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Abstract

Automatically discovering composable abstractions from raw perceptual data is a long-
standing challenge in machine learning. Slot-based neural networks have recently shown
promise at discovering and representing objects in visual scenes in a self-supervised fashion.
While they make use of permutation symmetry of objects to drive learning of abstractions,
they largely ignore other spatial symmetries present in the visual world. In this work, we
introduce a simple, yet effective, method for incorporating spatial symmetries in attentional
slot-based methods. We incorporate equivariance to translation and scale into the attention
and generation mechanism of Slot Attention solely via translating and scaling positional
encodings. Both changes result in little computational overhead, are easy to implement,
and can result in large gains in data efficiency and scene decomposition performance.

Keywords: Spatial symmetry, Equivariance, Abstraction, Object-centric learning, Unsu-
pervised learning

1. Introduction

Slot-based neural networks learn to represent inputs using a discrete number of latent vec-
tors, often referred to as “slots”. These are a promising class of architectures for learning ob-
ject representations (Greff et al., 2020). In Slot Attention (Locatello et al., 2020), slots learn
to describe the individual objects in an image through an iterative clustering procedure that
leverages the permutation equivariance of objects. However, other inductive biases, such as
equivariance to the location and scale of objects is absent, and thus must be learned in a po-
tentially sample- and parameter-inefficient manner from input data alone. This is different
from humans, who are believed to attach reference frames to objects to facilitate translation
symmetric reasoning about objects and their parts (Hinton, 1981; Hawkins et al., 2019).

Spatial symmetries were successfully incorporated as an inductive bias to improve sample
efficiency, generalization and consistency of predictions of neural networks (Thomas et al.,
2018; Wang et al., 2020; Han et al., 2022). These advances have, however, had only a
limited impact in object discovery. Prior object discovery methods often use monolithic
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encoders (Eslami et al., 2016; Kosiorek et al., 2018) to process images and populate latent
slots. Limited equivariance to translation is present in the case of convolutional encoders
with output anchors (Crawford and Pineau, 2019; Lin et al., 2020). Some works employ
spatial symmetries in the decoder (Eslami et al., 2016; Lin et al., 2020) using the Spatial
Transformer (Jaderberg et al., 2015), which is equivariant to 2D−affine transformations.
Yet another popular choice, the Spatial Broadcast Decoder (Watters et al., 2019), breaks
symmetry by appending absolute positions to pixels.

In this work, we explore the symmetry of object translation and object scale in Slot
Attention (Locatello et al., 2020) applied to object discovery. We equip each slot with an
explicit representation of position and a scale, and ensure that the same model weights can
be used to detect and reconstruct objects at different positions and scales. Equivariance
is achieved by encoding pixel positions relative to each slot both in Slot Attention and in
the Spatial Broadcast Decoder. Although our model is not end-to-end equivariant (Cohen
and Welling, 2016, 2017), as we use a standard convolutional encoder to allow for some
flexibility in encoding absolute positions and scales of objects (Park et al., 2022), we find
that it has better sample efficiency and generalization properties. Additionally, we find that
the equivariant model is more likely to converge to favorable solutions, instead of collapsing
to failure modes, such as always predicting Voronoi tessellated segmentation masks.

2. Equivariant Slot Attention

The key observation is that many slot-based models (Locatello et al., 2020; Singh et al.,
2021; Sajjadi et al., 2022) and other scene representation approaches (Mildenhall et al.,
2020; Sajjadi et al., 2021) append absolute (2D or 3D) positions to latent representations
in order to encode and reconstruct images. These models are sensitive to positions and have
to re-learn spatial symmetries from data. By giving slots explicit positions and scales, we
can make position encodings relative to slots, making the model symmetric. Specifically,
we propose translation and scale equivariant Slot Attention and Spatial Broadcast Decoder,
but the same technique could be used with other models and symmetries.

Slot Attention (SA) (Locatello et al., 2020) computes cross attention between input
tokens (inputs ∈ RN×Dinputs) and latent slots (slots ∈ RK×Dslots). The input tokens have
an absolute coordinate grid, abs grid ∈ RN×2, attached to them. This makes the cross
attention sensitive to positions. Keys and values for this are computed as follows using
learned linear projections / MLPs f, k, g, v1:

keys = f(k(inputs) + g(abs grid)) , values = f(v(inputs) + g(abs grid)) . (1)

In contrast, in equivariant Slot Attention (Algorithm 1, see Appendix), we equip the K
slots with randomly sampled positions, Sp ∈ RK×2, and scales, Ss ∈ RK×2 and use these to
create a separate relative coordinate grid for each slot:

∀k ∈ {1, . . . ,K} rel gridk = (abs grid− Sk
p ) / Sk

s . (2)

1. Note that we add position embeddings after the key projection, this trick does not hurt SA’s performance
but makes equivariant slot attention more computationally efficient.
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Figure 1: By combining unsupervised object discovery and explicit slot positions and scales,
we can control how individual objects are decoded without any supervision.

By attaching this relative grid to the input tokens we effectively center and scale the input
tokens into each slot’s own coordinate frame. This achieves the desired spatial symmetry.
In more detail, we replace (1) with the following:

∀k ∈ {1, . . . ,K} keysk = f
(
k(inputs) + g(rel gridk)

)
valuesk = f

(
v(inputs) + g(rel gridk)

)
.

After the cross attention step, slots are updated as in standard SA. Sp and Ss are replaced
by the center of mass and spread of the attention mask (attn ∈ RN×K), respectively.

Sp =

∑
n attnn ∗ abs gridn∑

n attnn
, Ss =

√∑
n(attnn + ε) ∗ (abs gridn − Sp)2∑

n(attnn + ε)

Similarly, we make the Spatial Broadcast Decoder (Watters et al., 2019) translation
and scale equivariant: we compute the final slot positions and scales using the attention
map of the last iteration of SA, create relative coordinate grids as in (2), and then add them
to the broadcasted slots after applying a learned linear transformation. This ensures that
an object can be decoded using the same weights at arbitrary sizes and scales (Figure 1).

3. Experiments

We evaluate equivariant Slot Attention across four synthetic datasets: Tetrominoes (Greff
et al., 2019), CLEVRTex (Karazija et al., 2021), ObjectsRoom (Eslami et al., 2018) (in the
Appendix), and CLEVR (Johnson et al., 2017) (in the Appendix). These datasets cover
simple backgrounds with simple objects (Tetrominoes, CLEVR, ObjectsRoom) as well as
fully-textured backgrounds/objects (CLEVRTex). We test (1) whether equivariant Slot
Attention generalizes out of distribution if the data is fully symmetric to translations, and
(2) whether incorporating spatial symmetries leads to overall better scene decomposition
on standard multi-object benchmark tasks.

Generalization and sample efficiency in Tetrominoes: A proof of concept The
Tetris-like objects in the Tetrominoes dataset have the same appearance regardless of their
position (no occlusion, lighting or perspective changes); hence, Slot Attention should benefit
from the inductive bias of translation equivariance. It achieves above 90% FG-ARI using
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Figure 2: Tetrominoes dataset. Left: Translation equiv. Slot Attention achieves higher
FG-ARI with less data. Right: T-SA generalizes better to OOD test-time configurations.

Method CLEVRTex CLEVRTex CAMO CLEVRTex OOD
↑FG-ARI ↓MSE ↑FG-ARI ↓MSE ↑FG-ARI ↓MSE

SPACE 17.5±4.1 298±80 10.6±2.1 251±61 12.7±3.4 387±66

DTI 79.9±1.4 438±22 72.9±1.9 377±17 73.7±1.0 590±4

Gen-V2 31.2±12.4 315±106 29.6±12.8 278±75 29.0±11.2 539±147

eMORL 45.0±7.8 318±43 42.3±7.2 269±31 43.1±9.3 471±51

SimpleCNN SA 54.5±1.6 241±14 53.0±1.6 217±12 54.2±2.6 282±12

SimpleCNN T-SA 66.8±5.7 230±20 65.0±4.9 213±16 65.1±4.8 459±25

SimpleCNN TS-SA 74.1±6.4 224±4 69.0±5.4 210±5 69.6±4.3 471±30

ResNet SA 80.8±12.3 230±45 74.3±13.1 249±34 74.3±8.8 606±45

ResNet T-SA 87.6±4.0 198±21 80.7±3.9 223±29 78.6±3.3 611±26

ResNet TS-SA 86.4±9.4 219±63 79.4±9.9 244±52 78.7±7.0 625±52

Table 1: CLEVRTex results on the test set, CAMO set (objects and backgrounds blend
together) and OOD set (novel textures). Prior results taken from (Karazija et al., 2021)
use 3 random seeds, we use 10 random seeds. FG-ARI is reported in %.

only one eighth of the dataset size required by the baseline SA model (256 vs. 4096). In
Figure 2 (left), we perform a generalization experiment wherein we filter the training set
for images with objects only appearing on the left side. The validation set is unchanged.
We find that non-equivariant Slot Attention is less likely to detect objects on the right
side of the image (FG-ARI 80.6± 6.8% compared to 94.8± 1.5% for T-SA), likely because
it does not have any in-built inductive biases to promote generalization to unseen spatial
configurations in the input.

Comparison to state of the art on CLEVRTex CLEVRTex is a challenging dataset
with textured foreground objects and backgrounds. Previously, it was understood that
Slot Attention cannot handle textures, as the FG-ARI score of 62.4% for the original Slot
Attention (Table 1) is close to a naive Voronoi tessellation baseline (around 52% FG-ARI).

Our main finding is that the results of Slot Attention (SA) can be significantly improved
by adding translation equivariance (T-SA). A further benefit can be observed by adding
both translation and scale equivariance (TS-SA). This version of Slot Attention is trained
using a simple 4-layer CNN backbone as in Locatello et al. (2020). We further find that
replacing the simple CNN encoder of Slot Attention with a ResNet-34 (He et al., 2016)
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backbone significantly improves scene decomposition performance (Table 1, SA (ours)).
Adding translation equivariance further improves Slot Attention’s ability to segment objects.
Here, adding scale equivariance does not lead to significant further improvement, it does
however enable explicit control of slot scales when decoding the learned slot representations.
ResNet T-SA and TS-SA outperforms all baselines reported in Karazija et al. (2021) without
pre-training. Sauvalle and de La Fortelle (2022) reported around 95% FG-ARI with a pre-
trained SegFormer backbone (Xie et al., 2021) and a background model, which could be
further combined with our approach.

4. Conclusion

We have introduced translation- and scale-equivariant Slot Attention. Our method enables
incorporation of spatial symmetries with little computational overhead via simple changes
to the positional encoding used both in the attention mechanism and the decoder of Slot At-
tention. We are excited about the potential of incorporating additional symmetries through
similar mechanisms to a broader class of slot-based neural architectures.
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Appendix A. Limitations

• Our method struggles with small spatial input grids. We guess that this is because a
sparsely sampled position grid results in a poor learning signal and unstable gradients.

• Computing keys and values per slot scales linearly with the number of slots. For large
scale applications with 100s of slots this could cause memory issues.

• The real world is 3D and we only model 2D translation and scale symmetries in
this work. Thus the input domain does not respect spatial symmetries 100%. We
intentionally allow for global positions to leak through the CNN encoder so that
the model may leverage these when necessary. We interpret this as a feature not a
limitation of our model. A better solution might be to explicitly model 3D symmetries
but that is beyond the scope of 2D slot attention.

• Our experiments are entirely on synthetic data. This is a limitation of this paper and
not of the model itself and an exciting direction for future work.

Appendix B. Related Work

Prior object discovery approaches use an encoder-decoder framework with few exceptions
(Greff et al., 2019; Kipf et al., 2020; Huang et al., 2020). The encoder processes images and
populates latent slots, and the decoder uses the information about object present in latent
slots to reconstruct the input. Some works employ spatial symmetries in the decoder (Es-
lami et al., 2016; Kosiorek et al., 2018; Crawford and Pineau, 2019; Lin et al., 2020; Jiang
and Ahn, 2020; Monnier et al., 2021; Smirnov et al., 2021; Sauvalle and de La Fortelle, 2022)
using the Spatial Transformer (Jaderberg et al., 2015), which is equivariant to 2D−affine
transformations. In contrast, most prior works use monolithic encoders (Greff et al., 2016;
Eslami et al., 2016; Greff et al., 2017; Kosiorek et al., 2018; Burgess et al., 2019; Engelcke
et al., 2020; Jiang and Ahn, 2020; Engelcke et al., 2021; Monnier et al., 2021; Smirnov
et al., 2021; Emami et al., 2021) with only limited equivariance to translation in the case of
convolutional encoders with output anchors (Crawford and Pineau, 2019; Lin et al., 2020).
Alternatively, models iteratively process the encoded inputs to refine object detections (Lo-
catello et al., 2020; Huang et al., 2020). Slot Attention (Locatello et al., 2020) appends
absolute coordinates to feature maps in the encoder, thus making object detections sensi-
tive to locations.

Appendix C. Theoretical analysis of translation equivariance

We show that Slot Attention is equivariant to joint translation of the input features and
the initial slot positions. We do not show equivariance to translations of individual objects
due to occlusions, but a similar line of reasoning would otherwise work.

We formalize Slot Attention as a function with four inputs and two outputs:

SA(inputs, abs grid, S, Sp) = (S′, S′p) (3)

Here, inputs : Z2 → RDinputs map feature coordinates to input vectors, abs grid : Z2 →
R2 is a linear function that maps feature coordinates to real-valued coordinate encodings,
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S ∈ RK×Dslots are the initial latent slots and Sp ∈ RK×2 are the initial slot positions.
Correspondingly, S′ and S′p are the final latent slots and slot positions after T rounds of
slot attention.

Next, we show that the final slot positions are equivariant to a joint translation of
the input and initial slot positions, and that the final latent slots are invariant to said
transformation:

SA(inputs ◦ Lt, abs grid, S,R−1t (Sp)) = (S′, R−1t (S′p)) (4)

Here, t belongs to the group of translations over Z2, Lt(x) = x + t, x ∈ Z2, is a group
action that translates an integer-valued coordinate and Rt(y) = y + abs grid(t), y ∈ R2, is
a translation in the space of real-valued coordinates. We use the inverse of Rt because slot
positions are used to re-center feature coordinate grids by inverting the translations applied
to the input features.

We formalize the keys and values for the kth slot as mapping an integer-valued feature
coordinate x to a vector in RD.

keysk(inputs, abs grid, Sk
p )(x) = f(k(inputs(x)) + g(abs grid(x)− Sk

p )) (5)

valuesk(inputs, abs grid, Sk
p )(x) = f(v(inputs(x)) + g(abs grid(x)− Sk

p )) (6)

Next, we show that a joint translation of the inputs and the slot positions is equivalent
to the translation of the key coordinates. The same can be shown for values.

keysk(inputs ◦ Lt, abs grid, R−1t (Sk
p ))(x) (7)

= f(k([inputs ◦ Lt](x)) + g(abs grid(x)−R−1t (Sk
p ))) (8)

= f(k(inputs(x+ t)) + g(abs grid(x)− (Sk
p − abs grid(t)))) (9)

= f(k(inputs(x+ t)) + g(abs grid(x)− Sk
p + abs grid(t))) (10)

= f(k(inputs(x+ t)) + g(abs grid(x+ t)− Sk
p )) (11)

= keysk(inputs, abs grid, Sk
p )(x+ t) (12)

= [keysk(inputs, abs grid, Sk
p ) ◦ Lt](x) (13)

We use the assumption that abs grid is linear. Functions f, g, k, v are applied per-position
and we do not require linearity.

The cross attention between keys and slots (Algorithm 1, line 12) is computed for each
pixel coordinate separately. Hence, it is trivially translation equivariant given the result for
keys obtained above. The slot updates (line 13) are an attention-weighted sum over values.
The sum is invariant to joint translations of both the attention mask and the values. The re-
normalization of the attention mask for each slot on line 14 is also invariant to translations
of the attention mask. We assume the sum to be finite.

Formally, we have the following properties hold for the attention mask computed on
lines 12 and 14, and the updates computed on line 13:

attnk(inputs ◦ Lt, abs grid, S,R−1t (Sk
p )) = attnk(inputs, abs grid, S, Sk

p ) ◦ Lt (14)

updatesk(attnk ◦ Lt, valuesk ◦ Lt) = updatesk(attnk, valuesk) (15)
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Next, we compute the updated slot positions based on the attention mask (line 17):

S
′k
p (attnk) =

∑
x∈Z2

attnk(x) ∗ abs grid(x) (16)

We show that translation equivariance holds for the updated positions.

S
′k
p (attnk ◦ Lt) =

∑
x∈Z2

[attnk ◦ Lt](x) ∗ abs grid(x) (17)

=
∑
x∈Z2

attnk(x+ t) ∗ abs grid(x) (18)

=
∑
x∈Z2

attnk(x) ∗ abs grid(x− t) (19)

=
∑
x∈Z2

attnk(x) ∗ (abs grid(x)− abs grid(t)) (20)

= [
∑
x∈Z2

attnk(x) ∗ abs grid(x)]− abs grid(t) (21)

= R−1t (S
′k
p (attnk)) (22)

Finally, since updates are invariant to the input transformation, lines 21 and 22 are also
invariant. Hence, the updated latent slots S′ are invariant to the input transformation. The
equivariant of Sk

p and invariance of S′ holds over multiple iterations of Algorithm 1.

Appendix D. Pseudo-Code

Algorithm 1 gives the self-explanatory pseudo-code of our method. In line 7 we scale the
relative grid using δ after adjusting it using Ss as otherwise for small objects, rel grid will
have numerically large values which we found made model training difficult.

Appendix E. Additional results

E.1. Out-of-distribution generalization on ObjectsRoom

Slot Attention uses the same mechanism to segment the foreground and the background.
We test the interaction between translation and scale equivariance and multi-segment back-
grounds in ObjectsRoom (Eslami et al., 2018), Figure 3. We find that both T-SA and
TS-SA are more likely to learn the correct segments of the background (two walls, ground
and ceiling), leading to between 10 and 15% absolute improvement in ARI.

We find that equivariant Slot Attention is robust to all out-of-distribution test sets,
whereas the baseline deteriorates in the Empty Room OOD set due to increased over-
segmentation of the background, see Table 2.

E.2. Robustness to data augmentation on CLEVR

Given enough parameters and a training dataset that covers all spatial configurations a
powerful deep learning model could potentially learn to be equivariant to spatial transfor-
mations at the object level. Data augmentation is typically used to augment the training set

11
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Algorithm 1: Translation and Scale Equivariant Slot Attention

Input: inputs ∈ RN×Dinputs , abs grid ∈ RN×2, slots ∈ RK×Dslots , Slot positions,
Sp ∈ RK×2, Slot scales, Ss ∈ RK×2, T iterations, small ε.

Data: Encoders f, g, k, v, q, parameters of LayerNorms, MLP and GRU, δ
Output: slots ∈ RK×Dslot , Sp ∈ RK×2, Ss ∈ RK×2.

1 inputs = LayerNorm(inputs)
2 for t = 1 to T + 1 do
3 slots prev = slots
4 slots = LayerNorm(slots)
5

6 # Computes relative grids per slot, and associated key, value embeddings.
7 rel grid = (abs grid− Sp) / Ss × δ
8 keys = f (k(inputs) + g(rel grid))
9 values = f (v(inputs) + g(rel grid))

10

11 # Inverted dot production attention.
12 attn = softmax( 1√

K
keys ∗ q(slots)T , axis = “slots”)

13 updates = WeightedMean(weights = attn, values = values)
14

15 # Updates Sp, Ss and slots.
16 Sp = WeightedMean(weights = attn, values = abs grid)

17 Ss =
√

WeightedMean(weights = attn + ε, values = (abs grid− Sp)2)
18 if t < T + 1 then
19 slots = GRU(state = slots prev, inputs = updates)
20 slots += MLP(LayerNorm(slots))

21 end

22 end

Method ARI (11 slots)
Validation Six Objects Empty Room Identical Colors

SA 71.2±16.6 71.3±16.8 65.9±14.8 69.6±16.6

T-SA 78.7±3.8 79.7±2.4 71.1±6.5 78.4±2.7

TS-SA 87.1±7.5 85.0±5.0 86.4±9.9 86.1±6.3

Table 2: ARI in ObjectsRoom validation set and three out-of-distribution test sets, 11 slots.
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Input Best TS-SA Worst TS-SA Best SA Worst SA
96% 78% 83% 44%Eval. ARI:

Figure 3: Segmentation mask examples for the best and worst translation and scale equiv-
ariant Slot Attention (TS-SA) and baseline Slot Attention (SA) out of five random seeds.
TS-SA is less likely to over-segment the backgrounds and avoids the failure mode shown
in the right-most column. We also report ARI over the entire validation dataset for each
model.

Method FG-ARI
CLEVR CLEVR Augm. Eval. CLEVR Augm. Train. & Eval.

SA 99.0±0.2 93.6±2.2 97.3±0.4

TS-SA 98.9±0.1 (-0.1) 95.9±1.0 (+2.3) 98.4±0.8 (+1.1)

SPACE 40.1±20.3 39.1±19.7 44.4±24.0

Table 3: FG-ARI in CLEVR with cropping and scaling data augmentation applied either
only to the validation set or to both the training and the validation set.
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with all possible spatial variations at the image level hoping to achieve some of this effect.
We analyze, on the CLEVR-10 dataset, the effect of data augmentation during training and
evaluation.

Baseline SA achieves close to 99% FG-ARI on this dataset. However, as seen in Table
3, under the column “CLEVR Augm. Eval.”, this model is not robust to perturbations
in the translation and scale of input images at test time. We hypothesize that SA tends
to overfit to the objects appearing in the central portion of the images as well as to the
constrant background. In column 4, “CLEVR Augm. Train. & Eval.”, we find that model
performance is not restored simply by using data augmentation during training. Details of
the augmentation used are discussed in Appendix F.

On the other hand, our TS-SA model is relatively robust to test time augmentation and
additionally benefits from global image level data augmentation during training suggesting
that these two changes are somewhat orthogonal. We conclude that the inductive biases
facilitated by equivariance cannot be supplanted by data augmentation alone.

Appendix F. Datasets and data preprocessing

We use the standard pre-processing pipeline in CLEVR (e.g. Locatello et al. (2020)). In
the data augmentation experiment, we sample random square crops that cover at least 25%
of the original unprocessed image; these crops are then resized to 64×64, as in the original
data processing. For CLEVRTex, we use the data processing from Karazija et al. (2021).
We do not perform any data preprocessing for Tetrominoes and objects room. RGB values
in all datasets are scaled to [0, 1]. In the Tetrominoes dataset, in Figure 2 (right), we sample
random square crops with a minimum area coverage tuned to be optimal for the baseline.
The same setting is them used for our method.

Appendix G. Model architectures and hyper-parameters

We use the same encoder (Table 6) and decoder (Table 7) on objects room, CLEVR and
CLEVRTex. In CLEVRTex, we also use a ResNet-34 encoder. The ResNet is not pre-trained
and the downsampling before its first stage is removed (the first convolutional layer’s stride
is set to 1 and the max-pooling layer is removed). In Tetrominoes, we do not downsample
in the encoder (Table 5) and we use a per-pixel decoder (Table 8), similarly to Kabra et al.
(2021).

Different from the original Slot Attention, we use learnable initial latent slots (Kipf et al.,
2022; Elsayed et al., 2022), which usually lead to better results. Initial slot positions are
randomly sampled from U(−1, 1) in both the x and y axes, and initial slot scales are sample
from N(0.1, 0.1) and clipped between 0.01 and 5. We did not perform hyper-parameters
search for the initialization.

Hyper-parameters are reported in Table 4. All Slot Attention models are trained for
500k steps without early stopping or model selection. In the Tetrominoes experiment with
limited dataset sizes, we found it sufficient to train for only 20k steps.
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Name Value

attention ε 10−8

T 3
Adam: learning rate 4 ∗ 10−4

Adam: β1 0.9
Adam: β2 0.999
Adam: ε 10−8

Warm-up steps 10k
Learning rate schedule Cosine decay
Slot dim. 64
k, v, q, g Linear(128)
f MLP(128, 1 hidden layer, ReLU)

Table 4: Small/standard Slot Attention.

Type Size/Channels Activation Comment

Conv 5×5 64 ReLU stride: 1
Conv 5×5 64 ReLU stride: 1
Conv 5×5 64 ReLU stride: 1
Conv 5×5 64 ReLU stride: 1

Table 5: CNN encoder, used in Tetrominoes experiments.

Type Size/Channels Activation Comment

Conv 5×5 64 ReLU stride: 2
Conv 5×5 64 ReLU stride: 2
Conv 5×5 64 ReLU stride: 1
Conv 5×5 64 ReLU stride: 1

Table 6: CNN encoder.

Type Size/Channels Activation Comment

Spatial Broadcast 16×16 - -
(Relative) Position Encoding Slot Dim. - -

Transposed Conv 5×5 64 ReLU stride: 2
Transposed Conv 5×5 64 ReLU stride: 2

Conv 5×5 64 ReLU stride: 1
Conv 5×5 64 ReLU stride: 1
Conv 1×1 4 - stride: 1

Split Channels RGB(3), alpha mask(1) Softmax (on alpha mask) -
Recombine Slots - - -

Table 7: Spatial Broadcast Decoder with a CNN.
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Type Size/Channels Activation Comment

Spatial Broadcast 35×35 - -
(Relative) Position Encoding - - -

Conv 1×1 256 ReLU stride: 1
Conv 1×1 256 ReLU stride: 1
Conv 1×1 256 ReLU stride: 1
Conv 1×1 256 ReLU stride: 1
Conv 1×1 256 ReLU stride: 1
Conv 1×1 4 - stride: 1

Split Channels RGB(3), alpha mask(1) Softmax (on alpha mask) -
Recombine Slots - - -

Table 8: Spatial Broadcast Decoder with an MLP.

Figure 4: Examples of segmentation masks for ResNet TS-SA trained on CLEVRTex. Top:
original images, middle: predicted segmentation mask with per-pixel argmax, bottom: pre-
dicted segmentation mask with uncertainty.
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Figure 5: Changing position of a slot representing the white cube.
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Figure 6: Changing scale of a slot representing the white cube.
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