IVM{5 (a)18] < B [Mia ()] - B [Mig(at+)] + e 2

At this point we notice that M t!(a/t1) < M! . (a'*!) since D C D#++1, which gives us

4.2 2
Tt NM*Chax .
HE[IVM(@)]] < E [Mg(ah)] — B [M! (o] + M 10
Now summing from ¢t = 1,...,7 and telescoping, we find that
T
1 8Mmax nm 2 ~2
- E VMt ~ AYIP < AP max t
7 L EIIVMg@)IE] < —Dr- 4470 Zt o

where we have used the fact that vz < ; and defined M 7™ := max;c[r) maxzepre Mt b (z). By taking the square root
and applying Jensen’s inequality, we have that

max

T 8M nm402
P max ,Yt
z:: @lz] < T MyrT ; Iz

’ﬂ \

Finally by plugging in the values of M % < nm®/2cyay and § = 2n°m™/2cpnax, we find that

2ml-Se 19n3m75 ~?
E[IVM];(a')]2] < 2n*° e § -+
[” it )”2] - T yrT el

N
M=

w
I
-
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Lemma G.9. Foranyt € [T], we have that
~ 1
(VM5 ("), V(o)) = ZIIVM 5 (")

Proof. This lemma is obtained by exploiting the smoothness of ®. We begin by defining the gradient step y¢ := ot —
$VM! ('), which allows us to write

(VML) V(o)) = —§ (4~ o, Va(a")). (15)

Now since & is %—smooth, we have that

~ ~ ~ 1
— (¥ =o', Vd(a") = B(a) - B(y") — 51 Iy — 'l
~ 1 ~ 1 1
= (8(a") + Flla* ~'18) - (8 + Flv* — a'1}) + 55" — 'l

1 ~ 1

— Iyt - atHg (because y' = argmin ®(y) + ~[|a* — y||g)
Wil

yeD, A

Y

2\
A
= 2IVML4 (0B,
Plugging this result into (15) gives

(VM4 (0, V(")) 2 VM4 ()3,

We can now proceed to prove Theorem B.11.

Proof. Let u be sampled uniformly from [T']. The joint strategy profile 7% has marginalization o* € D*, and therefore, by
lemma D.8 we have that

—IE Zmax [cz 7' ;) — min )ci(m,wti)H < An?Pm epaxE [GU(2) + 1]

i€[n] T, EA(P;

Expanding the right hand side, we have that

T T
E[G"(2") +m] < 7 Z Z

ﬂ \

By Lemma D.10, we get that

A T T
BIG" ")+ m] < £ 3 E[IVM @ Z

It then follows by Theorem D.11 that

2ml-se n3m75 21 T
E[GY (¥ u < 2)\ 1.5 max 2 =
[G"(2") + pu] < 240 T Zlu+T;Mt

1 2m1 5 Cpax n3m7 5 2 1=
- S E
\/ﬁm Cmax ’VTT . 1243 T —

t=1
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Now, plugging in y; = /252k+

E[G*(a") + ]

IN

1 cl:d m*SnlSlog T N 1 ET:
vnmAemax VT ur —

< nl/4 310 4
- ml 75 1/4 Z

. . . _ nl/5
Finally, setting the exploration parameter p; = IV and using the fact that Zt 1t

/5 )
-1/5 < 5T we obtain

T
1

=
T

4/5
- . : Am> 07 el
max |¢;(m, m2;) — min ci(m, )| | < ——p
e 1€[n] T, EA(Py) T/

. 457n13”13.5c4
Therefore choosing T > ———————max ensures

T
1

—=E
T

max [c;(mf,7t,) — min  ci(m, )| | <e
— i€l i EA(P;)

We now have all the ingredients we need to prove Corollary 2.7.

Proof. Let u be sampled uniformly from [T]. The joint strategy profile 7* has marginalization o* € D*«, and therefore, by
lemma D.§, itis a
4n*Pmt emax (G (2%) + 1,) — mixed Nash equilibrium

Now let § € (0,1). By Markov’s inequality and Theorem B.11,

max |¢; *.)— min  ¢(m, )| <e€/d

13,13.5

with probability 1 — ¢ if T' > 5% Finally, putting everything together we find that 7 is a

@(n m13/5cm/ax 1/5>
0

n-'m / /
with probability 1 — 4. Finally, to make the quantity %T 1/5 equal to €/6 we choose T > © (m!3n!35 /€).
For the first statement of the corollary, we the set of time steps B := {t € {1,t} : E; > ¢/6*} where E; :=
max;epy [ci(nt, 7t,;) — ming,eap,) i(mi, 7 ;)] which is a random variable. With probability 1 — 8, 31, E; < <L we
directly get that we probability 1 — ¢, |B| < §T. As a result, with probability > 1 — 4, (1 — §) fraction of the profiles
nl,....wT are ¢/62-Mixed NE. O

H. Spanner construction omitted proofs

Proof of C.7. We proceed by induction on the topological ordering. For v,,_;, we pick a redundant outgoing edge. By
definition of a topological ordering, the chosen edge will necessarily lead to v,, = ¢;.

Now let k € [2,n — 2] and assume that the lemma holds for all for [ > k. We consider the node v, and pick an outgoing
redundant edge. It will lead to a node v; with [ > k. By induction hypothesis, there exists a path connecting v; to ¢; that only
consists of redundant edges. Concatenating the picked outgoing edge with this path yields the result for vy so the lemma
holds for k. O

Proof of C.8. Suppose i = Prefix(k) = Prefix(l). Then by construction e; < ej, < e;. On the other hand, since the
prefixes are set in reverse topological order and ey, and e; are connected, we must have Prefix(l) > k. A contradiction. [J
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I. Technical Lemmas

Lemma L1 (Projection lemma). Let D! be a bounded away polytope. For any = € R®, the projection on D' can be
expressed as
1 M
Mpe 2] =1 —wIp, | — (2 — =1 Ly |
oy o] =1 —=n) D[[lu(z 5>}+S

Proof. We first express the indicator function of D! in terms of the indicator of D;. We have that for any z € R¥, by
definition of the bounded away polytope,

1
LD;L(Z) = ip, (1—/1(2 - l;]l)) , (16)

The indicator function of X" is therefore obtained through an affine precomposition of the X; indicator. We can determine
the prox of an affine precomposition by using properties (i) and (ii) in Table 10.1 of (Combettes & Pesquet, 2011), which
yields the simple formula given in equation (2.2) of (Parikh et al., 2014). We thus find that

Moy [ = (1= )Tl | 12— 21)] + 22

O

Lemma 1.2 (Moreau enveloppe and proximity operators). Let f : X — R be a 1/A-smooth function. Its Moreau-Yosida
regularization defined as

enf () = inf f(y) + *nlly — xfl3

verifies the following properties for n < A,

1. The proximity operator given by the equation below is single valued

. 1
prox,;(w) = argmin f(y) + -[ly — =13 (17)
yeX Ui

2. By optimality conditions of (17),
prox, ¢(r) = Iy [x — an(proxnf (a:))}

3. ey f is continuously differentiable and
1
Ve, f(z) = p (z— prox, ¢ (z))
4. If n = \/2, then Ve, f is % smooth.

Proof. All these properties follow from (Hoheisel et al.) Corollary 3.4 because % smooth functions are % weakly convex
functions. In our paper, we work with the function M, ;, notice that it corresponds to the Moreau-Yosida regularization

M)\q;. :eéé

All the properties therefore follow with n = % O

Lemma 1.3 (Telescoping Lemma). Let (7:): be a non-increasing sequence. Let (u); € REIr be a non-negative sequence
uniformly bounded by Uy, > 0, it holds that

T

1
Z —(ug — upy1) < Umax
— T
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Proof.
T S u u 10
t Ut+1
—(ug — ugs1) + ( - ) Ug
; ’Yt( ; V-1 Ve Z Yoo V-1
L u 1
Ut+1
+ -
Z V-1 {max Z V-1
_ ﬂ B Ur+1 + Umax B umax
Yo YT T Y0
S Umax
YT
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