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Abstract

It is well known that LLMs cannot generalize
well to long contexts whose lengths are larger
than the training sequence length. This poses
challenges when employing LLMs for process-
ing long input sequences during inference. In
this work, we argue that LLMs themselves have
inherent capabilities to handle long contexts with-
out fine-tuning. To achieve this goal, we pro-
pose SelfExtend to extend the context window
of LLMs by constructing bi-level attention infor-
mation: the grouped attention and the neighbor
attention. The grouped attention captures the de-
pendencies among tokens that are far apart, while
neighbor attention captures dependencies among
adjacent tokens within a specified range. The
two-level attentions are computed based on the
original model’s self-attention mechanism dur-
ing inference. With minor code modification,
our SelfExtend can effortlessly extend existing
LLMs’ context window without any fine-tuning.
We conduct comprehensive experiments on mul-
tiple benchmarks and the results show that our
SelfExtend can effectively extend existing LLMs’
context window length. The code can be found at
https://github.com/datamllab/LonglLM.

1. Introduction

The context window length of most existing LLMs (Zhao
et al., 2023; Yang et al., 2023) is limited since they are
trained with a fixed length of training sequences. It’s deter-
mined by the context window length during the pretraining
stage. Once the length of the input texts exceeds the pretrain-
ing context window during the inference, the behavior of
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LLMs will be unpredictable and suffer from severe perfor-
mance degradation. The perplexity (PPL) of the model will
explode with the long input sequences (Xiao et al., 2023;
Peng et al., 2023; Han et al., 2023; Chen et al., 2023b).

Recently, a variety of context window extension methods
have been developed to extend the context window of pre-
trained LLMs. A straightforward approach is to fine-tune
these models on enough extensive texts. Besides this, some
methods seek to extend context window length in more
efficient fine-tuning ways. Among these contemporary
methods, some notable techniques include ‘PI’ (Chen et al.,
2023b), ‘CLEX’ (Chen et al., 2023a) ‘Yarn’ (Peng et al.,
2023), ‘PoSE’ (Zhu et al., 2023), ‘LongLora’ (Chen et al.,
2023c), and ‘ABF’ (Xiong et al., 2023). These methods
aim to extend the content window based on the implicit
assumption that pretrained LLMs lack the ability to han-
dle long content. However, these methods typically require
finetuning to achieve extension, which can be resource and
time-intensive given the quadratic complexity of Transform-
ers. Additionally, high-quality long text data is scarce, hin-
dering such fine-tuning approaches. Most real-world data
is short, and much long text lacks meaningful long-range
dependencies. With limited appropriate data, finetuning
risks degrading existing strong performance on shorter se-
quences from pretraining or overfitting models to the tuning
set. LLMs’ generalizability to broad tasks may be reduced.

Instead of extending the content window, in this paper, we
believe LLMs should have inherent capabilities to handle
long contexts. Our belief stems from the fact that when we,
as human beings, are children, we are taught how to read and
write using relatively short texts, such as articles spanning
several pages. We rarely use extremely long texts like entire
books or complete documents as learning materials. Yet,
we are still able to understand long texts effectively. With
this strong motivation, the poor performance of LLMs while
facing long text is not due to the lack of long context under-
standing capabilities. In our analysis, the key challenge pre-
venting LLMs from effectively handling longer contexts is
the Out-of-Distribution (O.0.D) issues related to positional
encoding, which we call the positional 0.0.D" issue. This

"Here, the position refers to relative position rather than ab-
solute position. The relative position is m — n in RoPE, where
m and n are the absolute positions of two tokens. The positional
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problem arises when LLMs encounter text sequences during
inference exceeding the length of their pretraining context
window, where LLMs are exposed to new relative distances
that were not present during their pretraining phase. It is
widely recognized that Neural Networks (NNs) are suscep-
tible to unpredictable behaviors when dealing with O.0.D
inputs (Liu et al., 2021; Shen et al., 2021; Bai et al., 2021;
Zhang et al., 2023). To address this, an intuitive and practi-
cal solution would be to remap the unseen relative positions
to those encountered during the pretraining, thus extending
the LLMSs’ ability to handle longer contexts naturally.

This paper proposes SelfExtend to elicit LLMs’ inherent
long context capabilities. SelfExtend addresses the issue
of 0.0.D. positional information by using a simple floor
division operation to map unseen large relative positions to
those encountered during pretraining. The core idea hinges
on the observation that, in long texts, exacting word posi-
tions becomes less crucial. The overall meaning and the
relative order of information hold greater significance. Just
like when answering questions about lengthy texts, we rely
on the general location and order, not the specific word-by-
word placement. Natural language exhibits a characteris-
tic where meaning stays relatively consistent within short
ranges like paragraphs. Therefore, using close or even iden-
tical position encodings effectively captures the necessary
relative ordering of important information. This intuitive
approach aligns perfectly with the floor operation’s function-
ality. Additionally, T5 (Raffel et al., 2020) and iRPE (Wu
et al., 2021) also share this similar intuition.

Our SelfExtend is a plug-and-play method that takes ef-
fect at the inference stage, allowing existing large language
models to easily adopt it. We evaluate SelfExtend with
some popular LLMs (Llama-2 (Touvron et al., 2023), Mis-
tral (Jiang et al., 2023a), SOLAR (Kim et al., 2023), and
Phi-2 (Javaheripi et al., 2023)) on three types of tasks: lan-
guage modeling, synthetic long context tasks, and real-world
long context tasks. The proposed SelfExtend substantially
improves the long context understanding ability and even
outperforms many finetuning-based methods on some tasks.
These results underscore SelfExtend as an effective solution
for context window extension. The superior performance
of SelfExtend also demonstrated the potential of large lan-
guage models to effectively handle long contexts. Our main
contributions are summarized as follows:

* We think LLMs with RoPE have a natural ability to han-
dle long texts, even if they have not encountered super-
long ones during training. The previous limitation stems

0.0.D refers to cases where the value of m — n during inference
is unseen, i.e., larger than the values observed during pretraining.
In this paper, we map unseen large relative positions to those ob-
served during pretraining. More details about m — n are provided
in Section 2.

from O.0.D. positions, meaning the larger” positions
have not been seen during training. We call this the
positional O.0.D. issue.

Based on this belief and to address the positional O.0.D.
issue, we propose SelfExtend to extend the context win-
dow of LLMs without any fine-tuning. We map the un-
seen large relative positions (at inference) to known po-
sitions (at training), thus allowing LLMs to maintain co-
herence over longer texts without additional fine-tuning.

In both synthetic and real-world long context tasks, Self-
Extend has proven its ability to deliver performance that
matches or surprisingly surpasses many existing fine-
tuning-based models. This highlights the superior capa-
bilities of our SelfExtend model.

2. Preliminary
In this section, we present the preliminaries of our work.

Position Encoding. Transformers (Vaswani et al., 2017)
incorporate position information via different positional em-
bedding designs. The common positional embedding design
can generally be categorized into two classes: absolute po-
sition embeddings and relative positional encodings. The
absolute position embedding provides the absolute positions,
which embeds each absolute position ¢ into position vector
p: and adds word embeddings to their corresponding p;
before feeding them to the model. Examples of such include
sinusoidal position embeddings (Vaswani et al., 2017) and
learned position embeddings in GPT3 (Brown et al., 2020)
and OPT (Zhang et al., 2022), or adding the dot product
between two tokens’ position embeddings on the attention
logit (Ke et al., 2020). On the other hand, relative posi-
tional encodings have been proposed to use relative distance
information between tokens and have become the main-
stream of position embedding. This information is usually
applied in attention layers. Examples of such include a
learnable attention logit bias as in TS (Xue et al., 2020),
Transformer-XL (Dai et al., 2019); a fixed linear attention
decay called Alibi (Press et al., 2021); rotating query and
key sequences based on distance such as RoPE (Su et al.,
2022), and XPos (Sun et al., 2023). The proposed method
in this work is based on the Rotary Position Embedding
(RoPE) introduced in (Su et al., 2022).

RoPE. Here, we introduce the basic concept of RoPE.
Let’s consider a sequence of tokens represented as
wy,wa, - -+ ,wr, and their corresponding embeddings are
denoted as xy, - - - ,x;, € RIPI, where | D| is the dimension
of the embedding. The basic idea of RoPE is to incorporate
the positional information into the query q and the key vec-
tors k, respectively. This integration ensures that their inner
product q”'k will contain the relative positional embedding
information inherently. To achieve this, RoPE employs the
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following vector transformations:
A = fq(%m,m) € R ki = fu(xa,n) € RIFL (1)

where |L| is the hidden dimension of per head. The func-
tions f, and fj, responsible for injecting positional informa-
tion, are defined as f, (X, m) = WXpme™? fi(x,,n) =
kaneme, where 6; = b=24/IPI p = 10000 and projec-
tors Wy, Wy : RIPI — RIZI. RoPE keeps the real part of
the inner product q”'k, which is Re(q*k). This operation
ensures that the dot product of the query and key vectors
depends entirely on the relative distance between the tokens,
represented by m — n of the tokens as follows:

(fa(Xm,m), fi(Xn,n))r = Re((fq(Xm, m), fr(Xn,n))c)
:RC(X;W;Waneie(m_n)> = g(Xm7 Xp, M — n)7 (2)

where ¢(-) is an abstract mapping function.

3. SelfExtend

In this section, we first conduct a preliminary investigation
on the inherent ability of the LLMs to handle long content.
Then, we propose our SelfExtend that effectively extends
existing LLMs’ context window without any fine-tuning.

3.1. Preliminary Analysis

@® Why do LLMs fail on sequences during inference that
are longer than their pre-training context window? For
a pretrained LLLM with relative position encodings, such as
ROPE, the behavior of the LLMs becomes unpredictable
during inference if the length of a sequence is longer than its
pretraining context window length. This has been explored
by (Han et al., 2023; Chen et al., 2023b) that with unseen rel-
ative positions, the attention distributions are different com-
pared to those within the pretraining context window. We
argue that such failure stems from the Out-of-Distribution
(0.0.D.) relative distance in the sense that neural networks
are not robust to O.0.D. inputs (Shen et al., 2021).

@ How to solve positional O.0.D. problem? One feasible
and straightforward way to handle unseen relative positions
is to map them to positions that were seen during pretrain-
ing. We can use the FLOOR operation to map the unseen
positions to positions within the pretraining context window,
as shown in Figure 1. The proposed method is identical to
the original self-attention mechanism except that the FLOOR
operation is applied to each token’s original position before
the inner product. We denote the self attention with the
FLOOR operation applied as “grouped attention”. In Python
style, the “grouped attention” is denoted as:

P,=P /| G, 3)

where P € RBXL is the original position encoding, in
which B is the batch size and L is the length of the input
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Figure 1. Illustration of grouped attention. We suppose that the
LLM’s pretraining context window length is 5 and the length of the
inference sequence is 8. On the left figure, we show the positional
Out-of-Distribution (0.0.D.) issue while the input length is out
of the pretraining context window size. The y-axis of this matrix
represents the position of query tokens and the x-axis represents
the position of key tokens. In this case, in the relative position
matrix, only those in are seen during pretraining. Relative
positions in gray are outside the pretraining context window. In
the right figure, we show how the FLOOR operation is applied and
the relative position matrix for grouped self attention. With the G5
set as 2, the positions of query tokens and key tokens are mapped
from 0-7 to 0-3 by FLOOR (//). The new relative positions (in
blue) are all within the range of the pretraining context window.
PPL of Llama-2-7b-chat with Grouped Attention
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Figure 2. Perplexity (PPL) using grouped attention with different
group sizes under different sequence lengths on PG-19 dataset.
The original Llama-2-7b-chat PPL is stable at 4k (4096) sequences
(red dotted line) but explodes at 6k (6144) sequences (purple dotted
line). The results show the LLMs keep a relatively low and stable
PPL on long sequences with grouped attention.

text sequence. G4 denotes the group size, which is the base
of the FLOOR operation. Taking the floor of the position
divided by the group size maps the original large position
values to a smaller discrete set of values, avoiding the issue
of out-of-distribution position values during inference.

@ Can LLMs work well without accurate position in-
formation? — Yes, but not that perfect. We show the
perplexity (PPL) on the PG-19 (Rae et al., 2019) dataset
with the FLOOR operation applied to Llama-2-7b-chat across
different sequence lengths, in Figure 2. As a comparison,
we also show the PPL of the original model without the
FLOOR operation as the dotted lines. From this figure, with
the FLOOR operation, LLMs keep a relatively low and stable
PPL on the sequences whose lengths exceed the pretraining
context window. Meanwhile, with grouped attention, the
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PPL is a little higher than the original LLMs, which is ex-
pected. However, the model’s PPL behavior is similar to
the original model, as the PPL is nearly unchanged within
the “context window” (for Llama-2: 2 - 8192, 4 - 16384,
and 8 - 32768), demonstrating the effectiveness of group
attention. Once the length of a sequence is longer than the
new “context window” (e.g., sequences with 10k tokens as
the input, with a group size of 2 ), the PPL explodes again
due to the positional O.0.D issue.

@ How to restore degraded language modeling ability
caused by grouped attention? — Re-introducing nor-
mal attention in the neighboring area. In the process of
generating next tokens, the immediate neighbors of a tar-
get token play a crucial role, which is well-supported by
existing methods of sparse attention mechanisms (Zaheer
et al., 2020; Shi et al., 2021) and methods for extending the
contextual window (Han et al., 2023; Xiong et al., 2023;
Liu et al., 2024). These studies consistently highlight the
importance of maintaining the standard attention mecha-
nism for tokens in close proximity to the target token. This
proximity-based focus is essential for the accurate genera-
tion of the next token, ensuring the coherence and fluency
of the generated text, as evidenced by acceptable perplexity
(PPL) levels. Employing grouped attention might not sig-
nificantly affect the overall quality of generated sentences;
however, it necessitates the accurate positioning of attention
to maintain generation quality. Therefore, it is imperative
to preserve the standard attention mechanism within the
vicinity of the target token, as utilized during the pretraining
phase, to ensure the precision and effectiveness of language
models in capturing the nuances of local context.

3.2. SelfExtend LLM Context Window Without Tuning

We introduce SelfExtend, a method that enhances LLMs’
natural capability to process extensive contexts without the
need for fine-tuning. SelfExtend incorporates two distinct
types of attention mechanisms: 1) Grouped attention, specif-
ically designed for tokens that are far apart. This approach
applies a floor operation to the positions to manage long-
distance relationships between tokens; 2) Standard attention,
which employs the conventional attention mechanism for
adjacent tokens within a specified range. The SelfExtend
framework is depicted in Figure 3. Notably, SelfExtend
modifies only the attention mechanism during inference,
eliminating the need for additional fine-tuning.

Maximum Extended Length of SelfExtend Suppose that
we have the pretraining context window size as L, the group
size for grouped attention as G, and the window size for
neighbor tokens as w,,. We shift the relative position of
grouped attention by w,, — w,//Gs before merging the two
pieces of attention together. This ensures that the transition
from the normal attention area to the grouped attention area

Table 1. Perplexity on dataset PG19 with Llama-2-7b-chat and
Mistral-7b-instruct-0.1. We report the PPL of with&without Slid-
ing Window Attention (SWA) for Mistral.

Model Evaluation Context Window Size

Name 4096 6144 8192 10240 12288 14336 16384
Llama-2-7b-chat 9.181 >10° >10° >10° >10° >10° >10°
SelfExtend-Llama-2-7b-chat 8.885 8.828 9.220 8956 9217 9413 9.274

Mistral-7b-instruct-0.1 w/ SWA 9.295 9.197 9532 9.242 9.198 9278 9.294
Mistral-7b-instruct-0.1 w/o SWA 9.295 9205 1020 5535 >10° >10° >10°
SelfExtend-Mistral-7b-instruct-0.1 ~ 9.272  9.103  9.369  9.070 8956 9.022  9.128

smooth. We merge the two parts of attention by replacing
the attention values out of the neighbor token window with
the attention values from the grouped attention. All the
modifications are applied before the softmax operation and
other parts remain unchanged. Ideally, the maximum length
of the extended context window is:

(L —wp) * Gs + wy,. 4)

For example, in Figure 3, the context window is extended
from its pretraining length of 7 to (7 — 4) *2+4 = 10. The
pseudo code for SelfExtend is presented in Algorithm 1.

Relation to Existing Work The grouped attention in SelfEx-
tend can be viewed as a form of position interpolation (Chen
et al., 2023b), where some positions are interpolated to be
infinitely close to pretraining positions. Another finetuning-
free method, ReRoPE (Su, 2023), is equivalent to a special
case of SelfExtend: the group size is large enough that all
tokens outside the neighbor window fall into the same group
(e.g. group size 10, 000 in Figure 5). T5 (Raffel et al., 2020)
and iRPE (Wu et al., 2021) also share the high-level idea
of multi-level positional encodings, while applying it dur-
ing pretraining. TS5 is more similar to ReRoPE for using
the same position for distant tokens. iRPE has finer distant
position encodings, more akin to SelfExtend.

4. Experiments

We evaluate SelfExtend with Llama-2 (Touvron et al.,
2023) and its families, Phi-2 (Javaheripi et al., 2023), Mis-
tral (Jiang et al., 2023a) and SOLAR (Kim et al., 2023)
on language modeling task, synthetic long context tasks,
real-world long context tasks and standard short-context
tasks.

4.1. Performance on Language Modeling Tasks

Language modeling task is the most fundamental and the
least requirement for LLMs, which is usually measured by
perplexity (PPL) on the test text data. A low PPL does
not guarantee good performance on real tasks (Pal et al.,
2023), however, a higher PPL suggests severe performance
degradation of LLMs. We evaluate SelfExtend’s language
modeling performance on dataset PG19 (Rae et al., 2019),
which contains lengthy books. PPL is used as the metric.
More experimental details are presented in Appendix D.1
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Normal Attention

Grouped Attention

SelfExtend

+(4-4//2)
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Figure 3. Illurstation of SelfExtend. This figure shows the attention score matrix (before SoftMax operation) of SelfExtend while a
sequence of length 10 is fed into an LLM with the pretraining context window size (L = 7). The numbers denote the relative distances
between the corresponding query and key tokens. SelfExtend has two kinds of attention mechanism: for neighbor tokens within the
neighbor window (w,, = 4), it adapts the normal self-attention; for tokens out of the window, it adapts the values from the grouped
attention. The group size (G) is set to 2. We then merge two parts attention matrices and apply the softmax operation.

Mistral w/ SWA SelfExtend Mistral

Figure 4. Passkey retrieval accuracy for Mistral-7b-instruct-0.1
with SWA or SelfExtend. Mistral with SelfExtend obtains 100%
passkey retrieval accuracy For all sequence length (token limit)
and all depth. Mistral with SWA cannot retrieve the passkey out of
the sliding window. The default sliding window size is 4096.

The results show that SelfExtend can successfully maintain
a low PPL out of the pretraining context window for both
Llama-2-7b-chat and Mistral. Without SelfExtend, the PPL
explodes when the length of test sequence is larger than
the context window. Mistral with SWA can also maintain
a low PPL out of its context window. But later in the next
section, we will demonstrate that a low PPL score does not
necessarily indicate proficiency in handling long contexts.
More discussion about PPL can be found in Appendix B.

4.2. Performance on Synthetic Long Context Tasks

The passkey retrieval task is the same as what is defined in
Landmark Attention (Mohtashami & Jaggi, 2023), which is
a synthetic long context task. It requires a language model
to retrieve a simple passkey (i.e., a 5-digit random number)
in a long meaningless text sequence. The passkey is placed
with various document depths (where the passkey is placed
in the input texts) and context lengths (ranging from 4k to
24k). We tested multiple passkey retrievals for each context
length and depth. The passkey was randomly placed within
a span of 400 tokens. For a depth of 0.1 and context of
8k, the passkey was placed between tokens 800 — 1600.
We performed 10 iterations per span, so 20 total for that

setting. Experimental setting details and an example of
passkey retrieval task can be found in Appendix D.2.

The results in Figure 4 show that without any fine-tuning,
SelfExtend obtains 100% passkey retrieval accuracy across
all tested depths and context lengths. The results also demon-
strate that: although Mistral w/ SWA has low PPL beyond
its pretraining context window, it can only access informa-
tion (i.e. the passkey) within its sliding window. Consider-
ing the simplicity of this task, these results strongly suggest
it still does not have the true ability to handle long contexts.

4.3. Performance on Real-World Long Context Tasks

Evaluation solely on language modeling (measured by per-
plexity) and synthetic tasks like passkey retrieval cannot
fully assess the long-context capabilities of LLMs. The task
of Passkey retrieval is overly straightforward, and an LLM
may still struggle with long context despite low perplexity.
To comprehensively evaluate long-context performance, we
further use two recent real-world long context benchmarks:
LongBench (Bai et al., 2023) and L-Eval (An et al., 2023).
The results are presented in Table 2 and Table 3. On the
LongBench in Table 2, for all four different base LLMs
and most datasets, with SelfExtend, the LLM can obtain
significant performance improvements.

Llama-2-7B: We use SelfExtend to increase Llama-2-7b-
chat’s context from 4k to 16k and 25k. Both significantly
outperform Llama-2-7b-chat and most fine-tuned models on
several datasets like HotpotQA. We also extend vicunal.5-
7B from 4k to 16k and 25k. With SelfExtend, vicunal.5-7B
surpasses its fine-tuned counterpart vicunal.5-7B-16k and
ranks among top Llama-2-7b models. On some datasets, the
25k variant underperforms the 16k one due to the trade-off
between larger context and positional precision. More de-
tails about the trade-off is in Section 4.5.

Mistral-7B: We extend Mistral-7B’s context to 16k, sig-
nificantly improving its long context ability over the base
model. The fine-tuned variant MistralLite ((amazon, 2023))
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Table 2. Performance comparison of different LLMs on LongBench. * indicates the results reported by LongBench.

indicates the

results are reported by CLEX (Chen et al., 2023a). + indicates the results from us. Models in green/blue/cyan/orange are based on
Llama2-7b/Mistral-7b/Phi-2/SOLAR-10.5B. The number (e.g. ‘25k’) indicates the maximum input length. The ‘SE’ prefix indicates
SelfExtend is applied to this model. In this table, except SelfExtend, all other models require fine-tuning to extend the context window.
CLEX is fine-tuned with 2B tokens. LongChatl.5-7B-32k and Vicunal.5-7B-16K are fine-tuned on more than 80k conversations.
CodeLLaMA (Roziere et al., 2023) is fine-tuned on more than 500B tokens. MistralLite (Yin Song and Chen Wu and Eden Duthie, 2023)
is also fine-tuned on more than 2B tokens (amazon, 2023). The better performance between models w/ and w/o SelfExtend is in bold.

‘ Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
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5 SE-Llama-2-7B-chat-16k+ 21.69 25.02 3521 34.34 30.24 14.13 27.32 21.35 2578  69.50  81.99 40.96 5.66 5.83  60.60 54.33
§ SE-Llama-2-7B-chat-25k+ 21.37 26.68 34.63 35.47 30.46 15.51 27.51 21.30 2587 6850 78.79 41.29 3.90 350 59.69 53.83
g Vicunal .5-7B-16k* 19.4 26.1 38.5 25.3 20.8 9.8 27.9 22.8 27.2 71.5 86.2 40.8 6.5 4.5 51.0 43.5
SE-Vicunal.5-7B-16k+ 21.88 35.16 42.00 31.14 22.51 1333 28.47 22.24 26.70  69.50 86.31 40.54 3.56 7.50 60.16 44.07
SE-Vicunal.5-7B-25k+ 22.46 34.42 42.58 30.95 24.33 12.72 27.75 2226 2721 72.00 84.02 40.38 3.01 7.00 58.86 43.86
MistralLite-16k+ 32.12 47.02 44.95 58.5 47.24 31.32 33.22 26.8 24.58 715 90.63 37.36 3 54.5 66.27 65.29
SE-Mistral-7B-ins-0.1-16k+ 23.85 37.75 46.93 45.35 34.54 23.28 30.45 23.58 2694 6950 85.72 43.88 0.59 28.50  54.92 53.44
GPT-3.5-Turbo-16k* 23.6 433 523 51.6 37.7 26.9 29.5 234 26.7 68.0 91.4 41.7 4.5 71.0 54.7 53.6
= XGen-7B-8k* 18 18.1 37.7 29.7 21.1 10.3 273 20.5 26.2 65.5 77.8 253 2.1 8.5 38.6 38.6
'q'; InternLM-7B-8k* 12.1 16.7 234 28.7 22.8 9.0 9.7 159 22.8 52.0 77.8 212 3.0 6.0 44.1 28.8
= ChatGLM2-6B-32k* 21.1 315 46.2 45.1 34.0 21.9 324 24.0 26.5 62.5 187 36.3 15 71.0 55.6 49.9
§ ChatGLM3-6B-32k* 26.0 433 51.7 54.4 449 40.4 36.8 23.9 27.9 79.0 87.1 38.2 2.0 99.0  57.66 54.76
i Baichuan-13B-4k 0.07 17.55 17.28 3.29 15 0.1 6.8 1.71 23.1 20.05  20.06 577 0.06 0.5 47.98 16.58
ALiBi-7B-4k 0.04 8.13 17.87 273 8 1.33 531 1.64 25.55 9.25 8.83 4.67 0 127 46.69 18.54

# Details of used LLMs in this table are presented in Appendix E.

Table 3. Exam evaluation results on L-Eval. Tokens denotes the
maximum input context length. + indicates the results are from us
and others are reported by L-Eval. The rows in the same color (or-
ange, green, blue, and pink) represent the models of those rows
from the same base model. The better performance between mod-
els w/ and w/o SelfExtend is highlighted in bold.

Model Tokens Coursera GSM QuALITY TOEFL CodeU SFiction Avg.
Claudel.3-100k 100k 60.03 88.00 73.76 83.64 17.77 72.65 6597
GPT-4-32k 32k 75.58 96.00 82.17 8438 2555 7499 73.11
Turbo-16k-0613 16k 63.51 84.00 61.38 7843 1222 64.84 60.73
Chatglm2-6b-8k 2k 4375 13.00 40.59 5390 222 5468 34.69
XGen-7b-8k (2k-4k-8k) 2k 2659 3.00 3515 4423 1.11 4843 2641
Chatglm2-6b-8k 8k 42.15 18.00  44.05 54.64 222 5468 3595
Chatglm2-6b-32k 32k 47.81 27.00 45.04 5501 222 57.02 39.01
XGen-7b-8k 8k 29.06 16.00 33.66 4237 333 4140 27.63
MPT-7b-65k 8k 2523 800 2524 17.84 000 39.06 19.22
Llama2-7b-chat 4k 2921 19.00 37.62 51.67 111  60.15 33.12
Longchat1.5-7b-32k 32k 3299 1800 37.62 39.77 333 57.02 3145
Llama2-7b-NTK 16k 3271 19.00 33.16 5278 0.00 64.84 33.74
SE-Llama2-7B-chat+ 16k 3576 25.00 41.09 5539 111 57.81 36.02
Vicunal.5-7b-16k 16k 38.66 19.00 39.60 5539 555 60.15 36.39
SE-Vicunal.5-7B+ 16k 3721 21.00 4158 5539 333 6328 36.96
Llama2-13b-chat 4k 35.75 39.00 4257 6096 1.11  54.68 39.01
Llama2-13b-NTK 16k 3648 11.00 35.64 54.64 111  63.28 33.69
Llama2-13b-NTK(Dyn) 16k 30.08 43.00 41.58 6431 111 3515 35.87
SE-Llama2-13B-chat+ 16k 3895 4200 41.09 66.17 1.11  63.28 42.10
Mistral-7b-ins-0.1 w/ SWA+ 16k 4477 4400 46.53 60.59 222 64.06 43.70
Mistral-7b-ins-0.1 w/o SWA+ 8k 43.60 49.00 45.05 60.59 444 6094 4394
MistralLite+ 16k 29.23 3200 46.04 1747 333 1406 23.69
SE-Mistral-7b-ins-0.1+ 16k 4520 5100 48.02 64.68 333 5938 4527
Phi-2+ 2k 3837 64.00 42.08 5576 333 5234 4264
SE-Phi-2+ 8k 4244 65.00 41.08 62.83 444 5234 44.69
SOLAR-10.7b-Instruct-v1.0+ 4k 48.84 72.00 59.90 7732 444 6953 5534
SE-SOLAR-10.7b-v1.0+ 16k 50.44 7200 70.30 79.18 444 7344 5830

achieves the best performance on most datasets. However,
many of these datasets were included in MistralLite’s fine-
tuning data, such as NarrativeQAZ.

SOLAR-10.7B and Phi-2: They have no finetuned vari-
ant for context window extension yet. SelfExtend can also
obtain substantial performance improvements.

On the LEval benchmark in Table 3, we observe simi-
lar results. Compared to fine-tuning free baselines like
NTK or further fine-tuned models like Longchat1.5-7b-32k
and Vicunal.5-7b-32k, SelfExtend achieves superior perfor-
mance on nearly all datasets®.

In summary, on the two benchmarks, SelfExtend achieves
comparable or better performance, compared to meth-
ods that requires further fine-tuning. Despite our initial
expectation being that SelfExtend would simply outperform

2More details about MistralLite’s fine-tuning data can be found
at https://huggingface.co/amazon/MistrallLite. At least,
GovReport, QMSum, NarrativeQA, Qasper, QUALITY, and Hot-
potQA are included. Meanwhile, Multi-passage QA and sum-
marization tasks are also in fine-tuning data. This also violates
zero-shot evaluation conditions.

3LEval performance seems sensitive to prompt engineering
for these sub-13B LLMs. For example, on some datasets, vanilla
vicuna-13b underperforms vanilla vicuna-7b.
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Table 4. Performance of SelfExtend on Hugging Face Open LLM
benchmark compared to baselines: Llama 2, Llama-2-chat-4,
Mistral-instruct-v0.1 and Phi-2. We use the same hyper-parameters
as on LongBench benchmark. For Llama-2 & Llama-2-chat based
SelfExtend, the group size is 16 and neighbor window is 1024;

Table 5. Performance of Phi-2 with different context window
lengths. The vanilla Phi-2 has a 2k context window. SelfExtend
extends Phi-2 to 4k (Gs = 4,w, = 512), 6k (Gs = 8,w, = 512)
and 8k (Gs = 12,w, = 512). The performance improvement
compared to vanilla Phi-2 is in the parenthesis.

for Mistral based SelfExtend, the group size is 6 and neighbor Context Length [ 2k (vanilla) 4k ok 8k
. : . . . Document QA
window is 1024; for Phi-2 bas 1fExtend, the gr size is 12
d . s 10 N 0 . based Se tend, the group size is NarrativeQA 4.46 6.49 (+45.52%) 8.98 (+101.35%) 12.04 (+169.96%)
and neighbor window is 512. Qasper 7.01 11.16 (+59.20%) 12.84 (+83.17%) 12.10 (+72.61%)
Size Name ARC-c Hellaswag MMLU TruthfulQA GSM8k Summarization
7B Llama-2 52.99 78.66 46.58 38.97 14.94 Gov_report 25.46 2791 (+9.62%) 28.14 (+10.53%) 27.51 (+8.05%)
7B SE-Llama 2 52.99 78.65 46.68 38.97 1471 Qmsum 14.32 14.88 (+3.91%) 16.72 (+16.76%) 18.58 (+29.75%)
Few-shot Learning
7B Llama-2-chat 5273 7849 4820 4532 18.73
oy S];Tfam:_za_chm_l o wama 7s4s 4500 4s33 1588 Trec 505 600 (+18.81%) 625 (+23.76%)  60.0 (+18.81%)
- - . - - Triviaga 7455  84.88 (+13.86%) 82.64 (+10.85%) 81.31 (+9.07%)
7B Mistral-instruct-v0.1 5435 7572 55.57 55.89 30.93 Coding
7B SE-Mistral-instruct-v0.1 ~ 54.44  75.71 55.59 55.89 31.39 Repobench-p 5414 56.18 (+3.77%) 56.76 (+4.84%)  57.05 (+5.37%)
2.7B Phi-2 6117 7513 5820 44.54 55.11 Lee 5896  59.06 (+0.17%) 58.88 (-0.14%)  59.42 (+0.78%)
2.7B SE-Phi-2 61.00 7520 5829 44.54 55.42

the base model without additional extension methods, it
is remarkable that our SelfExtend, which solely operates
during inference without the need for fine-tuning or training,
achieves such impressive performance.

4.4. Performance on Short Context Tasks

We argue that an ideal context length extension method
should not degrade performance on standard short-context
tasks. Previous fine-tuning based methods usually undergo
performance degradation on short-context tasks (Peng et al.,
2023; Xiong et al., 2023). Following (Peng et al., 2023),
we use Hugging Face Open LLM Leaderboard (Gao et al.,
2023) to evaluate SelfExtend’s performance on five pub-
lic short context tasks. Specifically, we use 25-shot ARC-
Challenge (Clark et al., 2018), 10-shot HellaSwag (Zellers
etal., 2019), 5-shot MMLU (Hendrycks et al., 2020), 0-shot
Truthful QA (Lin et al., 2021), and 5-shot GSM8K (Cobbe
et al., 2021). The results are shown in Table 4. We also
investigate the influence of varying group sizes and neigh-
bor window sizes on short-context tasks and we present the
results in Appendix C.

The results show that SelfExtend can maintain the perfor-
mance of the short-context tasks, while enhance the perfor-
mance on long-context tasks. Moreover, because SeldEx-
tend does not require any fine-tuning and only takes effect
during inference, SelfExtend can be readily adopted as a
plug-in component for LLMs. This means SelfExtend can
be automatically and inherently disabled while encountering
short-text sequences. Then, with the parameters remaining
unchanged, LLMs can maintain its original inference mech-
anism on those short-context scenarios.

4.5. Ablations on Group Size and Neighbor Window

We investigate the influence of varying the group size G
and the neighbor window w,,. We experiments with Phi-2
on four real-world datasets from Longbench: narrativeqa,
qasper, triviaqa, and repobench-p. The results are presented
in Figure 5. Form the results, we observe two trade-offs:

1) There is a trade-off with respect to group size in SelfEx-
tend. Generally, both too small and too large group sizes
can result in inferior performance compared to an optimal
level. With a large group size, position information be-
comes more coarse, potentially causing performance drops.
Conversely, small group sizes require SelfExtend to utilize
larger position embeddings to extend the context window.
These larger position embeddings are less trained compared
to smaller ones. For example, in Llama-2 with its 4096
context window, the relative position 4095 accounts for only
1/2048 the frequency of the relative position 2048 in train-
ing. These under-trained relative positions can also degrade
performance. This trade-off produces the *peak’ shape in
the figure, indicating the extended context window differs
from the ideal case described in Equation (4).

2) There is also another trade-off w.r.t. neighbor window
size. With larger neighbor window sizes, there is more
precise information about neighbor tokens, which is the
most important. But a larger neighbor window size means
SelfExtend has to use a larger group size for a long se-
quence, compared to using a smaller neighbor window size
& smaller group size, the information about the whole se-
quence becomes coarse.

More results can be found in Appendix G. When the group
size is so large that all distant tokens are in one group,
SelfExtend degenerates into ReRoPE (e.g. group size of
32768 in Figure 10).

4.6. Performance with Varying Context Window Length

To validate SelfExtend’s efficacy in enabling LLMs to utilize
extended context windows, we assess Phi-2’s performance
across varying context lengths with SelfExtend, referencing
Table 5. Across four task types from LongBench, results are
generally improved with longer contexts. Notably, SelfEx-
tend monotonically enhances performance on NarrativeQA
and Qmsum. While significant improvements are observed
across most datasets, a peak’ in performance suggests a
trade-off, as discussed in Section 4.5: longer contexts of-
fer more relevant information, but the larger group sizes
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Figure 5. The performance of Phi-2 when utilizing SelfExtend to extend its context window length to 8k, with varying group sizes
and neighbor window sizes. The y-axis indicates performance and the x-axis shows the group size. And neighbor window size is
from 256,512, 768,1024. Group size of 10000 in this experiment means all tokens out of the neighbor window are in the same
group (10000>8k). Some combination (e.g. G5 = 6 & w, = 1024) is omitted if the corresponding extended context window (Equa-
tion (4)) is smaller than 8k. The dashed line is the performance of vanilla phi-2 with a 2k context window size.
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Figure 6. Passkey retrieval accuracy for four fine-tuning-based
long-context models and SelfExtend on Llama-2-chat-7b across
four group sizes: 8,12, 16, and 100000. For SelfExtend, the neigh-
bor window is 1024. A group size of 100000 indicates that all

tokens outside the neighbor window are in the same group.
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required by SelfExtend to extend the context window may
cause less precise positional information*. Regarding Lcc,
performance remains consistent, possibly due to its reliance
on local codes and shorter dataset lengths®.

4.7. Varying-Length Passkey Retrieval Task

The conventional passkey retrieval task, along with preva-
lent benchmark datasets, primarily assesses the proficiency
of LLM:s in identifying and leveraging pertinent information.
Traditionally, this task involves passkeys not exceeding 5
digits in length. To evaluate the LLMs’ capabilities of pro-
ducing consistent and precise outcomes for long sequences,
we extended the task to incorporate passkeys with larger
lengths. We test passkeys in 5,8, 16, 36,48, 64,100 dig-
its. The input sequence contains 16, 000 characters. More
details are presented in Appendix D.3.

The results, depicted in Figure 6, illustrate a common trend:
while short passkeys of 5 or 8 digits are easily managed

*Other possible reasons include: Phi-2 is a base model without
instruction tuning, and SelfExtend’s performance is not optimal as
we use the same set of hyperparameters across all datasets, which
cannot showcase SelfExtend’s full potential

SWith Phi-2 tokenizer, over 60% of Lcc instances are under
4096 tokens, with an average length of 4069.7

by all, divergences in performance emerge as the length
of passkey increases. Notably, with the exception of Yarn,
many tuning-based methods are unable to accurately repro-
duce passkeys beyond 64 digits, and some of them even ex-
perience a marked decline in performance when the passkey
length exceeds 16 digits. Remarkably, although without
tuning, SelfExtend maintains its superiority. These find-
ings suggest that we should carefully choose the training
approach when fine-tuning models to handle long contexts.

5. Conclusion and Discussion

In this paper, we argue that LLMs themselves have the inher-
ent ability to handle long sequences and propose SelfExtend
to elicit the inherent long context abilities for LLMs by map-
ping unseen relative positions into those seen during pre-
training. Without any tuning or further training, SelfExtend
can effectively improve LLMs’ long context performance.

Limitations: SelfExtend increases computation cost with
naive implementations, since it performs extra attention
across all query-key pairs. However, with optimizations like
blocked kernels (e.g. Flash Attention (Dao et al., 2022)),
this becomes linear rather than quadratic, and the marginal
cost is small enough to be ignored for long input sequences.
Also, the performance degrades with large group size, pre-
venting indefinitely long contexts. Besides, SelfExtend still
processes the entire sequence to ensure information integrity,
while some methods such as prompt compression (Chuang
et al., 2024; Jiang et al., 2023b) can shorten the input to re-
duce computation. Additionally, evaluation methodologies
for assessing long context abilities remain open research
questions. Standard practices have yet to emerge, compli-
cating experimental results.

Future Work: We are interested in more sophisticated map-
ping methods to replace the simple FLOOR operation, aim-
ing to enhance long context understanding and extend the
context window length. Additionally, we plan to further in-
vestigate the complex behaviors of LLMs using SelfExtend.
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Impact Statement

The impact of this contribution is multifaceted. Firstly, it
enhances the usability and applicability of LLMs across
various domains that require the processing of lengthy input
sequences, such as document analysis, long-form question
answering, and retrieval augmented generation. Secondly,
the ability to extend the context window without fine-tuning
simplifies the deployment of advanced language models,
making them more accessible to a broader range of users
and applications. The availability of the code makes this
solution readily accessible to researchers and practitioners,
promising widespread adoption and further innovation in
the field of natural language processing.
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A. Pseudocode of SelfExtend

Algorithm 1 PyTorch-style Pseudocode of SelfExtend

q, k, v # queries,
seq_len, pos # input sequence length,

position_idx

g_size, w_size = G, w

# normal self-attention
ngb_q = apply_pos_emcode(q,
ngb_k = apply_pos_emcode(k,
ngb_attn = matmul(ngb_q,

ngb_attn = causal_mask(ngb_attn)

# grouped self-attention
# the floor

keys,

g_pos = pos // g_size

n

and values

pos)
pos)
ngb_k)

operation
shift = w_size - w_size // g_size
s_g_pos = g_pos + shift
g_q = apply_pos_emcode(q, s_g_pos)
g_k = apply_pos_emcode(k, g_pos)

g_attn
g_attn

matmul (g_q,
causal_mask(g_attn)

g_k)

g_mask = tril(ones([seq_len-w_size,
-w_sizel))
mask = ones([seq_len,

mask[w_size:,

attn = where(mask,
merge by replacement

attn_weights

:-w_size]

seq_len])
= g_mask

ngb_attn,

= softmax(attn)
output = matmul (attn_weights,

v)

seq_len

g_attn) #

B. Perplexity as a Metric for Long Context Capabilities

PPL is not an effective metric for measuring the ability of LLMs to handle long contexts. In Figure 7, we introduce a
seeming plausible context window extension method named ’Infinite’. When evaluated on PG19 using the same protocol,
Llama-2-7b-chat with ‘Infinite’ achieves PPL scores that are comparable to, or even lower than, those achieved by SelfExtend,
as demonstrated in Table 6. However, ‘Infinite’ essentially mimics the process of dividing a long sequence into short
sub-sequences before processing them with LLMs, indicating that it does not genuinely address long context handling.

Table 6. Perplexity on the PG19 dataset: For ‘Infinite’, we set three different local window sizes: 1024, 2048, and 4096. We have also

included the results from Table 1 for comparison.

Model Evaluation Context Window Size

Name 4096 6144 8192 10240 12288 14336 16384
Llama-2-7b-chat 9.181 >10% >10° >10° >10° >10° > 10°
SelfExtend-Llama-2-7b-chat 8.885 8.828 9.220 8.956 9.217 9413 9.274
1024-‘Infinite’-Llama-2-7b-chat  9.556 9.393 9.728 9.266 9.400 9.369 9.142
2048-‘Infinite’~Llama-2-7b-chat ~ 9.288 9.045 9.478 8993 9.128 9.105 8.872
4096-‘Infinite’~Llama-2-7b-chat  9.181 9.045 9.506 8.993 9.165 9.105 8.856
Mistral-7b-instruct-0.1 w/ SWA 9295 9.197 9532 9242 9.198 9278 9.294
Mistral-7b-instruct-0.1 w/o SWA 9295 9205 1020 5535 >10% >10% > 103
SelfExtend-Mistral-7b-instruct-0.1  9.272  9.103  9.369 9.070 8.956 9.022 9.128

The discrepancy between Perplexity (PPL) and long context ability primarily stems from how PPL is calculated by averaging
over numerous tokens. As long as the majority of tokens are modeled accurately, PPL will remain low. This is closely related
to the influence of neighboring tokens. Information from neighboring tokens—such as those within the local attention
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‘Infinite’: pure local attention

X4

‘Extend’ LLMs to CQ |
Figure 7. ’Infinite’: a seemingly plausible method that extends an LLM’s context window to ’infinite’ length. It achieves this by dividing
the entire self-attention area into multiple small, local self-attention areas. The size of the local window (i.e., the spanning range) of a

local self-attention area is the sole hyperparameter for ”Infinite”. For instance, with a local window set to 4 and a 16-token-long input,
“Infinite” essentially processes the input as four sequences of 4 tokens each.

window of ’Infinite’—can suffice for predicting most tokens, thus leading to a low PPL. However, a few critical tokens,
which are crucial for understanding long contexts and answering questions, may not be predicted accurately.

Additionally, unlike the pre-training process where the cross-entropy loss corresponds directly to perplexity, measuring PPL
during inference is static. It resembles a specific point on the loss curve observed during pre-training. While a decreasing
trend in loss during pre-training indicates good performance, a single point on the training loss curve cannot determine the
performance.

In summary, while low PPL is essential for a good model, lower PPL does not necessarily equate to better performance in
understanding long contexts.

C. SelfExtend with Varying Group Size and Neighbor Window

To comprehensively understand SelfExtend’s influence on LLMs, unlike previous experiments which used long context
settings, we evaluate with smaller neighbor window sizes on four standard benchmark tasks: ARC-c, GSM8k, Hellaswag
and MMLU. We use Phi-2 as the extended LLM. The results are shown in Figure 8. We didn’t include Truthful QA because
its average length is less than 300 words, while the four datasets we used have an average length greater than 700 words.
In general, SelfExtend has a minor influence on Phi-2 as long as the neighbor window size is over 128. In many cases,
SelfExtend even performs slightly better than vanilla Phi-2. When the neighbor window is too small (e.g. 64 tokens), if the
group size is large, as expected, the positional information loss is too high and Phi-2’s performance degrades. Also, on
difficult tasks such as MMLU and Helleswag, we observe a monotonic decrease in performance with increasing group size
for all neighbor windows. In summary, even when applying SelfExtend to short context tasks, as long as the hyperparameters
are not extreme, SelfExtend does not harm the model.

D. Detailed Experimental Setting

In this appendix, we present the details of the experiments in our paper.

D.1. Experimental Setting on Language Modeling Tasks

This is not the standard setting for PPL testing on PG-19. We use the first sentence of each book in PG19’s test set (100
books) to test the language modeling ability. The results cannot be directly compared to the PPL reported by other papers.
We chose this setting because our computation resources are very limited. This setting saves a lot and it can still show the
behavior of LLMs w.r.t. PPL. All PPL results were calculated using the sliding window method (Press et al., 2021) with
S = 256. We evaluated how the PPL changes as the input length increases. In Table 1, SelfExtend extends the original
Llama-2’s context window length from 4096 (4k) to over 16384 (16k) with group size G5 set as 8 and neighbor window wy,
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Figure 8. Phi-2 with SelfExtend on GSM8K, Helleswag, MMLU and ARC-c, compared to the vanilla Phi-2 (Phi-2-2k). The x-axis shows
the group size and the y-axis indicates performance as measured by the corresponding metrics.

set as 1024 (1k). For Mistral model, without SWA, the context window is 8192 (8k) and it is also extended by SelfExtend
with the same setting to larger than 16k. With SWA, Mistral can digest an infinite length of sequences and its default sliding
window is 4096.

D.2. Experimental Setting on Passkey Retrieval Task

Compared to other synthetic tasks, such as "Needle in a Haystack” (gkamradt, 2023), the model’s performance on this is not
sensitive to the prompt (Anothropic, 2023). This may come from the fact that the sentence carrying the passkey is very
different from those repeated random texts surrounding it. Empirically, within the effective context window, almost all LLMs,
including those without any instruction tuning or alignment, can locate the sentence carrying the passkey. Although this task
is easy and far from real-world scenarios, it tests two fundamental capabilities of LLMs: 1. The model should be able to
recognize and locate the useful information across all positions of the input sequence (the most fundamental understanding
capability); 2. The model should be able to use the perceived information to finish tasks (the most fundamental generation
capability).

An example of passkey is as the following:

Example:
Prompt: There is an important info hidden inside a lot of irrelevant text. Find it and memorize it. I will
quiz you about the important information there .. .... back again. The grass is green. The sky is blue.

The sun is yellow. Here we go. There and back again.The grass is green. The sky is blue. The sun is
yellow. Here we go. There and back again.The grass is green. The sky is blue. The sun is yellow. Here
we go. There and back again.The pass key is 60151. Remember it. 60151 is the pass key. The grass is
green. The sky is blue. The sun is yellow. Here we go. There and back again.The grass is green. The sky
...... What is the passkey?

Ground Truth: 60151

Figure 9. An example of the passkey retrieval task.

D.3. Experimental Setting on Varying-Length Passkey Retrieval Task

In this experiment, we use the following models: Llama2-7b-chat with SelfExtend, LongLora-7b-16k®,vicuna-1.5-7b-16k,
Together Al’s Llama-2-7b-32k”, and Yarn-Llama-2-7b-64k.

We use its fully fine-tuned variant, as we cannot use the LongAlpaca version to get reasonable performance for this specific task. For

more details about the model: https://huggingface.co/Yukang/Llama-2-7b-longlora-16k
"Both vicuna-1.5-7b-16k and Together AI’s Llama-2-7b-32k were fine-tuned using position interpolation
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E. Detail of LLMs

Here, we list the links to the details of the LLMs utilized in our experiments.

Table 7. LLMs used in the experiments
Model Name URL
Llama-2-7b-chat-hf (Touvron et al., 2023) https://huggingface.co/meta-11lama/Llama-2-7b-chat-hf
Mistral-7B-Instruct-v0.1 (Jiang et al., 2023a) https://huggingface.co/mistralai/
Mistral-7B-Instruct-veo.1

Phi-2 (Javaheripi et al., 2023) https://huggingface.co/microsoft/phi-2
SOLAR-10.7B-Instruct-v1.0 (Kim et al., 2023) https://huggingface.co/upstage/SOLAR-10@.7B-Instruct-v1.
0
LongChat-7b-v1.5-32k https://huggingface.co/lmsys/longchat-7b-v1.5-32k
togethercomputer/LLaMA-2-7B-32K https://huggingface.co/togethercomputer/LLaMA-2-7B-32K
CLEX-7B-16K (Chen et al., 2023a) https://huggingface.co/DAMO-NLP-SG/CLEX-7B-16K
CodeLlama-7b-hf (Roziere et al., 2023) https://huggingface.co/codellama/Codellama-7b-hf
vicuna-7b-v1.5-16k https://huggingface.co/lmsys/vicuna-7b-v1.5-16k
MistralLite (amazon, 2023) https://huggingface.co/amazon/Mistrallite

F. SelfExtend with Other Positional Encodings

In this section, we test SelfExtend on LLMs using non-RoPE positional encodings. We implemented SelfExtend for
MPT-7b-chat (Team, 2023), which uses Alibi (Press et al., 2021) as its positional embedding method. We conducted
experiments on the PG19 dataset. The results are shown in Table 8. The results show that SelfExtend is able to work with
non-RoPE positional encodings, which are pretty similar to models with RoPE positional encoding,

Table 8. Perplexity of MPT-7b-chat on PG19 with different sequence length. The vanilla MPT-7b-chat has a context window of 2k tokens.
For SelfExtend, We set the neighbor window as 512 and set the group size as 6.

MPT-7b-chat | 1024 | 2048 | 3172 | 4096 | 5120 | 6144 | 8192
Vanilla (2k) 88 | 9.6 | 120 | 263 | 52.0 | 115.5 | 196.0

SelfExtend 8.9 9.9 10.6 | 10.8 | 11.1 | 11.3 11.6

G. Hyperparameyer Selection for SelfExtend

We conduct experiments on “Needle in a Haystack™ (gkamradt, 2023), to investigate the impacts of group size and neighbor
window size. The results are shown in Figure 10.

The experimental results indicate that SelfExtend is not overly sensitive to hyperparameter selection. Predefined, heuristic
values for group size and neighbor window size are often sufficient to achieve satisfactory performance, as long as group
size and neighbor window are not too large or too small. We conclude those results as an empirical rule. Denoting the
pretraining context window as L, the target extension length as IV, the neighbor window as W, and the group size as G, the
empirical rule for selecting hyperparameters is to ensure that the following inequality holds:

N-W

% xL>W + 5)
We believe this empirical rule is due the fact that: large relative positions are not well trained. Empirically, only a
portion(~ %) of positions are well-trained and SelfExtend should only leverage these well-trained relative positions for the
extension. This finding explains: excessively small group sizes can degrade performance, as they provide precise position
information but require SelfExtend to utilize less well-trained relative positions for extension; excessively large neighbor
window sizes can also degrade performance, as they provide more neighbor information but necessitate the use of less
well-trained relative positions for extension.
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However, the current observation may not be applicable to all models. For example, we’ve found that Llama3 series
should use a much smaller neighbor window (~ 100). We may dive deeper to investigate the interaction among those
hyperparameters and models. Besides following the empirical rule. One could use a simple and easy-to-run representative
task to find proper hyperparameters.
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