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Abstract

When building state-of-the-art speech trans-
lation models, the need for large computa-
tional resources is a significant obstacle due to
the large training data size and complex mod-
els. The availability of pre-trained models is a
promising opportunity to build strong speech
translation systems efficiently. In a first step,
we investigate efficient strategies to build cas-
caded and end-to-end speech translation sys-
tems based on pre-trained models. Using this
strategy, we can train and apply the models
on a single GPU. While the end-to-end mod-
els show superior translation performance to
cascaded ones, the application of this technol-
ogy has a limitation on the need for additional
end-to-end training data. In a second step, we
proposed an additional similarity loss to en-
courage the model to generate similar hidden
representations for speech and transcript. Us-
ing this technique, we can increase the data
efficiency and improve the translation quality
by 6 BLEU points in scenarios with limited
end-to-end training data.

1 Introduction

Speech translation (ST) is a process of recognizing
the audio of the source language and translating it
into the text of the target language. Automatic ST
is widely used in daily cases, such as remote meet-
ings, distance education, and online communica-
tion, to lower language barriers and enable efficient
communication. There are two popular approaches
to building ST systems: cascaded and end-to-end.
The cascaded approach uses an Automatic Speech
Recognition (ASR) model to generate the transcript
from the audio in the source language and then a
Machine Translation (MT) model to translate it into
the target language. On the contrary, the end-to-end
approach (Berard et al., 2016; Weiss et al., 2017)
does not have the intermediate transcript and di-
rectly translates the speech in the source language
into the target languages. The cascaded system

has advantages in data availability and flexibility to
incorporate with new ASR and MT developments.
In contrast, the end-to-end system goes outstand-
ing with mitigating error propagation, improving
computational efficiency, and decreasing latency.

Building a successful ST system from scratch is
not always possible because of limitations in train-
ing data and computation resources. Therefore, a
promising approach is fine-tuning pre-trained mod-
els on the speech translation task. In practical sce-
narios, computation limitation is one challenge for
building a successful ST model. Recent works in-
dicate that increasing pre-trained model size still
leads to performance improvements on downstream
NLP tasks (Sanh et al., 2020). Consequently, the
size of the pre-trained model has been getting larger
and larger, leading to sometimes impractical to
fine-tune the pre-trained models. Data scarcity is
another challenge to building ST models. Collect-
ing the end-to-end data is expensive for finding
high-quality data, aligning audio, transcript, and
translation, filtering wrong and poor alignment. In
order to address the above challenges, this research
focuses on improving computational efficiency and
data efficiency with the usage of pre-trained models
for speech translation.

Our first contribution is to compare the perfor-
mances between the cascaded system and the end-
to-end system, both using pre-trained models. With
the advent of deep learning, the end-to-end ap-
proach has been developed recently and proven
to have comparable performance to the cascaded
approach (Niehues et al., 2018; Ansari et al., 2020;
Bentivogli et al., 2021). Howeyver, there is no claim
about which approach has clear advantages on per-
formance. This work investigates the performance
comparison of two systems by directly combining
the pre-trained model without architecture modifi-
cation. Our result shows that the end-to-end system
outperforms the cascaded system on the English-
German speech translation of the CoVoST2 dataset



in terms of fine-tuning efficiency and accuracy.

As the second contribution, we propose two fine-
tuning strategies to improve computational effi-
ciency. Rather than fine-tuning the entire ST model,
the first strategy is fine-tuning the encoder of the
MT model. The strategy is motivated to bridge the
discrepancy between the generated latent speech
representation and the text. Besides, we present
fine-tuning adapter is an effective alternative for
speech translation. Three Bidirectional Long Short-
Term Memory (BLSTM) layers get inserted be-
tween the ASR and MT module in the end-to-end
model. The adapter approach fine-tunes less than
one-tenth parameter and achieves comparable per-
formance to the cascaded model.

The third contribution is that we present a novel
similarity loss to mitigate the data scarcity issue.
Unlike the end-to-end data that are challenging to
acquire, speech-to-transcript data is more accessi-
ble. We develop the similarity loss that measures
the difference between latent representations for
the audio and the transcript. The motivation is
that the speech translation model should represent
similar hidden state representations for aligned au-
dio and transcript. Consequently, minimizing the
similarity loss is proposed to improve speech trans-
lation performance. Our result shows that involving
similarity loss improves data efficiency and boosts
model performance.

2 Related work

Fine-tuning the pre-trained models is an effective
approach to building ST models. (Stoian et al.,
2020) proves that the speech translation task bene-
fits from the language-universal phonetic informa-
tion learned by the pre-trained ASR model. Be-
sides, (Alinejad and Sarkar, 2020) demonstrates
the pre-trained machine translation contributes to
speech translation. Usually, the fine-tuning dataset
requires fewer data and computational resources
than that of pre-training. Thus, this is a practical
approach to dealing with limited resources.

The cascaded system can directly leverage the
entire pre-trained models by feeding the transcript
generated from the ASR module to the MT module.
However, the end-to-end system requires adapta-
tion techniques to use the pre-trained models. For
the end-to-end system, leveraging the pre-trained
model was firstly proposed in (Bérard et al., 2018).
The approach is initializing the encoder and de-
coder of the ST model with the parameters from

the pre-trained ASR encoder and MT decoder, then
fine-tuning the ST model with the end-to-end train-
ing data. (Jia et al., 2019; Inaguma et al., 2019;
Gaido et al., 2021) shows the approach is effective
when the pre-training and fine-tuning domain are
the same. (Le et al., 2021; Li et al., 2021) proves
the approach benefits to leveraging the knowledge
from other domains by using the pre-trained param-
eters. However, this approach discards pre-trained
sub-nets and improves fine-tuning efficiency. Thus,
it might lose valuable semantic information cap-
tured by the sub-nets (Wang et al., 2019) and con-
sequently harm model performance.

The computational limitation is one major obsta-
cle to the end-to-end ST system. (Li et al., 2021)
presents that fine-tuning the layer normalization
and multi-head attention parameters is effective
to improve computational efficiency. (Le et al.,
2021) showed that fine-tuning residual adapt mod-
ules that are transplanting between the encoders
and decoders is a promising approach. These re-
searches show the possibility of fine-tuning compo-
nents of pre-trained models and motivate this work
to explore other efficient fine-tuning approaches.

The lack of end-to-end training data is another
obstacle to the end-to-end ST system. (Weiss et al.,
2017; Bérard et al., 2018; Anastasopoulos and Chi-
ang, 2018) shown multi-task learning improves
speech translation performance by weighting the
losses of ASR, MT and ST. Besides, (Liu et al.,
2019; Gaido et al., 2020) proven the effectiveness
of knowledge distillation by learning a student ST
model from a teacher MT model using the ASR
data. In addition, (Jia et al., 2019; Pino et al., 2020)
present the benefits of involving synthetic data us-
ing the pre-trained models. The above methods
leverage the available data resources, i.e., speech-
to-transcript and transcript-to-translation data, to
reduce the reliance on the end-to-end training data.

3 Speech translation using Pre-trained
models

For building a ST system for a new task, e.g., trans-
lating a single sentence from English to German,
large amounts of training data typically need to
be collected. Besides, training a ST model re-
quires significant computational resources. In this
work, we want to increase the efficiency of build-
ing a speech translation system by facilitating pre-
trained speech recognition and text translation mod-
els, which are nowadays widely available for a



large variety of languages. These pre-trained mod-
els are typically trained in a self-supervised way
using annotated data. However, the annotated data
is often not from the targeted domain.

As shown in Figure 1, this research proposes
the cascaded and end-to-end combinations of pre-
trained models to build ST systems. A first base-
line approach is to combine the two models in
a cascaded manner. However, the cascaded ap-
proach has several drawbacks. Therefore, we also
investigated possibilities to combine the two pre-
trained models into one end-to-end speech transla-
tion model.
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Figure 1: Overview of cascaded and end-to-end combi-
nations with the pre-trained models.

3.1 Cascaded speech translation

The cascaded system consists of two sub-modules:
an ASR component and a MT component.

In the ASR stage, the pre-trained ASR module in-
puts acoustic data and outputs a sequence of speech
representations. The generated representations then
get passed through the output layer to map the rep-
resentations to characters. The output layer is a
linear transformation whose input size equals the
hidden state size, and output size equals the vocab-
ulary size. Afterwards, we use the CTC algorithm
to generate the most probable character sequence.
Figure 2 illustrates the generation stage. Firstly,
each representation maps to a character that has the
highest probabilities. Next, the generated character
sequence gets collapsed by merging the repeated
characters and removing the non-semantic tokens.

In the following MT stage, the transcript gets
first segmented into sub-words according to the
vocabulary of the translation system. Then the
input is fed into the pre-trained model to generate
translation.
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Figure 2: Illustration of CTC algorithm in ASR gener-
ation. The numbers indicate the indices of the highest
probability for the representations. <s> and <\s> in-
dicate the beginning and end of the sentence. PAD
indicates the blank token to distinguish repetition and
separation.

3.2 End-to-end speech translation

Instead of generating the intermediate transcript,
we combine two pre-trained models by feeding
the speech representation generated from the ASR
module to the MT module. In order to achieve this,
we addressed three challenges: How to integrate
both models given the different types of represen-
tation granularity used within the models? How to
enable fine-tuning of the combined model given the
larger size of the two pre-trained models? How to
minimize the need for additional end-to-end train-
ing data?

Integration

The output of the ASR model is a speech repre-
sentation for a fixed size input window. However,
the MT module assumes one embedding for each
sub-word. Therefore, for the same segment, the
lengths of speech and text sequences are very dif-
ferent. The length inconsistency is hard to learn by
the ST model, harming model performance.

For mitigating the length inconsistency, we insert
a CTC-based compression layer between two mod-
ules (Gaido et al., 2021). The compression layer
uses the CTC algorithm to determine which speech
representations are aligned to the same character.
Then the adjacent representations aligned to the



same character are averaged, therefore compressing
the redundant and uninformative vectors. While we
significantly reduce the length inconsistency by this
approach, there is still an inconsistency remaining.
The compressed representations have one speech
representation for each character, while the original
MT system uses one representation per sub-word.
We did not reduce the representation further since
the average operation may significantly lose infor-
mation if it performs over a very long sequence,
and we expect the MT module to learn the mapping
between characters and sub-words.

Fine-tuning

One additional challenge when using the end-to-
end model compared to the cascaded model is that
we need to run both pre-trained models in paral-
lel, while they can be loaded one after the other in
the cascaded model. While the end-to-end model
has the advantage of lower latency, it needs signif-
icantly more memory. The memory consumption
is especially challenging during training, where
the derivations also need to be stored beside the
weights. Therefore, we proposed a two-stage train-
ing for the end-to-end system: In the first stage, we
fine-tune the pre-trained models on the individual
speech recognition or text translation tasks. In this
case, all parameters of the model get updated. We
investigate whether it is helpful to fine-tune the
ASR, MT, or both components. In a second stage,
we jointly train the entire model on the end-to-end
task, but only train part of the parameters:

1. MT encoder: Rather than fine-tuning all pa-
rameters, we propose only to fine-tune the
encoder of the MT module and freeze the rest.
The motivation is to solve the discrepancy be-
tween the speech representation from the ASR
module and the text representation for the de-
coder.

2. Adapter: Fine-tuning adapter has been proven
an efficient approach for machine translation
(Bapna et al., 2019) and a promising approach
for multilingual speech translation (Le et al.,
2021). As the name suggests, adapter works
on adapting the model to new tasks. Specifi-
cally, only the adapt layers are fine-tuned, and
the rest parameters are frozen. We propose
a simple adapter of three BLSTM layers. As
shown in Figure 3, the adapter gets inserted be-
tween the ASR and MT modules. In this way,
semantic information of these two modules

keeps integrated. BLSTM layer has backward
and forward directions and concatenates the
hidden states of both directions, consequently
preserving information from both the past and
the future at each time step and matching the
characteristics of ST tasks.
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Figure 3: Illustration of the adapter. (a) presents the
workflow of end-to-end speech translation with the
adapter. (b) illustrates the composition of the adapter.

Data efficiency

Finally, the drawback of end-to-end models is
the need for additional end-to-end training data.
While the cascaded models are only trained on
ASR and text translation training data, the end-to-
end model also needs data aligned between the
source language audio and the target language text.
Since this data is typically difficult to acquire, we
investigate possibilities to limit the need for this
data.

We propose a similarity loss function to increase
the similarity by the speech representation of the
ASR model and the source language representation
of the text translation encoder. The advantage is
that this only requires speech-to-transcript data, not
end-to-end data.

Inspired by (Pham et al., 2019), the similarity
loss minimizes the difference between the audio
and text representation from the MT module en-
coder. Figure 4 illustrates the workflow of similar-
ity loss function. The last hidden states of the MT
encoder get averaged over time steps to produce
the representing vectors. Afterwards, the Mean
Squared Error gets calculated between the repre-
senting vectors as the loss.

In standard bilingual ST, the model learns the
target language from translation data. As we pro-
pose only using the speech-to-transcript training
data, the model does not know the target language.



Therefore, we implement the target forcing mecha-
nism by generating a target-language-specific em-
bedding with the MT pre-trained embedding layer
and prepending the embedding to the speech repre-
sentations (Gangi et al., 2019).
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Figure 4: An overview of the similarity loss with an
end-to-end system.

In fine-tuning, if the similarity loss is back-
propagated to all parameters, the parameters might
be forced to be zeros to minimize the similarity loss
to the optimum zero. Consequently, we implement
the similarity with the end-to-end system together
with the adapter. We only fine-tune the adapter and
freeze the rest.

4 Experimental Setup

4.1 Dataset

The proposed approaches are evaluated on the CoV-
oST2 (Wang et al., 2020) dataset.CoVoST2 is a
speech-to-text translation corpus. Precisely, one
data sample consists of audio, transcript and trans-
lation. The dataset was collected from more than
10 thousand speakers and 60 accents. Therefore it
is a robust and comprehensive testbed for ST tasks.
In this research, we focus on the English-Germen
translation direction. The average audio length is
5 seconds. The transcript and translation have an
average of 60 and 66 words, respectively.

4.2 Metric

This research aims to explore the cascaded and end-
to-end combinations of pre-trained models. There-
fore it has three tasks: ASR, MT and ST. This re-
search calculates Word Error Rate (WER) for ASR

evaluation using VizSeq ! (Changhan Wang, 2019)
and Bilingual Evaluation Understudy (BLEU) (Pa-
pineni et al., 2002) for MT and ST evaluation using
sacreBLEU ? (Post, 2018).

WER counts the wrong words of the speech
recognition result and divides the number by the to-
tal number of words of the reference. The lower the
WER score is, the better performance the model
has. BLEU is calculated based on N-grams and
works on word level. A higher BLEU score indi-
cates a better model performance.

4.3 Pre-processing

Firstly, we remove the double quotes at the begin-
ning and the end of the transcript and translation.
Next, the uncompleted data which has no transcript
or translation gets removed. Each languages pair
has about three uncompleted data. Besides, we
build a custom vocabulary for ASR tasks. Although
the transcript is in English, some characters are
out of the English alphabet for place and name in
CoVoST2. Instead of regarding these characters as
unknown, we extract all distinct characters of the
training data and build our vocabulary. The vocabu-
lary has 128 tokens composed of all distinct letters
among transcripts, two tokens for the beginning
and end of the sentence, one blank token, and one
unknown token.

4.4 Pre-trained models

This research uses a pre-trained wav2vec2.0
(Baevski et al., 2020) for speech recognition task
and a pre-trained MBart50 (Liu et al., 2020; Tang
et al., 2020) for machine translation task.
wav2vec2.0 is a self-supervised model to learn
powerful representations from raw audio data. It
consists of a multi-layer convolutional feature en-
coder that learns latent representations from the raw
speech, a context network that follows the Trans-
former architecture to learn relative positional em-
bedding, and a quantisation model that discretises
feature encoders and select the quantised represen-
tations. We select the pre-trained wav2vec2.0 with
the large architecture. The model is pre-trained on
Librispeech (Panayotov et al., 2015) corpus that
contains 960hours of unlabeled data and then fine-
tuned with the audio-transcript data pair from the
same dataset. The pre-training loss consists of the
contrastive loss to generate accurate representation

1https://github.com/facebookresearch/
vizseq
https://github.com/mjpost/sacrebleu
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and the diversity loss to encourage equal distribu-
tion. The fine-tuning loss is Connectionist Tempo-
ral Classification (CTC) loss (Graves et al., 2006)
that is used for the downstream speech recognition
tasks.

MBart50 is a sequence-to-sequence denoising
auto-encoder model that has been pre-trained on
large-scale monolingual and multilingual data. The
model gets optimised by minimising a denoising
loss function that randomly masks 35% of the input.
MBart50 is pre-trained with 50 languages from
diverse language families to adapt to downstream
MT tasks.

5 Results

We evaluated the cascaded model as well as the dif-
ferent proposed methods for the end-to-end model
on the CoVoST?2 dataset. In addition, we investi-
gated how we can reduce the need for additional
end-to-end training data in a second series of ex-
periments.

5.1 Cascaded system

In cascaded combination, we explore the efficiency
of fine-tuning each component. Firstly we exper-
iment on initializing with parameters of the pre-
trained models to provide references. Then, we
fine-tune the pre-trained wav2vec2.0 and MBart50
models with speech-to-transcript and transcript-to-
translation training data, respectively. We experi-
ment with different combinations of the pre-trained
and fine-tuned parameters to explore the efficiency.

As Table 1 shows, for the cascaded combina-
tion, fine-tuning either ASR or MT module bene-
fits performance, but fine-tuning the MT module
contributes more to speech translation compared
with fine-tuning the ASR module. Fine-tuning
both modules leads to the best improvements of
4.9 BLEU points compared with no fine-tuning
and 3.3 BLEU points improvement on the CoV-
0oST2 Cascaded. Besides, we observe that improve-
ment roughly equals the sum of the gains from
fine-tuning each model.

Rather than fine-tune the entire module, we
find that fine-tuning the encoder of the MT model
slightly improves performance according to cas-
caded experiments 2 and 5. Compared with cas-
caded experiments 1, 4, and 5, we observe that
with 25% parameters of MBart50, fine-tuning the
encoder achieves 41% improvements.

5.2 End-to-end system

In the end-to-end combination, we apply a two-
stage training scheme. The first stage is fine-tuning
the pre-trained models, and the second stage is fine-
tuning the end-to-end model with the end-to-end
data. The two-stage training is motivated to reduce
the cost of computational resources by leveraging
the available data resource as described in Section
32.

In light of building the cascaded model directly
using the ASR and MT modules, we first experi-
ment with the initialization on the end-to-end sys-
tem. E2E Experiments 1, 2, and 3 show that the
end-to-end model does not work without the end-
to-end training data.

We experiment with the end-to-end training data
on different fine-tuning modules in the first stage
and fine-tuning the MT encoder or adapter in the
second stage to address computation efficiency. We
find that fine-tuning the ASR module in the first
stage is necessary to enable speech translation for
the end-to-end combination. On the contrary, fine-
tuning the MT module in the first stage barely in-
fluences speech translation performance.

In conclusion, the two-stage approach that trains
the ASR component independently in the first stage
and the MT encoder using the end-to-end data in
the second stage is promising to build end-to-end
ST systems. With this configuration (E2E 4), we
can achieve a better translation quality than the cas-
caded system. Furthermore, the end-to-end com-
bination achieves 4.5 BLEU points improvements
compared with the CoVoST2 E2E.

A second approach is to integrate an additional
adapt layer. In this case, we only need to train
67M parameter instead of 150M ones. The final
performance is 2 BLEU point worse. However, the
pre-trained MT model is not changed and there-
fore can for example still be used to perform text
translation in parallel.

5.3 Data efficiency

In a second series of experiments we evaluated the
data efficient of the end-to-end model with respect
to end-to-end training data. Therefore, we inves-
tigated the effect of the similarity loss on the best
performing system using the adapt layer (E2E 7).
In order to use the same hyperparameters as the
previous experiments in model training, we scale
up the similarity loss value by 100 to make it at the
same scale as the original experiments. We evalu-



Initialization

Fine-tune strategy Evaluation task

Experiment ASR module MT module MT encoder Adapter #params ASR MT ST
Cascaded 1 PT PT - - - 29.7 325 167
Cascaded 2 FT PT - - 315SM 223 - 18.4
Cascaded 3 PT FT - - 610M - 373 195
Cascaded 4 FT FT - - 925M - - 21.6
Cascaded 5 FT PT Yes - 152M - 36.1 18.7
CoVoST?2 Cascaded - - - - - 214 290 183
E2E 1 PT PT - - - - - 0
E2E 2 FT PT - - - - - 0.5
E2E 3 PT FT - - - - - 0.1
E2E 4 FT PT Yes - 152M - - 228
E2E S PT PT Yes - 152M - - 0.4
E2E 6 FT FT Yes - 152M - - 22.0
E2E 7 FT PT - Yes 67M - - 20.9
CoVoST2 E2E - - - - - - - 16.3

Table 1: Experiment results for model combination and fine-tuning strategy. Cascaded represents the cascaded
combination, and E2E represents the end-to-end combination. PT means the pre-trained parameters, FT means the
fine-tuned parameters that are from fine-tuning the entire model. Fine-tune strategy means the efficient strategy
except fine-tuning the entire mode. For E2E, #params means the fine-tuned parameters in the second stage. We
report WER score for ASR tasks and BLEU score for MT and ST tasks. The CoVoST2 results are from (Wang et al.,

2020) that uses the exact same dataset as us.

ate model performance on different portions of the
training data to evaluate the data efficiency.

In a first experiment, we evaluated the model
on the zero-shot condition, where no end-to-end
training data is available. As Table 2 shows, this
approach fails to enable speech translation. We ob-
serve that the translation are all in English, although
with the target forcing mechanism. Therefore we
expect that involving a few end-to-end data would
solve the issue.

Continue from the model trained with the similar-
ity loss, we experiment on training with the original
loss using different amounts of data. We observe
that training with 10% training data enables the
model to translate into the correct target language
but poorly. In the case of fine-tuning with 20%
data, adding similarity loss improves 51% com-
pared with that without the loss. The evaluation
score reaches 17.8 BLEU points, which achieves
85% performance of the best end-to-end model.
Besides, compared with the learning curve of the
original loss, adding the similarity loss enables the
model to fulfil speech translation tasks with less
training data. The advantages of adding the sim-
ilarity loss demonstrate a promising approach to
improve data efficiency. In addition, we observe
that with all training data, training the model with
the similarity loss gains 0.7 BLEU point improve-
ment. Therefore, we conclude that involving the

similarity loss increases data efficiency and benefits
to improving model performance.

6 Conclusion

One major challenge of building speech translation
systems is the computational and data requirements.
In this work, we proposed using pre-trained speech
recognition and text translation models to build
a state-of-the-art speech translation system with
limited resources. While a cascaded combination
directly achieves relatively good performance, we
develop several techniques to enable the end-to-end
system to use these models.

We propose integrating both models into one
single end-to-end speech translation model that
can deal with independently pre-trained models
and handle different word representations used in
the pre-trained models. Secondly, we propose two
training strategies that allow the training and in-
ference on a single GPU. Finally, we present an
additional training loss to reduce the need for end-
to-end training data. Using all these techniques,
the proposed model can outperform the cascaded
model.

In future work, we will investigate how addi-
tional training signals can reduce the need for end-
to-end training data even further, leading to the
need for no end-to-end training data. Another
promising direction is the use of a multi-lingual



Experiment Without 10% 15% 20% All
Only original loss - 032 198 11.8 209
After similarity loss 0 098 10.7 178 21.6

Table 2: Experiment results on the similarity loss. For similarity loss, without means training only with the similarity
loss; the following portion means, continue from the without, training with that portion of data with the original loss.

The result is reported in the BLEU score.

system. In this case, end-to-end training data from
another direction might be sufficient to translate
speech in a new direction.
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