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Abstract

When building state-of-the-art speech trans-001
lation models, the need for large computa-002
tional resources is a significant obstacle due to003
the large training data size and complex mod-004
els. The availability of pre-trained models is a005
promising opportunity to build strong speech006
translation systems efficiently. In a first step,007
we investigate efficient strategies to build cas-008
caded and end-to-end speech translation sys-009
tems based on pre-trained models. Using this010
strategy, we can train and apply the models011
on a single GPU. While the end-to-end mod-012
els show superior translation performance to013
cascaded ones, the application of this technol-014
ogy has a limitation on the need for additional015
end-to-end training data. In a second step, we016
proposed an additional similarity loss to en-017
courage the model to generate similar hidden018
representations for speech and transcript. Us-019
ing this technique, we can increase the data020
efficiency and improve the translation quality021
by 6 BLEU points in scenarios with limited022
end-to-end training data.023

1 Introduction024

Speech translation (ST) is a process of recognizing025

the audio of the source language and translating it026

into the text of the target language. Automatic ST027

is widely used in daily cases, such as remote meet-028

ings, distance education, and online communica-029

tion, to lower language barriers and enable efficient030

communication. There are two popular approaches031

to building ST systems: cascaded and end-to-end.032

The cascaded approach uses an Automatic Speech033

Recognition (ASR) model to generate the transcript034

from the audio in the source language and then a035

Machine Translation (MT) model to translate it into036

the target language. On the contrary, the end-to-end037

approach (Berard et al., 2016; Weiss et al., 2017)038

does not have the intermediate transcript and di-039

rectly translates the speech in the source language040

into the target languages. The cascaded system041

has advantages in data availability and flexibility to 042

incorporate with new ASR and MT developments. 043

In contrast, the end-to-end system goes outstand- 044

ing with mitigating error propagation, improving 045

computational efficiency, and decreasing latency. 046

Building a successful ST system from scratch is 047

not always possible because of limitations in train- 048

ing data and computation resources. Therefore, a 049

promising approach is fine-tuning pre-trained mod- 050

els on the speech translation task. In practical sce- 051

narios, computation limitation is one challenge for 052

building a successful ST model. Recent works in- 053

dicate that increasing pre-trained model size still 054

leads to performance improvements on downstream 055

NLP tasks (Sanh et al., 2020). Consequently, the 056

size of the pre-trained model has been getting larger 057

and larger, leading to sometimes impractical to 058

fine-tune the pre-trained models. Data scarcity is 059

another challenge to building ST models. Collect- 060

ing the end-to-end data is expensive for finding 061

high-quality data, aligning audio, transcript, and 062

translation, filtering wrong and poor alignment. In 063

order to address the above challenges, this research 064

focuses on improving computational efficiency and 065

data efficiency with the usage of pre-trained models 066

for speech translation. 067

Our first contribution is to compare the perfor- 068

mances between the cascaded system and the end- 069

to-end system, both using pre-trained models. With 070

the advent of deep learning, the end-to-end ap- 071

proach has been developed recently and proven 072

to have comparable performance to the cascaded 073

approach (Niehues et al., 2018; Ansari et al., 2020; 074

Bentivogli et al., 2021). However, there is no claim 075

about which approach has clear advantages on per- 076

formance. This work investigates the performance 077

comparison of two systems by directly combining 078

the pre-trained model without architecture modifi- 079

cation. Our result shows that the end-to-end system 080

outperforms the cascaded system on the English- 081

German speech translation of the CoVoST2 dataset 082
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in terms of fine-tuning efficiency and accuracy.083

As the second contribution, we propose two fine-084

tuning strategies to improve computational effi-085

ciency. Rather than fine-tuning the entire ST model,086

the first strategy is fine-tuning the encoder of the087

MT model. The strategy is motivated to bridge the088

discrepancy between the generated latent speech089

representation and the text. Besides, we present090

fine-tuning adapter is an effective alternative for091

speech translation. Three Bidirectional Long Short-092

Term Memory (BLSTM) layers get inserted be-093

tween the ASR and MT module in the end-to-end094

model. The adapter approach fine-tunes less than095

one-tenth parameter and achieves comparable per-096

formance to the cascaded model.097

The third contribution is that we present a novel098

similarity loss to mitigate the data scarcity issue.099

Unlike the end-to-end data that are challenging to100

acquire, speech-to-transcript data is more accessi-101

ble. We develop the similarity loss that measures102

the difference between latent representations for103

the audio and the transcript. The motivation is104

that the speech translation model should represent105

similar hidden state representations for aligned au-106

dio and transcript. Consequently, minimizing the107

similarity loss is proposed to improve speech trans-108

lation performance. Our result shows that involving109

similarity loss improves data efficiency and boosts110

model performance.111

2 Related work112

Fine-tuning the pre-trained models is an effective113

approach to building ST models. (Stoian et al.,114

2020) proves that the speech translation task bene-115

fits from the language-universal phonetic informa-116

tion learned by the pre-trained ASR model. Be-117

sides, (Alinejad and Sarkar, 2020) demonstrates118

the pre-trained machine translation contributes to119

speech translation. Usually, the fine-tuning dataset120

requires fewer data and computational resources121

than that of pre-training. Thus, this is a practical122

approach to dealing with limited resources.123

The cascaded system can directly leverage the124

entire pre-trained models by feeding the transcript125

generated from the ASR module to the MT module.126

However, the end-to-end system requires adapta-127

tion techniques to use the pre-trained models. For128

the end-to-end system, leveraging the pre-trained129

model was firstly proposed in (Bérard et al., 2018).130

The approach is initializing the encoder and de-131

coder of the ST model with the parameters from132

the pre-trained ASR encoder and MT decoder, then 133

fine-tuning the ST model with the end-to-end train- 134

ing data. (Jia et al., 2019; Inaguma et al., 2019; 135

Gaido et al., 2021) shows the approach is effective 136

when the pre-training and fine-tuning domain are 137

the same. (Le et al., 2021; Li et al., 2021) proves 138

the approach benefits to leveraging the knowledge 139

from other domains by using the pre-trained param- 140

eters. However, this approach discards pre-trained 141

sub-nets and improves fine-tuning efficiency. Thus, 142

it might lose valuable semantic information cap- 143

tured by the sub-nets (Wang et al., 2019) and con- 144

sequently harm model performance. 145

The computational limitation is one major obsta- 146

cle to the end-to-end ST system. (Li et al., 2021) 147

presents that fine-tuning the layer normalization 148

and multi-head attention parameters is effective 149

to improve computational efficiency. (Le et al., 150

2021) showed that fine-tuning residual adapt mod- 151

ules that are transplanting between the encoders 152

and decoders is a promising approach. These re- 153

searches show the possibility of fine-tuning compo- 154

nents of pre-trained models and motivate this work 155

to explore other efficient fine-tuning approaches. 156

The lack of end-to-end training data is another 157

obstacle to the end-to-end ST system. (Weiss et al., 158

2017; Bérard et al., 2018; Anastasopoulos and Chi- 159

ang, 2018) shown multi-task learning improves 160

speech translation performance by weighting the 161

losses of ASR, MT and ST. Besides, (Liu et al., 162

2019; Gaido et al., 2020) proven the effectiveness 163

of knowledge distillation by learning a student ST 164

model from a teacher MT model using the ASR 165

data. In addition, (Jia et al., 2019; Pino et al., 2020) 166

present the benefits of involving synthetic data us- 167

ing the pre-trained models. The above methods 168

leverage the available data resources, i.e., speech- 169

to-transcript and transcript-to-translation data, to 170

reduce the reliance on the end-to-end training data. 171

3 Speech translation using Pre-trained 172

models 173

For building a ST system for a new task, e.g., trans- 174

lating a single sentence from English to German, 175

large amounts of training data typically need to 176

be collected. Besides, training a ST model re- 177

quires significant computational resources. In this 178

work, we want to increase the efficiency of build- 179

ing a speech translation system by facilitating pre- 180

trained speech recognition and text translation mod- 181

els, which are nowadays widely available for a 182
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large variety of languages. These pre-trained mod-183

els are typically trained in a self-supervised way184

using annotated data. However, the annotated data185

is often not from the targeted domain.186

As shown in Figure 1, this research proposes187

the cascaded and end-to-end combinations of pre-188

trained models to build ST systems. A first base-189

line approach is to combine the two models in190

a cascaded manner. However, the cascaded ap-191

proach has several drawbacks. Therefore, we also192

investigated possibilities to combine the two pre-193

trained models into one end-to-end speech transla-194

tion model.195

Figure 1: Overview of cascaded and end-to-end combi-
nations with the pre-trained models.

3.1 Cascaded speech translation196

The cascaded system consists of two sub-modules:197

an ASR component and a MT component.198

In the ASR stage, the pre-trained ASR module in-199

puts acoustic data and outputs a sequence of speech200

representations. The generated representations then201

get passed through the output layer to map the rep-202

resentations to characters. The output layer is a203

linear transformation whose input size equals the204

hidden state size, and output size equals the vocab-205

ulary size. Afterwards, we use the CTC algorithm206

to generate the most probable character sequence.207

Figure 2 illustrates the generation stage. Firstly,208

each representation maps to a character that has the209

highest probabilities. Next, the generated character210

sequence gets collapsed by merging the repeated211

characters and removing the non-semantic tokens.212

In the following MT stage, the transcript gets213

first segmented into sub-words according to the214

vocabulary of the translation system. Then the215

input is fed into the pre-trained model to generate216

translation.217

Figure 2: Illustration of CTC algorithm in ASR gener-
ation. The numbers indicate the indices of the highest
probability for the representations. <s> and <\s> in-
dicate the beginning and end of the sentence. PAD
indicates the blank token to distinguish repetition and
separation.

3.2 End-to-end speech translation 218

Instead of generating the intermediate transcript, 219

we combine two pre-trained models by feeding 220

the speech representation generated from the ASR 221

module to the MT module. In order to achieve this, 222

we addressed three challenges: How to integrate 223

both models given the different types of represen- 224

tation granularity used within the models? How to 225

enable fine-tuning of the combined model given the 226

larger size of the two pre-trained models? How to 227

minimize the need for additional end-to-end train- 228

ing data? 229

Integration 230

The output of the ASR model is a speech repre- 231

sentation for a fixed size input window. However, 232

the MT module assumes one embedding for each 233

sub-word. Therefore, for the same segment, the 234

lengths of speech and text sequences are very dif- 235

ferent. The length inconsistency is hard to learn by 236

the ST model, harming model performance. 237

For mitigating the length inconsistency, we insert 238

a CTC-based compression layer between two mod- 239

ules (Gaido et al., 2021). The compression layer 240

uses the CTC algorithm to determine which speech 241

representations are aligned to the same character. 242

Then the adjacent representations aligned to the 243
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same character are averaged, therefore compressing244

the redundant and uninformative vectors. While we245

significantly reduce the length inconsistency by this246

approach, there is still an inconsistency remaining.247

The compressed representations have one speech248

representation for each character, while the original249

MT system uses one representation per sub-word.250

We did not reduce the representation further since251

the average operation may significantly lose infor-252

mation if it performs over a very long sequence,253

and we expect the MT module to learn the mapping254

between characters and sub-words.255

Fine-tuning256

One additional challenge when using the end-to-257

end model compared to the cascaded model is that258

we need to run both pre-trained models in paral-259

lel, while they can be loaded one after the other in260

the cascaded model. While the end-to-end model261

has the advantage of lower latency, it needs signif-262

icantly more memory. The memory consumption263

is especially challenging during training, where264

the derivations also need to be stored beside the265

weights. Therefore, we proposed a two-stage train-266

ing for the end-to-end system: In the first stage, we267

fine-tune the pre-trained models on the individual268

speech recognition or text translation tasks. In this269

case, all parameters of the model get updated. We270

investigate whether it is helpful to fine-tune the271

ASR, MT, or both components. In a second stage,272

we jointly train the entire model on the end-to-end273

task, but only train part of the parameters:274

1. MT encoder: Rather than fine-tuning all pa-275

rameters, we propose only to fine-tune the276

encoder of the MT module and freeze the rest.277

The motivation is to solve the discrepancy be-278

tween the speech representation from the ASR279

module and the text representation for the de-280

coder.281

2. Adapter: Fine-tuning adapter has been proven282

an efficient approach for machine translation283

(Bapna et al., 2019) and a promising approach284

for multilingual speech translation (Le et al.,285

2021). As the name suggests, adapter works286

on adapting the model to new tasks. Specifi-287

cally, only the adapt layers are fine-tuned, and288

the rest parameters are frozen. We propose289

a simple adapter of three BLSTM layers. As290

shown in Figure 3, the adapter gets inserted be-291

tween the ASR and MT modules. In this way,292

semantic information of these two modules293

keeps integrated. BLSTM layer has backward 294

and forward directions and concatenates the 295

hidden states of both directions, consequently 296

preserving information from both the past and 297

the future at each time step and matching the 298

characteristics of ST tasks. 299

Figure 3: Illustration of the adapter. (a) presents the
workflow of end-to-end speech translation with the
adapter. (b) illustrates the composition of the adapter.

Data efficiency 300

Finally, the drawback of end-to-end models is 301

the need for additional end-to-end training data. 302

While the cascaded models are only trained on 303

ASR and text translation training data, the end-to- 304

end model also needs data aligned between the 305

source language audio and the target language text. 306

Since this data is typically difficult to acquire, we 307

investigate possibilities to limit the need for this 308

data. 309

We propose a similarity loss function to increase 310

the similarity by the speech representation of the 311

ASR model and the source language representation 312

of the text translation encoder. The advantage is 313

that this only requires speech-to-transcript data, not 314

end-to-end data. 315

Inspired by (Pham et al., 2019), the similarity 316

loss minimizes the difference between the audio 317

and text representation from the MT module en- 318

coder. Figure 4 illustrates the workflow of similar- 319

ity loss function. The last hidden states of the MT 320

encoder get averaged over time steps to produce 321

the representing vectors. Afterwards, the Mean 322

Squared Error gets calculated between the repre- 323

senting vectors as the loss. 324

In standard bilingual ST, the model learns the 325

target language from translation data. As we pro- 326

pose only using the speech-to-transcript training 327

data, the model does not know the target language. 328
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Therefore, we implement the target forcing mecha-329

nism by generating a target-language-specific em-330

bedding with the MT pre-trained embedding layer331

and prepending the embedding to the speech repre-332

sentations (Gangi et al., 2019).333

Figure 4: An overview of the similarity loss with an
end-to-end system.

In fine-tuning, if the similarity loss is back-334

propagated to all parameters, the parameters might335

be forced to be zeros to minimize the similarity loss336

to the optimum zero. Consequently, we implement337

the similarity with the end-to-end system together338

with the adapter. We only fine-tune the adapter and339

freeze the rest.340

4 Experimental Setup341

4.1 Dataset342

The proposed approaches are evaluated on the CoV-343

oST2 (Wang et al., 2020) dataset.CoVoST2 is a344

speech-to-text translation corpus. Precisely, one345

data sample consists of audio, transcript and trans-346

lation. The dataset was collected from more than347

10 thousand speakers and 60 accents. Therefore it348

is a robust and comprehensive testbed for ST tasks.349

In this research, we focus on the English-Germen350

translation direction. The average audio length is351

5 seconds. The transcript and translation have an352

average of 60 and 66 words, respectively.353

4.2 Metric354

This research aims to explore the cascaded and end-355

to-end combinations of pre-trained models. There-356

fore it has three tasks: ASR, MT and ST. This re-357

search calculates Word Error Rate (WER) for ASR358

evaluation using VizSeq 1 (Changhan Wang, 2019) 359

and Bilingual Evaluation Understudy (BLEU) (Pa- 360

pineni et al., 2002) for MT and ST evaluation using 361

sacreBLEU 2 (Post, 2018). 362

WER counts the wrong words of the speech 363

recognition result and divides the number by the to- 364

tal number of words of the reference. The lower the 365

WER score is, the better performance the model 366

has. BLEU is calculated based on N-grams and 367

works on word level. A higher BLEU score indi- 368

cates a better model performance. 369

4.3 Pre-processing 370

Firstly, we remove the double quotes at the begin- 371

ning and the end of the transcript and translation. 372

Next, the uncompleted data which has no transcript 373

or translation gets removed. Each languages pair 374

has about three uncompleted data. Besides, we 375

build a custom vocabulary for ASR tasks. Although 376

the transcript is in English, some characters are 377

out of the English alphabet for place and name in 378

CoVoST2. Instead of regarding these characters as 379

unknown, we extract all distinct characters of the 380

training data and build our vocabulary. The vocabu- 381

lary has 128 tokens composed of all distinct letters 382

among transcripts, two tokens for the beginning 383

and end of the sentence, one blank token, and one 384

unknown token. 385

4.4 Pre-trained models 386

This research uses a pre-trained wav2vec2.0 387

(Baevski et al., 2020) for speech recognition task 388

and a pre-trained MBart50 (Liu et al., 2020; Tang 389

et al., 2020) for machine translation task. 390

wav2vec2.0 is a self-supervised model to learn 391

powerful representations from raw audio data. It 392

consists of a multi-layer convolutional feature en- 393

coder that learns latent representations from the raw 394

speech, a context network that follows the Trans- 395

former architecture to learn relative positional em- 396

bedding, and a quantisation model that discretises 397

feature encoders and select the quantised represen- 398

tations. We select the pre-trained wav2vec2.0 with 399

the large architecture. The model is pre-trained on 400

Librispeech (Panayotov et al., 2015) corpus that 401

contains 960hours of unlabeled data and then fine- 402

tuned with the audio-transcript data pair from the 403

same dataset. The pre-training loss consists of the 404

contrastive loss to generate accurate representation 405

1https://github.com/facebookresearch/
vizseq

2https://github.com/mjpost/sacrebleu
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and the diversity loss to encourage equal distribu-406

tion. The fine-tuning loss is Connectionist Tempo-407

ral Classification (CTC) loss (Graves et al., 2006)408

that is used for the downstream speech recognition409

tasks.410

MBart50 is a sequence-to-sequence denoising411

auto-encoder model that has been pre-trained on412

large-scale monolingual and multilingual data. The413

model gets optimised by minimising a denoising414

loss function that randomly masks 35% of the input.415

MBart50 is pre-trained with 50 languages from416

diverse language families to adapt to downstream417

MT tasks.418

5 Results419

We evaluated the cascaded model as well as the dif-420

ferent proposed methods for the end-to-end model421

on the CoVoST2 dataset. In addition, we investi-422

gated how we can reduce the need for additional423

end-to-end training data in a second series of ex-424

periments.425

5.1 Cascaded system426

In cascaded combination, we explore the efficiency427

of fine-tuning each component. Firstly we exper-428

iment on initializing with parameters of the pre-429

trained models to provide references. Then, we430

fine-tune the pre-trained wav2vec2.0 and MBart50431

models with speech-to-transcript and transcript-to-432

translation training data, respectively. We experi-433

ment with different combinations of the pre-trained434

and fine-tuned parameters to explore the efficiency.435

As Table 1 shows, for the cascaded combina-436

tion, fine-tuning either ASR or MT module bene-437

fits performance, but fine-tuning the MT module438

contributes more to speech translation compared439

with fine-tuning the ASR module. Fine-tuning440

both modules leads to the best improvements of441

4.9 BLEU points compared with no fine-tuning442

and 3.3 BLEU points improvement on the CoV-443

oST2 Cascaded. Besides, we observe that improve-444

ment roughly equals the sum of the gains from445

fine-tuning each model.446

Rather than fine-tune the entire module, we447

find that fine-tuning the encoder of the MT model448

slightly improves performance according to cas-449

caded experiments 2 and 5. Compared with cas-450

caded experiments 1, 4, and 5, we observe that451

with 25% parameters of MBart50, fine-tuning the452

encoder achieves 41% improvements.453

5.2 End-to-end system 454

In the end-to-end combination, we apply a two- 455

stage training scheme. The first stage is fine-tuning 456

the pre-trained models, and the second stage is fine- 457

tuning the end-to-end model with the end-to-end 458

data. The two-stage training is motivated to reduce 459

the cost of computational resources by leveraging 460

the available data resource as described in Section 461

3.2 . 462

In light of building the cascaded model directly 463

using the ASR and MT modules, we first experi- 464

ment with the initialization on the end-to-end sys- 465

tem. E2E Experiments 1, 2, and 3 show that the 466

end-to-end model does not work without the end- 467

to-end training data. 468

We experiment with the end-to-end training data 469

on different fine-tuning modules in the first stage 470

and fine-tuning the MT encoder or adapter in the 471

second stage to address computation efficiency. We 472

find that fine-tuning the ASR module in the first 473

stage is necessary to enable speech translation for 474

the end-to-end combination. On the contrary, fine- 475

tuning the MT module in the first stage barely in- 476

fluences speech translation performance. 477

In conclusion, the two-stage approach that trains 478

the ASR component independently in the first stage 479

and the MT encoder using the end-to-end data in 480

the second stage is promising to build end-to-end 481

ST systems. With this configuration (E2E 4), we 482

can achieve a better translation quality than the cas- 483

caded system. Furthermore, the end-to-end com- 484

bination achieves 4.5 BLEU points improvements 485

compared with the CoVoST2 E2E. 486

A second approach is to integrate an additional 487

adapt layer. In this case, we only need to train 488

67M parameter instead of 150M ones. The final 489

performance is 2 BLEU point worse. However, the 490

pre-trained MT model is not changed and there- 491

fore can for example still be used to perform text 492

translation in parallel. 493

5.3 Data efficiency 494

In a second series of experiments we evaluated the 495

data efficient of the end-to-end model with respect 496

to end-to-end training data. Therefore, we inves- 497

tigated the effect of the similarity loss on the best 498

performing system using the adapt layer (E2E 7). 499

In order to use the same hyperparameters as the 500

previous experiments in model training, we scale 501

up the similarity loss value by 100 to make it at the 502

same scale as the original experiments. We evalu- 503
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Initialization Fine-tune strategy Evaluation task
Experiment ASR module MT module MT encoder Adapter #params ASR MT ST
Cascaded 1 PT PT - - - 29.7 32.5 16.7
Cascaded 2 FT PT - - 315M 22.3 - 18.4
Cascaded 3 PT FT - - 610M - 37.3 19.5
Cascaded 4 FT FT - - 925M - - 21.6
Cascaded 5 FT PT Yes - 152M - 36.1 18.7

CoVoST2 Cascaded - - - - - 21.4 29.0 18.3
E2E 1 PT PT - - - - - 0
E2E 2 FT PT - - - - - 0.5
E2E 3 PT FT - - - - - 0.1
E2E 4 FT PT Yes - 152M - - 22.8
E2E 5 PT PT Yes - 152M - - 0.4
E2E 6 FT FT Yes - 152M - - 22.0
E2E 7 FT PT - Yes 67M - - 20.9

CoVoST2 E2E - - - - - - - 16.3

Table 1: Experiment results for model combination and fine-tuning strategy. Cascaded represents the cascaded
combination, and E2E represents the end-to-end combination. PT means the pre-trained parameters, FT means the
fine-tuned parameters that are from fine-tuning the entire model. Fine-tune strategy means the efficient strategy
except fine-tuning the entire mode. For E2E, #params means the fine-tuned parameters in the second stage. We
report WER score for ASR tasks and BLEU score for MT and ST tasks. The CoVoST2 results are from (Wang et al.,
2020) that uses the exact same dataset as us.

ate model performance on different portions of the504

training data to evaluate the data efficiency.505

In a first experiment, we evaluated the model506

on the zero-shot condition, where no end-to-end507

training data is available. As Table 2 shows, this508

approach fails to enable speech translation. We ob-509

serve that the translation are all in English, although510

with the target forcing mechanism. Therefore we511

expect that involving a few end-to-end data would512

solve the issue.513

Continue from the model trained with the similar-514

ity loss, we experiment on training with the original515

loss using different amounts of data. We observe516

that training with 10% training data enables the517

model to translate into the correct target language518

but poorly. In the case of fine-tuning with 20%519

data, adding similarity loss improves 51% com-520

pared with that without the loss. The evaluation521

score reaches 17.8 BLEU points, which achieves522

85% performance of the best end-to-end model.523

Besides, compared with the learning curve of the524

original loss, adding the similarity loss enables the525

model to fulfil speech translation tasks with less526

training data. The advantages of adding the sim-527

ilarity loss demonstrate a promising approach to528

improve data efficiency. In addition, we observe529

that with all training data, training the model with530

the similarity loss gains 0.7 BLEU point improve-531

ment. Therefore, we conclude that involving the532

similarity loss increases data efficiency and benefits 533

to improving model performance. 534

6 Conclusion 535

One major challenge of building speech translation 536

systems is the computational and data requirements. 537

In this work, we proposed using pre-trained speech 538

recognition and text translation models to build 539

a state-of-the-art speech translation system with 540

limited resources. While a cascaded combination 541

directly achieves relatively good performance, we 542

develop several techniques to enable the end-to-end 543

system to use these models. 544

We propose integrating both models into one 545

single end-to-end speech translation model that 546

can deal with independently pre-trained models 547

and handle different word representations used in 548

the pre-trained models. Secondly, we propose two 549

training strategies that allow the training and in- 550

ference on a single GPU. Finally, we present an 551

additional training loss to reduce the need for end- 552

to-end training data. Using all these techniques, 553

the proposed model can outperform the cascaded 554

model. 555

In future work, we will investigate how addi- 556

tional training signals can reduce the need for end- 557

to-end training data even further, leading to the 558

need for no end-to-end training data. Another 559

promising direction is the use of a multi-lingual 560
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Experiment Without 10% 15% 20% All
Only original loss - 0.32 1.98 11.8 20.9

After similarity loss 0 0.98 10.7 17.8 21.6

Table 2: Experiment results on the similarity loss. For similarity loss, without means training only with the similarity
loss; the following portion means, continue from the without, training with that portion of data with the original loss.
The result is reported in the BLEU score.

system. In this case, end-to-end training data from561

another direction might be sufficient to translate562

speech in a new direction.563
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