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ABSTRACT

We propose deep Koopman-layered models with learnable parameters in the form
of Toeplitz matrices for analyzing the dynamics of time-series data. The proposed
model has both theoretical solidness and flexibility. By virtue of the universal
property of Toeplitz matrices and the reproducing property underlined in the model,
we can show its universality and the generalization property. In addition, the
flexibility of the proposed model enables the model to fit time-series data coming
from nonautonomous dynamical systems. When training the model, we apply
Krylov subspace methods for efficient computations. In addition, the proposed
model can be regarded as a neural ODE-based model. In this sense, the proposed
model establishes a new connection among Koopman operators, neural ODEs, and
numerical linear algebraic methods.

1 INTRODUCTION

Koopman operator has been one of the important tools in machine learning (Kawaharal 2016
Ishikawa et al.| [2018}; [Lusch et al.,|2017; Brunton & Kutz,2019; Hashimoto et al.,|2020). Koopman
operators are linear operators that describe the composition of functions and are applied to analyzing
time-series data generated by nonlinear dynamical systems (Koopman, |1931; Budisic et al.| 2012}
Klus et al.| 2020; (Giannakis & Das| 2020} Mezicl [2022)). For systems with discrete Koopman spectra,
by computing the eigenvalues of Koopman operators, we can understand the long-term behavior
of the undelined dynamical systems. An important feature of Applying Koopman operators is that
we can estimate them with given time-series data through fundamental linear algebraic tools such
as projection. A typical approach to estimate Koopman operators is extended dynamical mode
decomposition (EDMD) (Williams et al.l 2015). For EDMD, we need to choose the dictionary
functions to determine the representation space of the Koopman operator, and what choice of them
gives us a better estimation is far from trivial. In addition, since we construct the estimation in an
analytical way, the model is not flexible enough to incorporate additional information about dynamical
systems. With EDMD as a starting point, many DMD-based methods are proposed (Kawahara, |2016;
Colbrook & Townsend, 2024} [Schmid, |2022). For autonomous systems, we need to estimate a
single Koopman operator. In this case, [Ishikawa et al.| (2024) proposed to choose derivatives of
kernel functions as dictionary functions based on the theory of Jet spaces. Several works deal with
nonautonomous systems. [Macesic et al.[(2018)) applied EDMD to estimate a time-dependent Koopman
operator for each time window. [Peitz & Klus|(2019) applied EDMD for switching dynamical systems
for solving optimal control problems. However, as far as we know, no existing works show proper
choices of dictionary functions for nonautonomous systems based on theoretical analysis. In addition,
in the above approaches for nonautonomous systems, since each Koopman operator for a time window
is estimated individually, we cannot take the information of other Koopman operators into account.

To find a proper representation space and gain the flexibility of the model, neural network-based
Koopman methods have been proposed (Lusch et al., 2017; |Azencot et al., [2020; [Shi & Meng,
2022). These methods set the encoder from the data space to the representation space where the
Koopman operator is defined, and the decoder from the representation space to the data space,
as deep neural networks. Then, we train them. Neural network-based Koopman methods for
nonautonomous systems have also been proposed. |Liu et al.| (2023)) proposed to decompose the
Koopman operator into a time-invariant part and a time-variant part. The time-variant part of the
Koopman operator is constructed individually for each time window using EDMD. [Xiong et al.
(2024) assumed the ergodicity of the dynamical system and considered time-averaged Koopman
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operators for nonautonomous dynamical systems. However, their theoretical properties have not been
fully understood, and since the representation space changes as the learning process proceeds, their
theoretical analysis is challenging.

In this work, we propose a framework that estimates multiple Koopman operators over time with the
Fourier basis representation space and learnable Toeplitz matrices. Using our framework, we can
estimate multiple Koopman operators simultaneously and can capture the transition of properties of
data along time via multiple Koopman operators. We call each Koopman operator the Koopman-layer,
and the whole model the deep Koopman-layered model. The proposed model has both theoretical
solidness and flexibility. We show that the Fourier basis is a proper basis for constructing the
representation space even for nonautonomous dynamical systems in the sense that we can show its
theoretical properties such as universality and generalization bound. In addition, the proposed model
has learnable parameters, which makes the model more flexible to fit nonautonomous dynamical
systems than the analytical methods such as EDMD. The proposed model resolves the issue of
theoretical analysis for the neutral network-based methods and that of the flexibility for the analytical
methods simultaneously.

We show that each Koopman operator is represented by the exponential of a matrix constructed with
Toeplitz matrices and diagonal matrices. This allows us to apply Krylov subspace methods (Gallopout
los & Saad||1992; |Giittel, 2013; [Hashimoto & Nodera,, [2016)) to compute the estimation of Koopman
operators with low computational costs. By virtue of the universal property of Toeplitz matrices (Ye
& Lim, [2016), we can show the universality of the proposed model with a linear algebraic approach.
We also show a generalization bound of the proposed model using a reproducing kernel Hilbert
space (RKHS) associated with the Fourier functions. We can analyze both the universality and
generalization error with the same framework.

The proposed model can also be regarded as a neural ODE-based model (Chen et al.l 2018; Teshima
et al., 2020a; Li et al., 2023). While in the existing method, we train the models with numerical
analysis approaches, in the proposed method, we train the models with a numerical linear algebraic
approach. The universality and generalization results of the proposed model can also be seen as those
for the neural ODE-based models. Our method sheds light on a new linear algebraic approach to the
design of neural ODEs.

Our contributions are summarized as follows:

* We propose a model for analyzing nonautonomous dynamical systems that has both theoretical
solidness and flexibility. We show that the Fourier basis provides us with a proper representation
space, in the sense that we can show the universality and the generalization bound regarding the
model. As for the flexibility, we can learn multiple Koopman operators simultaneously, which
enables us to extract the transition of properties of dynamical systems along time.

* We apply Krylov subspace methods to compute the estimation of Koopman operators. This
establishes a new connection between Koopman operator theoretic approaches and Krylov subspace
methods, which opens up future directions for extracting further information about dynamical
systems using numerical linear algebraic approaches.

* We provide a new implementation method for neural ODEs purely with numerical linear algebraic
approaches, not with numerical analysis approaches.

2 PRELIMINARY

2.1 NOTATIONS

In this paper, we use a generalized concept of matrices. For a finite index set N C Z¢ and a;; €C
(j,l € N), wecall A = [a;,];1en an N by N matrix and denote by CV* the space of all N by N
matrices. Indeed, by constructing a bijection I : N — {1,...,|N|} and setting ar(;) 71y = a1, we
obtain a standard matrix [a;(;y,7()]1(j),7¢1) corresponding to A.

2.2 L? SPACE AND REPRODUCING KERNEL HILBERT SPACE ON THE TORUS

We consider two function spaces, the L? space and RKHS, in this paper. Let T be the torus R/277Z.
We denote by L?(T9) the space of square-integrable complex-valued functions on T¢, equipped with
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the Lebesgue measure. As for the RKHS, let « : T x T4 — Cbe a positive definite kernel, which
satisfies the following two properties:

1. k(z,y) = k(y,z) forz,y € T4,
2. Zﬁmzlacmﬁ(xn,xm) >0 forN eN,c, €C,z, €T.

Let ¢ be a map defined as ¢(z) = k(+, x), which is called the feature map. The RKHS H,; is the
Hilbert space spanned by {¢(z) | = € T?}. The inner product (-,-) : H, x H, — Cin H, is
defined as

N M N M
(O SLTTENT SEMTURNESD D) DET AN

for ¢, d,, € C and z,,,y, € T%. Note that by the definition of x, (-, -) is well-defined and satisfies
the axiom of inner products. An important property for RKHSs is the reproducing property. For
x € T? and v € H,., we have (¢(x),v) = v(x), which is useful for deriving a generalization bound.

2.3 KOOPMAN GENERATOR AND OPERATOR

Consider an ODE 92(t) = f(z(t)) on T%. Let g : R x T be the flow of the ODE, that is, g satisfies
g(0,7) = z and g(s, g(t,7)) = g(s + t,z) for z € T?. We assume g is continuous and invertible.

We also assume the Jacobian Jg; ' of g;l is bounded for any ¢ € R, where ¢g; = ¢(t, -). We define
the Koopman operator K* on L5 (T%) by the composition with g(t,-) as K'h(z) = h(g(t,x)) for
h € L?(T?) and € T?. The Koopman operator is a linear operator that maps a function A to a
function h(g(t, -)). Note that the Koopman operator K is linear even if g(¢, -) is nonlinear. Since K*
depends on ¢, we can consider the family of Koopman operators { K*};cr. For h € C*(T?), where
C*(T?) is the space of continuous differentiable functions on T, define a linear operator L as
t
Lh=lm ZP20
t—o00 t

where the limit is by means of L2(T). We call L the Koopman generator. We write K¢ = e*%. If L is
bounded, then it coincides with the standard definition e’ = >"°° (¢L)*/il. If L is unbounded, it
can be justified by approximating L by a sequence of bounded operators and considering the strong
limit of the sequence of the exponential of the bounded operators (Yosida,|1980).

3 DEEP KOOPMAN-LAYERED MODEL

We propose deep Koopman-layered models based on the Koopman operator theory, which have both
theoretical solidness and flexibility.

3.1 MULTIPLE DYNAMICAL SYSTEMS AND KOOPMAN GENERATORS

Consider J ODEs 92 (t) = f;(z(t)) on T for j = 1,...,J. Let g; : R x T be the flow of the jth
ODE. For v € L%(T?), consider the following model:

G(x) =vogy(ty,-)o--ogits,")(x) =v(gs(ts, - g1(t1,2)))- (1
This model describes a switching dynamical system, and also is regarded as a discrete approximation
of a nonautonomous dynamical system.

Remark 3.1 Since we are focusing on the complex-valued function space L*(T), G itself is a
complex-valued function. However, we can easily extend the model to the flow gj(ty,-)o---0g1(t1,-),
which is a map from T¢ to T%. We can obtain a complex-valued function on T+ that describes a
map from T¢ to T. Indeed, let §;(x,y) = [g;(t;, ),y for v € T and y € T. Let ¥ be a function
that satisfies O(x, k/d) = x, where 1y, is the kth element of x, and let G =0 o gy o---o gy. Then,
G(-,k/d) is the kth element of g5(tj,-) o -0 g1(t1,-).

Remark 3.2 The analysis in the d-dimensional torus is not restrictive. In many practical cases, we
are interested in dynamics in a bounded domain ) in R%. For example, dynamics in a space around a
certain object (e.g., heat source). Let By be the unit ball in T¢. If Q) is diffeomorphic to By, then we
can construct a dynamical system fj on T? that satisfies fj(x) = f;j(x) for x € Bg, where f; is the
equivalent dynamical system on Bq with f;. See Appendix @for more details.
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3.2 APPROXIMATION OF KOOPMAN GENERATORS USING TOEPLITZ MATRICES

We consider training the model (I)) using given time-series data. For this purpose, we apply the
Koopman operator theory. Let L; be the Koopman generator associated with the flow g;. Since the

Koopman operator K;j of g; is represented as e'iL7, the model H is represented as

G =ehtln. . oltvliy,

To deal with the Koopman generators defined on the infinite-dimensional space, we approximate
them using Fourier functions. For the remaining part of this section, we omit the subscript j for
simplicity. However, in practice, the approximation is computed for the generator L; for each layer

j=1,...,J. Letg,(z) = &7 forn € Z% and z € T¢, where i is the imaginary unit. Let M, C Z¢
be a finite index set for r = 1, ..., R. We set the kth element of the function f in the ODE as
Z a]:nmR%nR Z alfnl,1Qm1 2
mprEMRg m1 €My

with afnﬁr € C, the product of weighted sums of Fourier functions. Then, we approximate the
Koopman generator L by projecting the input vector onto the space Vi := Span{q, | n € N},
where N C Z% is a finite index set, applying L, and projecting it back to Viy as Qn Q% LN Q% -
Here, Qy : CV — Vy is the linear operator defined as Qyc = Y nen Cnln forc = (cp)nen €
CN and * is the adjoint. Note that QxQ% is the projection onto Viy. Then, the representation
matrix Q3 LQ n of the approximated Koopman generator Q Q3 LQ Q7 is written as follows.
Throughout the paper, all the proofs are documented in Appendix [A]

Proposition 3.3 The (n,1)-entry of the representation matrix (5 LQ n of the approximated operator
is

d
k=1ngp—l€EMrnr_1—nNREMpr_1 no—n3€Mos n—no€M;

k k k k :
aanlyRaanlfnR}Rfl . an27n3,2an*’ﬂ2,1llk7 (3)
where 1}, is the kth element of the index | € 7. Moreover, we set n, = mg,; + -+ my +1, thus
ny=nmy=n, —npp1forr=1... R—1, and mpr =ngr — L.

Note that since the sum involves the differences of indices, it can be written using Toeplitz matrices,
whose (n, [)-entry depends only on n — I. We approximate the sum appearing in Eq. (8) by restricting
the index n, to N, combine with the information of time ¢, and set a matrix L € CV*N ag

d
L=tY A}---ARDy,
k=1
where AF is the Toeplitz matrix defined as A = [a*

o l,r]n, 1en and Dy is the diagonal matrix defined
as (Dg);,; = ili,. We finally regard @ yLQ7% as an approxitation of the Koopman genertor L.

Then, we construct the approximation G of G, defined in Eq. (I), as
G = @NLQY .. QnLIQy, — QNeLl . eLJQ}kVU_ )
We call the model G deep Koopman-layered model.

To compute the product of the matrix exponential e and the vector eti+1 - .. elv Q% v, we can
use Krylov subspace methods. If the number of indices for describing f is smaller than that for
describing the whole model, i.e., |M,.| < |N|, then the Toeplitz matrix Aff is sparse. In this case,

the matrix-vector product can be computed with the computational cost of O(Zf’:l |M,.||N). Thus,

one iteration of the Krylov subspace method costs 0(2521 |M..||N|), which makes the computation
efficient compared to direct methods without taking the structure of the matrix into account, whose
computational cost results in O(|N|3). We also note that even if the Toeplitz matrices are dense, the
computational cost of one iteration of the Krylov subspace method is O(|N|log |N|) if we use the
first Fourier transform.
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Remark 3.4 To restrict f to be a real-valued map and reduce the number of parameters aﬁw, we
can set M, as {—m1p,...,mi,} X -+ X {—=mgr,...,mqr} for my, € Nfork =1,...,d

k

—m,r

In addition, we set a*, . = a
real-valued.

for m € M,. Then, we have a,’?n’rqm = a’im)rq,m, and f is

Remark 3.5 An advantage of applying Koopman operators is that their spectra describe the prop-
erties of dynamical systems. For example, if the dynamical system is measure preserving, then the
corresponding Koopman operator is unitary. Since each Koopman layer is an estimation of the
Koopman operator, we can analyze time-series data coming from nonsutonomous dynamical systems
by computing the eigenvalues of the Koopman layers. We will observe the eigenvalues of Koopman
layers numerically in Subsection[6.3]

4 UNIVERSALITY

In this section, we show the universal property of the proposed deep Koopman-layered model. We
can interpret the model G as the approximation of the target function by transforming the function v
into the target function using the linear operator Q et - - - el Q- If we can represent any linear
operator by et - .- el then we can transform v into any target function in Vi, which means we
can approximate any function as N goes to the whole set Z¢. Thus, this property corresponds to
the universality of the model. In Section [3| by constructing the model with the matrix el - . . el
based on the Koopman operators with the Fourier functions, we restrict the number of parameters of
the linear operator that transforms v into the target function. The universality of the model means
that this restriction is reasonable in the sense of representing the target functions using the deep
Koopman-layered model.

Let T(N,C) = {Zizl Al A% Dy, | Ry e N, Af..- A e CV*N:Toeplitz}. Let
L3(T4) = Span{g, | n # 0} be the space of L? functions whose average is 0. We show the
following fundamental result of the universality of the model:

Theorem 4.1 Assume v € L3(T%) and v # 0. For any f € L3(T?) with f # 0 and for any € > 0,
there exist a finite set N C 7\ {OE, a positive integer J, and matrices Ly, ..., Ly € T(N,C) such
that || f — G|| < eand G = Qyel - - el Q% .

Theorem[4-1]is for a single function f, but applying Theorem @for each component of G, we obtain
the following result for the flow g ;(t7,-) o --- o g1(t1,-) with J € N, which is considered in Eq. .

Corollary 4.2 Assume v € L%(T?) and v # 0. For any sequence gi(t1,-),...,g;5(ts,-) of flows
that satisfies v o g;(tz,-) o -0 g;(tj,) € L&(T%) and vo gj(ts,-) o---o0 g;(tj,-) # 0 for
ji=1,... J, and for any € > 0, there exist a finite set N C Z \ {0}, integers 0 < J; < --- < J3j,
and matrices Ly, ..., Ly, € T(N,C) such that |[vo gj(ty,-) o---0g;(tj,) — Gj|| < eand

G; = Queii+ .. -eLJiQ*Nvforj =1,...,J, where Jy = 1.

Remark 4.3 The function space L3 (T?) for the target function is not restrictive. By adding a
constant to the functions in L(T%), we can represent any function in L*(T%). Thus, by adding
one additional learnable parameter ¢ € C to the model G in Theorem[d.1|and consider the model
G(z) + cfor an input x € TY, we can represent any function in L*(T?).

Remark 4.4 In the same manner as TheoremH. I| we can show that we can represent any function in
Vi = Span{q,, | n € N} exactly using the deep Koopman-layered model. Thus, if the decay rate
of the Fourier transform of the target function is o, then the convergence rate with respect to N is
O((1 — a?)~%/?). See Appendix|Clfor more details.

The proof of Theorem is obtained by a linear algebraic approach. By virtue of setting f; as
the product of weighted sums of Fourier functions as explained in Eq. (2)), the approximation of
the Koopman generator is composed of Toeplitz matrices. As a result, we can apply the following
proposition regarding Toeplitz matrices by |Ye & Lim| (2016, Theorem 2).
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Proposition 4.5 For any B € CN*N | there exists R = ||N|| + 1 Toeplitz matrices Ai, ..., Ag
such that B= Ay --- Apg.

We use Proposition to show the following lemma regarding the representation with T'(N, C).
Lemma 4.6 Assume N C Z2\ {0}. Then, we have CN*N = T(N,C).

Since CV* is a Lie algebra and the corresponding Lie group G L(N, C), the group of nonsingular

N by N matrices, is connected, we have the following lemma (Hall, [2015| Corollary 3.47).
Lemma 4.7 We have GL(N,C) = {e¥*...e | J€N, Ly,...,L; € CNXN},
We also use the following transitive property of GL(N, C) and finally obtain Theorem 4.1

Lemma 4.8 For any u,v € CN \ {0}, there exists A € GL(N, C) such that u = Av.

5 GENERALIZATION BOUND

We investigate the generalization property of the proposed deep Koopman-layered model in this
section. Our framework with Koopman operators enables us to derive a generalization bound
involving the norms of Koopman operators.

Let Gy = {Qne - e Q%v | Ly,...,L; € T(N,C)} be the function class of deep Koopman-
layered model (). Let £(Gn) = {(z,y) — €(f(2),y) | f € Gn} for a function ¢ that is bounded by
C > 0. Then, we have the following result of a generalization bound for the deep Koopman-layered
model.

Proposition 5.1 Let h € £(Gy), © and y be random variables, S € N, and x1,...,xs and
Y1, ---,Ys be i.i.d. samples drawn from the distributions of x and y, respectively. For any 6 > 0,
with probability at least 1 — 0, we have
S
1 Q@ ; log(0/2)
Elh(z,y) < 5 h(Zn, Yn + — maxe ™l sup el - (||| |Jv]| + 3C ) =222
[h(z,y)] < 3 ; ( ) 75 Lh___vLJET(Nﬁél) [l lle™ [ Il 5

We use the Rademacher complexity to derive Proposition [5.1] For this purpose, we regard the
model (1) as a function in an RKHS. For j € Z% and = € T, let §;(x) = e "lilleli* where
7 > 0 is a fixed parameter and ||[j1,...,jalll1 = |j1] + - + |ja| for [j1,...,54) € Z%. Let
(2, y) = > jeza 4;(7)q;(y), and consider the RKHS #,; associated with the kernel . Note that
{Gi | j€ Z%} is an orthonormal basis of . Giannakis et al.[{(2022) and Das et al.| (2021) used this
kind of RKHSs for simulating dynamical systems on a quantum computer based on the Koopman
operator theory and for approximating Koopman operators by a sequence of compact operators.
Here, we use the RKHS 7, for deriving a generalization bound. To regard the function G € Vi =
Span{q; | j € N} C L*(T%) as a function in H,,, we define an inclusion map ¢y : Vy — H,; as
ing; = eIl g; for j € N. Then, the operator norm of ¢y is || 7x|| = max;ey eIVl

Let S € N, 01,...,05 bei.i.d. Rademacher variables, and x1, . .., zg be given samples. Then, the
empirical Rademacher complexity Rg(Gy ) is bounded as follows.

Lemma 5.2 We have

~ a .
Rs(Gn) < —= maxe™lil: sup el [le™ ]| ]|
VS jeN Li,...L;€T(N,C) ’

where o =3 74 e 27lillx,

We can see that the complexity of the model depends exponentially on both N and J. Combining
Lemma 4.2 in[Mohri et al.| (2012) and Lemma[5.2] we can derive Proposition 5.1}

Remark 5.3 The exponential dependence of the generalization bound on the number of layers is
also typical for standard neural networks (Neyshabur et al.||2015} |Bartlett et al., |2017; |Golowich
et al.| 2018; |Hashimoto et al.| |2024).
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Remark 5.4 Based on Proposition|5. 1| we can control the generalization error by adding a regular-
ization term to the loss function to make |e™|| - - - ||e¥7|| smaller. We note that ||e% || is expected to
be bounded with respect to N since the corresponding Koopman operator is bounded in our setting.
See Appendix|[H|for more details.

6 NUMERICAL RESULTS AND PRACTICAL IMPLEMENTATION

We empirically confirm the fundamental properties of the proposed deep Koopman-layered model.

6.1 TRAINING DEEP KOOPMAN-LAYERED MODEL WITH TIME-SERIES DATA

Based on Corollary #.2] we train the deep Koopman-layered model using time-series data as follows:
We first fix the final nonlinear transform v in the model G taking Remark 3.1]into account, the number

of layers .J, and the index sets N, M,.. We input a family of time-series data {25,052, j}SS:1
to G. For obtaining the output of G, we first compute Q% v = [{qn, V)], Where (-, -) is the inner
product in L?(T%), and compute e’ Q% v using the Krylov subspace method, where J = .J 7

L=ty 22:1 Al A}]‘%Dk, and AF = [ak / ] is the Toeplitz matrix. In the same manner,

S
n—1I,r

we compute e7-1(el7 Q% v). We continue that and finally obtain the output G(x) = Qnu(r) =

Y onen n(®)uy, where u = [ug,. .., u,)T = et .. el Q% v. We learn the parameter afm, for
each layer in G by minimizing Zle Lvu(z, 7),Gj(ws 1)) forj=1,..., J using an optimization

method. For example, we can set an objective function Zle Zle L(v(z, 7),Gj(xs,-1)). Here
{:C x C — Ris aloss function. For example, we can set ¢ as the squared error. We documented
the pseudoscope of the proposed algorithm in Appendix [D]

6.2 REPRESENTATION POWER AND GENERALIZATION

To confirm the fundamental property of the Koopman layer, we first consider an autonomous system.
Consider the van der Pol oscillator on T

ddigt) = —p(1 - x<t)2)dgf1§:t) +a(t), )

where p = 3. By setting dz/dt as a new variable, we regard Eq. (3) as a first-ordered system on the
two-dimensional space. We discretized Eq. (3) with the time-interval At = 0.01, and generated 1000
time-series {x&o, .. ~$s,100} for s = 1,...,1000 with different initial values distributed uniformly
on [—1,1] x [-1,1]. We added a random noise, which was drawn from the normal distribution
of mean 0 and standard deviation 0.01, to each x, ; and set it as T, ;. For training, we used the
pairs {Zs 0, 5,100} for s = 1,...,1000. Then, we trained deep Koopman-layered models on T3 by
minimizing the loss Ziiolo [Qnelt - e Qi v(Z5,0)—Fs,100]|? using the Adam optimizer
with the learning rate 0.001. We created data for testing in the same manner as the
training dataset. We set v(z,y) = sin(y)z1 + cos(y)xs for z = [z1,22] € T? and y € T. Note
that based on Remark we constructed Kooman-layers on T¢*+! for the input dimension d, and
we designed the function v so that it recovers =1 by v(z, 7/2) and x5 by v(z,0). We used the sine
and cosine functions for designing v since the representation space is constructed with the Fourier
functions. We set N = {n = [ny,n2,n3] € Z> | =5 < ny,na,n3 < 5} \ {0}, R = 1, and
My = {n = [ni,na,n3] € Z3 | =2 < ny,ny <2,—1 < ng < 1} \ {0} for all the layers. We
applied the Arnoldi method (Gallopoulos & Saad, |1992) to compute the exponential of L;.

Figure[I] (a) shows the test error for J = 1 and J = 2. We can see that the performance becomes
higher when J = 2 than J = 1. Note that Theorem 1] is a fundamental result for autonomous
systems, and according to Theorem .1 we may need more than one layer even for the autonomous
systems. The result reflects this theoretical result. This is an effect of the approximation of the
generator. If we can use the true Koopman generator, then we only need one layer for autonomous
systems. However, since we approximated the generator using matrices, we may need more than one
layer. In addition, based on Remark we added the regularization term 1075 (||el1 || 4+ - - 4 ||l ||)
and observed the behavior. We consider the case where the training data is noisy, and its sample size
is small. We generated training data as above, but the sample size was 30, and the standard deviation
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Figure 1: Test error for different values of J with and without the regularization based on the norms
of the Koopman operators. The result is the average + the standard deviation of three independent
runs.

of the noise was 0.03. We used the test data without the noise. The sample size of the test data was
1000. We set J = 3 to consider the case where the number of parameters is large. The result is
illustrated in Figure[I](b). We can see that with the regularization, we can achieve smaller test errors
than without the regularization, which implies that with the regularization, the model generalizes
well.

6.3 EIGENVALUES OF THE KOOPMAN-LAYERS FOR NONAUTONOMOUS SYSTEMS

To confirm that we can extract information about the underlined nonautonomous dynamical systems
of time-series data using the deep Koopman-layered model, we observed the eigenvalues of the
Koopman-layers.

6.3.1 MEASURE-PRESERVING DYNAMICAL SYSTEM

Consider the nonautonomous dynamical system on T?

(42,2200 — (- Fe ). g rale)) = Fit2), ©

where ((t, [z, 23]) = er(cos(@1=t)+eosz2) Gince the dynamical system f(t, -) is measure-preserving
for any ¢ € R, the corresponding Koopman operator K¢ is unitary for any ¢ € R. Thus, the
spectrum of K is on the unit disk in the complex plane. We discretized Eq. @ with the time-
interval At = 0.01, and generated 1000 time-series {z,,...%s 119} for s = 1,...,1000 for
training with different initial values distributed uniformly on [—1,1] x [—1,1]. We split the
data into 6 subsets S; = {z;; | s € {1,...,1000}, j € {20¢,...,20(t + 1) — 1}} for
t = 0,...,5. Then, we trained the model with 5 Kooman-layers on T3 by minimizing the loss
S S Qe - e Qi u(ws 200 —1)+1) — T 100-11]|? using the Adam optimizer with
the learning rate 0.001. In the same manner as Subsection[6.2] we set v(z,y) = sin(y)z1 + cos(y)z2
for z = [x1, 73] € T? and y € T. Note that we trained the model so that Q ye® - - - eLSQ’}‘Vv maps
samples in S;_1 to S5. Weset N = {n = [n1,na,n3] € Z> | =5 < ny,ny <5,-2 < nz <2},
R=1,and M; = {n = [ny,n2,n3] € Z3 | =2 < ny,ne < 2,—1 < ng < 1} for all the layers.
We applied the Arnoldi method to compute the exponential of L;. In addition, we assumed the
continuity of the flow of the nonautonomous dynamical system and added a regularization term
0.01 Z?:Q let — eli-1|| to make the Koopman layers next to each other become close. After train-
ing the model sufficiently (after 3000 epochs), we computed the eigenvalues of the approximation e
of the Koopman operator for each layer j = 1, ..., 5. For comparison, we estimated the Koopman

operator Kjt-j using EDMD and KDMD (Kawahara, |2016) with the dataset S;_; and S; separately
for j = 1,...,5. For EDMD, we used the same Fourier functions {¢; | j € N} as the deep
Koopman-layered model for the dictionary functions. For KDMD, we transformed [z1, z2] € T?
into ¥ = [e!”1, e?2] € C? and applied the Gaussian kernel k(z,y) = e~0-17=791” For estimating
K;fj , we applied the principal component analysis to the space spanned by {k(-,z) | € S;_1} to

obtain | N| principal vectors py, . .., p|y|. We estimated Kjt-j by constructing the projection onto the
space spanned by p1,...,p|N|- Figureillustrates the results. We can see that the eigenvalues of the
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Figure 2: Eigenvalues of the estimated Koopman operators for the nonautonomous measure preserving
system.

estimated Koopman operators by the deep Koopman-layered model are distributed on the unit circle
for j =1,...,5, which enables us to observe that the dynamical system is measure-preserving for
any time. On the other hand, the eigenvalues of the estimated Koopman operators with EDMD and
KDMD are not on the unit circle, which implies that the separately applying EDMD and KDMD
failed to capture the property of the dynamical system since the system is nonautonomous.

6.3.2 DAMPING OSCILLATOR WITH EXTERNAL FORCE

Consider the nonautonomous dynamical system regarding a damping oscillator on a compact subspace
of R
d?x(t dz(t

dtg ) =—a« d<t ) _ x(t) — asin(bt), 7
where & = 0.1, a = b = 1. By setting dx/d¢ as a new variable, we regard Eq. (7) as a first-ordered
system on the two-dimensional space. We generated data, constructed the deep Koopman-layered
model, and applied EDMD and KDMD for comparison in the same manner as Subsection [6.3.1]
Figure [3illustrates the results. In this case, since the dynamical system is not measure preserving,
it is reasonable that the estimated Koopman operators have eigenvalues inside the unit circle. We
can see that many eigenvalues for the deep Koopman-layered model are distributed inside the unit
circle, and the distribution changes along the layers. Since the external force becomes large as ¢
becomes large, the damping effect becomes small as ¢ becomes large (corresponding to j becoming
large). Thus, the number of eigenvalues distributed inside the unit circle becomes small as j becomes
large. On the other hand, we cannot obtain this type of observation from the separate estimation of
the Koopman operators by EDMD and KDMD. See Appendix [E] for additional numerical results.

7 CONNECTION WITH OTHER METHODS

7.1 DEEP KOOPMAN-LAYERED MODEL AS A NEURAL ODE-BASED MODEL

The model (m) can also be regarded as a model with multiple neural ODEs (Teshima et al.| [2020b; Li
et al.,[2023} Section 3.3). From this perspective, we can also apply the model to standard tasks with
ResNet. For existing Neural ODE-based models, we solve ODE:s for the forward computation and
solve adjoint equations for backward computation (Chen et al.} 2018} |Aleksei Sholokhov & Nabil
2023). In our framework, solving the ODE corresponds to computing '/« for a matrix L; and a
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Figure 3: Eigenvalues of the estimated Koopman operators for the nonautonomous damping oscillator.

vector u. As we stated in Subsection we use Krylov subspace methods to compute e . In this
sense, our framework provides numerical linear algebraic way to solve Neural ODE-based models by
virtue of introducing Koopman generators and operators.

7.2 CONNECTION WITH NEURAL NETWORK-BASED KOOPMAN APPROACHES

In the framework of neural network-based Koopman approaches, we train an encoder ¢ and a decoder
1 that minimizes ||x;11 — (K ¢(x¢))| for the given time-series xg, 1, . .. (Lusch et al.| 2017} [Li
et al., 2017 |Azencot et al.| 2020} |Sh1 & Meng, [2022). Here, K is a linear operator, and we can
construct K using EDMD or can train K simultaneously with ¢ and . Physics-informed framework
of neural network-based Koopman approaches for incorporating the knowledge of dynamics have
also been proposed (Liu et al [2024)). For neural network-based Koopman approaches, since the
encoder ¢ changes along the learning process, the representation space of the operator K also
changes. Thus, the theoretical analysis of these approaches is challenging. On the other hand, our
deep Koopman-layered approach fixes the representation space using the Fourier functions and learns
only the linear operators corresponding to Koopman generators by restricting the linear operator to a
form based on the Koopman operator.

8 CONCLUSION AND DISCUSSION

In this paper, we proposed deep Koopman-layered models based on the Koopman operator theory
combined with Fourier functions and Toeplitz matrices. We showed that the Fourier basis forms a
proper representation space of the Koopman operators in the sense of the universal and generalization
property of the model. In addition to the theoretical solidness, the flexibility of the proposed model
allows us to train the model to fit time-series data coming from nonautonomous dynamical systems.

According to Lemma and Theorem [.1] to represent any function, we need more than one
Koopman layer. Investigating how many layers we need and how the representation power grows
as the number of layers increases theoretically remains for future work. In addition, we applied
Krylov subspace methods to approximate the actions of the Koopman operators to vectors. Since the
Krylov subspace methods are iterative methods, we can control the accuracy of the approximation
by controlling the iteration number. How to decide and change the iteration number throughout the
learning process for more efficient computations is also future work.

10
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APPENDIX

A PROOFS
We provide the proofs of statements in the main text.

Proposition The (n,l)-entry of the representation matrix QN L;Qn of the approximated
operator is

DS > Y %

k=lnp, 7leMI”éj nR;-1-7MR, eM{{ ., mn2—nz€MJn—nseMi
J.k a k a0k J.k :
an, nr; =l RJ nRr;—1-nR;,Rj-1 an2—n372an—n2711lk’ ®)

where ly, is the kth element of the index | € Z%. Moreover, we set n, = mg; + -+ my, + [, thus
ny=nm,=n, —nyp1forr=1,...,R; — 1, and mg, =ng, — 1.

Proof We have

d

— E : E : Jik E : Jik :

<Qn7LjQZ> = <Qna amR 7RJQmR aml,1Qm11ll~CQl>

k=1 ij GMIJQJ m1€Mf
d

_ ... R il

=\ qn, amR R mhlqu +eodmy UK
k=1 ijEMf?j mieM]

d
_ § Ji.k
- a’ij,R]‘ o ml,lllk

k=1 mpg.+--+mi+i=n
mR EM}]%jmmlE]VI{

B> > Y %

k=1 nR; 7lEMIj%7, nRj71fnRj€]\/I{%j71 nzfngeMj nfnzel\/fj
J.k J:k Jik Jik
a . o ang —n3g, Qan no, 11lk

nr;—LR;"nr; 1—nRr;,Rj1

Corollary Assume v € LE(T?) and v # 0. For any sequence g1 (t1,-),...,9;5(t;,") of flows
that satisfies v o g;(tj,-) o -+ 0 g;(t;,-) € LET?) and v o gj(tz,-) oo gj(t;, ) # 0 for
j =1...J, and for any e > 0, there exist a finite set N C 7\ {0}, integers 0 < J; < --- < J;,
and matrices Ly, ..., Ly, € T(N,C) such that |[vo gz(ty,-) oo g;(tj,-) — Gy S € and
G; = Qe+ .. -eL’iQ}‘vaorj =1,...,J, where Jy = 1.

Proof Since vogj(ty,-)o---o0g;(t;,") € L3(T%) andvogj(ts,-)o---o gj( -) # 0, there exist
finite N; C 74 \ {0} and Gj S VN,-a Gj = 0 such that ||U o gj(tj, ) o---0 g]( ) G || <e
forj = 1,...,.J. Since v € L2(T%) and v # 0, there exist finite Nj,, CZ* \{O} such that
Q}‘V v # 0. Let N = UJ'HN By Lemma since Qv # 0, there exist J7_,,J;7 € N

and LJJ._1+1, ...,Ly, € T(N,C) such that G; = Qne Lo .- e Q% . Since Gj # 0,

again by Lemma there exist J;_, € Nand Ly, i1,...,L;, € T(N,C)suchthat G;_, =

L, Ly, L, L
Qe Ti2t e ie it ek Qv = Qe 72Tt e -1 Q4G ;. We continue to

apply Lemma[4.8]to obtain the result. O

J—1
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Lemma Assume N C 74\ {0}. Then, we have CN*N = T(N,C).

Proof We show CV*N C T(N,C). The inclusion CN*Y D T(N, C) is trivial. Since N C Z%\ {0},
forany n = [n1,...,nq] € N, thereexists k € {1,...,d} such thatiny, = (Dg)n,» # 0. We denote
by kmin(n) the minimal index k € {1,...,d} that satisfies (Dg)n,n # 0. Let B € CN*N. We
decompose B as B = By + ... + Bg, where (By)., = B.,, if K = kpin(n) and (Bg)., = 0
otherwise. Here, (By). ,, is the nth column of By,. Then, we have (By).,, = 0 if (Dk)n,n =0. Let
DJr be the diagonal matrix defined as (D+)n n = 1/(Dg)nn if (Di)nn 5& 0 and (D )n n=20
if (Dg)n,»n = 0. In addition, let C}, = BkD+. Then, we have B = Zk 1 CiDy.. Applying
Propostlon- we have B € T(N, C), and obtain CN*N C T(N, C). O

Lemma For any u,v € CN \ {0}, there exists A € GL(N,C) such that u = Av.

Proof Letng € N and let B € N x N be defined as B,,. = 1/||v||>v* for n = ng and so that B,, .
and B,, . becoming orthogonal if n # m. Then, the nth element of Bv is 1 for n = ng and is 0 for
n # ng. Let C' € N x N be defined as C,, . = u for n = ng and so that C,, . and C,, . becoming
orthogonal if n # m. Then, B,C € GL(N,C) and CBv = u. |

Lemmal5.2] We have

R o .
Rs(Gn) < —= maxe™ s sup el fle™ ]| ]|
V'S jEN Li,...L;eT(N,C) ’

where o =3 74 e 27llill,

Proof
1 5 1
Rs(Gn) = { sup G(zs)o ] = E{ sup (vG(z )O’s:|
S| cegy ; S GEQN; ’
1 1/2
- 58| s <Zo—s¢<x8>,wc>] < suw |LNG||HK(ZK%%>)
Gegn s=1 s=1
< = swp [lewllIGllp2ray < —= maxeTlilh sup [Qne - e Qi
V'S Gegn V'S jEN Li,....Ly€T(N,C)
o
< —maxe l7lh sup et le™ | o]l
V'S jEN Li,...L,€T(N,C)
where o = ZjEZd e*QTHj”l_ 0O

B DETAILS OF REMARK[3. 2]

If Q is diffeomorphic to By, then we can construct a dynamical system f, on T¢ that satisfies
fi(z) = fj(z) for x € By, where fi j is the equivalent dynamical system on By with f;. Indeed, let
By = {z € R? | ||z|| < 1} be the unit ball. Let ¢ : 2 — B, be the diffeomorphism, and let y =

1’)( ). Then, the dynamical system 4% (¢) = f;(z(t )) is equivalent to dy( t) = ]L/}(y( ))’1fJ( (1))
since J1(y) is invertible for any y € Bd, where J1) is the Jacobian of 1. Note that since .J1) does not

depend on j, the transition of f; over j depends only on that of f; over j. Let f;(y) = Ji(y) ' f; (y).
Instead of considering the dynamical system f; on {2, we can consider the dynamical system f;
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Algorithm 1 Training deep Koopman-layered model
Require: v € L3(T), N CZ%, J € N, Ry,...,R; € N, M{,.... M}, CZ%(j =1,....J),

0:C x C — Ry, time-series {Ts1,...,%s )5,
Ensure: Learnable parameter A of the deep Koopman layered model
: Compute a vector u = [{qn, V)|nen-
Set (Dk) 1= ilg.
Initialize A.
for each epoch do

for each layer j = J,...,1do

d_ Ak akip

Compute u = e~*= ;74 using a Krylov subspace method.

Compute the output y; = > - Gn(Ts,j—1)u, of jthlayer fors =1,...5.
Compute the loss H; = Zsszl L(v(xs,7),Ys).
end for
Compute the total loss H = Z}]:1 H; and the gradient of H with respect to A and apply a
gradient method to update the learnable parameter A.
: end for

VR D DAL=

—

—
—

on B,. Let a be a positive real number satisfying 1 < a < m. Then, we can smoothly extend fj
on By to a map fjonaBgas fi(x) = fj(z) (x € By), fj( ) = 0 (JJz|| = a). For example, we
can construct fj in the same manner as a smooth bump function 1 ) Finally, we extend f]
on aBy to amap f; on [—m, 7% as fi(z) = f;(x) (z € aBa), fix ) =0 (x ¢ aBy). Then, since
fi([=m,...,—7]) = f;([r,...,7]), we can regard f; as a dynamical system on T.

C DETAILS OF REMARK [4.4]

In the same manner as Theorem .1} we can show that we can represent any function in Vy =
Span{q, | n € N} exactly using the deep Koopman-layered model. Thus, if the decay rate of the
Fourier transform of the target function A is a, i.e., if there exist 0 < « < 1 such that h is represented
ash =13, 74 Cn(y With some ¢,, € C satisfying |c,| < o7 for sufficiently large n, then the

convergence rate with respect to N is O((1 — a?)~%?2). Indeed, for sufficiently large N, we have

LS e 3 e <o (L)),
n= 1 — a2

n¢N n¢N

Z Cnln

ng¢N

min ||h—h| =
heVy

D ALGORITHMIC DETAILS OF TRAINING DEEP KOOPMAN-LAYERED MODEL

We provide a pseudocode of the algorithm of training the deep Koopman-layered model in Algo-
rithm 1] Let g, be the Fourier function defined as g, (2) = ¢ for n € Z% and z € T and let (-, -)
be the inner product in L?(T%). Thus, {(g,,, v) means the nth Fourier coefficient of a function v. Let
L3(T?) = Span{gq,, | n # 0}, and we fix a nonlinear map v € L3(T%) in the model G. We also fix
the finite index set N C N¢ determining the representation space of the Koopman generators, number
of layers J € N, the number R; € N of Toeplitz matrices, index sets M{ o My, 4 C 7% determin-
ing the sparseness of the Toeplitz matrices for the jth layer, and the loss functlon € CxC— R,

They determine the model architecture. Let Ald = [af7, nieNn_ien be the Toeplitz matrix with

. and Dy, be the diagonal matrix with (Dy);; = ily, for [ € Z<. In addition,

[a"] For simplicit
kjlk=1,...dneN N M r=1,. R;j=1,.J plhicity,

we focus on the case of the number of layers J is equal to the time step .J. We note that the time ¢

in the definition of L in Subsection[3.2]do not need for practical learning algorithm since it is just
regarded as the scale factor of the learnable parameter AF.

learnable parameters a,l ]
we put all the learnable parameters A =
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(a) Common dictionary functions for five Koopman generators
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(c) Separate dictionary functions for each Koopma generator with forward-backward extended DMD

Figure 4: Eigenvalues of the estimated Koopman operators with learned representation spaces for the
nonautonomous damping oscillator.

E ADDITIONAL NUMERICAL RESULTS

We show the results of additional experiments with the Koopman-based approach with learned
representation spaces (see Subsection[7.2). We considered the following two settings for the same
example in Subsection[6.3.2]

1. Learn a set of dictionary functions to construct the representation space of five Koopman
generators (learning a common set of dictionary functions is also considered by (Liu et al.]

2023)).

2. Learn five sets of dictionary functions each of which is for each Koopman generator.

We used a 3-layered ReLLU neural network to learn the dictionary functions. The widths of the first
and the second layer are 1024 and 121. We applied the EDMD with the learned dictionary functions.
The result is illustrated in Figure ] (a,b). We cannot capture the transition of the distribution of the
eigenvalues through 7 = 1,...,5 even though we learned the dictionary functions. We can also
see that there are some eigenvalues equally spaced on the unit circle. This behavior is typical for
autonomous systems with a constant frequency. Since the dynamical system is nonautonomous and
the frequency of the system changes over time, the above behavior is not suitable for this example.
This result implies that DMD-based methods try to capture the system as an autonomous system,
which is not suitable for nonautonomous systems. To obtain more stable eigenvalues, we also
implemented the forward-backward extended DMD with the second setting. The result
is shown in Figure@(c), and it is similar to the above two cases.
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F APPLICATION TO TIME-SERIES FORECASTING

We can also apply the proposed method to time-forecasting. Applying the idea of (2023));
(2023), we can decompose the Koopman operators into time-invariant and time-variant

parts. By extracting time-invariant features of the dynamics using the approximated Koopman
operators (e.g., time-invariant eigenvectors or singular vectors), we can combine it with time-variant
Koopman operators constructed by local time-series to construct the forecast. More precisely, we can
decompose the Koopman operator K * for time ¢ as K* = K, + K., where K, = > 1| 030;uf
and Ko = 2111 00Uy, 0y, V;, u; are time-invariant singular values and the corresponding singular
vectors of the approximated Koopman operators for 7 = 1,...,J, v; are the singular vectors of
the local Koopman operator that is orthogonal to v;, and &; and u; are singular values and singular
vectors corresponding to v;. Since we can use the time-invariant property of ¢t < ¢ 7, we can forecast
time-series well even for ¢ > t ;.

G DETERMINING AN OPTIMAL NUMBER J OF LAYERS

Although providing thorough discussion of determining an optimal number .J of layers is future work,
we provide examples of heuristic approaches to determining .J. Heuristically, we can use validation
data to determine an optimal number of layers. For example, we begin by one layer and compute the
validation loss. Then, we set two layers and compute the validation loss, and continue with more
layers. We can set the number of layers as the number that achieves the minimal validation loss.
Another way is to set a sufficiently large number of layers and train the model with the validation
data. As we discussed in Section 6.2, we can add a regularization term to the loss function so that the
Koopman layers next to each other become close. After the training, if there are Koopman layers next
to each other and sufficiently close, then we can regard them as one Koopman layer and determine an
optimal number of layers.

H DETAILS OF REMARK [2.4]
In our setting, we assume that the flow ¢(t, -) is invertible and the Jacobian Jg, of gp ! is bounded

for any ¢. Here, we denote g; = ¢g(¢, -). In this case, the Koopman operator K t is bounded. Indeed,
we have

1K = [ Ibto(to)Pdo = [ (h(a)Pldet Jg; (@)ldn < [P sup |det Jg; o).
T T4 xeTd
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