
Determinant Estimation under Memory Constraints and Neural Scaling Laws

Siavash Ameli 1 2 Chris van der Heide 3 Liam Hodgkinson 4 Fred Roosta 5 Michael W. Mahoney 1 2 6

Abstract

Calculating or accurately estimating log-
determinants of large positive definite matrices
is of fundamental importance in many machine
learning tasks. While its cubic computational
complexity can already be prohibitive, in modern
applications, even storing the matrices them-
selves can pose a memory bottleneck. To address
this, we derive a novel hierarchical algorithm
based on block-wise computation of the LDL
decomposition for large-scale log-determinant
calculation in memory-constrained settings. In
extreme cases where matrices are highly ill-
conditioned, accurately computing the full matrix
itself may be infeasible. This is particularly
relevant when considering kernel matrices at
scale, including the empirical Neural Tangent
Kernel (NTK) of neural networks trained on large
datasets. Under the assumption of neural scaling
laws in the test error, we show that the ratio
of pseudo-determinants satisfies a power-law
relationship, allowing us to derive corresponding
scaling laws. This enables accurate estimation
of NTK log-determinants from a tiny fraction
of the full dataset; in our experiments, this
results in a ∼100,000× speedup with improved
accuracy over competing approximations. Using
these techniques, we successfully estimate
log-determinants for dense matrices of extreme
sizes, which were previously deemed intractable
and inaccessible due to their enormous scale and
computational demands.

1Department of Statistics, University of California, Berkeley
CA, USA 2International Computer Science Institute, Berkeley CA,
USA 3Dept. of Electrical and Electronic Engineering, Univer-
sity of Melbourne, Australia 4School of Mathematics and Statis-
tics, University of Melbourne, Australia 5CIRES and School of
Mathematics and Physics, University of Queensland, Australia
6Lawrence Berkeley National Laboratory, Berkeley CA, USA.
Correspondence to: Chris van der Heide <chris.vdh@gmail.com>.

Proceedings of the 42
nd International Conference on Machine

Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Many quantities of interest in machine learning require ac-
curate estimation of the log-(pseudo-)determinant of large
dense positive (semi-)definite matrices, often indexed by
some number of datapoints. These quantities arise in a num-
ber of tasks, including training Gaussian processes (GPs)
and other kernel-based methods (Wang et al., 2019), graph-
ical models (Rue & Held, 2005), determinantal point pro-
cesses (Kulesza et al., 2012), and model comparison and
selection techniques (Hodgkinson et al., 2023b). Problems
where the calculation cannot be avoided can often be re-
duced to computing a volume form, which is the case for
tasks in statistical mechanics (Mézard & Montanari, 2009)
or Bayesian computation (Gelman et al., 2013), or applica-
tions of the Karlin-McGregor theorem (Karlin & McGre-
gor, 1959) including determinantal point processes. Simi-
larly, when training GPs via empirical Bayes (Rasmussen
& Williams, 2006), the log-determinant term is the most
difficult to compute. In many applications, these matrices
are not only dense but highly ill-conditioned. This renders
methods that leverage sparsity inappropriate and makes ac-
curate estimation of small eigenvalues crucial, since errors
in these small values are magnified at log-scale. Much of
the research focus has concentrated on approximation tech-
niques that ameliorate the cubic computational complex-
ity of these log-determinant calculations. Methods lever-
aging stochastic expansions that rely upon matrix-vector
multiplications—such as Lanczos-based methods (Ubaru
et al., 2017)—have been particularly successful, yielding
approximate methods that scale linearly (Dong et al., 2017),
and methods leveraging Taylor’s expansions (Fitzsimons
et al., 2017) have also been proposed. However, accuracy
can suffer when they encounter common ill-conditioning
pathologies. Crucially, time complexity isn’t the only bot-
tleneck at play: large-scale matrices found in modern ap-
plications often hit the memory wall before computational
cost becomes an issue (Gholami et al., 2024).

Recently, the empirical Neural Tangent Kernel (NTK) has
become a prominent theoretical and practical tool for study-
ing the behavior of neural networks both during training
and at inference (Novak et al., 2022; Hodgkinson et al.,
2025). The Gram matrix associated with the NTK has
been used in lazy training (Chizat et al., 2019) and shows
promise as a tool to obtain uncertainty quantification esti-

1

Determinant Estimation under Memory Constraints and Neural Scaling Laws

mates (Immer et al., 2021; Wilson et al., 2025). Its log-
determinant—highly sensitive to small eigenvalues—has
also received recent attention, both as a quantity of inter-
est in model selection techniques that rely upon marginal
likelihood approximation (Immer et al., 2023; Hodgkinson
et al., 2023b) and as a way to quantify the complexity of a
learning problem (Vakili et al., 2021). Similarly, both the
NTK log-determinant and closely related quantities have re-
cently appeared in quantification of generalization error via
PAC-Bayes bounds (Hodgkinson et al., 2023c; Kim et al.,
2023). While several approximations have been proposed
(Mohamadi et al., 2023), convergence has only been shown
in spectral norm, so they cannot be expected to capture the
overall behavior of the full NTK.

In practice, computing the log-determinant of the empirical
NTK’s Gram matrix is a formidable task: besides suffer-
ing from the pathologies that ill-conditioned matrices are
subject to at scale, the NTK appears to have its own pe-
culiarities that make the problem particularly challenging.
Indeed, the task is considered so impenetrable as to be uni-
versally avoided, since the NTK corresponding to most rele-
vant datasets cannot be stored in memory. For example, stor-
ing the NTK corresponding to the relatively small MNIST
dataset requires 2.9 terabytes of memory. The equivalent
object for ImageNet-1k requires 13.1 exabytes, an order of
magnitude larger than CERN’s current data storage capac-
ity (Smith, 2023). While it is appealing to consider only a
small subset of the training dataset when making necessary
approximations, naïve estimates for the log-determinant can
incur significant bias. Furthermore, we will find that leading
approaches for dealing with log-determinants of empirical
NTK Gram matrices using sketching and other Monte Carlo
approximations tend to be highly inaccurate.

Scaling laws have played a prominent role in machine learn-
ing theory and practice, providing insight into the asymp-
totic behavior of generalization error (Li et al., 2023; Vakili
et al., 2021), as well as guidance for compute-optimal re-
source allocation when deploying deep learning models at
scale (Kaplan et al., 2020; Hoffmann et al., 2022). It turns
out that for large kernel matrices, the ratio of successive
determinants can be cast in terms of the error of an associ-
ated Gaussian process. This enables known scaling laws to
be deployed in estimating the log-determinant, with surpris-
ing accuracy. However in order to measure this accuracy
against a reliable baseline, a memory-constrained method
for exact out-of-core log-determinant computation is also
required, and is of independent interest.

Contributions. The central contributions of this work ad-
dress the issues faced when computing log-determinants
of large matrices. We are primarily interested in matri-
ces that cannot fit into memory. To compute an accurate
baseline, we derive MEMDET, a memory-constrained algo-

Table 1. Comparison of stochastic Lanczos quadrature (SLQ, with
degree l, s Monte Carlo samples, and full re-orthogonalization),
MEMDET (Algorithm D.2), and FLODANCE (Algorithm 1) on
a dense 500,000 × 500,000 NTK matrix for a ResNet50 model
trained on CIFAR-10 with 50,000 datapoints. MEMDET com-
putes the exact log-determinant and serves as the benchmark, with
relative errors of other methods measured against it. Costs and
wall time are based on an NVIDIA H100 GPU ($2/hour) and an 8-
core 3.6GHz CPU ($0.2/hour) using Amazon pricing and include
NTK formation from a pre-trained network.

Method Rel.
Error

Est.
Cost

Wall
TimeName Settings TFLOPs

SLQ l = 100, s = 104 5203 55% $83 1.8 days

MEMDET LDL, nb = 32 41,667 0% $601 13.8 days

FLODANCE ns = 500, q = 0 0.04 4% $0.04 1 min
FLODANCE ns = 5000, q = 4 41.7 0.02% $4 1.5 hr

rithm for determinant computation. This facilitates exact
calculation of log-determinants of NTK Gram matrices cor-
responding to neural networks with several million param-
eters. We then provide a novel approximation technique,
FLODANCE, based on the scaling behavior of a wide class
of kernel matrices, by appealing to neural scaling laws. In
detail, our main contributions are:

• we derive a hierarchical memory-constrained algorithm
for large-scale computation of log-determinants, which
we name MEMDET;

• under mild assumptions, we derive scaling laws for the
ratio of pseudo-determinants of kernel matrices contain-
ing different subsets of the same dataset, enabling both
a corresponding law of large numbers and central limit
theorem for normalized log-determinants;

• leveraging these scaling laws, we propose FLODANCE,
a novel algorithm for accurate extrapolation of the log-
determinant from a small fraction of the full dataset;

• we demonstrate the practical utility of our method by ap-
proximating the NTK corresponding to common deep
learning models; and

• we provide a high-performance Python package detkit,
which implements the presented algorithms and can be
used to reproduce the results of this paper.

Crucially, we demonstrate that our approximation technique
is able to obtain estimates with lower error than incurred by
reducing the numerical precision in explicit computation.
Our approximation techniques render an impractical task
virtually routine, as shown in Table 1. To the best of our
knowledge, this is the first time that the full empirical NTK
corresponding to a dataset of this scale has been computed.

2

Determinant Estimation under Memory Constraints and Neural Scaling Laws

The remainder of this document is structured as follows.
In Section 2, we discuss the computational issues faced
when computing determinants at scale, and we derive our
MEMDET algorithm based on block LU computation of the
log-determinant. Section 3 contains the appropriate scaling
laws for pseudo-determinants of interest, the corresponding
LLN and CLT for their logarithms, and the FLODANCE
algorithm for their approximation. Numerical experiments
are presented in Section 4, and we conclude in Section 5.

A summary of the notation used throughout the paper is
provided in Appendix A. An overview of related work in
linear algebra is given in Appendix B. Computational chal-
lenges when dealing with NTK matrices are then discussed
in Appendix C. Implementation and performance analysis
of MEMDET are provided in Appendices D and E. Re-
quired background for neural scaling laws, proofs of our
theoretical results, and further analysis of FLODANCE ap-
pear in Appendices F and G. Comparison of various log-
determinant methods is given in Appendix H. Finally, an
implementation guide for detkit appears as Appendix I.

2. Computing Determinants at Scale
The computation of determinants of large matrices, particu-
larly those expected to be highly ill-conditioned, is widely
considered to be a computationally “ugly” problem, which
should be avoided wherever possible (Axler, 1995). How-
ever, this is not always an option, e.g., when the determinant
represents a volume form, is required in a determinantal
point process, or plays a role in training GPs via empirical
Bayes. Although certain limiting behaviors under expecta-
tion are well characterized (Hodgkinson et al., 2023a), they
provide only a coarse approximation in finite-sample set-
tings. The quadratic memory cost and cubic computational
complexity of naïve implementations make exact compu-
tation prohibitive, necessitating the use of lower-precision
or randomized methods at scale. While approximate meth-
ods can be useful in their own right, exact computation re-
mains essential, at the very least to establish meaningful
baselines. In our experiments, due to the pathological spec-
tral behavior of the matrices we consider, we will see that
our proposed exact method is comparable in speed to the
state-of-the-art Monte Carlo approximation techniques.

2.1. Low-Precision Arithmetic

Among the most common techniques for circumventing
memory and computational bottlenecks when dealing with
large-scale calculations in numerical linear algebra is to cast
numerical values into a lower precision, usually 32-bit, 16-
bit, or even 8-bit floating point values, instead of 64-bit
(double precision) values that would otherwise be used.

Computations of the log-determinant in mixed precision

do not generally incur significant error. However, in our
setting, the matrix of interest is realized as the product JJ⊺,
where J is the Jacobian. The formation of the quadratic
is a well-known source of approximation error, and should
be avoided if possible: paraphrasing Higham (2022), if δ
is the round-off used in choice of floating point arithmetic,
then for 0 < ε <

√
δ we can consider the simple case of

J =

[
1 ε
1 0

]
, we have

JJ⊺ =

[
1 + ε2 1

1 1

]
, fl(JJ⊺) =

[
1 1
1 1

]
,

where JJ⊺ rounds to the singular fl(JJ⊺). In general, sig-
nificant precision loss should occur if cond(JJ⊺) > δ−1,
where δ ≈ 10−3, 10−6, and 10−15 for 16-bit, 32-bit, and
64-bit precisions respectively. In the Gram matrices we con-
sider, cond(JJ⊺) > 1012. Due to the scale of the problems
of interest here, the sheer size of the Jacobian (requiring at
least hundreds of terabytes of space) makes directly oper-
ating on J impractical. This necessitates breaking conven-
tional wisdom and explicitly forming the Gram matrix. We
will see later the incurred cost to accuracy when working in
low precision.

2.2. MEMDET: A Memory-Constrained Algorithm for
Log-Determinant Computation

Conventional methods for computing the determinant of
matrices include LU decomposition (for generic matri-
ces), LDL decomposition (for symmetric matrices), and
Cholesky decomposition (for symmetric positive-definite
matrices). These methods also simultaneously provide the
determinants of all leading principal submatrices M[:k,:k]

(for k = 1, . . . ,m), possibly after permuting M depending
on the decomposition. This is beneficial in our applications.

The LU decomposition has a computational complexity of
approximately 2

3m
3, while both LDL and Cholesky decom-

positions have a complexity of approximately 1
3m

3. While
computational complexity is a concern for large-scale de-
terminant computation, memory limitation poses an even
greater challenge. These methods require substantial mem-
ory allocation, either the size of the array if written in-place,
or twice the size if the input array is preserved.

To address this, we present MEMDET, a memory-
constrained algorithm for large-scale determinant compu-
tation. Below is a sketch of the algorithm, with details of
its implementation, memory and computational aspects pro-
vided in Appendix D, and a description of the software im-
plementing this algorithm provided in Appendix I. We fo-
cus on the algorithm for generic matrices using LU decom-
position, though the LDL and Cholesky decompositions fol-
low similarly.

Consider the 2× 2 block LU decomposition of M (see for

3

Determinant Estimation under Memory Constraints and Neural Scaling Laws

A B

C S

1

k

i

nb

1 k j nb

1

23456

A BC

S

1

k

i

nb

1 k i j nb

Figure 1. Schematic diagram of MEMDET illustrating the efficient block processing order for LU decomposition (Algorithm D.1, left
panel) and LDL/Cholesky decompositions (Algorithm D.2, Algorithm D.3, right panel). The detailed ordering strategy is described in
Appendix D.1.

instance, Dongarra et al. (1998b, Chapter 5.4)) with the first
block, M11, of size b× b, b < m, as

M =

[
M11 M12

M21 M22

]
=

[
L11 0
L21 I

] [
U11 U12

0 S

]
, (1)

where L11 is lower triangular, U11 is upper-triangular, and
I is the identity matrix. The blocks of the decomposition
are obtained by computing M11 = L11U11, solving lower-
triangular system U12 = L−1

11 M12 and upper-triangular
system L21 = M21U

−1
11 , and forming the Schur comple-

ment S := M22−L21U12. This procedure is then repeated
on the (m− b)× (m− b) matrix S, treated as the new M,
leading to a new b × b upper-triangular matrix U11 and a
smaller Schur complement S at each iteration. This hierar-
chical procedure continues until the remaining S is of size
b or less, at which point its LU decomposition is computed.
The log-determinant of the entire matrix is the sum of the
log-determinants of all U11 blocks at each iteration.

To make this memory-efficient, the algorithm is modified
to hold only small chunks of the matrix in memory, storing
intermediate computations on disk. Suppose M consists of
nb×nb blocks Mij of size b×b where i, j = 1, . . . , nb. We
pre-allocate four b× b matrices A, B, C, and S in memory.
The k-th stage begins by loading A ← Mkk from disk
and performing an in-place LU decomposition A = LU,
with L and U stored in A. We then compute the Schur
complement for all inner blocks Mij , i, j = k + 1, . . . , nb,
by loading B ← Mkj and C ← Mik from disk, solving
B← L−1B and C← CU−1 in-place, loading S←Mij ,
and computing S← S−CB. The updated S is then stored
back to disk Mij ← S, either by overwriting a block of
the original matrix, or avoids this by writing to a separate

scratchpad space. In the latter case, a cache table tracks
whether a block Mij should be loaded from the original
matrix or from the scratchpad in future calls.

The computational cost of this procedure remains the same,
independent of the number of blocks, nb (see Appendix E.1).
However, increasing the number of blocks reduces memory
usage at the expense of higher data transfer between disk
and memory. Efficient implementation minimizes this by
processing blocks in an order that reduces the loading of
B and C. The left panel of Figure 1 shows one such order,
illustrating the procedure at the k-th iteration. Processing
the blocks Mij starts from the last row of the matrix and
moves upward. During the horizontal and vertical traverses
on the path shown in the figure, the memory blocks C and
B can remain in memory, avoiding unnecessary reloading.
Once the procedure reaches the block (k + 1, k + 1), the
memory block S can be directly read into A instead of be-
ing stored on disk as Mk+1,k+1, initiating the block A for
the next iteration. Consequently, only the blocks shown in
blue need to be stored in the scratchpad space, while those
in dark blue are already stored in the current state of the
algorithm. This algorithm can be further modified to elimi-
nate the need for A and use the memory space of S instead,
but this would require storing the additional gray blocks
on the scratchpad space in addition to the blue blocks. A
pseudo code and further efficient implementation details of
the presented method can be found as Algorithm D.1.

The algorithms for LDL and Cholesky decompositions fol-
low a similar procedure with necessary adjustments for sym-
metric and symmetric positive-definite matrices, as detailed
in Algorithm D.2 and Algorithm D.3. These modifications
include processing only the lower (or upper) triangular part

4

Determinant Estimation under Memory Constraints and Neural Scaling Laws

100 101 102 103 104 5× 104

n

1020

1031

1042

d
et

(K
n
)/

d
et

(K
n
−

1
)

ResNet50 — CIFAR-10

∼ cn−95.3

0 1 2 3 4 5

n ×104

1020

1031

1042

d
et

(K
n
)/

d
et

(K
n
−

1
)

ResNet50 — CIFAR-10

∼ cn−95.3

Figure 2. Demonstration of a scaling law for the ratios of successive determinants det(Kn)/det(Kn−1) (Assumption 1) for the empirical
neural tangent kernel Gram matrix of a trained ResNet50 network on CIFAR-10 with n = 50,000 datapoints.

of the matrix and handling permutations and diagonal scal-
ing in the LDL decomposition. The right panel of Figure 1
shows one possible block ordering for the algorithm for
LDL and Cholesky decomposition: the ordering is optimal
in minimizing the number of reads and writes, but it is not
unique. Other block processing orderings with the same
amount of data access also exist, and these will be further
discussed in Appendix D.1. A detailed analysis of the com-
putational complexity and memory/disk data transfers of
the algorithm is provided in Appendix E. Implementation
of MEMDET algorithm can be found in Listing I.1.

Although the NTK matrices we work with are symmet-
ric and positive definite (SPD), we do not solely rely on
Cholesky decomposition, despite it being the most suitable
method for SPD matrices. This is because NTK matrices
can lose their positive-definiteness with even the smallest
perturbations causing small eigenvalues to become negative,
such as when converting from 64-bit to 32-bit precision for
efficient computation. As a result, the Cholesky decom-
position becomes unstable and fails, necessitating the use
of LU and LDL decompositions, suitable for more general
matrices. We note that the block computations of LU de-
composition can become unstable as the matrices deviate
from symmetry and positive-definiteness (Demmel et al.,
1995), requiring pivoting of the blocks. However, in our
empirical study of NTK matrices, we found that LU decom-
position works well without block pivoting, though we do
consider pivoting within each block.

3. Scaling Law for the Determinant
We now turn our attention to the estimation of the log-
determinant of Gram matrices corresponding to covariance
kernels. Our primary motivating example is the NTK, an
architecture-specific kernel associated with deep neural net-
work models. The connections between neural networks
and GP kernels are well-known, particularly the now classi-

cal results that networks at initialization induce a GP kernel
in the large-width limit, enabling Bayesian inference for
these infinite-width networks (Neal, 1996; Lee et al., 2018).
Similarly, linearization of the gradient-flow dynamics dur-
ing the late stages of training leads to the derivation of the
NTK, whose infinite-width analogue can be shown to be
constant during this training phase (Jacot et al., 2018; Yang,
2020; Yang & Littwin, 2021).

The NTK was first derived in the context of neural networks.
However, the quantity is well defined for a more general
class of functions. For a continuously differentiable func-
tion fθ : X → Rd, where d is the dimensionality of the
model’s output (e.g., the number of labels in a classification
task), we define its (empirical) NTK as

κθ(x, x
′) := Jθ

(
fθ(x)

)
Jθ

(
fθ(x

′)
)⊺
, (2)

where Jθ(fθ(x)) ∈ Rd×p is the Jacobian of the function fθ
with respect to the flattened vector of its parameters θ ∈ Rp,
evaluated at the point x. The assumption of continuous
differentiability is often relaxed in practice.

Note that κθ(x, x
′) ∈ Rd×d, so computing the NTK across

n datapoints yields a 4th-order tensor of shape (n, n, d, d).
For computational purposes, this is typically flattened into a
two-dimensional block matrix of size nd× nd, where each
(i, j)-block corresponds to the d× d matrix κ(xi, xj).

The scaling laws we derive apply to kernel families satis-
fying decay conditions on the eigenvalues of an associated
integral operator (see Appendix F.1 for a precise statement
drawn from Li et al. (2023)). This class of kernels includes
NTKs, as shown by Bietti & Mairal (2019); Bietti & Bach
(2021); Lai et al. (2023); see Figure 2.

3.1. Neural Tangent Kernels and Scaling Laws

Let κ : X × X → Rd×d be a positive-definite kernel. For
a sequence of inputs {xi}∞i=1 ⊂ X and for each n ∈ N, let

5

Determinant Estimation under Memory Constraints and Neural Scaling Laws

Kn := (κ(xi, xj))
n
i,j=1 be the corresponding Gram matrix

for the first n inputs, which is a matrix of size nd × nd.
Our objective is to estimate logdet(Kn) for large n, using
computations involving only smaller values of n. Recall
that f is a Gaussian process with mean function µ : X →
Rd and covariance kernel κ : X × X → Rd×d, denoted
f ∼ GP(µ, κ), if for every x1, . . . , xn ∈ X and d ≥ 1,
(f(xi))

n
i=1 ∼ N ((µ(xi))

n
i=1, (κ(xi, xj))

n
i,j=1). Our results

are founded on the following lemma, which we prove in
Appendix F.2.

Lemma 1. Let f : X → Rd be a zero-mean vector-valued
m-dimensional Gaussian process with covariance kernel κ.
For each n ≥ 2, let

E(n) := E[d−
1
2 ∥f(xn)∥2 | f(xi) = 0 for i = 1, . . . , n−1],

denote the mean-squared error of fitting the f to the zero
function using x1, . . . , xn−1. Then

pdet(Kn)

pdet(Kn−1)
≤
(
d

r

)r/2

E(n)r,

where r is the rank of Cov(f(xn) | f(xi) = 0 for i =
1, . . . , n − 1). In the case where rank(Kn) −
rank(Kn−1) = d, this reduces to

pdet(Kn)

pdet(Kn−1)
≤ E(n)d, for any n > 1,

with equality if d = 1.

Lemma 1 is particularly interesting since it highlights a con-
nection between the determinants of Gram matrices and
error curves for GPs. This bounds the effect of adding or
removing a datapoint on the determinant in terms of the
prior variance of a corresponding GP. Previous theoreti-
cal (see Appendix F.1) and empirical studies (Spigler et al.,
2020; Bahri et al., 2024; Li et al., 2023; Barzilai & Shamir,
2024) have established a power law relationship of the form
E(n) = Θ(n−ξ) as n → ∞ for some ξ > 0. In view
of this, and invoking Lemma 1, we propose the following
scaling law for determinants, demonstrated in Figure 2.

Assumption 1 (SCALING LAW). Assume there exists a
constant C > 0 and exponent ν > 0 such that as n→∞,

det(Kn)

det(Kn−1)
=

C

nν [1 + op(1)]. (3)

This assumption allows for accurate estimation of the log-
determinants of interest, and an appropriate law of large
numbers. However, to construct corresponding confidence
intervals, we will need to assume some properties of the
error term appearing in Assumption 1. We further impose
the mild assumptions of stationarity and bounded variance,
demonstrated in Figure 3.

0 1 2 3 4 55

n ×104

10−9

100

109

d
et

(K
n

)/
d
et

(K
n
−

1
)

cn
−
ν

ν = 95.3

ResNet50 — CIFAR-10

Rolling mean µ(n) µ(n)± σ(n)

0% 9%

PDF

Normal

Empirical

Figure 3. Demonstration of the stationarity and second moment be-
havior (Assumption 2) of the corresponding logarithmic process.

Assumption 2 (STATIONARITY). Assume there exists a
constants C > 0 and exponent ν > 0 such that the process
δn satisfying

δn−1 := log

(
det(Kn)

det(Kn−1)

)
−log(Cn−ν), n = 2, 3, . . . ,

is stationary, ergodic, has finite second moment (E[δ2n] <
+∞), and E[δn|δ1, . . . , δn−1] = 0.

Under Assumption 1 and Assumption 2, we derive an ex-
pression for the asymptotic behavior of the normalized log-
determinants. The proof is given in Appendix F.2.
Proposition 1. For larger numbers of inputs, letting

Ln := n−1logdet(Kn)

L̂n := L1 +

(
1− 1

n

)
c0 − ν

log(n!)

n
,

a law of large numbers (LLN) and central limit theorem
(CLT) hold for the log-determinants Ln:

• (LLN) Under Assumption 1, there exist constants
c0, ν > 0 such that as n→∞,

Ln = L̂n + op(1). (4)

• (CLT) Under Assumption 2, there exist constants
c0, ν, σ > 0 such that as n→∞,

n√
n− 1

(Ln − L̂n)
D→ N (0, σ2). (5)

We remark that log(n!) is Θ(n log(n)), so the normalized
log-determinant Ln is Θp(log(n)) via (4).

3.2. FLODANCE

As (4) is linear in the unknown parameters c0, ν, these pa-
rameters can be estimated by linear regression on a pre-
computed sequence (L1, . . . , Ln).

1 This sequence can be

1This is generally a more stable regression problem than esti-
mating C and ν directly from (3).

6

Determinant Estimation under Memory Constraints and Neural Scaling Laws

computed using a single pass of MEMDET on a subsample
of the Gram matrix. After performing linear regression, by
extrapolating to larger n, the normalized log-determinants
of larger NTK Gram matrices can be estimated. The or-
dering of the data is arbitrary, but it will affect the out-
put of the regression task. We refer to this method as the
Factorial-based Log-Determinant Analysis and Numerical
Curve Estimation procedure, or FLODANCE. To improve
performance, we allow for a non-asymptotic correction to
the exponent ν as ν(n) := ν0 +

∑q
i=1 νin

−i (in practice,
we find q ≤ 10 works well). In light of (5) and discussion
in Appendix F.3, for large n, we expect that approximately

yn = c0xn,0 +

q+1∑

i=1

νi−1xn,i + ϵn, ϵn ∼ N (0, σ2), (6)

where yn := n√
n−1

(Ln − L1), xn,0 :=
√
n− 1, and

xn,i := − log(n!)

n
i−1√

n−1
for i = 1, ...,m + 1 are the covari-

ates. The corresponding numerical procedure is presented
in Algorithm 1 and the implementation can be found in
Listing I.2.

In practice, we also observe that a burn-in period may be re-
quired to obtain accurate estimates of c0 and the νi that
appear in Proposition 1. Better performance was often
achieved in our experiments by discarding the early determi-
nant samples, effectively replacing the L1 term appearing
in yn with different constants Ln0

, for a burn-in of length
n0 − 1. This seems to be due to the sudden emergence of
very small eigenvalues that shift the model fit, and consti-
tutes a consistent phenomenon that warrants further inves-
tigation. We found that when needed, the burn-in required
was always less than 500 terms, verified by cross-validation.

4. Numerical Experiments
We now evaluate the accuracy of the FLODANCE algo-
rithm for estimating log-determinants on large-scale prob-
lems of interest. The test problems that we consider are
NTK matrices corresponding to common deep learning
models: ResNet9, ResNet18, and ResNet50 (He et al.,
2016) trained on the CIFAR-10 dataset (Krizhevsky, 2009),
and MobileNet (Howard et al., 2017) trained on the MNIST
dataset (LeCun et al., 1998). Our experiments are split into
two sections: first, the dataset size is reduced in order to en-
able the matrices to fit into memory on a consumer device,
in Section 4.1; and then larger subsamples and full datasets
are considered, in Section 4.2.2 As a baseline, we employ
MEMDET to compute the relevant quantities, where accu-
racy is limited only by numerical precision. Detailed run-
time and performance diagnostics for MEMDET are pro-

2Experiments in this section were conducted on a desktop-class
device with an AMD Ryzen®7 5800X processor, NVIDIA RTX
3080, and 64GB RAM.

Algorithm 1: FLODANCE: Factorial-based Log-
Determinant Analysis and Numerical Curve Esti-
mation

Input :Precomputed partial NTK Gram matrix
Kns

of size ms ×ms where ms = nsd,
Model’s output dimension d,
Total number of datapoints n,
Data subsample size 1 < ns ≤ n,
Burn-in length 1 ≤ n0 < ns,
Number of terms in the Laurent series q

Output :Estimated normalized log-determinant L̂n

of Kn of size m×m where m = nd

// Kns[:k,:k]
is the k × k principal sub-matrix of Kns

1 Run Algorithm D.2 on Kns
to obtain (ℓk)

ms

k=1

where ℓk ← logabsdet(Kns[:k,:k]
)

// Normalize and record every d-th entry.
2 Obtain (Lj)

ns
j=n0

for Lj ← j−1ℓmj
and mj ← jd.

// Define design matrix X ∈ R
(ns−n0)×(q+2) and

response vector y ∈ Rns−n0

3 for j = 1 to ns − n0 do
4 nj ← n0 + j

5 yj ← nj(nj − 1)−
1
2 (Lnj

− Ln0
)

6 Xj,1 ← (nj − 1)
1
2

7 for i = 1 to q + 1 do
8 Xj,i+1 ← −(nj−1)−

1
2n−i+1

j logΓ(nj+1)
// The Log-gamma function computes log(nj !).

// Estimate regression coefficients β in y = Xβ + ϵ

9 β ← (X⊺X)−1X⊺y

// Estimate Ln at larger value of n
10 (c0, ν0, ..., νq)← β

11 L̂n ←
Ln0

+ c0(1− n−1)−∑q+1
i=1 νi−1n

−i logΓ(n+1)

12 return L̂n

vided in Appendix E. Additional experiments evaluating
the performance of FLODANCE appear in Appendix G, in-
cluding its robustness (Appendix G.1) and its application to
Matérn kernel Gram matrices (Appendix G.2).

4.1. Smaller Data Sets

In order to demonstrate the scaling laws for ratios of suc-
cessive determinants of NTK Gram matrices, a ResNet50
model was trained on a subset of 1000 datapoints from the
CIFAR-10 dataset with d = 10 classes. The resulting ma-
trix K1000 is of size 10,000 × 10,000. In Figure 2, we
plot exact ratios det(Kn)/ det(Kn−1), with the blue line

7

Determinant Estimation under Memory Constraints and Neural Scaling Laws

Table 2. Comparison of approximations of the log-determinant ℓ̂n with the exact computation ℓn obtained in 64-bit floating-point precision
(first row). Values represent average percentage relative errors over five trained networks, with standard deviations in parentheses. Bold
values indicate the closest approximation, with the next-best underlined. For the corresponding compute times, see Table H.2.

Q
ua

nt
ity Model→ Configuration ResNet9 ResNet9 ResNet18 MobileNet

Dataset CIFAR-10 CIFAR-10 CIFAR-10 MNIST
Subsample Size n = 1000 n = 2500 n = 1000 n = 2500

ℓn Direct Computation (64-bit) (Reference) 76538 (203) 181377 (649) 65630 (842) −183962 (7869)

R
el

at
iv

e
E

rr
or

|ℓ̂
n
−
ℓ n

|
ℓ n

Direct Computation (16-bit) 12.41% (0.12) 17.05% (0.13) 14.00% (0.24) 66.97% (2.13)
Direct Computation (32-bit) 3.67% (0.06) 6.77% (0.08) 5.25% (0.09) 14.27% (0.95)

SLQ 81.51% (0.16) 80.89% (0.24) 101.03% (1.64) 84.52% (1.51)
Block Diagonal 76.49% (0.12) 75.15% (0.16) 92.76% (1.55) 112.55% (1.22)
Pseudo NTK 118.35% (0.10) 122.35% (0.27) 122.95% (0.25) 75.32% (1.04)

FLODANCE n0 = 1, ns = 50 7.75% (0.77) 11.27% (1.10) 12.19% (0.30) 36.41% (2.53)
FLODANCE n0 = 1, ns = 100 5.61% (0.32) 8.54% (0.63) 8.09% (0.68) 35.51% (1.46)
FLODANCE n0 = 300, ns = 500 1.34% (0.11) 1.37% (0.14) 2.9% (0.81) 23.19% (1.76)

representing the line of best fit under the scaling law As-
sumption 1.

For baseline comparison to existing techniques, we com-
pared FLODANCE to approximations of both the matrices
themselves and their log-determinants. For the matrix ap-
proximations, we consider a block-diagonal approximation
ignoring between-data correlations, as well as the pseudo-
NTK matrix studied in (Mohamadi et al., 2023). As an ap-
proximate log-determinant technique, we consider stochas-
tic Lanczos quadrature, often regarded as the current state-
of-the-art for large-scale log-determinant estimation (Gard-
ner et al., 2018). We also compare exact methods across 16-,
32-, and 64-bit (treated as exact) floating-point precision, to
assess the accuracy of our extrapolation against memory-
saving mixed-precision calculations.

To this end, ResNet9 was trained on a subsets of 1000 and
2500 images from CIFAR-10, and ResNet18 on 1000 data-
points. MobileNet was also trained on a 2500 image subset
of the MNIST dataset with d = 10 classes. A comparison
of the different methods is presented in Table 2. We see
that all existing NTK and log-determinant approximation
techniques perform poorly when compared with 16- and
32-bit mixed-precision calculations. On the other hand, the
FLODANCE estimates that contained a burn-in phase con-
sistently either outperformed the mixed-precision approxi-
mations or were competitive. When no burn-in was used,
FLODANCE still outperformed the approximation meth-
ods. This suggests that at this scale, the error in the scaling
law approximation is less than the mixed-precision errors
discussed in Section 2.1. Extrapolating determinants based
on expected behavior can bypass numerical issues at scale.
Comparisons for ResNet9 trained on 2500 images from the
CIFAR-10 dataset are visualized in Figure 4. FLODANCE
estimates consistently outperform the competing methods.

1 500 1000 1500 2000 2500

n

0

5

10

15

20

A
b

so
lu

te
E

rr
or
|L̂

n
−
L
n
|

Block Diag

SLQ

Direct Comp. (16-bit)

Direct Comp. (32-bit)

FLODANCE (n0 = 1, ns = 50)

FLODANCE (n0 = 1, ns = 100)

FLODANCE (n0 = 300, ns = 500)

Figure 4. Comparison of log-determinant accuracy for NTKs of
ResNet9 trained on CIFAR-10, measured by absolute error, across
a variety of approximation techniques for matrices of different
sizes. Means across five trained networks are displayed, with
shaded regions depicting one standard deviation.

4.2. Larger Data Sets

In our next experiment, we evaluate NTK matrices at an un-
precedented scale, where exact determinant computation
has not been previously reported. Due to memory con-
straints, these matrices cannot be stored explicitly, making
MEMDET essential for obtaining ground truth values.

We consider two large-scale NTK matrices: K50,000, a
dense matrix of size 500,000 × 500,000, for ResNet50
trained on CIFAR-10 with n = 50,000 and d = 10, and
an identical-sized NTK for ResNet9. At this scale, comput-
ing the full matrix in double precision poses a formidable
challenge. To our knowledge, this is the first time an NTK

8

Determinant Estimation under Memory Constraints and Neural Scaling Laws

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

|1
−

ˆ̀ n
/`
n
|

Right Ordinate

Relative Error

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

|1
−

ˆ̀ n
/`
n
|

Right Ordinate

Relative Error

0 1 2 3 4 5

n ×104

0.0

0.5

1.0

1.5

2.0

2.5

3.0

` n

×106 (a) ResNet9

Left Ordinate

Empirical

Asymptote

Fit

Extrapolation

0 1 2 3 4 5

n ×104

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

` n

×106 (b) ResNet50

Left Ordinate

Empirical

Asymptote

Fit

Extrapolation

Figure 5. Log-determinant ℓn for n = 1, . . . , 50,000, corresponding to m×m NTK submatrices where m = nd and d = 10, from 64-bit
NTK matrices of ResNet9 (a) and ResNet50 (b) trained on CIFAR-10 with 50,000 datapoints. Values are computed using MEMDET
(Algorithm D.2) with LDL decomposition (black curves, overlaid by colored curves). FLODANCE (Algorithm 1) is fitted in a small
region (shaded gray) and extrapolated over a much larger interval. The yellow curve in the interval (n0, ns) = (10

2
, 5× 10

3
) represents

the fit, while the red curve in (ns, n) = (5× 10
3
, 5× 10

4
) shows the extrapolation. The blue curves, corresponding to the right axis in

each panel shows the relative error, reaching impressive 0.2% in (a) and 0.02% in (b).

matrix of this size—at full precision and over the entire
CIFAR-10 dataset—has been computed, with the matrix it-
self requiring 2 TB of memory (see Appendix C.1). This
computation was carried out on an NVIDIA Grace Hopper
GH200 GPU over 244 hours for ResNet50.

Having established this benchmark, we now evaluate the
accuracy of FLODANCE at this scale. As shown in Fig-
ure 5, FLODANCE with q = 6, n0 = 100, and ns =
5000 achieves an absolute error of just 0.2% for ℓ̂50,000
on ResNet9, reducing computation time by a factor of
(n/ns)

3 = 1000. Similarly, for ResNet50, FLODANCE
with q = 4, n0 = 100, and ns = 5000 achieves an absolute
error of 0.02% with the same speedup. In contrast, SLQ
exhibited a relative error of 55% (see Table 1, also List-
ing I.3 for implementation). Given their poor performance
on smaller datasets, pseudo-NTK and block-diagonal ap-
proximations are omitted.

This experiment represents the first exact computation of
an NTK determinant at this scale, establishing a new bench-
mark for large-scale log-determinant estimation. Additional
experiments are provided in Appendix G, with Figure G.1
demonstrating the accuracy of the global FLODANCE fit,
Figure G.2 illustrating sensitivity to subsample choice, and
Figure G.3 examining sensitivity to subsample size.

5. Conclusion
The calculation of large matrix log-determinants is a com-
monly encountered but often avoided problem when con-
sidering statistical and machine learning problems at scale.
A number of techniques have previously been proposed

to circumvent explicit computation, typically relying upon
stochastic approximations. However, in many problems of
interest the sheer size of the matrices, combined with their
highly ill-conditioned nature, make not only approximation
a difficult task, but forming the matrix itself to provide a
baseline becomes computationally intractable. We have ad-
dressed this problem on two fronts. On the one hand, we de-
fined MEMDET, a memory-constrained algorithm for log-
determinant computation, with different versions for gen-
eral, symmetric, and symmetric positive-definite matrices.
On the other hand, we derived neural scaling laws for large
kernel matrices, and we introduced FLODANCE, a proce-
dure for accurate extrapolation of log-determinants from
small subsets of the data. The high level of speed and accu-
racy of our methods opens the door for routine computation
of interpolating information criteria and related diagnostic
tools to enable principled model selection within deep learn-
ing frameworks (Hodgkinson et al., 2023b).

The ability to accurately compute and estimate matrices of
this size further provides fascinating insights into the be-
havior of the NTKs that we considered in our experiments,
which treated square matrices of the size up to 500,000.
Further, the memory constrained algorithms we described
can be applied to other classes of matrices (Nguyen & Vu,
2014; Cai et al., 2015), where they can be expected to un-
lock similar insights into their scaling behavior. In terms of
further computational tools, we hope to develop techniques
to extract and extrapolate more refined spectral information
about large matrices from small sub-blocks. Methods for
blockwise decompositions of large scale Jacobian matrices,
would also circumvent the need to explicitly calculate JJ⊺,
enabling higher resolution understanding of their behavior.

9

Determinant Estimation under Memory Constraints and Neural Scaling Laws

Acknowledgments
LH is supported by the Australian Research Council
through a Discovery Early Career Researcher Award
(DE240100144). FR is partially supported by the Australian
Research Council through the Industrial Transformation
Training Centre for Information Resilience (IC200100022).
MWM acknowledges partial support from DARPA, DOE,
NSF, and ONR.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abramowitz, M. & Stegun, I. A. (1964). Handbook

of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. New York: Dover, ninth dover
printing, tenth GPO printing edition.

Ameli, S. & Shadden, S. C. (2023). A singular Woodbury
and pseudo-determinant matrix identities and application
to Gaussian process regression. Applied Mathematics
and Computation, 452, 128032.

Axler, S. (1995). Down with determinants! The American
Mathematical Monthly, 102.

Bahri, Y., Dyer, E., Kaplan, J., Lee, J., & Sharma, U. (2024).
Explaining neural scaling laws. Proceedings of the Na-
tional Academy of Sciences, 121(27), e2311878121.

Barrachina, S., Castillo, M., Igual, F. D., Mayo, R., &
Quintana-Ortí, E. S. (2008). Solving dense linear sys-
tems on graphics processors. In Euro-Par 2008 – Parallel
Processing (pp. 739–748). Berlin, Heidelberg: Springer
Berlin Heidelberg.

Barzilai, D. & Shamir, O. (2024). Generalization in kernel
regression under realistic assumptions. In Proceedings of
the 41st International Conference on Machine Learning,
ICML’24: JMLR.org.

Bietti, A. & Bach, F. (2021). Deep equals shallow for
ReLU networks in kernel regimes. In International Con-
ference on Learning Representations.

Bietti, A. & Mairal, J. (2019). On the inductive bias of
neural tangent kernels. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Gar-
nett (Eds.), Advances in Neural Information Processing
Systems, volume 32: Curran Associates, Inc.

Billingsley, P. (1961). The Lindeberg-Levy theorem for

martingales. Proceedings of the American Mathematical
Society, 12(5), 788–792.

Cai, T. T., Liang, T., & Zhou, H. H. (2015). Law of
log determinant of sample covariance matrix and optimal
estimation of differential entropy for high-dimensional
Gaussian distributions. Journal of Multivariate Analysis,
137, 161–172.

Chizat, L., Oyallon, E., & Bach, F. (2019). On lazy train-
ing in differentiable programming. In H. Wallach, H.
Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
& R. Garnett (Eds.), Advances in Neural Information
Processing Systems, volume 32: Curran Associates, Inc.

Demmel, J. W., Heath, M. T., & van der Vorst, H. A. (1993).
Parallel numerical linear algebra. Acta Numerica, 2,
111–197.

Demmel, J. W., Higham, N. J., & Schreiber, R. S. (1995).
Stability of block LU factorization. Numerical Linear
Algebra with Applications, 2(2), 173–190.

Dong, K., Eriksson, D., Nickisch, H., Bindel, D., & Wilson,
A. G. (2017). Scalable log determinants for Gaussian
process kernel learning. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
& R. Garnett (Eds.), Advances in Neural Information
Processing Systems, volume 30: Curran Associates, Inc.

Dongarra, J., Hammarling, S., & Walker, D. (1998a). Key
concepts for parallel out-of-core LU factorization. Com-
puters & Mathematics with Applications, 35(7), 13–31.
Advanced Computing on Intel Architectures.

Dongarra, J. J., Duff, L. S., Sorensen, D. C., & Vorst, H.
A. V. (1998b). Numerical Linear Algebra for High Per-
formance Computers. USA: Society for Industrial and
Applied Mathematics.

Dongarra, J. J., Moler, C. B., Bunch, J. R., & Stewart, G. W.
(1979). LINPACK Users’ Guide. Society for Industrial
and Applied Mathematics.

Engel, A., Wang, Z., Sarwate, A. D., Choudhury, S., &
Chiang, T. (2022). TorchNTK: A Library for calculation
of Neural Tangent Kernels of PyTorch Models.

Fischer, S. & Steinwart, I. (2020). Sobolev norm learning
rates for regularized least-squares algorithms. Journal of
Machine Learning Research, 21(205), 1–38.

Fitzsimons, J., Cutajar, K., Osborne, M., Roberts, S., &
Filippone, M. (2017). Bayesian Inference of Log De-
terminants. In Proceedings of the 33rd Conference on
Uncertainty in Artificial Intelligence, Proceedings of Ma-
chine Learning Research Sydney, Australia: PMLR.

Galoppo, N., Govindaraju, N., Henson, M., & Manocha,

10

Determinant Estimation under Memory Constraints and Neural Scaling Laws

D. (2005). LU-GPU: Efficient algorithms for solving
dense linear systems on graphics hardware. In SC ’05:
Proceedings of the 2005 ACM/IEEE Conference on Su-
percomputing (pp. 3–3).

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., &
Wilson, A. G. (2018). GPyTorch: Blackbox matrix-
matrix Gaussian process inference with GPU accelera-
tion. Advances in neural information processing systems,
31.

Gelfand, A. E., Diggle, P., Guttorp, P., & Fuentes, M.
(2010). Handbook of Spatial Statistics. Chapman & Hal-
l/CRC Handbooks of Modern Statistical Methods. CRC
Press.

Gelman, A., Carlin, J. B., Stern, Dunson, D. B., Vehtari,
A., & Rubin, D. B. (2013). Bayesian Data Analysis.
Chapman and Hall/CRC, 3nd ed. edition.

Gholami, A., Yao, Z., Kim, S., Hooper, C., Mahoney, M. W.,
& Keutzer, K. (2024). AI and memory wall. IEEE Micro.

Golub, G. H. & Van Loan, C. F. (2013). Matrix Compu-
tations - 4th Edition. Philadelphia, PA: Johns Hopkins
University Press.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recog-
nition (pp. 770–778).

Higham, N. (2022). Seven Sins of Numerical Linear
Algebra. https://nhigham.com/2022/10/11/
seven-sins-of-numerical-linear-algebra/.
Accessed: 2025-01-29.

Hodgkinson, L., van der Heide, C., Roosta, F., & Mahoney,
M. W. (2023a). Monotonicity and double descent in
uncertainty estimation with Gaussian processes. In Pro-
ceedings of the 40th International Conference on Ma-
chine Learning (pp. 13085–13117).

Hodgkinson, L., van der Heide, C., Salomone, R., Roosta,
F., & Mahoney, M. W. (2023b). The interpolating in-
formation criterion for overparameterized models. arXiv
preprint arXiv:2307.07785v1.

Hodgkinson, L., van der Heide, C., Salomone, R., Roosta,
F., & Mahoney, M. W. (2023c). A PAC-Bayesian per-
spective on the interpolating information criterion. In Ad-
vances in Neural Information Processing Systems, Math-
ematics of Modern Machine Learning Workshop.

Hodgkinson, L., Wang, Z., & Mahoney, M. W. (2025).
Models of Heavy Tailed Mechanicstic Universality. In
Proceedings of the 42nd International Conference on Ma-
chine Learning.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy, A.,
Osindero, S., Simonyan, K., Elsen, E., Vinyals, O., Rae,
J., & Sifre, L. (2022). An empirical analysis of compute-
optimal large language model training. In S. Koyejo, S.
Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh
(Eds.), Advances in Neural Information Processing Sys-
tems, volume 35 (pp. 30016–30030).: Curran Associates,
Inc.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., & Adam, H.
(2017). Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. arXiv preprint
arXiv:1704.04861.

Immer, A., Korzepa, M., & Bauer, M. (2021). Improving
predictions of bayesian neural nets via local linearization.
In A. Banerjee & K. Fukumizu (Eds.), Proceedings of
The 24th International Conference on Artificial Intelli-
gence and Statistics, volume 130 of Proceedings of Ma-
chine Learning Research (pp. 703–711).: PMLR.

Immer, A., Van Der Ouderaa, T. F. A., Van Der Wilk, M.,
Ratsch, G., & Schölkopf, B. (2023). Stochastic marginal
likelihood gradients using neural tangent kernels. In
A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S.
Sabato, & J. Scarlett (Eds.), Proceedings of the 40th
International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research (pp.
14333–14352).: PMLR.

Jacot, A., Gabriel, F., & Hongler, C. (2018). Neural tan-
gent kernel: Convergence and generalization in neural
networks. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.),
Advances in Neural Information Processing Systems, vol-
ume 31: Curran Associates, Inc.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., &
Amodei, D. (2020). Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361.

Karlin, S. & McGregor, J. (1959). Coincidence proba-
bilities. Pacific Journal of Mathematics, 9(4), 1141 –
1164.

Kim, S., Park, S., Kim, K.-S., & Yang, E. (2023). Scale-
invariant Bayesian neural networks with connectivity tan-
gent kernel. In The Eleventh International Conference
on Learning Representations.

Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images. Technical Report TR-2009, University

11

https://nhigham.com/2022/10/11/seven-sins-of-numerical-linear-algebra/
https://nhigham.com/2022/10/11/seven-sins-of-numerical-linear-algebra/

Determinant Estimation under Memory Constraints and Neural Scaling Laws

of Toronto.

Kulesza, A., Taskar, B., et al. (2012). Determinantal
point processes for machine learning. Foundations and
Trends® in Machine Learning, 5(2–3), 123–286.

Lai, J., Xu, M., Chen, R., & Lin, Q. (2023). Generalization
ability of wide neural networks on R. arXiv preprint
arXiv:2302.05933.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11), 2278–2324.

Lee, J., Sohl-dickstein, J., Pennington, J., Novak, R.,
Schoenholz, S., & Bahri, Y. (2018). Deep neural net-
works as Gaussian processes. In International Confer-
ence on Learning Representations.

Li, Y., Zhang, H., & Lin, Q. (2023). On the asymptotic
learning curves of kernel ridge regression under power-
law decay. In A. Oh, T. Naumann, A. Globerson, K.
Saenko, M. Hardt, & S. Levine (Eds.), Advances in
Neural Information Processing Systems, volume 36 (pp.
49341–49364).: Curran Associates, Inc.

Matérn, B. (1960). Spatial variation. In Meddelanden
från Statens Skogsforskningsinstitut, volume 49, No. 5.
Almänna Förlaget, Stockholm. Second edition (1986),
Springer-Verlag, Berlin.

Mézard, M. & Montanari, A. (2009). Information, Physics,
and Computation. Oxford University Press.

Mohamadi, M. A., Bae, W., & Sutherland, D. J. (2023). A
fast, well-founded approximation to the empirical neural
tangent kernel. In A. Krause, E. Brunskill, K. Cho, B.
Engelhardt, S. Sabato, & J. Scarlett (Eds.), Proceedings
of the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning
Research (pp. 25061–25081).: PMLR.

Neal, R. M. (1996). Bayesian Learning for Neural Net-
works. Berlin, Heidelberg: Springer-Verlag.

Nguyen, H. H. & Vu, V. (2014). Random matrices: Law of
the determinant. The Annals of Probability, 42(1), 146 –
167.

Novak, R., Sohl-Dickstein, J., & Schoenholz, S. S. (2022).
Fast finite width neural tangent kernel. In International
Conference on Machine Learning (pp. 17018–17044).:
PMLR.

Rasmussen, C. E. & Williams, C. K. I. (2006). Gaussian
Processes for Machine Learning. MIT Press Cambridge.

Rue, H. & Held, L. (2005). Gaussian Markov Random
Fields: Theory and Applications. Chapman and Hal-

l/CRC.

Smith, T. (2023). An exabyte of disk storage at
CERN. https://home.cern/news/news/
computing/exabyte-disk-storage-cern.
Accessed: 2025-01-29.

Spigler, S., Geiger, M., & Wyart, M. (2020). Asymptotic
learning curves of kernel methods: empirical data versus
teacher–student paradigm. Journal of Statistical Mechan-
ics: Theory and Experiment, 2020(12), 124001.

Stark, S. & Beris, A. N. (1992). LU decomposition op-
timized for a parallel computer with a hierarchical dis-
tributed memory. Parallel Computing, 18(9), 959–971.

Stein, M. L. (1999). Interpolation of Spatial Data:
Some Theory for Kriging. Springer Series in Statistics.
Springer New York.

Steinwart, I., Hush, D. R., & Scovel, C. (2009). Optimal
rates for regularized least squares regression. In COLT.

Ubaru, S., Chen, J., & Saad, Y. (2017). Fast Estimation of
tr(f(A)) via Stochastic Lanczos Quadrature. SIAM Jour-
nal on Matrix Analysis and Applications, 38(4), 1075–
1099.

Vakili, S., Bromberg, M., Garcia, J., shan Shiu, D., &
Bernacchia, A. (2021). Uniform generalization bounds
for overparameterized neural networks. arXiv preprint
arXiv:2109.06099.

Venetis, I. E. & Gao, G. R. (2009). Mapping the LU
decomposition on a many-core architecture: challenges
and solutions. In Proceedings of the 6th ACM Conference
on Computing Frontiers, CF ’09 (pp. 71–80). New York,
NY, USA: Association for Computing Machinery.

Wang, K., Pleiss, G., Gardner, J., Tyree, S., Weinberger,
K. Q., & Wilson, A. G. (2019). Exact Gaussian processes
on a million data points. Advances in neural information
processing systems, 32.

Wilson, J., van der Heide, C., Hodgkinson, L., & Roosta,
F. (2025). Uncertainty quantification with the empirical
neural tangent kernel. arXiv preprint arXiv:2502.02870.

Yang, G. (2020). Tensor programs II: Neural tangent kernel
for any architecture. ArXiv, abs/2006.14548.

Yang, G. & Littwin, E. (2021). Tensor programs IIb: Ar-
chitectural universality of neural tangent kernel training
dynamics. In M. Meila & T. Zhang (Eds.), Proceedings
of the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research (pp. 11762–11772).: PMLR.

12

https://home.cern/news/news/computing/exabyte-disk-storage-cern
https://home.cern/news/news/computing/exabyte-disk-storage-cern

Determinant Estimation under Memory Constraints and Neural Scaling Laws

Appendices
Contents

A Nomenclature 13

B Related Works in Numerical Linear Algebra 14

C Memory and Computation Challenges of NTK Matrices 15

C.1 Storage and Compute Requirements . 15

C.2 Data Precisions in Our Computational Pipeline . 16

D Implementation of MEMDET Algorithm 16

D.1 Optimal Sequence of Processing of Blocks . 16

E Complexity and Performance Analysis of MEMDET 20

E.1 Computational Complexity . 20

E.2 Data Transfer and Memory Considerations . 21

E.3 Empirical Performance Evaluation . 22

E.4 Concluding Remarks of Performance Analysis . 23

E.5 Computational Accuracy of MEMDET . 24

F FLODANCE and Scaling Laws 25

F.1 Background Material for Neural Scaling Laws . 25

F.2 Proofs of Lemma 1 and Proposition 1 . 26

F.3 Derivation of FLODANCE Parameterization . 27

G Further Empirical Analysis of FLODANCE 28

G.1 Sensitivity and Robustness on NTK Matrices . 28

G.2 Extension to Matérn Kernel Gaussian Process . 29

H Comparison of Log-Determinant Methods: Complexity and Runtime 31

I Implementation and Reproducibility Guide 32

A. Nomenclature
We use boldface lowercase letters for vectors, boldface upper case letters for matrices, and normal face letters for scalars,
including the components of vectors and matrices. Table A.1 summarizes the main symbols and notations used throughout
the paper, organized by context.

13

Determinant Estimation under Memory Constraints and Neural Scaling Laws

Table A.1. Common notations used throughout the manuscript.

Context Symbol Description Example Value

Dataset n Number of data points (e.g., images) 50,000 for CIFAR-10
d Number of model outputs (e.g., classes, labels) 10 for CIFAR-10
m Size of NTK matrix is m×m where m = nd 500,000 for CIFAR-10

MEMDET nb Number of row/column blocks (i.e., n2
b blocks in total) e.g., 16

b Block size; typically b ≈ m/nb, for b× b submatrices e.g., 31,250
c Available memory capacity (in bytes)
β Precision (in bytes) of a floating-point number

FLODANCE ns Number of sampled data points from n e.g., 2000
ms Size of sampled NTK matrix ms = nsd e.g., 20,000
n0 Start of fitting interval [n0, ns] e.g., 100
q Truncation order of Laurent series e.g., 3
c0, ν0, ..., νq Regression coefficients

SLQ l Lanczos iterations (Krylov subspace size) e.g., 100
s Number of Monte Carlo samples e.g., 100

Variables Kn NTK matrix with n data points (matrix of size m)
Kns

Sampled NTK matrix with ns data points (matrix of size ms)
ℓn Log-determinant of NTK with n data points (matrix of size m)
ℓ̂n Estimated log-determinant
Ln Normalized log-determinant Ln = n−1ℓn
θ Vectorization of neural network parameters
p Dimension of θ

Functions pdet Pseudo-determinant (product of nonzero eigenvalues)
logabsdet Natural logarithm of the absolute value of determinant

B. Related Works in Numerical Linear Algebra
The study of block decomposition methods in numerical linear algebra has a long history. Classical texts such as Golub
& Van Loan (2013) and Dongarra et al. (1998b) provide foundational discussions on block LU, block Cholesky, and LDL
decompositions, detailing their computational advantages and numerical properties. These methods have been widely used
to improve computational efficiency, particularly in high-performance computing (HPC) settings, where recursive block
LU (Golub & Van Loan, 2013, Section 3.2.11), parallel LU (Golub & Van Loan, 2013, Section 3.6), and block Cholesky
(Golub & Van Loan, 2013, Section 4.2.9) play a central role in large-scale matrix computations.

Beyond theoretical foundations, numerous works have focused on efficient implementations of block factorizations, particu-
larly for parallel architectures. Stark & Beris (1992) optimized block LU decomposition for hierarchical distributed memory,
aiming to improve data locality while maintaining parallel efficiency. Dongarra et al. (1979) pioneered high-performance
implementations of block factorizations, laying the groundwork for modern HPC systems. More recent studies, such as Ga-
loppo et al. (2005) and Barrachina et al. (2008), have extended block LU methods to GPU-based environments, leveraging
parallelism but still assuming that intermediate submatrices fit in memory. While these approaches optimize performance
in parallel settings, they do not address the challenge of computing factorizations when the full matrix size far exceeds
available RAM. Traditional block methods typically assume that at least some intermediate submatrices can reside in
memory, whereas our method (MEMDET) explicitly operates under constrained memory settings, using an out-of-core
hierarchical block processing approach.

To address the issue of matrices exceeding main memory capacity, Dongarra et al. (1998a) introduced concepts for parallel
out-of-core LU factorization, focusing on efficient data movement between disk and memory. While their work demonstrates
how out-of-core computations can be applied to LU factorization, their approach does not extend to log-determinant
computations or hierarchical block-wise processing. Similarly, studies on many-core architectures (Venetis & Gao, 2009)
and hierarchical memory-aware LU factorizations (Demmel et al., 1993) have improved computational efficiency, but

14

Determinant Estimation under Memory Constraints and Neural Scaling Laws

Table C.1. Memory requirements (for various floating-point precisions) to store empirical NTK matrices of common datasets. The
memory is computed as (nd)2β, where n is the training set size (second column), d is the number of classes (third column), and β is the
number of bytes per floating-point value.

Matrix Size

Dataset Training Set Classes float16 float32 float64

CIFAR-10 50,000 10 0.5 TB 1.0 TB 2.0 TB

MNIST 60,000 10 0.72 TB 1.5 TB 2.9 TB

SVHN 73,257 10 1.1 TB 2.2 TB 4.2 TB

ImageNet-1k 1,281,167 1000 3,282,778 TB 6,565,556 TB 13,131,111 TB

Table C.2. Estimated compute time (in hours using an NVIDIA H100 GPU) for NTK matrix computation.

Compute Time (hrs)

Dataset Model float16 float32 float64

MNIST MobileNet 6 25 50

CIFAR-10 ResNet9 6 24 70

ResNet18 14 63 65

ResNet50 37 177 297

ResNet101 107 442 1178

none have been designed specifically for computing log-determinants under extreme memory constraints, making our
approach distinct.

C. Memory and Computation Challenges of NTK Matrices
C.1. Storage and Compute Requirements

The empirical NTK serves as a motivating example throughout this work, as it encapsulates key computational challenges
associated with large-scale matrix operations. Several software packages have been developed to compute NTK Gram
matrices for various neural architectures using automatic differentiation frameworks (Novak et al., 2022; Engel et al., 2022).
However, the full formation of these matrices remains computationally prohibitive, even on common benchmark datasets.

Table C.1 presents the storage requirements for NTK matrices corresponding to various datasets, highlighting their enor-
mous size. For instance, even CIFAR-10 requires terabytes of storage, while ImageNet-1k exceeds exabytes, making full
NTK computation infeasible for most practical applications. Despite its theoretical importance, the NTK Gram matrix is
rarely used as a practical tool, with approximations often employed to mitigate computational and memory constraints.
Minibatching is one common strategy, and batch-wise NTK approximations have been explored for model selection (Im-
mer et al., 2023). Yet, extending these estimates to full datasets remains an open challenge. Alternative approximation
techniques (Mohamadi et al., 2023) have been proposed, but their convergence is only guaranteed in spectral norm, limiting
their ability to capture the full spectrum of the NTK. In contrast, the log-determinant—a key quantity in this work—encodes
information from the entire eigenvalue distribution, making its computation particularly demanding.

Beyond storage limitations, the computation time for NTK matrices also presents a major challenge. Table C.2 provides
estimated compute times for NTK formation across various models and floating-point precisions on an NVIDIA H100
GPU. Even for relatively small datasets like CIFAR-10, NTK computation is expensive, with higher-precision calculations
significantly increasing runtime. For large architectures such as ResNet101, double-precision NTK computation can require
over a thousand hours, making exact evaluations impractical without algorithmic improvements like those introduced in
this work.

15

Determinant Estimation under Memory Constraints and Neural Scaling Laws

C.2. Data Precisions in Our Computational Pipeline

Our computations follow a multi-stage pipeline, with each stage involving distinct data precision formats and practical
constraints:

1. Model Training. All neural networks (e.g., ResNet9, ResNet50) were trained using 32-bit precision, which is the
default and standard practice in most deep learning frameworks such as PyTorch.

2. NTK Matrix Computation. The NTK matrix is computed from the trained model and stored in various precisions
(e.g., 16-bit, 32-bit, and 64-bit, from the same pre-trained model). The “precision” of the NTK matrix, as referred
to throughout the paper, reflects the compute and storage format at this stage. Due to the high cost of forming
these matrices, it is often tempting or necessary to compute and store them in lower precisions. Our low-precision
experiments highlight the pitfalls of mixed-precision in these cases as per Section 2.1, regardless of the downstream
use case.

3. Log-Determinant Computation. Regardless of how the NTK matrix was computed and stored (16-bit, 32-bit, or 64-
bit), all log-determinant computations were performed in 64-bit precision across all methods (e.g., MEMDET, SLQ,
FLODANCE). This represents a “best-case” mixed-precision setup.

Since MEMDET entirely eliminates memory requirement barriers, it became practical to perform high-precision computa-
tions (e.g., 64-bit in stage 3) even on large matrices—thus mitigating common concerns about the overhead associated with
higher-precision formats.

D. Implementation of MEMDET Algorithm
The pseudo-code of the MEMDET algorithm is given in Algorithm D.1 (generic matrices), Algorithm D.2 (symmetric),
and Algorithm D.3 (symmetric positive-definite), each computing the log-determinant of a matrix M. The log-determinants
of leading principal submatrices of a matrix M (possibly after permutation, depending on the decomposition) can also be
readily computed. For example, for symmetric positive-definite matrices, the Cholesky decomposition M = LL⊺, with
lower-triangular L, gives logdet(M[:k,:k]) = 2

∑k
i=1 log(Lii), where M[:k,:k] is the k × k leading principal submatrix.

The memory requirements of MEMDET are determined by a user-defined parameter, allowing it to run on any system
regardless of available memory. For an m ×m matrix, the algorithm partitions the data into an nb × nb grid of blocks,
each of size b× b, where b = 1 + ⌊(m− 1)/nb⌋. The computation requires either 3 or 4 concurrent blocks in memory: for
nb = 2, only 3 blocks are needed, requiring 3b2β bytes, while for nb > 2, 4 blocks are required, increasing the memory
usage to 4b2β bytes, where β is the number of bytes per floating point.

Given a maximum memory limit c (in bytes), the optimal number of blocks nb is determined by the parameter r = m
√

β/c,
with the following selection criteria:

• If r ≤ 1, the entire matrix fits in memory, so nb = 1.

• If r ≤ 2√
3

, three blocks fit in memory, so nb = 2.

• Otherwise, nb = ⌈2r⌉.

D.1. Optimal Sequence of Processing of Blocks

It is important to select an ordering of the blocks to minimize data transfer between disk and memory. The order in which
the block Mij is processed should be chosen to minimize the reading of the blocks B (corresponding to the index j) and C
(corresponding to the index i). Ideally, from processing one block to the next, one should update only one of the matrices B
or C, but not both, to reuse one of the blocks already loaded in memory. We formulate this problem of finding the optimal
sequence of blocks as follows for the case of LDL/Cholesky decomposition at the k-th stage of the algorithm. The case for
LU decomposition can be formulated similarly.

Let G(V,E) denote a complete undirected graph with vertices V := {k+1, . . . , nb}, where E is the set of all possible edges
e = (v, u) between the vertices u, v ∈ V . Each vertex in V represents the event of loading one of the blocks B←Mkj or

16

Determinant Estimation under Memory Constraints and Neural Scaling Laws

Algorithm D.1: MEMDET: Constrained-Memory Comp. of Log-Det (Case I: Generic Matrix)

Input :Matrix M of size m×m, // stored on disk, may not be loaded on memory
Maximum memory c in bytes

Output :ℓ: logarithm of the absolute value of the determinant (logabsdet) of M,
σ: sign of the determinant of M

1 r ← m
√

β/c // β: number of bytes per floating-point

2 if r ≤ 1 then nb ← 1 // nb: number of row/column blocks, making nb × nb grid of blocks.
3 else if r ≤ 2/

√
3 then nb ← 2

4 else nb ← ⌈2r⌉

5 b← 1 + ⌊(m− 1)/nb⌋ // Size of each block is at most b× b
6 ℓ← 0 // Accumulates log-abs-determinant of diagonal blocks
7 σ ← 1 // Keeps track of the parity of matrix

// Allocate memory for block matrices
8 Allocate memory for b× b matrix A
9 if nb > 1 then Allocate memory for b× b matrices B,C

10 if nb > 2 then Allocate memory for b× b matrix S

// Create scratchpad space on disk, large enough to store nb(nb − 1)− 1 blocks
11 if nb > 2 then Allocate empty file of the size (m(m− b)− b

2
)β bytes

// Recursive iterations over diagonal blocks
12 for k = 1 to nb do
13 if k = 1 then A←Mkk // Load from input array on disk
14 A← PLU // In-place LU decomposition with pivoting (written to A)
15 ℓ← ℓ+ logabsdet(U)
16 σ ← σ sgn(P) sgn(U)

17 if k < nb then
// Iterate over row of blocks from bottom upward

18 for i = nb to k + 1 step −1 do
19 C←M

⊺
ik // Load from disk (from input array if k = 1 or from scratchpad if k > 1)

20 C← U
−⊺

C // Solve upper triangular system in-place

// Iterate over column of blocks in alternating directions per row
21 if i− k is even then (jstart, jend)← (k + 1, nb)
22 else (jstart, jend)← (nb, k + 1)

23 for j = jstart to jend step (−1)i−k do

// Load B from disk (input array if k = 1 and i = nb, otherwise from scratchpad)
24 if i = nb or j ̸= jstart then B←Mkj

25 if i = nb then
26 B← L

−1
P

⊺
B // Solve lower triangular system in-place

27 if nb − k > 2 or j ̸= jend then Mkj ← B // Write to disk on scratchpad

28 if i = k + 1 and j = k + 1 then
29 A←Mij // Load from disk (input array if k = 1 or scratchpad if k > 1)
30 A← A−C

⊺
B // Compute Schur complement

31 else
32 S←Mij // Load from disk (input array if k = 1 or scratchpad if k > 1)
33 S← S−C

⊺
B // Compute Schur complement

34 Mij ← S // Write to disk on scratchpad

35 return ℓ, σ

17

Determinant Estimation under Memory Constraints and Neural Scaling Laws

Algorithm D.2: MEMDET: Constrained-Memory Comp. of Log-Det (Case II: Symmetric Matrix)

Input :Symmetric matrix M of size m×m, // stored on disk, may not be loaded on memory
Maximum memory c in bytes

Output :π := (πq)
m
q=1: a permutation of {1, . . . ,m} // permutations induced by LDL decomposition

ℓ := (ℓq)
m
q=1: ℓq := logabsdet(M[Iq,Iq]

) with the index set Iq := (π1, . . . , πq) // log |det(·)|
σ := (σq)

m
q=1: σq := sgn(det(M[Iq,Iq]

)) // Sign of det(·)

1 r ← m
√

β/c // β: number of bytes per floating-point

2 if r ≤ 1 then nb ← 1 // nb: number of row/column blocks, making nb × nb grid of blocks.

3 else if r ≤ 2/
√
3 then nb ← 2 else nb ← ⌈2r⌉

4 b← 1 + ⌊(m− 1)/nb⌋ // Size of each block is at most b× b

5 Initialize arrays d ∈ Rm and π ∈ {1, . . . ,m}m // Hold diagonals and permutations, respectively

// Allocate memory for block matrices
6 Allocate memory for b× b matrix A
7 if nb > 1 then Allocate memory for b× b matrices B,C
8 if nb > 2 then Allocate memory for b× b matrix S
9 if nb > 1 then Define pointers B⋆,C⋆ // Used for swapping memory; (B⋆,C⋆) will refer to (B,C) or (C,B)

// Create scratchpad space on disk, large enough to store nb(nb + 1)/2− 4 blocks
10 if nb > 2 then Allocate empty file of the size (m(m+ b)/2− 4b2)β bytes

// Recursive iterations over diagonal blocks
11 for k = 1 to nb do
12 if k = 1 then A←Mkk // Load from input array on disk
13 A← PLDL⊺P⊺ // In-place LDLT decomposition with pivoting (written to A)
14 d[1+(k−1)b:kb] ← diag(D) // Accumulate diagonals of D to d

15 π[1+(k−1)b:kb] ← (k − 1)b+ permutation(P) // Accumulate permutation indices

16 if k < nb then
// Iterate over column of blocks backward (right to left)

17 for j = nb to k + 1 step −1 do
18 if nb − j is even then (B⋆,C⋆) = (B,C) else (B⋆,C⋆) = (C,B) // swap B and C memories

19 if j = nb then
20 B⋆ ←Mkj // Load from disk (input array if k = 1 or from scratchpad if k > 1)

21 B⋆ ← L−1P⊺B⋆ // Solve lower-triangular system in-place

22 C← B⋆ // Deep copy of the memory pointed by B⋆ to memory pointed by C⋆

23 B⋆ ← D−1B⋆

// Processing order of rows: first process row j, then from row k + 1 downward to j − 1

24 R ← (j, k + 1, k + 2, . . . , j − 2, j − 1)

25 for i = R(1) toR(j − k) do

26 if i ̸= j then C⋆ ←Mki // Load disk (input array if k = 1, j = nb, otherwise scratchpad)

27 if j = nb then
28 C⋆ ← L−1P⊺C⋆ // Solve lower triangular system in-place
29 if nb > 2 and i < j − 1 then Mki ← C⋆ // Write to disk on scratchpad

30 if i = k + 1 and j = k + 1 then
31 A←Mij // Load from disk (input array if k = 1 or scratchpad if k > 1)
32 A← A−C⊺

⋆B⋆ // Compute Schur complement

33 else
34 S←Mij // Load from disk (input array if k = 1 or scratchpad if k > 1)
35 S← S−C⊺

⋆B⋆ // Compute Schur complement
36 Mij ← S // Write to disk on scratchpad

37 (ℓ0, σ0)← (0, 1)
38 for q = 1 to m do (ℓq, σq)← (ℓq−1 + log(|dq|), σq−1 sgn(dq)) // dq is the q-th element of d

39 return π, ℓ, σ

18

Determinant Estimation under Memory Constraints and Neural Scaling Laws

Algorithm D.3: MEMDET: Constrained-Memory Comp. of Log-Det (Case III: Symmetric Positive-Definite Matrix)

Input :Symmetric positive-definite matrix M of size m×m, // stored on disk, not on memory
Maximum memory c in bytes

Output :ℓ := (ℓq)
m
q=1: ℓq := logdet(M[:q,:q])

1 r ← m
√

β/c // β: number of bytes per floating-point

2 if r ≤ 1 then nb ← 1 // nb: number of row/column blocks, making nb × nb grid of blocks.

3 else if r ≤ 2/
√
3 then nb ← 2 else nb ← ⌈2r⌉

4 b← 1 + ⌊(m− 1)/nb⌋ // Size of each block is at most b× b

5 Initialize array d ∈ Rm // Holds diagonals

// Allocate memory for block matrices
6 Allocate memory for b× b matrix A
7 if nb > 1 then Allocate memory for b× b matrices B,C
8 if nb > 2 then Allocate memory for b× b matrix S
9 if nb > 1 then Define pointers B⋆,C⋆ // Used for swapping memory; (B⋆,C⋆) will refer to (B,C) or (C,B)

// Create scratchpad space on disk, large enough to store nb(nb + 1)/2− 4 blocks
10 if nb > 2 then Allocate empty file of the size (m(m+ b)/2− 4b2)β bytes

// Recursive iterations over diagonal blocks
11 for k = 1 to nb do
12 if k = 1 then A←Mkk // Load from input array on disk
13 A← LL⊺ // In-place Cholesky decomposition (written to A)
14 d[1+(k−1)b:kb] ← diag(L) // Accumulate diagonals of L to d

15 if k < nb then
// Iterate over column of blocks backward (right to left)

16 for j = nb to k + 1 step −1 do
17 if nb − j is even then B⋆ = B else B⋆ = C // Alternate pointer B⋆ to switch between B and C

18 if j = nb then
19 B⋆ ←Mkj // Load from disk (input array if k = 1 or from scratchpad if k > 1)

20 B⋆ ← L−1B⋆ // Solve lower-triangular system in-place

// Processing order of rows: first process row j, then from row k + 1 downward to j − 1

21 R ← (j, k + 1, k + 2, . . . , j − 2, j − 1)

22 for i = R(1) toR(j − k) do

23 if i = j then C⋆ = B⋆ // Shallow copy of pointer C⋆ pointing to B⋆

24 else
25 if nb − j is even then C⋆ = C else C⋆ = B // Alternate pointer C⋆ between C and B

26 C⋆ ←Mki // Load C⋆ from disk (input array if k = 1, j = nb, otherwise scratchpad)

27 if j = nb then
28 C⋆ ← L−1C⋆ // Solve lower triangular system in-place
29 if nb > 2 and i < j − 1 then Mki ← C⋆ // Write to disk on scratchpad

30 if i = k + 1 and j = k + 1 then
31 A←Mij // Load from disk (input array if k = 1 or scratchpad if k > 1)
32 A← A−C⊺

⋆B⋆ // Compute Schur complement

33 else
34 S←Mij // Load from disk (input array if k = 1 or scratchpad if k > 1)
35 S← S−C⊺

⋆B⋆ // Compute Schur complement
36 Mij ← S // Write to disk on scratchpad

37 ℓ0 ← 0
38 for q = 1 to m do ℓq ← ℓq−1 + 2 log(dq) // dq is the q-th element of d

39 return ℓ

19

Determinant Estimation under Memory Constraints and Neural Scaling Laws

e1 e2 e3 e4

e5 e6 e7

e8 e9

e10

A

1

k

1 k k
+
1

v1

k + 1
k
+
2

v2

k + 2
k
+
3

v3

k + 3
k
+
4

v4

k + 4

v1 v2

v3v4

e2

e
3

e4 e6
e 7

e9

e1 e5

e8e10

Figure D.1. Left: Example of the processing order of blocks for a symmetric matrix at the k-th hierarchical step. In this step, to process
S ← Mij , the memory blocks B and C are selected from the set V = {v1, v2, v3, v4}. Middle: The corresponding complete graph
G(V,E). Right: The corresponding line graph L(G), with one possible Hamiltonian path highlighted in red, starting from the node e10
and ending at the node e1.

C←Mik, i, j = k+1, . . . , nb. Each edge in E corresponds to the event of processing the block Mij . At the k-th stage of
the algorithm, eventually, all blocks i, j = k + 1, . . . , nb will be processed, so E consists of all edges of a complete graph,
including self-loops, with |E| = |V |(|V |+1)

2 . To illustrate this concept, consider the example in Figure D.1. The left panel
depicts the k-th iteration of the algorithm for a symmetric matrix, where the matrices B and C have four blocks to choose
from the set V = {v1, v2, v3, v4}. The corresponding graph G is shown in the middle panel of the figure.

The goal is to select an ordered sequence (ep), p = 1, . . . , |E| of edges such that each two consecutive edges ep and ep+1

in the sequence share a common vertex. This ensures that from processing one block to the next, only one of B or C is
updated, while at least one block is reused from the previous step.

To find such a sequence of edges, we define L(G), the line graph of G (also called the edge-to-vertex dual), where each
vertex of L(G) represents an edge of G. Two vertices in L(G) are adjacent if and only if their corresponding edges in G
share a vertex. Thus, any Hamiltonian path in L(G) yields an ordered edge sequence fulfilling our requirement.

As illustrated in Figure D.1, the right panel depicts the line graph of the given graph shown in the middle panel, with a
possible Hamiltonian path highlighted in red. This path directly translates to the processing order of blocks shown in the
left panel. Notably, all valid Hamiltonian paths must terminate at the node e1, representing the block Mk+1,k+1. This
specific end point is crucial as it allows for a seamless transition to the next iteration (i.e., the k + 1 iteration) without the
need to explicitly load the matrix A, as it would already be available in memory from the last processing block of the k-th
iteration when S←Mk+1,k+1 was processed.

Given that G is complete and therefore Hamiltonian, it follows that its line graph L(G) is also Hamiltonian. This implies
the existence of at least one (but possibly many) Hamiltonian paths. Crucially, all Hamiltonian paths in L(G) have the
same length. Consequently, any sequence of blocks derived from a Hamiltonian path constitutes an optimal solution to our
problem. Thus, the block sequence presented in Figure 1 is equivalent in optimality to any other sequence obtainable from
a Hamiltonian path.

The same problem can be formulated for the block LU decomposition, with the modification that G is a complete and
balanced bipartite graph G(V, V,E); however, the same logic and conclusion follow.

E. Complexity and Performance Analysis of MEMDET
E.1. Computational Complexity

Table E.1 provides a detailed breakdown of the computational complexity of MEMDET for generic matrices (second
column, using LU decomposition) and symmetric matrices (third column, using LDL or Cholesky decomposition). The

20

Determinant Estimation under Memory Constraints and Neural Scaling Laws

Table E.1. Breakdown of computational complexity for MEMDET. The table presents the number of operations performed and the FLOP
count per operation for generic matrices (LU decomposition) and symmetric matrices (LDL or Cholesky decomposition). The last row
shows the total complexity, which remains independent of the number of blocks nb.

Generic Matrix Symmetric (Positive-Definite) Matrix

Operation Num. Operations FLOPs per Operation Num. Operations FLOPs per Operation

Matrix Decomposition nb
1
3
b
3 − 1

2
b
2
+ 1

6
b nb

1
6
b
3 − 1

4
b
2
+ 1

12
b

Solve Lower Triangular System 1
2
n
2
b − 1

2
nb

1
2
b
3 − 1

2
b
2 1

2
n
2
b − 1

2
nb

1
2
b
3 − 1

2
b
2

Solve Upper Triangular System 1
2
n
2
b − 1

2
nb

1
2
b
3 − 1

2
b
2

Full Matrix Multiplication 1
3
n
3
b − 1

2
n
2
b +

1
6
nb b

3 1
6
n
3
b − 1

2
n
2
b +

1
3
nb b

3

Gramian Matrix Multiplication 1
2
n
2
b − 1

2
nb

1
2
b
3

Total Complexity 1
3
m

3 − 1
2
m

2
+ 1

6
m 1

6
m

3 − 1
4
m

2
+ 1

12
m

operations are categorized into matrix decomposition, solving triangular systems, and matrix multiplications used to form
Schur complements. Each operation’s complexity is given in terms of the number of times it is performed and the FLOP
count per operation. In this analysis, one FLOP refers to a fused multiply-add (FMA) operation—one multiplication
and one addition—as counted by modern GPU benchmarks. The table lists a unified complexity column for symmetric
matrices, encompassing both LDL and Cholesky decompositions. While LDL includes additional operations such as row
permutations and diagonal scaling via D, these are excluded from the FLOP count due to their negligible cost relative to
the leading terms.

The complexity of each operation is given by the number of times it is performed (a function of nb) multiplied by the FLOP
count per operation (a function of the block size b). Substituting b = m/nb into these expressions, the total complexity,
obtained by summing across all operations, simplifies such that nb cancels out, as shown in the last row of Table E.1. Thus,
the total computational complexity of MEMDET is independent of the number of blocks nb, and is identical to that of
conventional factorization algorithms where nb = 1.

Although the total computational cost remains the same, the contribution of individual operations shifts as nb increases.
When nb = 1, the entire computation consists solely of a matrix decomposition. As nb increases, the decomposition cost
decreases while additional operations, such as solving triangular systems and matrix multiplications, account for a larger
fraction of the total complexity. At the extreme case of nb = m, the algorithm consists primarily of matrix multiplications.
This transition is illustrated in Figure E.1 (left panel), where the contributions of matrix decomposition, triangular system
solving, and matrix multiplication are plotted as functions of nb. The total computational complexity, shown as the black
curve, remains constant, while the distribution of work among different operations shifts as nb increases.

E.2. Data Transfer and Memory Considerations

While the total FLOP count is independent of nb, the number of data transfers between memory and disk increases with
the number of blocks. Table E.2 summarizes the number of blocks read from disk to memory and written back to disk,
as a function of nb. The actual volume of transferred data is obtained by multiplying the number of blocks by the block
size, b2β, where β represents the number of bytes per floating point. The right panel of Figure E.1 illustrates the total data
transfer volume relative to the original matrix size.

For nb ≤ 2, the entire computation is performed in memory, avoiding disk I/O and thus requiring no scratchpad space.
However, for nb > 2, the computation utilizes scratchpad space, and data transfer overhead increases approximately as
O(n2

b), meaning that choosing an excessively high nb introduces unnecessary I/O costs. Despite this, the hierarchical design
of MEMDET efficiently schedules block transfers, mitigating excessive data movement.

Table E.3 provides an analysis of the required memory and scratchpad space. The number of blocks stored in memory and
on disk is determined by nb, with the actual space usage obtained by multiplying the number of blocks by the block size.
By adjusting nb, MEMDET can be configured to run within any given memory constraint, making it adaptable to systems
with limited memory.

21

Determinant Estimation under Memory Constraints and Neural Scaling Laws

1 2 101 102 m = 103

nb

0

1
6

1
3

F
L

O
P

s
/
m

3

(a) Complexity per Algebraic Operation

Matrix Decomposition

Solve Triangular Sys.

Matrix Multiplication

Total

Generic Symmetric

1 2 22 23 24

nb

0

1/2
1

2

22

23

S
iz

e
(b

y
te

s)
/

(m
2
β

)

(b) Data Transfer

Read

Write

Generic Symmetric

Figure E.1. Theoretical computational complexity of MEMDET as a function of the number of blocks nb. The left panel shows the
contributions of matrix decomposition, solving triangular systems, and matrix multiplication to the total complexity. The black curve
represents the total computational cost, which remains constant, while the colored curves illustrate how the workload shifts across
operations as nb increases. The right panel displays the total data transfer volume (normalized by the original matrix size) for different
nb, highlighting the increasing cost of disk I/O as the number of blocks grows.

Table E.2. Number of blocks transferred between disk and memory during MEMDET execution. The total data transfer volume is
obtained by multiplying the number of transferred blocks by the block size, b2β bytes, where b = m/nb. Read operations occur in all
cases, while write operations to the scratchpad are only required for nb > 2.

Operation Generic Matrix Symmetric Matrix

Read 2
3
n
3
b − n

2
b +

4
3
nb

1
3
n
3
b − 1

2
n
2
b +

7
6
nb

Write

{
0, nb ≤ 2
1
3
n
3
b − 4

3
nb − 1, nb > 2

{
0, nb ≤ 2
1
6
n
3
b +

1
2
n
2
b − 11

3
nb + 4, nb > 2

Table E.3. Number of concurrent blocks that must be allocated in memory (first row) and the total number of blocks allocated on disk
(second row) during MEMDET execution. The total required memory and disk space are obtained by multiplying the number of allocated
blocks by the block size, b2β bytes. While the number of concurrent memory-resident blocks remains fixed, the total number of blocks
allocated on disk increases with nb > 2.

Hardware Generic Matrix Symmetric Matrix

Memory 3 or 4 3 or 4

Scratchpad

{
0, nb ≤ 2

n
2
b − nb − 1, nb > 2

{
0, nb ≤ 2
1
2
n
2
b +

1
2
nb − 4, nb > 2

E.3. Empirical Performance Evaluation

To validate the theoretical complexity and memory analysis, we conducted empirical evaluations on SPD matrices of various
sizes, ranging from m = 210 to 216. The largest matrix tested was chosen to match the memory capacity of a 64 GB system,
allowing for a direct comparison between MEMDET and conventional algorithms. For each matrix size, the algorithm
was executed with different numbers of blocks, nb = 1, 2, . . . , 8, where nb = 1 corresponds to a standard full-matrix
decomposition with the entire matrix loaded into memory. Each experiment was repeated 10 times, and the mean and
standard deviation of the profiling measures are reported.

Figure E.2 presents the experimental results. The left panel shows peak memory allocation, measured using a memory
profiling tool, which precisely matches the theoretical predictions. As expected, when nb = 1, the required memory

22

Determinant Estimation under Memory Constraints and Neural Scaling Laws

1 2 3 4 5 6 7 8

Number of blocks nb

105

106

107

108

109

1010

1011

A
ll
o
ca

te
d

M
em

o
ry

(b
y
te

s)

(a) Required Memory

m = 216

m = 215

m = 214

m = 213

m = 212

m = 211

m = 210

1 2 3 4 5 6 7 8

Number of blocks nb

100

101

102

103

104

P
ro

ce
ss

T
im

e
(s

ec
)

(b) Performance Over Number of Blocks

m = 216

m = 215

m = 214

m = 213

m = 212

m = 211

m = 210

210 211 212 213 214 215 216

Matrix size m

100

101

102

103

104

P
ro

ce
ss

T
im

e
(s

ec
)

(c) Performance Over Matrix Size

nb=8

nb=7

nb=6

nb=5

nb=4

nb=3

nb=2

nb=1

Figure E.2. Peak memory allocation (a) and CPU processing time (b, c) for MEMDET on symmetric positive-definite matrices of size
m = 2

10
, . . . , 2

16, using Algorithm D.3. The matrices were processed using an nb × nb grid of matrix blocks, where nb = 1, 2, . . . , 8.

1 2 3 4 5 6 7 8

nb

0

2

4

6

8

P
ro

ce
ss

T
im

e
/
m

3
(n

s)

m = 213

Compute

Write

Read

1 2 3 4 5 6 7 8

nb

0

0.5

1

1.5

2
P

ro
ce

ss
T

im
e

/
m

3
(n

s)
m = 214

1 2 3 4 5 6 7 8

nb

0

0.1

0.2

0.3

0.4

0.5

P
ro

ce
ss

T
im

e
/
m

3
(n

s)

m = 215

1 2 3 4 5 6 7 8

nb

0

0.1

0.2

0.3

P
ro

ce
ss

T
im

e
/
m

3
(n

s)

m = 216

Figure E.3. Breakdown of MEMDET runtime (using Algorithm D.3) into computation and data transfer times, normalized by m
3, for

m = 2
13
, . . . , 2

16. The total process time consists of reading from disk to memory (maroon), writing from memory to disk (light tan),
and CPU computation (ochre).

equals the original matrix size, while increasing nb reduces the memory footprint. The middle and right panels display the
measured process time as functions of nb and m, respectively. At large m, the difference in process time across varying nb

diminishes, indicating that the increase in data transfer cost does not significantly impact overall runtime.

To further analyze this effect, Figure E.3 decomposes the process time into computation time and data transfer time. At small
m, the runtime is dominated by disk I/O, but as m increases, computation time becomes the dominant factor. This confirms
that for sufficiently large matrices, the performance of MEMDET approaches that of conventional in-memory methods.

E.4. Concluding Remarks of Performance Analysis

MEMDET maintains the same computational complexity as conventional factorization methods while distributing compu-
tations across blocks. The total FLOP count remains unchanged, but increasing nb shifts the workload between operations
(i.e., from matrix decompositions to matrix multiplications). However, increasing nb also increases data transfer overhead,
requiring a balance between reducing memory usage and minimizing disk I/O.

The scheduling design of block operations optimizes memory usage while limiting unnecessary data movement, ensuring
that MEMDET remains efficient under constrained memory conditions. By allowing users to specify a memory limit,
MEMDET enables the processing of arbitrarily large matrices on systems with any limited memory size.

For large-scale applications, where conventional methods exceed memory capacity, MEMDET provides a practical alterna-

23

Determinant Estimation under Memory Constraints and Neural Scaling Laws

Table E.4. Relative error of MEMDET (using nb = 8 blocks) and Numpy’s eigh with respect to NumPy’s slogdet (used as baseline)
across different models, dataset sizes, and precision formats.

Q
ua

nt
ity Model→ ResNet9 ResNet9 ResNet18 MobileNet

Dataset CIFAR-10 CIFAR-10 CIFAR-10 MNIST
Subsample Size n = 1000 n = 2500 n = 1000 n = 2500

R
el

.E
rr

or

MEMDET (16-bit) 2.2× 10−15 5.4× 10−15 5.4× 10−14 8.7× 10−16

MEMDET (32-bit) 4.2× 10−12 4.3× 10−10 1.7× 10−11 8.4× 10−12

MEMDET (64-bit) 1.4× 10−8 5.4× 10−10 1.8× 10−9 1.7× 10−6

eigh (16-bit) 1.6× 10−14 1.7× 10−14 2.8× 10−14 1.8× 10−14

eigh (32-bit) 5.0× 10−10 1.1× 10−9 9.2× 10−12 4.5× 10−12

eigh (64-bit) 6.1× 10−8 7.5× 10−9 1.4× 10−9 1.0× 10−5

28 29 210 211 212 213

n

104

105

106

lo
gd

et
(K

n
)

(a) Log-Determinants Using MEMDET, eigh, and slogdet

32-bit (MEMDET)

32-bit (eigh)

32-bit (slogdet)

64-bit (MEMDET)

64-bit (eigh)

64-bit (slogdet)

28 29 210 211 212 213

n

10−14

10−12

10−10

10−8

10−6

R
el

at
iv

e
E

rr
or

(b) Error of MEMDET and eigh Compared to slogdet

32-bit (MEMDET)

32-bit (eigh)

64-bit (MEMDET)

64-bit (eigh)

Figure E.4. Log-determinants of growing NTK submatrices from ResNet9, computed in both 32-bit (red) and 64-bit (black) formats.
Each submatrix has size m = nd with d = 10. (a) Comparison between MEMDET, slogdet, and eigh for each input matrix. (b)
Relative error of MEMDET and eigh with respect to slogdet. Regardless of the matrix precision, all log-determinant computations
are performed in 64-bit precision, and errors remain well below 10

−7.

tive. The experiments confirm that while data transfer overhead exists, it does not significantly impact runtime at large m,
making MEMDET a viable solution for large-matrix computations on standard hardware.

E.5. Computational Accuracy of MEMDET

We validate the numerical accuracy of MEMDET by comparing its log-determinant output across various precision formats
against two standard in-memory methods: numpy.linalg.slogdet and numpy.linalg.eigh (from which the
log-determinant is computed as the sum of the logarithms of the eigenvalues). Table E.4 shows that MEMDET matches
both methods with relative errors between 10−8 and 10−16, well within the margin of numerical agreement between the
baselines themselves.

To assess behavior at larger scales, we compute log-determinants of growing NTK submatrices derived from ResNet9, with
the matrices formed in both 32-bit and 64-bit floating-point formats. Figure E.4 confirms that MEMDET remains in tight
agreement with slogdet and eigh across all scales. Notably, discrepancies between the 32-bit and 64-bit curves are
attributable solely to differences in the data precision of the underlying input NTK matrices.

Finally, we evaluate the effect of MEMDET’s block size parameter nb, which determines the number of memory partitions
used during computation. Figure E.5 shows that even for NTK matrices of size up to 100,000, increasing the number of
blocks has no measurable impact on accuracy: all results remain within 10−16 to 10−12 relative error compared to the full
in-memory LDL decomposition.

24

Determinant Estimation under Memory Constraints and Neural Scaling Laws

0.0 0.2 0.4 0.6 0.8 1.0

n ×104

0

2

4

6

8

lo
gd

et
(K

n
)

×105 (a) Using Various Number of Blocks nb

nb = 1

nb = 22

nb = 23

nb = 24

nb = 25

0.0 0.2 0.4 0.6 0.8 1.0

n ×104

10−16

10−14

10−12

10−10

10−8

R
el

at
iv

e
E

rr
or

(b) Comparison with the Case of nb = 1

nb = 22

nb = 23

nb = 24

nb = 25

Figure E.5. Effect of the number of blocks nb used in MEMDET. (a) Log-determinants computed for NTK submatrices from ResNet50,
with different values of nb. (b) Relative error with respect to the conventional LDL decomposition (nb = 1). All results match to within
10

−16 to 10
−12 accuracy, indicating high numerical stability.

F. FLODANCE and Scaling Laws
In this section, we collect supporting theoretical content related to the FLODANCE algorithm. Appendix F.1 reviews
background material on neural scaling laws. Appendix F.2 provides the proofs of our main lemma and proposition. Finally,
Appendix F.3 presents the derivation of the FLODANCE parameterization.

F.1. Background Material for Neural Scaling Laws

FLODANCE builds on recent theoretical developments in neural scaling laws that characterize generalization error in terms
of kernel eigenvalue decay and source smoothness. Here, we review the key assumptions and results from Li et al. (2023)
that underpin our bias analysis. These assumptions concern the spectral properties of the kernel, the embedding behavior of
the corresponding RKHS, and the regularity of the target function. We restate them below for completeness.

The following result from Li et al. (2023), stated under a noiseless setting consistent with our framework, relies on the
following assumptions:

Assumption F.1 (Eigenvalue Decay). There exists a β > 1 and constants cβ , Cβ > 0 such that

cβi
−β ≤ λi ≤ Cβi

−β , (F.1)

where the λi are eigenvalues of the kernel k : X × X → R under the decomposition guaranteed by Mercer’s Theorem:

κ(x, x′) =
∞∑

i=1

λiei(x)ei(x
′). (F.2)

We need to define an embedding index associated to certain interpolation spaces that arise as the range of fractional powers
of integral operators. In order to do so, we define the integral operator T : L2 → L2 that acts as the natural embedding of a
RKHSH associated with our kernel κ, precomposed with its adjoint. That is, T is the integral operator given by

(
Tf
)
(x) =

∫

X
κ(x, x′)f(x′)dµ(x′),

where µ is the marginal distribution of ρ on X , where ρ is the source distribution on (X × Y) underlying the dataset. The
operator T can be decomposed by the spectral theorem of compact self-adjoint operators via

T =

∞∑

i=1

λi⟨·, ei⟩L2ei. (F.3)

25

Determinant Estimation under Memory Constraints and Neural Scaling Laws

For s ≥ 0, this lets us define the fractional powers T s : L2 → L2 of the operator T to satisfy

T s(f) =

∞∑

i=1

λs
i ⟨f, ei⟩L2ei. (F.4)

The interpolation space [H]s associated to T s/2 can then be defined as

[H]s = range(T s/2) =

{ ∞∑

i=1

aiλ
s
2
i ei

∣∣∣∣∣
∞∑

i=1

a2i <∞
}
⊂ L2. (F.5)

We now say thatH has an embedding property of order α ∈ (0, 1] if [H]α can be continuously embedded into L∞. Define
then the operator norm, which has the form (see (Fischer & Steinwart, 2020))

∥[H]s ↪→ L∞∥ = ess sup
x∈X ,µ

∞∑

i=1

λα
i ei(x)

2.

We now have the following assumption on the embedding index, which is known to be satisfied if the eigenfunctions ei are
uniformly bounded (Steinwart et al., 2009).

Assumption F.2 (Embedding index). The embedding index α0 = 1/β, where β is the eigenvalue decay in (F.1), and α0 is
defined as

α0 = inf {α : ∥[H]s ↪→ L∞∥ = Mα <∞}

Finally, we have the following assumption on the smoothness of the source function f⋆
ρ = Eρ[y |x], which is a more precise

characterization than requiring it to belong to some interpolation space.

Assumption F.3 (Source condition). There exists an s > 0 and a sequence (ai)i≥1 for which

f⋆
ρ =

∞∑

i=1

aiλ
s
2
i i

− 1
2 ei,

and 0 < c ≤ |ai| ≤ C for some constants c, C.

These assumptions are required for the following theorem, taken from (Li et al., 2023).

Theorem F.1. Under Assumptions F.1 to F.3, fix s > 1 and suppose that λ ≍ n−θ for θ ≥ β. Then

Bias2 = E(n) = Opoly
P (n−min(s,2)β).

F.2. Proofs of Lemma 1 and Proposition 1

Proof of Lemma 1. Fix α > 0 and write Kα
n = Kn+αI where I is the identity matrix. In block form, Kα

n contains Kα
n−1

according to

Kα
n =

[
Kα

n−1 κ(xn−1, xn)
κ(xn−1, xn)

⊺ κ(xn, xn) + α

]
,

where κ(xn−1, xn) = (κ(xi, xn))
n−1
i=1 ∈ R(n−1)d×d. Consequently, since Kα

n and Kα
n−1 are both positive-definite, their

determinants differ by the Schur determinant:

det(Kα
n) = det(Kα

n−1) det
(
κ(xn, xn) + α− κ(xn−1, xn)

⊺[Kα
n−1]

−1κ(xn−1, xn)
)
.

Combining the Sylvester rank inequality with Corollary 20 from (Ameli & Shadden, 2023), we take α ↓ 0 and observe that

pdet(Kn) ≤ pdet(Kn−1) pdet(Cov(f(xn) | f(xi) = 0 for i = 1, . . . , n− 1)). (F.6)

26

Determinant Estimation under Memory Constraints and Neural Scaling Laws

This lets us apply the AM-GM inequality and then bound the Frobenius norm in terms of the nuclear norm to obtain

pdet(Kn)

pdet(Kn−1)
≤ pdet(Cov(f(xn) | f(xi) = 0 for i = 1, . . . , n− 1)) =

r∏

j=1

λj ≤ r−
r
2

r∑

j=1

λ2
j

r
2

≤ r−
r
2 trace (Cov(f(xn) | f(xi) = 0 for i = 1, . . . , n− 1)r)

≤
(
d

r

)r/2

E(n)r,

where the λj are the non-zero eigenvalues of the covariance matrix, and r is its rank.

Proof of Proposition 1. From equation (3),

logdet(Kn)− logdet(Kn−1) = logC − ν log n+ log[1 + op(1)]

= logC − ν log n+ op(1), (F.7)

and so
logdet(Kn)− logdet(K1) = (n− 1) logC − ν log(n!) + op(n).

Letting c0 := logC − logdet(K1) and dividing by n implies the first result. For the second result, we replace the op(1)
term in (F.7) with δn−1. Consequently,

n√
n− 1

[
Ln − L1 −

(
1− 1

n

)
c0 + ν

log(n!)

n

]
= (n− 1)−1/2

n−1∑

i=1

δi,

and from (Billingsley, 1961), (n − 1)−1/2∑n−1
i=1 δi converges weakly to a normal random variable with zero mean and

variance σ2 = E[δ21].

F.3. Derivation of FLODANCE Parameterization

Here we derive the equation (6), which leads to the numerical procedure in Algorithm 1. To show that the coefficients c0
and ν0, . . . , νq can be obtained using standard linear regression procedures, it is necessary to determine the form of the
covariates xn,i. Letting νn := ν0 +

∑q
i=1 νin

−i, Proposition 1 implies that, asymptotically in n,

Ln = L1 +

(
1− 1

n

)
c0 −

(
ν0 +

q∑

i=1

νi

ni

)
log(n!)

n
+

√
n− 1

n
ϵn, ϵn

iid∼ N (0, σ2),

for some c0, ν0, . . . , νq and σ > 0. Rearranging, there is

n√
n− 1

(Ln − L1) =
n− 1√
n− 1

c0 −
(
ν0 +

q∑

i=1

νi

ni

)
log(n!)√
n− 1

+ ϵn,

Equivalently, the above relation can be recast as a linear regression problem:

yn = c0xn,0 +

q+1∑

i=1

νi−1xn,i + ϵn.

where c0, ν0, . . . , νq are the regression coefficients for the covariates xn,i defined as

xn,i =

√
n− 1, i = 0,
log(n!)

ni−1√n− 1
, i = 1, . . . q.

27

Determinant Estimation under Memory Constraints and Neural Scaling Laws

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

|ˆ̀ n
−
` n
|

×103

Right Ordinate

Absolute Error

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

|ˆ̀ n
−
` n
|

×103

Right Ordinate

Absolute Error

0 1 2 3 4 5

n ×104

0.0

0.5

1.0

1.5

2.0

2.5

3.0

` n

×106 (a) ResNet9

Left Ordinate

Empirical

Asymptote

Fit

0 1 2 3 4 5

n ×104

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

` n

×106 (b) ResNet50

Left Ordinate

Empirical

Asymptote

Fit

Figure G.1. Log-determinant ℓn for n = 1, . . . , 50,000, corresponding to m × m NTK submatrices where m = nd and d = 10,
from 64-bit NTK matrices of ResNet9 (a) and ResNet50 (b) trained on CIFAR-10 with 50,000 datapoints. Values are computed using
MEMDET (Algorithm D.2) with LDL decomposition (black curves, overlaid by colored curves). The orange curves represent theoretical
fits based on the parametrization derived in Algorithm 1. Fitting is performed globally over the entire interval (n0, n) = (1, 5× 10

4
),

demonstrating the accuracy of the theoretical model. The blue curve, corresponding to the right axis (scaled to one-thousandth of the left
axis), shows the absolute error.

The target variable for regression is given by

yn =
n√
n− 1

(Ln − L1).

We note that in numerical implementations, the term log(n!) should be evaluated using the log-gamma function: log Γ(n+
1) = log(n!).

G. Further Empirical Analysis of FLODANCE
This section investigates the accuracy, robustness, and generality of FLODANCE through two complementary studies. Ap-
pendix G.1 revisits NTK matrices, quantifying the method’s sensitivity to fitting-interval length and to random subsampling.
Appendix G.2 then applies FLODANCE to a multi-output Gaussian process with a Matérn kernel, demonstrating that the
same scaling-law machinery applies well beyond neural kernels.

G.1. Sensitivity and Robustness on NTK Matrices

Global Fit of FLODANCE on NTK Matrices. To validate the theoretical parameterization given in Appendix F.3, we
compute the log-determinants of NTK submatrices of size 1, . . . , n from ResNet9 and ResNet50 trained on CIFAR-10, with
n = 50,000. The log-determinants are obtained using MEMDET (Algorithm D.2) with LDL decomposition. Figure G.1
presents the empirical results: black curves (largely overlaid by orange) show the computed log-determinants, while the
orange curves show the theoretical fits derived from the parameterization in Algorithm 1. The fitting is performed globally
over the entire interval, demonstrating the accuracy of the theoretical model in capturing the log-determinant behavior. This
global fit complements the extrapolation-based application shown earlier in Figure 5, where FLODANCE is trained on a
small subset and extrapolated to the full range. The near-perfect overlap between the curves highlights the quality of the fit,
with errors remaining below 0.05% for most of the interval.

Uncertainty Under Subsampling. To assess the robustness of FLODANCE predictions, we evaluate how subsampling
affects log-determinant estimates. In Figure G.2, we generate 15 independent subsamples of NTK matrices of size m = nd,
with d = 10 and n = 10,000, from ResNet50 trained on CIFAR-10. Panel (a) shows the exact log-determinants ℓn
computed using MEMDET for each subsample. The black curve denotes the ensemble mean, while the gray shading
around the mean (barely visible) indicates the standard deviation across subsamples. The red curve (right axis of panel)
shows the normalized standard deviation, which remains below 0.1% throughout, indicating remarkable stability of the
log-determinants under subsampling.

28

Determinant Estimation under Memory Constraints and Neural Scaling Laws

0.01%

0.1%

1%

√
V

ar
(`
n
)
/
E[
` n

]Right Ordinate

Normalized STD

0.0%

0.5%

1.0%

1.5%

2.0%

|1
−

ˆ̀ n
/`
n
|

Right Ordinate

Rel. Error (Mean)

Rel. Error (STD)

0.0 0.2 0.4 0.6 0.8 1.0

n ×104

0

1

2

3

4

5

6

7

8

` n

×105 (a) Variation of Empirical Ensemble

Left Ordinate

Mean

STD

0.0 0.2 0.4 0.6 0.8 1.0

n ×104

0

1

2

3

4

5

6

7

8

` n

×105 (b) Variation of Prediction

Left Ordinate

Empirical (Mean)

Asymptote

Fit (Mean)

Extrapolation (Mean)

Figure G.2. Sensitivity of log-determinant estimates to subsampling variation. (a) Exact log-determinants ℓn of 15 randomly subsampled
NTK matrices of size m ×m, m = nd, with number of classes d = 10 and data points n = 10,000, computed using MEMDET on
ResNet50 trained on CIFAR-10. The black curve denotes the mean, and the shaded gray (barely visible) shows the standard deviation
across subsamples. The right ordinate shows the normalized standard deviation (red), which remains below 0.1%. (b) Predicted log-
determinants using FLODANCE fitted over a small interval (n0, ns) = (1, 10

3
) (yellow), and extrapolated to (ns, n) = (10

3
, 10

4
) (red).

The left axis shows the predicted mean; the right axis shows the relative error (blue), with mean error under 1% and variation across
ensemble (shaded blue).

Panel (b) evaluates the predictive performance of FLODANCE on the same ensembles, where the model is trained on the
interval (n0, ns) = (1, 103) and extrapolated to (ns, n) = (103, 104). The predicted mean log-determinant is shown in
red (extrapolated) and yellow (fitted), closely tracking the ensemble mean of the exact log-determinants (black, largely
obscured). The right axis displays the relative error: the blue curve denotes the mean, which stays below 0.5%, and the
shaded region shows the standard deviation across ensembles, which remains comparably tight. These results confirm that
FLODANCE exhibits both accuracy and robustness under random subsampling.

Effect of Fitting Interval Size. We investigate the sensitivity of FLODANCE to the choice of the fitting interval size
ns, which governs the trade-off between computational cost and extrapolation accuracy. Recall that FLODANCE fits a
model to log-determinants computed over the interval [n0, ns] and extrapolates to the full range [ns, n], where n0 = 1 and
n = 50,000 in this experiment. Figure G.3 evaluates this trade-off on NTK matrices from ResNet50 trained on CIFAR-
10. As ns increases, more data is used for fitting (increasing the cost), but less extrapolation is required (increasing the
accuracy).

Panel (a) shows the root-mean-square (RMS) error of the fit in the training interval [n0, ns], which increases with ns due
to the growing number of points to match. Panel (b) displays the RMS error in the extrapolation region [ns, n], which
decreases as the extrapolation range shrinks. Finally, (c) plots the relative error of the prediction at the endpoint n = 50,000,
which drops sharply from over 50% to under 0.1% as ns increases. These results illustrate the central design principle of
FLODANCE: by choosing a moderate ns, one can achieve accurate predictions while keeping the cost of computing exact
log-determinants limited to smaller submatrices.

G.2. Extension to Matérn Kernel Gaussian Process

Finally, we demonstrate the generality of FLODANCE beyond NTKs by applying it to a multi-output Gaussian process with
a Matérn kernel, widely used in spatial statistics due to its tunable smoothness. The isotropic Matérn correlation function
of Matérn (1960) (see also Stein (1999, p. 31)) between two spatial points x,x′ ∈ Rp is given by

ρ(x,x′ |α, ν) = 21−ν

Γ(ν)

(√
2ν
∥x− x′∥2

α

)ν

Kν

(√
2ν
∥x− x′∥2

α

)
,

where Γ(·) is the Gamma function and Kν(·) is the modified Bessel function of the second kind of order ν (Abramowitz
& Stegun, 1964, Section 9.6). The hyperparameter ν modulates the smoothness of the underlying random process, and
the hyperparameter α > 0 is the correlation scale of the kernel. We construct the multi-output covariance using the linear

29

Determinant Estimation under Memory Constraints and Neural Scaling Laws

103 104 5× 104

ns

102

103

R
M

S
E

rr
or

(a) Fitting Error in the Interval [1, ns]

103 104 5× 104

ns

104

R
M

S
E

rr
or

(b) Extrapolation Error in the Interval [ns, 5× 104]

103 104 5× 104

ns

10−1%

100%

R
el

at
iv

e
E

rr
or

(c) Prediction Error at n = 5× 104

Figure G.3. Sensitivity of FLODANCE to the choice of fitting interval size ns. Based on ResNet50 trained on the full CIFAR-10 dataset
with n = 5 × 10

4 data points and d = 10 classes, resulting in NTK matrices of size m = nd = 10
5. FLODANCE extrapolates log-

determinants by fitting a model on submatrices of size n0 = 1 to ns, and extending this fit to larger sizes up to n. (a) Root-mean-square
error (RMSE) of the fit in the interval [1, ns], showing increasing fitting error as ns grows. (b) RMSE of extrapolation in the interval
[ns, n], which decreases with ns. (c) Relative error of predicting the log-determinant at n = 5× 10

4, again decreasing with ns.

101 102 103 104 5× 104

n

10−9

10−4

101

d
et

(K
n
)/

d
et

(K
n
−

1
)

(a) Scale Law

∼ cn−4.22

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

|1
−

ˆ̀ n
/`
n
|

Right Ordinate

Relative Error

0.0 0.2 0.4 0.6 0.8 1.0

n ×104

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

` n

×106 (b) Prediction Based on Scale Law

Left Ordinate

Empirical

Asymptote

Fit

Extrapolation

Figure G.4. Application of FLODANCE to a multi-output Gaussian process with a Matérn kernel. We generate n = 10,000 spatial
locations in R2 and assume a d = 10-dimensional output per location, resulting in a covariance matrix of size m = nd = 100,000. The
covariance structure follows a Matérn kernel with smoothness ν = 1.5 and scale parameter α = 0.04, combined with a linear model of
coregionalization (LMC) for output covariances. (a) Scale law illustrated by the ratio of successive determinants over increasing submatrix
sizes. (b) Log-determinant prediction using FLODANCE. The black curve (left axis, largely obscured) is the exact log-determinant ℓn
computed by MEMDET. FLODANCE is fitted on [1, ns = 10

3
] (yellow) and extrapolated to [ns, n = 10

4
] (red). The blue curve (right

axis) shows the relative error of prediction, which remains below 0.4%.

model of coregionalization (LMC) (Gelfand et al., 2010, Section 28.7) given by

κ(x,x′ |α, ν) = σ(x)
1
2σ(x′)

1
2 ρ(x,x′ |α, ν),

where σ : Rp → Rd×d is the local covariance of the model’s vector output of size d. In this model, we use the matrix
square root, σ

1
2 , to project the scalar Matérn correlation into the d× d coregionalization space while preserving positive-

definiteness.

In our experiment, we generated n = 10,000 random spatial points in dimension p = 2 for a Gaussian process with output
dimension d = 10, resulting in a covariance matrix of size m = nd = 100,000. We set the Matérn correlation scale
to α = 0.04 and the smoothness parameter to ν = 1.5. The local covariance fields σ(x) were instantiated as random
symmetric positive-definite matrices drawn from a Wishart distribution.

Figure G.4 illustrates the effectiveness of FLODANCE on this Matérn-based covariance structure. Panel (a) shows the
empirical scale law via the ratio of successive log-determinants, which exhibits a smooth trend consistent with the theoretical
behavior observed for NTKs. Panel (b) evaluates the extrapolation accuracy of FLODANCE: the black curve denotes the

30

Determinant Estimation under Memory Constraints and Neural Scaling Laws

Table H.1. Computational complexity of log-determinant estimation methods. The first row corresponds to the exact method (MEMDET),
while all other methods are approximations. One FLOP is counted as a fused multiply-add (FMA) operation.

Method Approach Complexity Description

MEMDET Direct factorization 1
6m

3 − 1
4m

2 + 1
12m m : Full matrix size, m = nd

FLODANCE Submatrix extrapolation 1
6m

3
s − 1

4m
2
s +

1
12ms + (q + 3)2ns ns : Number of data samples from n

ms: Sampled matrix size, ms = nsd
q : Laurent series truncation order

SLQ Stochastic trace estimation (m2l +ml2)s l : Krylov subspace size
s : Number of Monte Carlo samples

Pseudo NTK Cross-class block reduction 1
6

(
m
d

)3 − 1
4

(
m
d

)2
+ 1

12

(
m
d

)
+m2 m : Full matrix size

d : Number of model outputs

Block Diagonal Class-wise block approx. 1
6md2 − 1

4md+ 1
12m m : Full matrix size

d : Number of model outputs

Table H.2. Wall-clock runtimes (in seconds) for various log-determinant approximations ℓ̂n, using the same models and configurations
as in Table 2.

Q
ua

nt
ity Model→ Configuration ResNet9 ResNet9 ResNet18 MobileNet

Dataset CIFAR-10 CIFAR-10 CIFAR-10 MNIST
Subsample Size n = 1000 n = 2500 n = 1000 n = 2500

R
un

tim
e

(s
ec

on
ds

)

Direct Computation (16-bit) 6.69 49.35 5.50 70.90
Direct Computation (32-bit) 7.08 49.39 5.87 54.05
Direct Computation (64-bit) 7.09 51.57 5.97 51.22

SLQ 8.904 67.70 22.18 148.8
Block Diagonal 0.003 0.009 0.003 0.008
Pseudo NTK 0.015 0.077 0.014 0.082

FLODANCE n0 = 1, ns = 50 0.008 0.008 0.008 0.009
FLODANCE n0 = 1, ns = 100 0.017 0.018 0.016 0.017
FLODANCE n0 = 300, ns = 500 0.377 0.350 0.354 0.376

exact log-determinant ℓn computed via MEMDET, while the colored curves show the fit (yellow) over the small interval
[1, ns = 103] and the extrapolation (red) to [ns, n = 104]. The right axis displays the relative error (blue), which remains
below 0.4% throughout. This example demonstrates FLODANCE’s flexibility in handling structured kernels beyond neural
tangent models.

H. Comparison of Log-Determinant Methods: Complexity and Runtime
We summarize the computational characteristics of the log-determinant approximation methods evaluated in this work.
Table H.1 compares their theoretical computational complexity, highlighting how each method accesses or approximates the
full matrix—whether through exact computation with full matrix access (MEMDET), or through approximation strategies
such as subsampling (FLODANCE), matrix–vector product oracles (SLQ), or blockwise approximations (Pseudo NTK and
Block Diagonal).

Table H.2 reports wall-clock runtimes (in seconds) for several NTK datasets, using the same models and configurations as
in Table 2. It compares direct 64-bit computations performed on matrices stored in 16-, 32-, and 64-bit precisions to various
approximations, including FLODANCE, SLQ, and others. All measurements were conducted on the same hardware under
comparable conditions. FLODANCE consistently achieves sub-second runtimes even on subsamples of size n = 2500,
outperforming other approximations while avoiding the instability issues associated with SLQ.

31

Determinant Estimation under Memory Constraints and Neural Scaling Laws

I. Implementation and Reproducibility Guide

We developed a Python package detkit3 that implements the MEMDET algorithm and can be used to reproduce the
numerical results of this paper. A minimalistic usage of the detkit.memdet function is shown in Listing I.1, where the
user can specify various parameters: the maximum memory limit (max_mem), the structure of the matrix via the assume
argument—set to gen for generic matrices (Algorithm D.1), sym for symmetric matrices (Algorithm D.2), and spd for
symmetric positive-definite matrices (Algorithm D.3)—whether the data is provided in full or in its lower/upper triangular
form (triangle), the arithmetic precision used during computation (mixed_precision), the location of scratchpad
space on disk (scratch_dir), and enabling parallel data transfer between memory and disk (parallel_io). The
function in this example returns the log and sign of the determinant of the full-size matrix (ld, sign), along with the
diagonal entries of matrix D (diag) and the array of permutation indices (perm) for the permutation matrix P from the
LDL decomposition P⊺MP = LDL⊺.

Listing I.1. A minimalistic usage of detkit package. The function memdet computes logabsdet(M) using the MEMDET algorithm.
Install detkit with "pip install detkit"
from detkit import memdet
import zarr

5 # NTK matrix M on disk
M = zarr.open(’filename.zarr’, mode=’r’)

Compute logabsdet(M) and sgn(det(M)) with Algorithm D.2
Assume M is symmetric and only its upper triangle part is referenced.

10 ld, sign, diag, perm, info = memdet(M, max_mem=’32GB’, assume=’sym’, triangle=’u’,
overwrite=False, mixed_precision=’float64’,
scratch_dir=’/tmp’, parallel_io=’tensorstore’,
verbose=True, return_info=True, flops=True)

The next example, shown in Listing I.2, demonstrates the use of the FLODANCE method via the FitLogdet class in
detkit. This method fits a scaling law to a small subset of log-determinants computed from submatrices and extrapolates
to larger submatrix sizes using Algorithm 1. Specifically, we use the diag array from Listing I.1 to compute the log-
determinants ℓk =

∑kd
i=1 log |Dii|, k = n0, . . . , ns, for submatrices of size kd× kd, where d is the output dimension of the

model (e.g., number of classes in CIFAR-10). These submatrices correspond to a permuted ordering of the original matrix
during LDL decomposition, i.e., M̃ := P⊺MP. While the sampling of submatrices could, in principle, be performed in any
order, the LDL decomposition conveniently provides the log-determinants of successive principal submatrices—formed
by selecting the first kd rows and columns—at no additional cost; an advantage we exploit in this approach. The resulting
sequence ℓk is then fitted over the interval k ∈ [n0, ns], and the fitted FLODANCE model is used to predict log-determinants
in the extrapolation range [ns, n].

We have also concurrently developed a separate high-performance Python package, imate,4 which implements stochastic
Lanczos quadrature (SLQ), a randomized method for approximating the log-determinant at scale. This package is imple-
mented with a C++/CUDA backend and supports execution on both CPU and multiple GPUs. Listing I.3 demonstrates a
minimalistic usage of the imate.logdet function.

3detkit is available for installation from PyPI (https://pypi.org/project/detkit), the documentation can be found at
https://ameli.github.io/detkit, and the source code is available at https://github.com/ameli/detkit.

4imate is available for installation from PyPI (https://pypi.org/project/imate), the documentation can be found at
https://ameli.github.io/imate, and the source code is available at https://github.com/ameli/imate.

32

https://pypi.org/project/detkit
https://ameli.github.io/detkit
https://github.com/ameli/detkit
https://pypi.org/project/imate
https://ameli.github.io/imate
https://github.com/ameli/imate

Determinant Estimation under Memory Constraints and Neural Scaling Laws

Listing I.2. The class FitLogdet fits and extrapolates log-determinants using FLODANCE in Algorithm 1.
import numpy as np
from detkit import FitLogdet

Range of datapoints (n) and number of labels (d) for CIFAR-10
5 n, d = np.range(50000), 10

Compute ℓk := logabsdet(M̃[:k:k]) for sub-matrices of the size k = 1, . . . ,m = nd

Here, diag is an array of length m obtained from Listing I.1
ell = np.cumsum(np.log(np.abs(diag)))

10

Keep every d-th element
ell = ell[(d-1)::d]

Choose a fit interval, such as (n0, ns) = (10
2
, 5× 10

3
)

15 n0, ns = 1e2, 5e3
fit_mask = (n > n0) & (n < ns)

Fit using Algorithm 1 with 4-th order truncated Laurent series
flodet = FitLogdet(q=4)

20 flodet.fit(n[fit_mask], ell[fit_mask])

Extrapolate in a larger interval, such as in (ns, n) = (5× 10
3
, 5× 10

4
)

n_eval = np.geomspace(ns, n)
ell_eval = flodet.eval(n_eval)

Listing I.3. A minimalistic usage of imate package. The function logdet computes logdet(M) using the stochastic Lanczos quadra-
ture algorithm.
Install imate with "pip install imate"
from imate import logdet
import numpy

5 # Number of data (n) and labels (d)
n, d = 50000, 10

NTK matrix M on disk
M = numpy.memmap(’filename.npy’, mode=’r’, dtype=’float32’, shape=(n*d, n*d))

10

Compute logdet(M) using stochastic Lanczos quadrature (SLQ) method
Assume M is symmetric.
ld, info = logdet(M, method=’slq’, min_num_samples=100, max_num_samples=200,

lanczos_degree=100, error_rtol=0.01, confidence_level=0.95,
15 outlier_significance_level=0.001, orthogonalize=-1, num_threads=0,

num_gpu_devices=0, gpu=True, verbose=True, return_info=True,
plot=True)

33

	Introduction
	Computing Determinants at Scale
	Low-Precision Arithmetic
	MEMDET: A Memory-Constrained Algorithm for Log-Determinant Computation

	Scaling Law for the Determinant
	Neural Tangent Kernels and Scaling Laws
	FLODANCE

	Numerical Experiments
	Smaller Data Sets
	Larger Data Sets

	Conclusion
	Nomenclature
	Related Works in Numerical Linear Algebra
	Memory and Computation Challenges of NTK Matrices
	Storage and Compute Requirements
	Data Precisions in Our Computational Pipeline

	Implementation of MEMDET Algorithm
	Optimal Sequence of Processing of Blocks

	Complexity and Performance Analysis of MEMDET
	Computational Complexity
	Data Transfer and Memory Considerations
	Empirical Performance Evaluation
	Concluding Remarks of Performance Analysis
	Computational Accuracy of MEMDET

	FLODANCE and Scaling Laws
	Background Material for Neural Scaling Laws
	Proofs of Lemma 1 and Proposition 1
	Derivation of FLODANCE Parameterization

	Further Empirical Analysis of FLODANCE
	Sensitivity and Robustness on NTK Matrices
	Extension to Matérn Kernel Gaussian Process

	Comparison of Log-Determinant Methods: Complexity and Runtime
	Implementation and Reproducibility Guide

