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ABSTRACT

Transformer-based models have achieved state-of-the-art performance in many
areas. However, the quadratic complexity of self-attention with respect to the input
length hinders the applicability of Transformer-based models to long sequences.
To address this, we present Fast Multipole Attention (FMA), a new attention
mechanism that uses a divide-and-conquer strategy to reduce the time and memory
complexity of attention for sequences of length n from O(n2) to O(n log n) or
O(n), while retaining a global receptive field. The hierarchical approach groups
queries, keys, and values into O(log n) levels of resolution, where groups at
greater distances are increasingly larger in size and the weights to compute group
quantities are learned. As such, the interaction between tokens far from each other
is considered in lower resolution in an efficient hierarchical manner. The overall
complexity of FMA is O(n) or O(n log n), depending on whether the queries are
down-sampled or not. This multi-level divide-and-conquer strategy is inspired
by fast summation methods from n-body physics and the Fast Multipole Method.
FMA is similar in spirit to recently proposed hierarchical attention mechanisms
such as H-transformer by Zhu & Soricut and Multi-Resolution Analysis (MRA)
attention by Zeng et al., but our key advance is that we learn the basis functions
that compute group quantities. We perform evaluation on autoregressive and
bidirectional language modeling tasks and compare our FMA model with other
efficient attention variants on medium-size datasets. We find empirically that the
Fast Multipole Transformer performs much better than other efficient transformers
in terms of memory size and accuracy. The FMA mechanism has the potential
to empower large language models with much greater sequence lengths, taking
the full context into account in an efficient, naturally hierarchical manner during
training and when generating long sequences.

1 INTRODUCTION

The Transformer (Vaswani et al., 2017) was originally introduced in the context of neural machine
translation (Bahdanau et al., 2014) and has been widely adopted in various research areas including
image recognition (Dosovitskiy et al., 2021), music generation (Huang et al., 2019), speech recogni-
tion (Gulati et al., 2020), and protein structure prediction (Jumper et al., 2021). In natural language
processing, pre-trained Transformer-based language models have shown remarkable performance
when combined with transfer learning (Devlin et al., 2019; Brown et al., 2020). At the heart of
Transformer models is the self-attention mechanism, which essentially computes weighted averages
of inputs based on similarity scores obtained with inner products. Unlike recurrent neural network
layers and convolutional layers, self-attention layers have a global receptive field, allowing each
attention layer to capture long-range dependencies in the sequence.

However, this advantage comes with time and space complexity of O(n2) for inputs of length n, since
self-attention computes n similarity scores for each token. This quadratic cost limits the maximum
context size feasible in practice. To address this problem, many methods focusing on improving the
efficiency of self-attention have been proposed. One line of work is sparsification of the attention
matrix with either fixed patterns (Child et al., 2019; Beltagy et al., 2020) or clustering methods (Kitaev
et al., 2020; Roy et al., 2021). However, the ability of attention to capture information from the entire
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sequence is impaired by these modifications. Another direction is to linearize attention either by
kernelizing (Choromanski et al., 2021; Katharopoulos et al., 2020) or replacing softmax with a linear
operation (Qin et al., 2022), and avoiding to form the attention matrix explicitly. Although these
approaches have complexity linear in n, their main disadvantage is that in autoregressive models
they require recurrent rather than parallel training along the sequence length dimension (Tay et al.,
2022). Since generating or translating long texts poses document-level challenges of discourse such
as lexical cohesion, coherence, anaphora, and deixis (Maruf et al., 2021), the ability to include more
context in language models is important.

In this work, we propose an efficient variant of attention called Fast Multipole Attention (FMA), which
uses different resolutions according to the distance between the input and output tokens. Specifically,
in the neighborhood of the query, attention is calculated with keys and values in full resolution.
Moving away from the query, keys and values are grouped and downsampled (or summarized) in
increasingly larger groups using learned downsampling weights, and attention is calculated in lower
resolution. The resulting attention matrix has a hierarchical structure, as in Figure 1b. FMA preserves
the global receptive field of full attention and has an overall complexity of O(n log n) or O(n),
depending on whether the queries are downsampled or not. It can be used in both autoregressive and
bidirectional settings, as used, for example, in the GPT family and BERT family of language models.

The motivation behind the divide-and-conquer strategy of FMA is not just an efficient computational
technique to make the memory and computation cost of large context sizes manageable; the multilevel
strategy is also a natural hierarchical way to handle large context sizes that intuitively makes sense for
many applications. For example, when humans read books they don’t remember the context provided
by each individual word on previous pages or in previous chapters. Rather, they summarize in their
mind the context of what they have read, with more detail for recent pages than for earlier chapters.
Similarly, when human authors write books, they don’t keep the detailed context of every previous
word in mind, but they work with a summarized context with a level of detail that, at least to some
extent, can be assumed hierarchical-in-distance. FMA provides a natural hierarchical model for this
summarization process that makes large context sizes manageable, both for humans and for language
models. As such, FMA can be used to build a class of divide-and-conquer language models that
enable large context sizes using a hierarchical context summarization mechanism.

This multi-level divide-and-conquer strategy is inspired by fast summation methods from n-body
physics and the Fast Multipole Method (Barnes & Hut, 1986; Greengard & Rokhlin, 1987; Beatson
& Greengard, 1997; Martinsson, 2015). Compared to other recently proposed and very successful
hierarchical attention mechanisms such as H-transformer (Zhu & Soricut, 2021) and Multi-Resolution
Analysis (MRA) attention (Zeng et al., 2022), the key advance of our work is that we learn the basis
functions that compute group quantities. To evaluate the effectiveness of our method, we experiment
on autoregressive and masked (bidirectional) language modeling tasks. We show that FMA can
handle much longer sequences as it uses less memory and FLOPs. In addition, we show that our
FMA outperforms other efficient attention variants in terms of efficiency and efficacy.

2 RELATED WORK

Reducing the asymptotic complexity of attention is crucial to scaling Transformer-based models for
long inputs. In this section, we summarize relevant works on improving the efficiency of attention
and broadly divide them into the following categories.

Sparse patterns Local attention is widely used in (Liu et al., 2018; Child et al., 2019; Ainslie et al.,
2020; Beltagy et al., 2020; Zaheer et al., 2020) due to its simplicity. It calculates entries on the
diagonals or block diagonals of the attention matrix and has a linear cost. Another pattern is strided
attention, which computes entries of the attention matrix on dilated diagonals, as in (Child et al.,
2019; Beltagy et al., 2020). Strided attention can achieve a larger receptive span than local attention.
Global tokens are another commonly used pattern. These tokens summarize information from the
whole sequence and can be read by all output positions. They can be tokens within the input sequence
(Child et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020) or auxiliary tokens (Ainslie et al., 2020;
Zaheer et al., 2020).

Clustering These approaches group inputs into clusters and compute attention within each cluster,
in order to reduce the amount of computation. They are often based on the observation that the
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output of softmax is dominated by the largest inputs. In these works, k-means clustering (Roy et al.,
2021; Wang et al., 2021) and locality sensitive hashing (Kitaev et al., 2020; Vyas et al., 2020) are
commonly used. ClusterFormer (Wang et al., 2022) makes use of soft clustering by updating the
word embeddings and the centroids simultaneously.

Linearization Linearization aims to replace or approximate softmax with a linear operator to avoid
forming the quadratic attention matrix explicitly. Linear Transformer (Katharopoulos et al., 2020)
replaces the exponentiated dot-product exp (q⊤k) by ϕ(q)⊤ϕ(k) with ϕ(·) = elu(·) + 1, where
elu(·) denotes the exponential linear unit activation function. Performer (Choromanski et al., 2021)
and Random Feature Attention (Peng et al., 2021) both use random features to define the kernel
function ϕ. cosFormer (Qin et al., 2022) replaces softmax with the ReLU function followed by a
cosine re-weighting mechanism that encourages locality. A drawback of linearization methods is
that during autoregressive training, they need to be run recurrently, instead of via the more efficient
teacher forcing approach (Tay et al., 2022). FMMformer (Nguyen et al., 2021) presents a 2-level
method where the coarse low-rank approximation uses linearization.

Downsampling Memory-compressed attention (Liu et al., 2018) downsamples keys and values using
convolution kernels of size 3 with stride 3. Although the memory cost is reduced by a factor of 3,
it scales quadratically in n. Linformer (Wang et al., 2020) projects keys and values from Rn×d to
Rk×d with linear projections, resulting in an attention matrix, QK⊤, of size n× k. However, causal
masking in such downsampling methods that mix past and future is difficult.

Hierarchical and multi-resolution attention Our work is most closely related to the recently pro-
posed Hierarchical matrix transformer (H-transformer) (Zhu & Soricut, 2021) and Multi-Resolution
Analysis (MRA) attention (Zeng et al., 2022). Both H-transformer and MRA attention approximate
self-attention with a local+global (near-field+far-field) decomposition (see also FMMformer (Nguyen
et al., 2021)), and make the crucial next step to use O(log n) levels of resolution recursively to obtain
O(n) efficiency in memory and time, while retaining high approximation accuracy. H-transformer
(which is related to the fast multipole method, see Section A.10 for more details) uses fixed averaging
between levels and by the nature of the hierarchical matrix format places the higher resolutions closer
to the diagonal of the attention matrix. The MRA attention of (Zeng et al., 2022) makes a seminal
next step in adaptively choosing higher recursive resolution where the attention weights are the
largest in the attention matrix (with higher resolution not necessarily occurring closer to the diagonal,
especially, for example, for two-dimensional data such as images). Indeed, multi-resolution analysis
can be seen as an adaptive generalization of the fast multipole method (Beylkin, 1996). Using a
judiciously chosen fixed wavelet family, MRA attention provides a procedure with strong advantages
across both performance/accuracy and efficiency compared to other efficient attention mechanisms
and full attention (Zeng et al., 2022).

The crucial advance in our work, both relative to H-transformer (Zhu & Soricut, 2021) and MRA
attention (Zeng et al., 2022), is that our FMA approach learns the basis functions that compute group
quantities, as opposed to the fixed averaging basis functions of H-transformer (Zhu & Soricut, 2021)
and the fixed wavelet family used in MRA attention (Zeng et al., 2022). Our numerical results show
that learning the basis functions leads to substantially better accuracy for language tasks compared to
H-transformer, for the same memory and time cost. While our FMA does not possess the flexibility
of MRA to adaptively determine regions of high resolution in the attention matrix, we do find results
for language modelling that have substantially better accuracy than the MRA attention from (Zeng
et al., 2022). As such, our novel results demonstrate the key importance of learning the basis
functions in hierarchical attention approximations. At the same time, our findings strongly suggest
that future work combining our approach in FMA to learn the basis functions with the adaptivity
of multi-resolution methods like the MRA attention from (Zeng et al., 2022) may lead to the next
quantum leap in designing accurate, efficient and versatile multilevel transformer methods in the
future.

3 FAST MULTIPOLE ATTENTION

3.1 ATTENTION MECHANISM

Throughout the paper, indices start from 0. We use subscript indices to indicate rows of matrices.
More notation is recalled in the Appendix.
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The Transformer is characterized by the attention mechanism, which is capable of capturing long-
distance dependencies from the entire sequence. For queries Q ∈ Rn×d, keys K ∈ Rn×d and values
V ∈ Rn×d, the (unnormalized) attention matrix is

C = QK⊤, (1)

and the scaled dot-product attention is defined by

ATTN(Q,K, V ) = softmax

(
C√
d

)
V. (2)

Here n is the context size, d is the embedding dimension for attention, and softmax is applied
row-wise. Essentially, the attention mechanism calculates a convex combination of the value vectors
in the rows of V with coefficients obtained from inner products between query and key vectors. In
the case of self attention, Q, K and V are obtained from the same embedding X ∈ Rn×dembed with
learned linear projections: Q = WQ X , K = WK X , and V = WV X . Calculating the attention
matrix according to (1) requires O(n2d) time and O(n2) space and becomes a major computational
bottleneck for large n.

3.2 FAST MULTIPOLE ATTENTION

Fast Multipole Attention considers the input sequence at different resolutions. The dot-product
attention is evaluated directly in the neighborhood of the query. For each query, distant keys and
values are divided into groups and a summarization is computed for each group via downsampling.
The downsampled key vector is used for calculating the attention score, which later is multiplied with
the downsampled value vector to obtain the attention output. By splitting the entire sequence into a
tree of intervals, FMA achieves loglinear space and time complexity with respect to the sequence
length and hierarchical summarization. When the queries are also downsampled, we obtain an O(n)
version of FMA, named FMA-linear. In this section, we only describe in detail our O(n log n) version
of FMA, and we describe FMA-linear in the supplementary material. Figure 1a demonstrates the
intuition behind FMA. The rest of this section will describe FMA in detail.

(a) Top: full attention. All pairwise interactions are computed. Bottom:
FMA with 3 levels and group size m = 2. In the neighborhood of a token
i, attention is computed in full. Tokens far away from i are grouped and
downsampled/summarized. The red, green, and purple blocks correspond to
the fine level, the first coarse level, and the second coarse level, respectively.

(b) The structure of the FMA at-
tention matrix C̃ ≈ QK⊤ with
3 levels for group size m = 2
and approximation rank p = 1.
The highlighted row corresponds
to Figure 1a. Dots represent
downsampled query-key prod-
ucts.

Figure 1: Illutration of Fast Multipole Attention (FMA). The influence of the context sequence
on token i is computed in a divide-and-conquer way. First, the tokens in the sequence are divided
between the immediate neighborhood of i and the rest of the sequence. The influence of the tokens
near i (level 0) is computed using full attention. Next, the remaining tokens are divided between the
level-1 tokens and the further-away tokens, and the influence of the level-1 tokens is computed using
level-1 summarization. This divide-and-conquer strategy is repeated for all subsequent increasingly
coarser levels, resulting in an efficient algorithm with complexity O(n log n).

Tree Structure To describe our FMA algorithm, we introduce a hierarchical tree structure for
dividing the input sequence. We denote the fine-level group size by m, which is small compared
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to n. On the fine level, level 0, tokens are considered individually. Level 1 contains intervals
of size m1 := m. The interval size on the ℓ-th level is mℓ := 2ℓ−1m for ℓ = 1, . . . , L, where
L := log2(n/m) − 1. The coarsest level, level L, contains intervals of size n/4. We assume n is
divisible by m and n/m is a power of 2.

Downsampling Keys and Values On level ℓ = 1, . . . , L, FMA downsamples each interval of size
mℓ × d in K and V to p× d, where p is the approximation rank of the off-diagonal blocks and m is
divisible by p. When p = 1, each group is summarized by one vector. In our numerical results, we
use p = 4 summary vectors for each block to increase the accuracy of approximation (similar to using
multiple heads in attention, or retaining multiple terms in the truncated multipole expansion for the
original fast multipole method (Greengard & Rokhlin, 1987; Beatson & Greengard, 1997)). We adopt
1D convolution as the downsampling operator with kernel_size = mℓ, stride = mℓ, groups = d.
For each level, with group size mℓ, the 1D convolution learns p convolution kernels of size mℓ for
each of the d features. This produces p summarized vectors in each group of size mℓ. Therefore, the
downsampled key/value matrices, K(ℓ) and V (ℓ), have size

np

mℓ
× d.

Hierarchical Matrix Structure We introduce a hierarchical structure for an n× n matrix with the
following non-overlapping index sets:

I0 =

{
(i, j) ∈ {0, . . . , n− 1}2 :

⌊
i

m

⌋
−
⌊
j

m

⌋
∈ [−1, 1]

}
, (3)

Iℓ =

{
(i, j) ∈ {0, . . . , n− 1}2 :

⌊
i

mℓ

⌋
−

⌊
j

mℓ

⌋
∈ {±2,±3}

}
, ℓ = 1, ..., L. (4)

Here the indices start from 0. The index set I0 corresponds to the block tri-diagonals with blocks of
size m and the sets Iℓ with ℓ ≥ 1 correspond to block super-diagonals and sub-diagonals. Figure 1b
illustrates the structure of I0 (red), I1 (green), and I2 (purple) for L = 2 and m = 2.

Fast Multipole Attention With the hierarchical matrix structure and downsampled keys and values,
FMA computes the attention scores at different levels. For a pair (i, j) ∈ I0, the attention score is
calculated with the original Q and K. For a pair (i, j) ∈ Iℓ with 1 ≤ ℓ ≤ L , the attention score is
calculated on level ℓ using Q and K(ℓ). Specifically, the attention scores are computed via

C̃i,j =



QiK
⊤
j (i, j) ∈ I0,

Qi

(
K

(1)
⌊jp/m1⌋

)⊤
(i, j) ∈ I1,

. . .

Qi

(
K

(L)
⌊jp/mL⌋

)⊤
(i, j) ∈ IL.

(5)

Here, Qi,K
(ℓ)
j denote the ith row in Q and the jth row in K(ℓ), respectively. According to (5), a

coarse-level block of size mℓ × mℓ consists of p unique columns, each repeated for mℓ/p times.
Therefore, it can be seen as a rank-p approximation of the corresponding block in the dense attention
matrix. C̃ is a matrix with hierarchical structure as shown in Figure 1b. In causal attention, the upper
triangular part of C̃ is set to −∞. In practice, the full n× n matrix C̃ is not formed. Instead, each
unique column in the coarse-level blocks is only calculated and stored once.

To normalize attention scores, softmax is applied to each row of C̃,

Ãi,: = softmax
(
C̃i,:/

√
d
)
, i = 0, . . . , n− 1. (6)

Next, the attention output on each level is computed by multiplying the normalized attention scores
with the values at corresponding locations. Finally, each row of the bidrectional FMA is the sum of
outputs from each level:

X̃i =
∑

j:(i,j)∈I0

Ãi,jVj︸ ︷︷ ︸
fine level

+

L∑
ℓ=1

∑
j:(i,j)∈Iℓ

Ãi,jV
(ℓ)
⌊jp/mℓ⌋︸ ︷︷ ︸

coarse levels

, i = 0, . . . , n− 1. (7)

Note that the inner sum in (16) with mℓ terms contains only p different terms (that are each repeated
mℓ/p times), and hence this sum is implemented efficiently as a sum of p terms.
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3.3 IMPLEMENTATION AND COMPLEXITY

Implementing (3)-(16) efficiently requires efficient block sparse matrix multiplication and storage,
which are not available in standard machine learning frameworks. For faster performance and
portability, we build custom CUDA kernels for both forward and backward propagation of FMA with
the TVM (Chen et al., 2018) compiler. Our FMA implementation and the cost of each step are as
follows:

1. Calculate K(ℓ) and V (ℓ) on each level by 1D convolution. This requires O(npd log(n/m))
time and O(npd/m) space.

2. Calculate dot-products between queries and keys on level ℓ at locations in Iℓ as in (5).
Then apply softmax across all levels. In each coarse-level block, each unique column is
only computed and stored once. This step requires O(mnd + npd log(n/m)) time and
O(mn+ np log(n/m)) space.

3. Calculate attention output on each level and sum up the attention results on each level as in
(16). This requires O(mnd+ npd log(n/m)) time and O(nd) space.

The overall time and space complexity are O(mnd+ npd log(n/m)) and O(mn+ np log(n/m)),
where step 2 is dominant.

3.4 ANALYSIS OF THE APPROXIMATION ERROR

This section discusses the approximation error of the attention matrix of FMA. For i ∈ {0, . . . , n−1},
let K̃(i) ∈ Rn×d denote the matrix containing the key vectors at different resolutions corresponding
to the ith query (see Equation (5)). For example, the matrix containing the key vectors at different
resolutions corresponding to the first m queries Qi, i = 0, . . . ,m1 and p = 1 is given by

K̃(i) =

K⊤
0 , . . . ,K⊤

2m−1︸ ︷︷ ︸
fine level

,K
(1)⊤⌊

2m
m1

⌋, . . .︸ ︷︷ ︸
m1 columns

,K
(1)⊤⌊

3m
m1

⌋, . . .︸ ︷︷ ︸
m1 columns

,K
(2)⊤⌊

4m
m2

⌋, . . .︸ ︷︷ ︸
m2 columns

,K
(2)⊤⌊

6m
m2

⌋, . . .︸ ︷︷ ︸
m2 columns

, . . .


⊤

∈ Rn×d (8)

where each column on coarse levels is repeated for mℓ times. Since C̃i = QiK̃
(i),T ∈ R1×n, we

have
C̃ = e1C̃0 + · · ·+ enC̃n−1 = e1Q0K̃

(0),T + · · ·+ enQ
T
n−1K̃

(n−1),T , (9)
where {e1, . . . , en} is the standard basis for Rn. Then we have the following error estimations of the
approximation matrix and its exponential. The detailed derivation is given in the Appendix A.4.

Theorem 1 (Error Estimation of the Attention Matrix Approximation). Let C̃ be our two-level
FMA attention matrix with p = 1. Suppose for every j, ℓ ∈ {0, . . . ,m − 1}, t ∈ {0, 1, 2, 3}, and
i ∈ {0, . . . , n− 1}, we have

∥QT
i ∥2 ≤ β1 and ∥KT

tm+j −KT
tm+ℓ∥2 ≤ β2, (10)

and the kernel weights are normalized in the sense that
m−1∑
j=0

αj = 1. Then

∥C̃ − C∥F ≤ mβ1β2

√√√√6

m−1∑
j=0

α2
j . (11)

Note that the results can be easily extended to higher level L > 1 and p > 1. In addition, inspired by
the estimation derived in Zeng et al. (2022), we have a similar estimation of ∥ exp(C̃)− exp(C)∥F
where our set of components for the approximation is obtained from the hierarchical structure (see
Fig. 1b).

Theorem 2. Let C̃ be the approximated attention matrix obtained from our (L+ 1)-level FMA with
fixed kernel weights and δk be the mk-th largest coefficient. Suppose

∥QT
i ∥2 ≤ β1 and ∥KT

j1 −KT
j2∥2 ≤ β2, (12)
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for (i, j1) and (i, j2) belong to the same level Iℓ, for ℓ = 1, . . . L and i ∈ {0, . . . , n− 1}. Then

∥ exp(C̃)− exp(C)∥2F ≤
L∑

ℓ=1

C2rδ
2
k

(
3nmk − 6m2

k

)
. (13)

Here r = 2β1β2 and C2r = 1 + exp(2r)− exp(r).

It is worth noting that if δk decays fast as k increases (which we can see in fast multipole method),
the error in Eq.13 becomes small.

4 EXPERIMENTS

In this section, we experimentally analyze the performance of the proposed method. First, we evaluate
FMA through autoregressive language modeling on the enwik-8 dataset ((Mahoney, 2009), Sec.
4.1). Then we evaluate FMA in the bidirectional setting through masked language modeling on
Wikitext-103 ((Merity et al., 2017), Sec. 4.2). In both tasks, we compare FMA with efficient
attention variants used in other works focusing on improving the efficiency of attention for long
sequences, including Memory-compressed attention (Liu et al., 2018), Reformer (Kitaev et al., 2020),
linear attention (Katharopoulos et al., 2020), Nyströmformer (Xiong et al., 2021), BigBird (Zaheer
et al., 2020), H-transformer (Zhu & Soricut, 2021), and MRA (Zeng et al., 2022). The context size
varies from 512 to 4K. For fair comparison, we use the same transformer architecture for all attention
variants. Finally, in Sec. 4.3, we show a comparative analysis of memory and time cost to demonstrate
the ability of FMA to scale efficiently.

We use p = 4 in our experiments for Fast Multipole Attention and typically use 3, 4 or 5 levels
(including the finest level). In general, increasing m and p leads to better accuracy at the cost of larger
computational resources (see more detail in the supplementary material). For Reformer, we use two
rounds of hashing and the number of buckets is set to the nearest power of two that is greater than or
equal to the square root of the input size. We set the numerical rank to be 16 in H-transformer. We
conduct the experiments on one NVIDIA Tesla A100 with 80GB of memory and use the fairseq
toolkit (Ott et al., 2019).

4.1 AUTOREGRESSIVE LANGUAGE MODELING

We consider the enwik-8 dataset, which contains the first 108 bytes of the English Wikipedia
dump from 2006. We train a character-level autoregressive language model that estimates the
distribution of the next token given previous tokens. We adopt the standard transformer decoder with
pre-normalization and learned positional embeddings, and replace full attention with other attention
variants to compare their performance. The model has 6 layers with embedding dimension 768 and
12 attention heads.

Table 1 shows that with the same context size, FMA obtains lower bpc using similar or less memory
than other variants of efficient attention. Not surprisingly, full attention is more accurate than the
efficient variants but requires quadratic memory which is unfeasible for long sequences. Also,
FMA-linear uses less memory than FMA while achieving comparable bpc. Models with quadratic
complexity are highlighted in maroon. Compared to H-transformer, FMA obtains dramatically better
accuracy with smaller memory size.

4.2 BIDIRECTIONAL LANGUAGE MODEL

We conduct bidirectional language modeling on Wikitext-103 (Merity et al., 2017), a dataset
commonly used for testing long term dependencies in language models, see Table 2. We process
Wikitext-103 with Byte Part Encoding tokenization and train a bidirectional language model
by randomly masking 15% of the input tokens. We use the Transformer encoder with 6 layers,
embedding dimension 768 and 12 attention heads, and we compare the performance and memory
cost of different efficient attention variants, including our new FMA, by replacing the full attention
module in the Transformer. The results in Table 2 show that our new FMA obtains the best accuracy
next to the full attention with low memory footprint compared to other efficient transformers from
the literature.
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model context size bpc(test)↓ memory footprint

Full 512 1.346 16.5 GB
Compressed (Liu et al., 2018) 512 1.439 13.5 GB
Reformer (Kitaev et al., 2020) 512 1.372 15.5 GB
Linear (Katharopoulos et al., 2020) 512 1.424 38.2 GB
Nyströmformer (Xiong et al., 2021) 512 1.418 14.2 GB
BigBird (Zaheer et al., 2020) 512 1.465 16.4 GB
H-transformer (Zhu & Soricut, 2021) 512 1.853 12.3 GB
FMA-m=64-3lev 512 1.353 11.6 GB
FMA-linear-m=64-3lev 512 1.391 9.8 GB
Full 1024 1.236 46.5 GB
Compressed (Liu et al., 2018) 1024 1.351 27.4 GB
Reformer (Kitaev et al., 2020) 1024 1.271 31.8 GB
Linear (Katharopoulos et al., 2020) 1024 1.343 74.9 GB
Nyströmformer (Xiong et al., 2021) 1024 1.290 26.9 GB
BigBird (Zaheer et al., 2020) 1024 1.345 23.1 GB
H-transformer (Zhu & Soricut, 2021) 1024 1.789 23.7 GB
FMA-m=64-4lev 1024 1.256 21.6 GB
FMA-linear-m=64-4lev 1024 1.298 17.6 GB
Full 2048 1.128 2×71.5 GB
Compressed (Liu et al., 2018) 2048 1.276 73.4 GB
Nyströmformer (Xiong et al., 2021) 2048 1.224 67.1 GB
H-transformer (Zhu & Soricut, 2021) 2048 1.684 38.4 GB
FMA-m=128-4lev 2048 1.220 48.2 GB
FMA-linear-m=128-4lev 2048 1.244 34.1 GB
Full 4096 1.091 8×61.7 GB
H-transformer (Zhu & Soricut, 2021) 4096 1.535 66.0 GB
FMA-linear-m=128-5lev 4096 1.154 69.4 GB

Table 1: Autoregressive language modeling results on enwik-8. With the same context size, FMA
obtains lower bpc using less memory than other variants of efficient attention. For full attention with
sequence lengths 2048 and 4096 we have to reduce the batch size and accumulate the gradient over
batches to avoid GPU memory overflow, as listed in the accumulated memory use. Bold numbers are
best among the efficient transformers (not counting the O(n2) transformers).

4.3 EFFICIENCY COMPARISON
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Figure 2: Efficiency comparison of attention variants on different input sizes.

In order to demonstrate the scalability of FMA on long sequences, we compare its inference time
and GPU memory footprint to those of full attention, memory compressed attention, MRA attention,
LSH attention, linear attention, and H-attention. The input size varies from 256 to 8K and the batch
size, embedding dimension, and number of attention heads are 64, 768, and 12, respectively.

As shown in Figure 2, the memory cost of FMA scales much better than full attention and is lower
than or similar to that of other efficient variants. Similarly, the inference speed scales much better

8



Under review as a conference paper at ICLR 2024

model context size ppl(test)↓ memory footprint

Full 512 9.21 15.4 GB
Reformer (Kitaev et al., 2020) 512 11.03 14.6 GB
Linear (Katharopoulos et al., 2020) 512 14.95 11.8 GB
MRA (Zeng et al., 2022) 512 11.82 11.1 GB
H-transformer (Zhu & Soricut, 2021) 512 10.60 10.7 GB
FMA-m=64-3lev 512 9.45 10.9 GB
FMA-linear-m=64-3lev 512 10.78 8.2 GB
Full 1024 8.89 36.8 GB
Reformer (Kitaev et al., 2020) 1024 10.56 27.4 GB
Linear (Katharopoulos et al., 2020) 1024 14.24 22.0 GB
MRA (Zeng et al., 2022) 1024 10.20 17.5 GB
H-transformer (Zhu & Soricut, 2021) 1024 9.81 16.9 GB
FMA-m=64-4lev 1024 9.06 18.6 GB
FMA-linear-m=64-4lev 1024 10.13 15.6 GB
Full 2048 8.70 2×56.5 GB
Reformer (Kitaev et al., 2020) 2048 9.90 49.2 GB
Linear (Katharopoulos et al., 2020) 2048 14.06 48.1 GB
MRA (Zeng et al., 2022) 2048 9.66 35.3 GB
H-transformer (Zhu & Soricut, 2021) 2048 9.45 33.1 GB
FMA-m=64-5lev 2048 8.95 37.0 GB
FMA-linear-m=64-5lev 2048 9.64 29.5 GB

Table 2: Masked language modeling results on Wikitext-103. With the same context size, our
FMA obtains the best accuracy and uses less memory compared to other efficient attention variants.

than full attention and is similar to that of other efficient variants. However, we should note that
our current CUDA kernels are not yet fully optimized and that more efficient implementation of the
kernels could further improve the time and memory efficiency.

5 CONCLUSION

We have presented Fast Multipole Attention, an efficient variant of dot-product attention. With
hierarchical grouping and downsampling of queries and keys, FMA achieves O(n log n) or O(n)
complexity while retaining a global receptive field. FMA is similar in spirit to recently proposed
hierarchical attention mechanisms such as H-transformer (Zhu & Soricut, 2021) and Multi-Resolution
Analysis (MRA) attention (Zeng et al., 2022) but the key advance is that we learn the basis functions
that compute group quantities, as opposed to the fixed averaging basis functions of H-transformer
and the fixed wavelet family used in MRA attention. In both autoregressive and bidirectional tasks,
our FMA outperforms other efficient attention variants overall. In particular, our numerical results
show that learning the basis functions leads to substantially better accuracy for language tasks
compared to H-transformer and MRA attention, for the same memory and time cost. FMA is versatile
and robust as it can be used as a drop-in replacement of causal or bidirectional attention without
changing the model architecture or the training schedule. The high efficiency of FMA has the
potential to empower large language models with much greater sequence lengths, taking the full
context into account in a naturally hierarchical manner during training and when generating long
sequences. Our findings strongly suggest that future work combining our approach in FMA to learn
the basis functions with the adaptivity of multi-resolution methods like the MRA attention from
(Zeng et al., 2022) may lead to the next quantum leap in designing accurate, efficient and versatile
multilevel transformer methods in the future. As for the Fast Multipole Method, the algorithmic
principle of Fast Multipole Attention can naturally be extended to arrays in multiple dimensions
including images and videos, so our new Fast Multipole Attention approach promises to have wide
applications beyond language modeling.
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A SUPPLEMENTARY MATERIAL

A.1 NOTATION

For a vector z = [z0 z1 . . . zn−1]
T ∈ Rn, the ℓ1-norm and the ℓ∞-norm of z are given by

∥z∥1 =

n−1∑
j=0

|zj | and ∥z∥∞ = max
0≤j≤n−1

|zj |.

For a matrix W ∈ Rm×n, ∥W∥∞ denotes the maximum absolute row sum of the matrix W ,

∥W∥∞ = max
0≤i≤m−1

n−1∑
j=0

|Wij | = sup
z ̸=0⃗

∥Wz∥∞
∥z∥∞

,

and ∥W∥1 denotes the maximum absolute column sum of the matrix W ,

∥W∥1 = max
0≤j≤n−1

m−1∑
i=0

|Wij | = sup
z ̸=0⃗

∥Wz∥1
∥z∥1

.

A.2 FMA-LINEAR

FMA-linear is described as follow. First, queries, keys, and values are downsampled to get Q(ℓ),
K(ℓ), and V (ℓ) for ℓ = 1, . . . , L. The attention scores are computed by

C̃i,j =



QiK
⊤
j (i, j) ∈ I0,(

Q
(1)
⌊ip/m1⌋

)(
K

(1)
⌊jp/m1⌋

)⊤
(i, j) ∈ I1,

. . .(
Q

(L)
⌊ip/mL⌋

)(
K

(L)
⌊jp/mL⌋

)⊤
(i, j) ∈ IL.

(14)

For ℓ = 0, . . . , L and each entry (i, j) ∈ Iℓ, softmax is computed at each level:

Ãi,j =
exp

(
C̃i,j/

√
d
)

∑
(i,k)∈Iℓ

exp
(
C̃i,k/

√
d
) . (15)

Finally, the output is given by

X̃i =
∑

j:(i,j)∈I0

Ãi,jVj +

L∑
ℓ=1

∑
j:(i,j)∈Iℓ

Ãi,jV
(ℓ)
⌊jp/mℓ⌋, i = 0, . . . , n− 1. (16)

A.3 OVERVIEW OF BIDIRECTIONAL FMA

Figure 3 gives an overview of FMA with three levels.
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Figure 3: Overview of bidirectional FMA with three levels.

A.4 THEORETICAL DERIVATION

This section gives the detailed proof of our theoretical results. Specifically, we have the following
two theorems to estimate the errors of the attention matrix approximation ∥C̃−C∥F and ∥ exp(C̃)−
exp(C)∥F . The latter estimation is inspired by the estimation derived in Zeng et al. (2022) where our
set of components for the approximation is obtained from the hierarchical structure (see Fig. 1b).

Theorem 3 (Error Estimation of the Attention Matrix Approximation). Let C̃ be our two-level
FMA attention matrix with p = 1. Suppose for every j, ℓ ∈ {0, . . . ,m − 1}, t ∈ {0, 1, 2, 3}, and
i ∈ {0, . . . , n− 1}, we have

∥QT
i ∥2 ≤ β1 and ∥KT

tm+j −KT
tm+ℓ∥2 ≤ β2, (17)

and the kernel weights are normalized in the sense that
m−1∑
j=0

αj = 1. Then

∥C̃ − C∥F ≤ mβ1β2

√√√√6

m−1∑
j=0

α2
j . (18)

14



Under review as a conference paper at ICLR 2024

Proof. In a two-level FMA, we have L = 1 and n = 4m. For i = 0, . . . ,m− 1, we have

K̃(i) =



K0

...
K2m−1

m−1∑
j=0

αjK2m+j

...
m−1∑
j=0

αjK2m+j

m−1∑
j=0

αjK3m+j

...
m−1∑
j=0

αjK3m+j



, K̃(3m+i) =



m−1∑
j=0

αjKj

...
m−1∑
j=0

αjKj

m−1∑
j=0

αjKm+j

...
m−1∑
j=0

αjKm+j

K2m

...
K4m−1



,

K̃(m+i) =



K0

...
K3m−1

m−1∑
j=0

αjK3m+j

...
m−1∑
j=0

αjK3m+j


, K̃(2m+i) =



m−1∑
j=0

αjKj

...
m−1∑
j=0

αjKj

Km

...
K4m−1


.

(19)
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Then for i = 0, . . . ,m− 1, using Cauchy-Schwarz inequality, we have

∥C̃i − Ci∥2F = ∥Qi(K̃
(i) −K)T ∥2F = ∥(K̃(i) −K)QT

i ∥22

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



02m×1
m−1∑
j=0

αj(K2m+j −K2m)QT
i

...
m−1∑
j=0

αj(K2m+j −K3m−1)Q
T
i

m−1∑
j=0

αj(K3m+j −K3m)QT
i

...
m−1∑
j=0

αj(K3m+j −K4m−1)Q
T
i



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

=

m−1∑
j=0

αj(K2m+j −K2m)QT
i

2

+ · · ·+

m−1∑
j=0

αj(K2m+j −K3m−1)Q
T
i

2

+

m−1∑
j=0

αj(K3m+j −K3m)QT
i

2

+ · · ·+

m−1∑
j=0

αj(K3m+j −K4m−1)Q
T
i

2

≤ ∥QT
i ∥22

(∥∥∥∥m−1∑
j=0

αj(K2m+j −K2m)T
∥∥∥∥2
2

+ · · ·+
∥∥∥∥m−1∑

j=0

αj(K2m+j −K3m−1)
T

∥∥∥∥2
2

+

∥∥∥∥m−1∑
j=0

αj(K3m+j −K3m)T
∥∥∥∥2
2

+ · · ·+
∥∥∥∥m−1∑

j=0

αj(K3m+j −K4m−1)
T

∥∥∥∥2
2

)

≤ ∥QT
i ∥22

(m−1∑
j=0

α2
j

)(m−1∑
j=0

∥∥∥(K2m+j −K2m)T
∥∥∥2
2
+ · · ·+

m−1∑
j=0

∥∥∥(K2m+j −K3m−1)
T
∥∥∥2
2
+

m−1∑
j=0

∥∥∥(K3m+j −K3m)T
∥∥∥2
2
+ · · ·+

m−1∑
j=0

∥∥∥(K3m+j −K4m−1)
T
∥∥∥2
2

)

≤ (2m2β2
2)∥QT

i ∥22
(m−1∑

j=0

α2
j

)
.

In conclusion, we have

∥C̃i − Ci∥2F ≤ (2m2β2
2)∥QT

i ∥22
(m−1∑

j=0

α2
j

)
≤ 2m2β2

1β
2
2

(m−1∑
j=0

α2
j

)
, for i = 0, . . . ,m− 1.

(20)
Similarly,

∥C̃3m+i − C3m+i∥2F ≤ (2m2β2
2)∥QT

3m+i∥22
(m−1∑

j=0

α2
j

)
≤ 2m2β2

1β
2
2

(m−1∑
j=0

α2
j

)
(21)

∥C̃m+i − Cm+i∥2F ≤ (m2β2
2)∥QT

m+i∥22
(m−1∑

j=0

α2
j

)
≤ m2β2

1β
2
2

(m−1∑
j=0

α2
j

)
(22)

∥C̃2m+i − C2m+i∥2F ≤ (m2β2
2)∥QT

2m+i∥22
(m−1∑

j=0

α2
j

)
≤ m2β2

1β
2
2

(m−1∑
j=0

α2
j

)
. (23)
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So

∥C̃ − C∥2F =

4m−1∑
i=0

∥C̃i − Ci∥2F ≤ (6m2β2
1β

2
2)

(m−1∑
j=0

α2
j

)
.

Theorem 4. Let C̃ be the approximated attention matrix obtained from our (L+ 1)-level FMA with
fixed kernel weights and δk be the mk-th largest coefficient. Suppose

∥QT
i ∥2 ≤ β1 and ∥KT

j1 −KT
j2∥2 ≤ β2, (24)

for (i, j1) and (i, j2) belong to the same level Iℓ, for ℓ = 1, . . . L and i ∈ {0, . . . , n− 1}. Then

∥ exp(C̃)− exp(C)∥2F ≤
L∑

ℓ=1

C2rδ
2
k

(
3nmk − 6m2

k

)
. (25)

Here r = 2β1β2 and C2r = 1 + exp(2r)− exp(r).

Proof. Following the arguments in Proposition A.3. in Zeng et al. (2022), we would like to bound
∥ exp(C̃)− exp(C)∥2F for our multilevel FMA. The number of blocks of each level is given below:

• At the fine level (the red blocks in Fig 1b, we have
(
3
n

m1
− 2

)
blocks of size m1 ×m1.

• At the first averaging level (the green blocks in Fig 1b, we have
(
3
n

m1
− 6

)
blocks of size

m1 ×m1.

• At the second averaging level (the purple blocks in Fig 1b, we have
(
3
n

m2
− 6

)
blocks of

size m2 ×m2.

• At the Lth averaging level, we have
(
3

n

mL
− 6

)
= 6 blocks of size mL ×mL.

Similar to the arguments in Proposition A.3. in Zeng et al. (2022), counting the sets of potential
components in the approximation yields

∥ exp(C̃)− exp(C)∥2F ≤ C2rδ
2
1

∑
1−st level

m2
1 + · · ·+ C2rδ

2
L

∑
L−th level

m2
L

≤
L∑

ℓ=1

Ckδ
2
k

(
3

n

mk
− 6

)
m2

k

≤
L∑

ℓ=1

C2rδ
2
k

(
3nmk − 6m2

k

)
.

A.5 DIFFERENT SETTINGS OF THE FINE LEVEL SIZE m AND AND THE RANK p

To explore the effect of changing the fine level size m and and the rank p in FMA, we conduct
experiments on enwik-8 and measure the bpc and the memory cost. Table 3 shows that increasing
m and p gives lower bpc at the cost of an increased memory footprint. Similar to Section 4.1,
the model has 6 layers with embedding dimension 768 and 12 attention heads. The memory cost
for storing the attention matrix with hierarchical structure is O(mn+ np log(n/m)), which is the
dominant part of the total memory footprint for large sequence lengths. In the main paper we
consistently use p = 4, which gives a good balance between accuracy and memory use.
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m=16 (6 levels) m=32 (5 levels) m=64 (4 levels)

p=2 1.320 (18.4 GB) 1.272 (19.3 GB) 1.258 (20.9 GB)
p=4 1.307 (19.1 GB) 1.266 (19.7 GB) 1.256 (21.6 GB)
p=8 1.276 (20.2 GB) 1.262 (21.1 GB) 1.251 (23.2 GB)

Table 3: Autoregressive language modeling results with different m and p on enwik-8 with context
size 1024.

A.6 TVM TENSOR EXPRESSIONS

We implement FMA using TVM (Chen et al., 2018) in four stages. This section contains the
mathematical expressions used by the TVM compilers:

1. Local outgoing expansion, which calculates the attention locally on the fine level.
2. Far-field outgoing expansion, which calculates the attention at far away locations on coarse

levels.
3. Local incoming expansion, which gathers the values from the neighborhood on the fine

level.
4. Far-field incoming expansion, which gathers the values from far away locations on coarse

levels.

For simplicity, we denote ∂L
∂Mij

by ∂M(i, j) for a scalar L and matrix M .

A.6.1 LOCAL OUTGOING EXPANSION

Forward: For Q ∈ Rn×d,K ∈ Rn×d, the output matrix Z ∈ Rn×2m is given by

Z(i, j) =

d−1∑
k=0

Q(i, k)K(m⌊i/m⌋+ j, k). (26)

Backward: For ∂Z ∈ Rn×2m,K ∈ Rn×d, the partial gradient ∂Q ∈ Rn×d is given by

∂Q(i, j) =

2m−1∑
k=0

∂Z(i, k)K(m⌊i/m⌋+ k, j). (27)

For ∂Z ∈ Rn×2m, Q ∈ Rn×d, the partial gradient ∂K ∈ Rn×d is given by

∂K(i, j) =

m−1∑
k=0

∂Z(m⌊i/m⌋+ k, i%m+m)Q(m⌊i/m⌋+ k, j)

+

2m−1∑
k=m

∂Z(m⌊i/m⌋+ k, i%m)Q(m⌊i/m⌋+ k, j). (28)

A.6.2 FAR-FIELD OUTGOING EXPANSION

Forward: For Q ∈ Rn×d,K ∈ Rnℓ×d, the output matrix Z ∈ Rn×2p is given by

Z(i, j) =

d−1∑
k=0

Q(i, k)K(2p⌊i/2w⌋+ j, k), (29)

with w := p n
nl

.

Backward: For ∂Z ∈ Rn×2p,K ∈ Rnℓ×d, the partial gradient ∂Q ∈ Rn×d is given by

∂Q(i, j) =

2p−1∑
k=0

∂Z(i, k)K(2p⌊i/2w⌋+ k, j). (30)
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For ∂Z ∈ Rn×2p, Q ∈ Rn×d, the partial gradient ∂K ∈ Rnℓ×d is given by

∂K(i, j) =

2w−1∑
k=0

∂Z(2w(⌊i/2p⌋+ 1) + k, i%2p)Q(2w(⌊i/2p⌋+ 1) + k, j). (31)

A.6.3 LOCAL INCOMING EXPANSION

Forward: For C ∈ Rn×2m, V ∈ Rn×d, the output matrix Z ∈ Rn×d is given by

Z(i, j) =

2m−1∑
k=0

C(i, k)V (m⌊i/m⌋+ k, j). (32)

Backward: For ∂Z ∈ Rn×d, V ∈ Rn×d, the partial gradient ∂C ∈ Rn×2m is given by

∂C(i, j) =

d−1∑
k=0

∂Z(i, k)V (m⌊i/m⌋+ j, k). (33)

For ∂Z ∈ Rn×d, C ∈ Rn×2m, the partial gradient ∂V ∈ Rn×d is given by

∂V (i, j) =

m−1∑
k=0

∂Z(m⌊i/m⌋+ k, j)C(m⌊i/m⌋+ k, i%m+m)

+

2m−1∑
k=m

∂Z(m⌊i/m⌋+ k, j)C(m⌊i/m⌋+ k, i%m). (34)

A.6.4 FAR-FIELD INCOMING EXPANSION

Forward: For C ∈ Rn×2p, V ∈ Rnℓ×d, the output matrix Z ∈ Rn×d is given by

Z(i, j) =

2p−1∑
k=0

C(i, k)V (2p⌊i/2w⌋+ k, j). (35)

Backward: For ∂Z ∈ Rn×d, V ∈ Rnℓ×d, the partial gradient ∂C ∈ Rn×2p is given by

∂C(i, j) =

d−1∑
k=0

∂Z(i, k)V (2p⌊i/2w⌋+ j, k). (36)

For ∂Z ∈ Rn×d, C ∈ Rn×2p, the partial gradient ∂V ∈ Rnℓ×d is given by

∂V (i, j) =

2w−1∑
k=0

∂Z(2w(⌊i/2p⌋+ 1) + k, j)C(2w(⌊i/2p⌋+ 1) + k, i%2p). (37)

A.7 RESULTS OF LARGE MODELS WITH 12 ATTENTION LAYERS FOR AUTOREGRESSIVE
LANGUAGE MODELING

To validate FMA in larger models, we conduct the autoregressive language modeling experiments in
section 4.1 with transformer model of 12 layers. The results are shown in table 4.s

A.8 RESULTS ON LONG RANGE ARENA BENCHMARK

Long range arena (Tay et al., 2021) is a benchmark specifically designed for efficient transformers
with long input sequences. The benchmark consists of five tasks: Long sequence ListOps, Byte-level
text classification, document retrieval, image classification, and Pathfinder. The sequence length
varies from 256 to 8K. Table 5 shows that FMA and FMA-linear achieve competitive results across
all the tasks among the efficient transformer models. One limitation of long range arena is that it only
includes bidirectional tasks. Also, they are all classification problems. Listops, retrieval and text are
for 1D data and as expected, FMA performs well. Pathfinder and image are 2D, where FMA is not
expected to perform well. MRA performs better than FMA for 2D data due to the adaptivity of MRA.
Due to these limitations, the long range arena benchmark is not fully representative for the language
modelling tasks we describe in the main paper, in particular, the autoregressive task.
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model context size bpc(test)↓ memory footprint

Full-large 1024 1.188 2×42.7 GB
FMA-large-m=64-4lev 1024 1.242 44.0 GB

Table 4: Results of large models with 12 attention layers. For full attention, we have to reduce the
batch size from 32 to 16 and accumulate the gradient over batches to avoid GPU memory overflow,
as listed in the accumulated memory use.

model listops pathfinder retrieval text image

Full 0.3901 0.7031 0.8045 0.6011 0.3687
Nyströmformer 0.3765 0.6678 0.8049 0.6153 0.3985
Skyformer 0.3876 0.7011 0.8132 0.6037 0.3293
Reformer 0.3679 0.6212 0.7877 0.6078 0.4389
Performer 0.3765 0.6838 0.7955 0.6024 0.3744
BigBird 0.3841 0.6838 0.8058 0.6098 0.3573
H-transformer 0.3744 0.6768 0.7837 0.6470 0.4203
MRA 0.3841 0.6668 0.7781 0.6246 0.3737
FMA 0.3881 0.6413 0.8021 0.6152 0.3565
FMA-linear 0.3791 0.6243 0.8002 0.5908 0.3540

Table 5: Long range arena accuracy results.

A.9 FAST MULTIPOLE METHODS

In this section, we draw connections between the attention mechanism and n-body problems and recall
the Fast Multipole Method (Greengard & Rokhlin, 1987; Beatson & Greengard, 1997; Martinsson,
2015), which forms the inspiration for Fast Multipole Attention. An n-body problem in physics
requires evaluating all pairwise influences in a system of n objects, for example, the problem of
finding potentials ui =

∑n
j=1 g(xi,xj)qj for i = 1, 2, . . . , n due to charges {qi}ni=1 at locations

{xi}ni=1, where g(·, ·) is the interaction potential of electrostatics. Attention resembles an n-body
problem if we compare token locations to target/source locations, values to source strengths, and the
attention kernel to the interaction kernel.

A popular class of methods to reduce the O(n2) complexity of direct computation in n-body problems,
the Fast Multipole Method (FMM), partitions the simulation domain into a hierarchy of cells, with
each cell containing a small number of particles. It starts from the finest level and computes
interactions between points in neighboring cells directly, and moves to coarser levels to compute
interactions between distant source-target pairs using compact representations of points in source
cells and multipole expansions. In this way, the classic tree code (Barnes & Hut, 1986) reduces the
computational complexity of the n-body problem from O(n2) to O(n log n) with a hierarchical tree
structure. The attention matrix of FMA has the same structure as the 1D FMM. FMMformer (Nguyen
et al., 2021) approximates self-attention with a near-field and far-field decomposition using 2 levels,
combining coarse linearization with local attention.

A.10 H-MATRICES AND H-TRANSFORMER

In this section, we give some more details on the relation between the Fast Multipole Method and
hierarchical matrices (H-matrices) (Hackbusch, 1999; Hackbusch & Khoromskij, 2000), which are
a class of matrices with block hierarchy and are used in H-transformer (Zhu & Soricut, 2021). In
an H-matrix, off-diagonal blocks are replaced by their low-rank approximation. Similar to FMA,
the sparsity pattern of the attention matrix in H-transformer is hierarchical and results in linear time
and memory complexity, but there are key differences. First, as a crucial advance, we use a learned
downsampling method instead of the fixed averaging process used in H-transformer to compute
coarse-level average quantities. Second, H-transformer’s fixed averaging requires the approximation
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rank p to equal the group size m, which our experiments show is substantially sub-optimal. Third,
unlike the H-matrix structure, in FMA tokens in the immediate left and right neighborhoods are not
downsampled and are considered in full resolution, which results in better accuracy. Fourth, our
approach has the flexibility to not downsample the queries, which leads to a better balance between
accuracy and memory use in practice. Together, these key differences and advances result in FMA
being substantially more accurate than H-transformer, as demonstrated in our language modeling
tests.
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