
Published as a conference paper at ICLR 2022

AUTONOMOUS REINFORCEMENT LEARNING:
FORMALISM AND BENCHMARKING

Archit Sharma∗1 Kelvin Xu∗2 Nikhil Sardana1

Abhishek Gupta3 Karol Hausman4 Sergey Levine2 Chelsea Finn1

1Stanford University
2University of California, Berkeley
3MIT
4Google Brain

ABSTRACT

Reinforcement learning (RL) provides a naturalistic framing for learning through
trial and error, which is appealing both because of its simplicity and effectiveness
and because of its resemblance to how humans and animals acquire skills through
experience. However, real-world embodied learning, such as that performed by
humans and animals, is situated in a continual, non-episodic world, whereas com-
mon benchmark tasks in RL are episodic, with the environment resetting between
trials to provide the agent with multiple attempts. This discrepancy presents a
major challenge when attempting to take RL algorithms developed for episodic
simulated environments and run them on real-world platforms, such as robots.
In this paper, we aim to address this discrepancy by laying out a framework for
Autonomous Reinforcement Learning (ARL): reinforcement learning where the
agent not only learns through its own experience, but also contends with lack
of human supervision to reset between trials. We introduce a simulated bench-
mark EARL1 around this framework, containing a set of diverse and challenging
simulated tasks reflective of the hurdles introduced to learning when only a min-
imal reliance on extrinsic intervention can be assumed. We show that standard
approaches to episodic RL and existing approaches struggle as interventions are
minimized, underscoring the need for developing new algorithms for reinforce-
ment learning with a greater focus on autonomy.

1 INTRODUCTION

One of the appeals of reinforcement learning is that it provides a naturalistic account for how com-
plex behavior could emerge autonomously from trial and error, similar to how humans and animals
can acquire skills through experience in the real world. Real world learning however, is situated in
a continual, non-episodic world, whereas commonly benchmarks in RL often assume access to an
oracle reset mechanism that provides agents the ability to make multiple attempts. This presents
a major challenge with attempting to deploy RL algorithms in environments where such an as-
sumption would necessitate costly human intervention or manual engineering. Consider an example
of a robot learning to clean and organize a home. We would ideally like the robot to be able to
autonomously explore the house, understand cleaning implements, identify good strategies on its
own throughout this process, and adapt when the home changes. This vision of robotic learning in
real world, continual, non-episodic manner is in stark contrast to typical experimentation in rein-
forcement learning in the literature (Levine et al., 2016; Chebotar et al., 2017; Yahya et al., 2017;
Ghadirzadeh et al., 2017; Zeng et al., 2020), where agents must be consistently reset to a set of initial
conditions through human effort or engineering so that they may try again. Autonomy, especially
for data hungry approaches such as reinforcement learning, is an enabler of broad applicability, but
is rarely an explicit consideration. In this work, we propose to bridge this specific gap by providing
a formalism and set of benchmark tasks that considers the challenges faced by agents situated in
non-episodic environment, rather than treating them as being abstracted away by an oracle reset.

∗Equal contribution. Corresponding authors: architsh@stanford.edu, kelvinxu@berkeley.edu
1Code and related information for EARL can be found at architsharma97.github.io/earl benchmark/

1

mailto:architsh@stanford.edu, kelvinxu@berkeley.edu
https://architsharma97.github.io/earl_benchmark/index.html

Published as a conference paper at ICLR 2022

Our specific aim is to place a greater focus on developing algorithms under assumptions that more
closely resemble autonomous real world robotic deployment. While the episodic setting naturally
captures the notion of completing a “task”, it hides the costs of assuming oracle resets, which when
removed can cause algorithms developed in the episodic setting to perform poorly (Sec. 6.1). More-
over, while prior work has examined settings such as RL without resets (Eysenbach et al., 2017; Xu
et al., 2020; Zhu et al., 2020; Gupta et al., 2021), ecological RL (Co-Reyes et al., 2020), or RL amidst
non-stationarity (Xie et al., 2020) in isolated scenarios, these settings are not well-represented in ex-
isting benchmarks. As a result, there is not a consistent formal framework for evaluating autonomy
in reinforcement learning and there is limited work in this direction compared to the vast literature
on reinforcement learning. By establishing this framework and benchmark, we aim to solidify the
importance of algorithms that operate with greater autonomy in RL.

Before we can formulate a set of benchmarks for this type of autonomous reinforcement learning, we
first formally define the problem we are solving. As we will discuss in Section 4, we can formulate
two distinct problem settings where autonomous learning presents a major challenge. The first is
a setting where the agent first trains in a non-episodic environment, and is then “deployed” into an
episodic test environment. In this setting, which is most commonly studied in prior works on “reset-
free” learning (Han et al., 2015; Zhu et al., 2020; Sharma et al., 2021), the goal is to learn the best
possible episodic policy after a period of non-episodic training. For instance, in the case of a home
cleaning robot, this would correspond to evaluating its ability to clean a messy home. The second
setting is a continued learning setting: like the first setting, the goal is to learn in a non-episodic
environment, but there is no distinct “deployment” phase, and instead the agent must minimize regret
over the duration of the training process. In the previous setting of the home cleaning robot, this
would evaluate the persistent cleanliness of the home. We discuss in our autonomous RL problem
definition how these settings present a number of unique challenges, such as challenging exploration.

The main contributions of our work consist of a benchmark for autonomous RL (ARL), as well as
formal definitions of two distinct ARL settings. Our benchmarks combine components from pre-
viously proposed environments (Coumans & Bai, 2016; Gupta et al., 2019; Yu et al., 2020; Gupta
et al., 2021; Sharma et al., 2021), but reformulate the learning tasks to reflect ARL constraints, such
as the absence of explicitly available resets. Our formalization of ARL relates it to the standard
RL problem statement, provides a concrete and general definition, and provides a number of instan-
tiations that describe how common ingredients of ARL, such as irreversible states, interventions,
and other components, fit into the general framework. We additionally evaluate a range of previ-
ously proposed algorithms on our benchmark, focusing on methods that explicitly tackle reset-free
learning and other related scenarios. We find that both standard RL methods and methods designed
for reset-free learning struggle to solve the problems in the benchmark and often get stuck in parts
of the state space, underscoring the need for algorithms that can learn with greater autonomy and
suggesting a path towards the development of such methods.

2 RELATED WORK

Prior work has proposed a number of benchmarks for reinforcement learning, which are often either
explicitly episodic (Todorov et al., 2012; Beattie et al., 2016; Chevalier-Boisvert et al., 2018), or
consist of games that are implicitly episodic after the player dies or completes the game (Bellemare
et al., 2013; Silver et al., 2016). In addition, RL benchmarks have been proposed in the episodic set-
ting for studying a number of orthogonal questions, such multi-task learning (Bellemare et al., 2013;
Yu et al., 2020), sequential task learning (Wołczyk et al., 2021), generalization (Cobbe et al., 2020),
and multi-agent learning (Samvelyan et al., 2019; Wang et al., 2020). These benchmarks differ from
our own in that we propose to study the challenge of autonomy. Among recent benchmarks, the
closest to our own is Jelly Bean World (Platanios et al., 2020), which consists of a set of procedural
generated gridworld tasks. While this benchmark also considers the non-episodic setting, our work
is inspired by the challenge of autonomous learning in robotics, and hence considers an array of
manipulation and locomotion tasks. In addition, our work aims to establish a conceptual framework
for evaluating prior algorithms in light of the requirement for persistent autonomy.

Enabling embodied agents to learn continually with minimal interventions is a motivation shared by
several subtopics of reinforcement learning research. The setting we study in our work shares con-
ceptual similarities with prior work in continual and lifelong learning (Schmidhuber, 1987; Thrun
& Mitchell, 1995; Parisi et al., 2019; Hadsell et al., 2020). In context of reinforcement learning, this
work has studied the problem of episodic learning in sequential MDPs (Khetarpal et al., 2020; Rusu

2

Published as a conference paper at ICLR 2022

Figure 1: Two evaluation schemes in autonomous RL. First, the deployment setting (top row, (1)), where we
are interested in obtaining a policy during a training phase, π, that performs well when deployed from a s0 ∼ ρ.
Second, the continuing setting (bottom row, (2)), where a floor cleaning robot is tasked with keeping a floor
clean and is only evaluated on its cumulative performance (Eq. 2) over the agent’s lifetime.

et al., 2016; Kirkpatrick et al., 2017; Fernando et al., 2017; Schwarz et al., 2018; Mendez et al.,
2020), where the main objective is forward/backward transfer or learning in non-stationary dynam-
ics (Chandak et al., 2020; Xie et al., 2020; Lu et al., 2020). In contrast, the emphasis of our work
is learning in non-episodic settings while literature in continual RL assumes an episodic setting.
As we will discuss, learning autonomously without access to oracle resets is a hard problem even
when the task-distribution and dynamics are stationary. In a similar vein, unsupervised RL (Gregor
et al., 2016; Pong et al., 2019; Eysenbach et al., 2018; Sharma et al., 2019; Campos et al., 2020)
also enables skill acquisition in the absence of rewards, reducing human intervention required for
designing reward functions. These works are complimentary to our proposal and form interesting
future work.

Reset-free RL has been studied by previous works with a focus on safety (Eysenbach et al., 2017),
automated and unattended learning in the real world (Han et al., 2015; Zhu et al., 2020; Gupta
et al., 2021), skill discovery (Xu et al., 2020; Lu et al., 2020), and providing a curriculum (Sharma
et al., 2021). Strategies to learn reset-free behavior include directly learning a backward reset con-
troller (Eysenbach et al., 2017), learning a set of auxillary tasks that can serve as an approximate
reset (Ha et al., 2020; Gupta et al., 2021), or using a novelty seeking reset controller (Zhu et al.,
2020). Complementary to this literature, we aim to develop a set of benchmarks and a framework
that allows for this class of algorithms to be studied in a unified way. Instead of proposing new
algorithms, our work is focused on developing a set of unified tasks that emphasize and allow us to
study algorithms through the lens of autonomy.

3 PRELIMINARIES

Consider a Markov Decision Process (MDP)M ≡ (S,A, p, r, ρ, γ) (Sutton & Barto, 2018). Here,
S denotes the state space, A denotes the action space, p : S × A × S 7→ R≥0 denotes the
transition dynamics, r : S × A 7→ R denotes the reward function, ρ : S 7→ R≥0 denotes the
initial state distribution and γ ∈ [0, 1) denotes the discount factor. The objective in reinforce-
ment learning is to maximize J(π) = E[

∑∞
t=0 γ

tr(st, at)] with respect to the policy π, where
s0 ∼ ρ(·), at ∼ π(· | st) and st+1 ∼ p(· | st, at). Importantly, the RL framework assumes the abil-
ity to sample s0 ∼ ρ arbitrarily. Typical implementations of reinforcement learning algorithms
carry out thousands or millions of these trials, implicitly requiring the environment to provide a
mechanism to be “reset” to a state s0 ∼ ρ for every trial.

4 AUTONOMOUS REINFORCEMENT LEARNING

In this section, we develop a framework for autonomous reinforcement learning (ARL) that formal-
izes reinforcement learning in settings without extrinsic interventions. We first define a non-episodic
training environment where the agent can autonomously interact with its environment in Section 4.1,
building on the formalism of standard reinforcement learning. We introduce two distinct evaluation
settings as visualized in Figure 1: Section 4.1.1 discusses the deployment setting where the agent
will be deployed in a test environment after training, and the goal is to maximize this “deployed”
performance. Section 4.1.2 discusses the continuing setting, where the agent has no separate de-
ployment phase and aims to maximize the reward accumulated over its lifetime. In its most general
form, the latter corresponds closely to standard RL, while the former can be interpreted as a kind of
transfer learning. As we will discuss in Section 4.2, this general framework can be instantiated such

3

Published as a conference paper at ICLR 2022

that, for different choices of the underlying MDP, we can model different realistic autonomous RL
scenarios such as settings where a robot must learn to reset itself between trials or settings with non-
reversible dynamics. Finally, Section 4.3 considers algorithm design for autonomous RL, discussing
the challenges in autonomous operation while also contrasting the evaluation protocols.

4.1 GENERAL SETUP

Our goal is to formalize a problem setting for autonomous reinforcement learning that encapsu-
lates realistic autonomous learning scenarios. We define the setup in terms of a training MDP
MT ≡ (S,A, p, r, ρ), where the environment initializes to s0 ∼ ρ, and then the agent interacts
with the environment autonomously from then on. Note, this lack of episodic resets in our setup
departs not only from the standard RL setting, but from other continual reinforcement learning set-
tings e.g. Wołczyk et al. (2021), where resets are provided between tasks. Symbols retain their
meaning from Section 3. In this setting, a learning algorithm A can be defined as a function
A : {si, ai, si+1, ri}t−1i=0 7→ (at, πt), which maps the transitions collected in the environment until
the time t (e.g., a replay buffer), to a (potentially exploratory) action at ∈ A applied in the en-
vironment and its best guess at the optimal policy πt : S ×A 7→ R≥0 used for evaluation at time
t. We note that the assumption of a reward function implicitly requires human engineering, but in
principle could be relaxed by methods that learn reward functions from data. In addition, we note
that at does not need to come from πt, which is already implicit in most reinforcement learning
algorithms: Q-learning (Sutton & Barto, 2018) methods such as DQN (Mnih et al., 2015), DDPG
(Lillicrap et al., 2015) use an ε-greedy policy as an exploration policy on top of the greedy policy
for evaluation. However, our setting necessitates more concerted exploration, and the exploratory
action may come from an entirely different policy. Note that the initial state distribution is sampled
(s0 ∼ ρ) exactly once to begin training, and then the algorithm A is run until t→∞, generating
the sequence s0, a0, s1, a1, . . . in the MDP MT . This is the primary difference compared to the
episodic setting described in Section 3, which can sample the initial state distribution repeatedly.

4.1.1 ARL DEPLOYMENT SETTING

Consider the problem where a robot has to learn how to close a door. Traditional reinforcement
learning algorithms require several trials, repeatedly requiring interventions to open the door be-
tween trials. The desire is that the robot autonomously interacts with the door, learning to open it if
it is required to practice closing the door. The output policy of the training procedure is evaluated in
its deployment setting, in this case on its ability to close the door. Formally, the evaluation objective
JD for a policy π in the deployment setting can be written as:

JD(π) = Es0∼ρ,aj∼π(·|sj),sj+1∼p(·|sj ,aj)
[∞∑
j=0

γjr(sj , aj)
]
. (1)

Definition 1 (Deployed Policy Evaluation). For an algorithm A : {si, ai, si+1}t−1i=0 7→ (at, πt), de-
ployed policy evaluation D(A) is given by D(A) =

∑∞
t=0 (JD(π

∗)− JD(πt)), where JD(π) is
defined in Eq 1 and π∗ ∈ argmaxπ JD(π).

The evaluation objective JD(π) is identical to the one defined in Section 3 on MDPM (deployment
environment). The policy evaluation is “hypothetical”, the environment rollouts used for evaluating
policies are not used in training. Even though the evaluation trajectories are rolled out from the
initial state, there are no interventions in training. Concretely, the algorithmic goal in this setting
can be stated as minA D(A). In essence, the policy outputs πt from the autonomous algorithm A
should match the oracle deployment performance, i.e. JD(π∗), as quickly as possible. Note that
JD(π

∗) is a constant that can be ignored when comparing two algorithms, i.e. we only need to
know JD(πt) for a given algorithm in practice.

4.1.2 ARL CONTINUING SETTING

For some applications, the agent’s experience cannot be separated into training and deployment
phases. Agents may have to learn and improve in the environment that they are “deployed” into,
and thus these algorithms need to be evaluated on their performance during the agent’s lifetime. For
example, a robot tasked with keeping the home clean learns and improves on the job as it adapts to
the home in which it is deployed. To this end, consider the following definition:

4

Published as a conference paper at ICLR 2022

Definition 2 (Continuing Policy Evaluation). For an algorithm A : {si, ai, st+1}t−1i=0 7→ (at, πt),
continuing policy evaluation C(A) can be defined as:

C(A) = lim
h→∞

1

h
Es0∼ρ,at∼A({si,ai,si+1}t−1

i=0),st+1∼p(·|st,at)
[h∑
t=0

r(st, at)
]

(2)

Here, at is the action taken by the algorithm A based on the transitions collected in the environment
until time t, measuring the performance under reward r. The optimization objective can be stated
as maxA C(A). Note that πt is not used in computing C(A). In practice, this amounts to measuring
the reward collected by the agent in the MDPMT during its lifetime2.

4.2 HOW SPECIFIC ARL PROBLEMS FIT INTO OUR FRAMEWORK

The framework can easily be adapted to model possible autonomous reinforcement learning scenar-
ios that may be encountered:

Intermittent interventions. By default, the agent collects experience in the environment with fully
autonomous interaction in the MDPMT . However, we can model the occasional intervention with
transition dynamics defined as p̃(· | s, a) = (1− ε)p(· | s, a) + ερ(·), where the next state is sam-
pled with 1 − ε probability from the environment dynamics or with ε probability from the initial
state distribution via intervention for some ε ∈ [0, 1]. A low ε represents very occasional interven-
tions through the training in MDP MT . In fact, the framework described in Section 3, which is
predominantly assumed by reinforcement learning algorithms, can be understood to have a large ε.
To contextualize ε, the agent should expect to get an intervention after 1/ε steps in the environment.
Current episodic settings typically provide an environment reset every 100 to 1000 steps, corre-
sponding to ε ∈ (1e-3, 1e-2) and an autonomous operation time of typically a few seconds to few
minutes depending on the environment. While full autonomy would be desirable (that is, ε = 0),
intervening every few hours to few days may be reasonable to arrange, which corresponds to envi-
ronment resets every 100,000 to 1,000,000 steps or ε ∈ (1e-6, 1e-5). We evaluate the dependence
of algorithms designed for episodic reinforcement learning on the reset frequency in Section 6.1.

Irreversible states. An important consideration for developing autonomous algorithms is the “re-
versibility” of the underlying MDP M. Informally, if the agent can reverse any transition in the
environment, the agent is guaranteed to not get stuck in the environment. As an example, a static
robot arm can be setup such that there always exists an action sequence to open or close the door.
However, the robot arm can push the object out of its reach such that no action sequence can retrieve
it. Formally, we require MDPs to be ergodic for them to be considered reversible (Moldovan &
Abbeel, 2012). In the case of non-ergodic MDPs, we adapt the ARL framework to enable the agent
to request extrinsic interventions, which we discuss in Appendix A.

4.3 DISCUSSION OF THE ARL FORMALISM

The ARL framework provides two evaluation protocols for autonomous RL algorithms. Algorithms
can typically optimize only one of the two evaluation metrics. Which evaluation protocol should
the designer optimize for? In a sense, the need for two evaluation protocols arises from task spe-
cific constraints, which themselves can be sometimes relaxed depending on the specific trade-off
between the cost of real world training and the cost of intervention. The continuing policy evalua-
tion represents the oracle metric one should strive to optimize when continually operational agents
are deployed into dynamic environments. The need for deployment policy evaluation arises from
two implicit practical constraints: (a) requirement of a large number of trials to solve desired tasks
and (b) absence of interventions to enable those trials. If either of these can be easily relaxed, then
one could consider optimizing for continuing policy evaluation. For example, if the agent can learn
in a few trials because it was meta-trained for quick adaptation (Finn et al., 2017), providing a few
interventions for those trials may be reasonable. Similarly, if the interventions are easy to obtain
during deployment without incurring significant human cost, perhaps through scripted behaviors or
enabled by the deployment setting (for example, sorting trash in a facility), the agent can repeatedly
try the task and learn while deployed. However, if these constraints cannot be relaxed at deploy-
ment, one should consider optimizing for the deployment policy evaluation since this incentivizes
the agents to learn targeted behaviors by setting up its own practice problems.

2We can also consider the more commonly used setting of expected discounted sum of rewards as the
objective. To ensure that future rewards are relevant, the discount factors would need to be much larger than
values typically used.

5

Published as a conference paper at ICLR 2022

5 EARL: ENVIRONMENTS FOR AUTONOMOUS REINFORCEMENT LEARNING

In this section, we introduce the set of environments in our proposed benchmark, Environments for
Autonomous Reinforcement Learning (EARL). We first discuss the factors in our design criteria and
provide a description of how each environment fits into our overall benchmark philosophy, before
presenting the results and analysis. For detailed descriptions of each environment, see Appendix A.

5.1 BENCHMARK DESIGN FACTORS

Representative Autonomous Settings. We include a broad array of tasks that reflect the types
of autonomous learning scenarios agents may encounter in the real world. This includes different
problems in manipulation and locomotion, and tasks with multiple object interactions for which it
would be challenging to instrument resets. We also ensure that both the continuing and deployment
evaluation protocols of ARL are realistic representative evaluations.

Directed Exploration. In the autonomous setting, the necessity to practice a task again, potentially
from different initial states, gives rise to the need for agents to learn rich reset behaviors. For
example, in the instance of a robot learning to interact with multiple objects in a kitchen, the robot
must also learn to implicitly or explicitly compose different reset behaviors.

Rewards and Demonstrations. One final design aspect for our benchmark is the choice of reward
functions. Dense rewards are a natural choice in certain domains (e.g., locomotion), but designing
and providing dense rewards in real world manipulation domains can be exceptionally challenging.
Sparse rewards are easier to specify in such scenarios, but this often makes exploration impractical.
As a result, prior work has often leveraged demonstrations (e.g., (Gupta et al., 2019)), especially in
real world experimentation. To reflect practical usage of RL in real world manipulation settings, we
include a small number of demonstrations for the sparse-reward manipulation tasks.

5.2 ENVIRONMENT DESCRIPTIONS

Tabletop-Organization (TO). The Tabletop-Organization task is a di-
agnostic object manipulation environment proposed by Sharma et al.
(2021). The agent consists of a gripper modeled as a pointmass,
which can grasp objects that are close to it. The agent’s goal is to
bring a mug to four different locations designated by a goal coaster.
The agent’s reward function is a sparse indicator function when the
mug is placed at the goal location. Limited demonstrations are provided to the agent.

Sawyer-Door (SD). The Sawyer-Door task, from the MetaWorld bench-
mark (Yu et al., 2020) consists of a Sawyer robot arm who’s goal is to close
the door whenever it is in an open position. The task reward is a sparse
indicator function based on the angle of the door. Repeatedly practicing
this task implicitly requires the agent to learn to open the door. Limited
demonstrations for opening and closing the door are provided.

Sawyer-Peg (SP). The Sawyer-Peg task (Yu et al., 2020) consists of a Sawyer
robot required to insert a peg into a designed goal location. The task reward
is a sparse indicator function for when the peg is in the goal location. In the
deployment setting, the agent must learn to insert the peg starting on the table.
Limited demonstrations for inserting and removing the peg are provided.

Franka-Kitchen (FK). The Franka-Kitchen (Gupta et al., 2019) is a do-
main where a 9-DoF robot, situated in a kitchen environment, is required
to solve tasks consisting of compound object interactions. The environment
consists of a microwave, a hinged cabinet, a burner, and a slide cabinet. One
example task is to open the microwave, door and burner. This domain presents
a number of distinct challenges for ARL. First, the compound nature of each
task results in a challenging long horizon problem, which introduces exploration and credit assign-
ment challenges. Second, while generalization is important in solving the environment, combining
reset behaviors are equally important given the compositional nature of the task.

6

Published as a conference paper at ICLR 2022

DHand-LightBulb (DL). The DHand-Lightbulb environment consists of a 22-
DoF 4 fingered hand, mounted on a 6 DoF Sawyer robot. The environment is
based on one originally proposed by Gupta et al. (2021). The task in this do-
main is for the robot to grasp pickup a lightbulb to a specific location. The high-
dimensional action space makes the task extremely challenging. In the deploy-
ment setting, the bulb can be initialized anywhere on the table, testing the agent
on a wide initial state distribution.

Minitaur-Pen (MP). Finally, the Minitaur-Pen task consists of an 8-DoF
Minitaur robot (Coumans & Bai, 2016) confined to a pen environment. The
goal of the agent is to navigate to a set of goal locations in the pen. The task
is designed to mimic the setup of leaving a robot to learn to navigate within
an enclosed setting in an autonomous fashion. This task is different from the

other tasks given it is a locomotion task, as opposed to the other tasks being manipulation tasks.

6 BENCHMARKING AND ANALYSIS

The aim of this section is to understand the challenges in autonomous reinforcement learning and to
evaluate the performance and shortcomings of current autonomous RL algorithms. In Section 6.1,
we first evaluate standard episodic RL algorithms in ARL settings as they are required to operate
with increased autonomy, underscoring the need for a greater focus on autonomy in RL algorithms.
We then evaluate prior autonomous learning algorithms on EARL in Section 6.2. While these al-
gorithms do improve upon episodic RL methods, they fail to make progress on more challenging
tasks compared to methods provided with oracle resets leaving a large gap for improvement. Lastly,
in Section 6.3, we investigate the learning of existing algorithms, providing a hypothesis for their
inadequate performance. We also find that when autonomous RL does succeed, it tends to find more
robust policies, suggesting an intriguing connection between autonomy and robustness.

6.1 GOING FROM STANDARD RL TO AUTONOMOUS RL

Figure 2: Performance of standard RL at with varying levels of autonomy, ranging from resets provided every
1000 to 200000 steps. Performance degrades substantially as environment resets become infrequent.

In this section, we evaluate standard RL methods to understand how their performance changes
when they are applied naı̈vely to ARL problems. To create a continuum, we will vary the level
of “autonomy” (i.e., frequency of resets), corresponding to ε as defined in Section 4.2. For these
experiments only, we use the simple cheetah and fish environments from the DeepMind Con-
trol Suite (Tassa et al., 2018). We use soft actor-critic (SAC) (Haarnoja et al., 2018a) as a rep-
resentative standard RL algorithm. We consider different training environments with increasing
number of steps between resets, ranging from 1000 to 200, 000 steps. Figure 2 shows the perfor-
mance of the learned policy as the training progresses, where the return is measured by running the
policy for 1000 steps. The cheetah environment is an infinite-horizon running environment, so
changing the training horizon should not affect the performance theoretically. However, we find
that the performance degrades drastically as the training horizon is increased, as shown in Fig 2
(left). We attribute this problem to a combination of function approximation and temporal differ-
ence learning. Increasing the episode length destabilizes the learning as the effective bootstrapping
length increases: the Q-value function Qπ(s0, a0) bootstraps on the value of Qπ(s1, a1), which
bootstraps on Qπ(s2, a2) and so on till Qπ(s100,000, a100,000). To break this chain, we consider a
biased TD update: Qπ(st, at)← r(st, at) + γQπ(st+1, at+1) if t is not a multiple of 1000, else

7

Published as a conference paper at ICLR 2022

Method TO SD SP FK DL MP

naı̈ve RL 0.32 (0.17) 0.00 (0.00) 0.00 (0.00) -2705.21 (167.10) -239.30 (8.85) -1041.10 (44.58)
FBRL 0.94 (0.04) 1.00 (0.00) 0.00 (0.00) -2733.15 (324.10) -242.38 (8.84) -986.34 (67.95)
R3L 0.96 (0.04) 0.54 (0.18) 0.00 (0.00) -2639.28 (233.28) 728.54 (122.86) -186.30 (34.79)

VaPRL 0.98 (0.02) 0.94 (0.05) 0.02 (0.02) - - -
oracle RL 0.80 (0.11) 1.00 (0.00) 1.00 (0.00) 1203.88 (203.86) 2028.75 (35.95) -41.50 (3.40)

Table 1: Average return of the final deployed policy. Performance is averaged over 5 random seeds. The mean
and and the standard error are reported, with the best performing entry in bold. For sparse reward domains
(TO, SD, SP), 1.0 indicates the maximum performance and 0.0 indicates minimum performance.

Method TO SD SP FK DL MP

naı̈ve RL 0.012 (0.004) 0.373 (0.073) < 0.001 -4.944 (0.440) -0.734 (0.024) -18.193 (2.375)
FBRL 0.005 (0.001) 0.329 (0.080) 0.003 (0.003) -8.754 (0.405) -0.747 (0.014) -22.087 (1.285)
R3L 0.001 (0.000) 0.369 (0.016) < 0.001 -6.577 (0.309) 0.091 (0.026) -1.093 (0.020)

VaPRL 0.009 (0.000) 0.574 (0.085) < 0.001 - - -

Table 2: Average reward accumulated over the training lifetime in accordance to continuing policy evaluation.
Performance is averaged over 5 random seeds. The mean and the standard error (brackets) are reported, with
the best performing entry in bold.

Qπ(st, at) ← r(st, at). This is inspired by practical implementations of SAC (Haarnoja et al.,
2018b), where theQ-value function regresses to r(s, a) for terminal transitions to stabilize the train-
ing. This effectively fixes the problem for cheetah, as shown in Figure 2 (middle). However,
this solution does not translate in general, as can be seen observed in the fish environment, where
the performance continues to degrade with increasing training horizon, shown in Fig 2 (right). The
primary difference between cheetah and fish is that the latter is a goal-reaching domain. The
cheetah can continue improving its gait on the infinite plane without resets, whereas the fish
needs to undo the task to practice goal reaching again, creating a non-trivial exploration problem.

6.2 EVALUATION: SETUP, METRICS, BASELINES, AND RESULTS

Training Setup. Every algorithm A receives a set of initial states s0 ∼ ρ, and a set of goals from the
goal-distribution g ∼ p(g). Demonstrations, if available, are also provided to A. We consider the
intermittent interventions scenario described in Section 4.2 for the benchmark. In practice, we reset
the agent after a fixed number of steps HT . The value of HT is fixed for every environment, ranging
between 100, 000 - 400, 000 steps. Every algorithm A is run for a fixed number of steps Hmax after
which the training is terminated. Environment-specific details are in Appendix A.4.

Evaluation Metrics. For deployed policy evaluation, we compute D(A) = −
∑Hmax

t=0 JD(πt),
ignoring JD(π∗) as it is a constant for all algorithms. Policy evaluation JD(πt) is carried out every
10000 training steps, where JD(πt) =

∑HE

t=0 r(st, at) is the average return accumulated over an
episode of HE steps by running the policy πt 10 times, starting from s0 ∼ ρ for every trial. These
roll-outs are only used for evaluation, and are not provided to the algorithm. In practice, we plot
JD(πt) versus time t, such that minimizing D(A) can be understood as maximizing the area under
the learning curve, which we find more interpretable. Given a finite training budget Hmax, the
policy πt may be quite suboptimal compared to π∗. Thus, we also report the performance of the
final policy, that is JD(πHmax) in Table 1. For continuing policy evaluation C(A), we compute the
average reward as r(h) =

∑h
t=0 r(st, at)/h. We plot r(h) versus h, while we report r(Hmax) in

Table 2. The evaluation curves corresponding to continuing and deployed policy evaluation are in
Appendix A.6.

Baselines. We evaluate forward-backward RL (FBRL) (Han et al., 2015; Eysenbach et al., 2017), a
perturbation controller (R3L) (Zhu et al., 2020), value-accelerated persistent RL (VaPRL) (Sharma
et al., 2021), a comparison to simply running the base RL algorithm with the biased TD update
discussed in Section 6.1 (naı̈ve RL), and finally an oracle (oracle RL) where resets are provided are
provided everyHE steps (HT is typically three orders of magnitude larger thanHE). We benchmark
VaPRL only when demonstrations are available, in accordance to the proposed algorithm in Sharma
et al. (2021). We average the performance of all algorithms across 5 random seeds. More details
pertaining to these algorithms can be found in Appendix A.3, A.5.

Overall, we see in Table 1 that based on the deployed performance of the final policy, au-
tonomous RL algorithms substantially underperform oracle RL and fail to make any progress on
sawyer-peg and franka-kitchen. Notable exceptions are the performances of VaPRL on

8

Published as a conference paper at ICLR 2022

tabletop-organization and R3L on minitaur-pen, outperforming oracle RL. Amongst
the autonomous RL algorithms, VaPRL does best when the demonstrations are given and R3L does
well on domains when no demonstrations are provided. Nonetheless, this leaves substantial room
for improvement for future works evaluating on this benchmark. More detailed learning curves are
shown in Section A.6. In the continuing setting, we find that naı̈ve RL performs well on certain
domains (best on 2 out of 6 domains). This is unsurprising, as naı̈ve RL is incentivized to oc-
cupy the final “goal” position, and continue to accumulate over the course of its lifetime, whereas
other algorithms are explicitly incentivized to explore. Perhaps surprisingly, we find that VaPRL
on sawyer-door and R3L on dhand-lightbulb and minitaur does better than naı̈ve RL,
suggesting that optimizing for deployed performance can also improve the continuing performance.
Overall, we find that performance in the continuing setting does not necessarily translate to im-
proved performance in the deployed policy evaluation, emphasizing the differences between these
two evaluation schemes.

6.3 ANALYZING AUTONOMOUS RL ALGORITHMS

tabletop-organization sawyer-peg minitaur-pen

Figure 3: Comparing the distribution of states visited with resets (blue) and without resets (brown). Heatmaps
visualize the difference between state visitations for oracle RL and FBRL, thresholded to highlight states with
large differences. Resets enable the agent to stay around the initial state distribution and the goal distribution,
whereas the agents operating autonomously skew farther away, posing an exploration challenge.

Figure 4: Evaluating policies starting from
a uniform initial state distribution. Poli-
cies learned via autonomous RL (FBRL and
VaPRL) are more robust to initial state dis-
tribution than policies learned in oracle RL.

A hypothesis to account for the relative underperfor-
mance of autonomous RL algorithms compared to ora-
cle RL is that environment resets constrain the state dis-
tribution visited by the agent close to the initial and the
goal states. When operating autonomously for long peri-
ods of time, the agent can skew far away from the goal
states, creating a hard exploration challenge. To test this
hypothesis, we compare the state distribution when using
oracle RL (in blue) versus FBRL (in brown) in Figure 3.
We visualize the (x, y) positions visited by the gripper
for tabletop-organization, the (x, y) positions
of the peg for sawyer-peg and the x, y positions of
the minitaur for minitaur-pen. As seen in the figure, autonomous operation skews the grip-
per towards the corners in tabletop-organization, the peg is stuck around the goal box and
minitaur can completely go away from the goal distribution. However, when autonomous algorithms
are able to solve the task, the learned policies can be more robust as they are faced with a tougher
exploration challenge during training. We visualize this in Figure 4, where we test the final policies
learned by oracle RL, FBRL and VaPRL on tabletop-organization starting from a uniform
state distribution instead of the default ones. We observe that the policies learned by VaPRL and
FBRL depreciate by 2% and 14.3% respectively, which is much smaller than the 37.4% depreciation
of the policy learned by oracle RL, suggesting that autonomous RL can lead to more robust policies.

7 CONCLUSION

We proposed a formalism and benchmark for autonomous reinforcement learning, including an
evaluation of prior state-of-the algorithms with explicit emphasis on autonomy. We present two
distinct evaluation settings, which represent different practical use cases for autonomous learning.
The main conclusion from our experiments is that existing algorithms generally do not perform well
in scenarios that demand autonomy during learning. We also find that exploration challenges, while
present in the episodic setting, are greatly exacerbated in the autonomous setting.

9

Published as a conference paper at ICLR 2022

While our work focuses on predominantly autonomous settings, there may be task-specific trade-
offs between learning speed and the cost of human interventions, and it may indeed be beneficial
to provide some human supervision to curtail total training time. How to best provide this supervi-
sion (rewards and goal setting, demonstrations, resets etc) while minimizing human cost provides a
number of interesting directions for future work. However, we believe that there is a lot of room to
improve the autonomous learning algorithms and our work attempts to highlight the importance and
challenge of doing so.

REFERENCES

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Victor Valdés, Amir Sadik, Julian Schrittwieser, Keith Ander-
son, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis
Hassabis, Shane Legg, and Stig. Petersen. Deepmind lab. arXiv:1612.03801 [cs.AI], 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Vı́ctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giró-i Nieto, and Jordi
Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. In Interna-
tional Conference on Machine Learning, pp. 1317–1327. PMLR, 2020.

Yash Chandak, Georgios Theocharous, Shiv Shankar, Martha White, Sridhar Mahadevan, and Philip
Thomas. Optimizing for the future in non-stationary mdps. In International Conference on Ma-
chine Learning, pp. 1414–1425. PMLR, 2020.

Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal, and Sergey
Levine. Combining model-based and model-free updates for trajectory-centric reinforcement
learning. In International conference on machine learning, pp. 703–711. PMLR, 2017.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

John D Co-Reyes, Suvansh Sanjeev, Glen Berseth, Abhishek Gupta, and Sergey Levine. Ecological
reinforcement learning. arXiv preprint arXiv:2006.12478, 2020.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International conference on machine learning, pp. 2048–
2056. PMLR, 2020.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016.

Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no trace: Learning to
reset for safe and autonomous reinforcement learning. arXiv preprint arXiv:1711.06782, 2017.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning. PMLR, 2017.

Ali Ghadirzadeh, Atsuto Maki, Danica Kragic, and Mårten Björkman. Deep predictive policy train-
ing using reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2351–2358. IEEE, 2017.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

10

https://github.com/maximecb/gym-minigrid
http://pybullet.org

Published as a conference paper at ICLR 2022

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Abhishek Gupta, Justin Yu, Tony Z Zhao, Vikash Kumar, Aaron Rovinsky, Kelvin Xu, Thomas
Devlin, and Sergey Levine. Reset-free reinforcement learning via multi-task learning: Learning
dexterous manipulation behaviors without human intervention. arXiv preprint arXiv:2104.11203,
2021.

Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to walk in the real world
with minimal human effort. arXiv preprint arXiv:2002.08550, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in Cognitive Sciences, 2020.

Weiqiao Han, Sergey Levine, and Pieter Abbeel. Learning compound multi-step controllers un-
der unknown dynamics. In 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 6435–6442. IEEE, 2015.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pp. 1094–1099. Citeseer, 1993.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforce-
ment learning: A review and perspectives. arXiv preprint arXiv:2012.13490, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Reset-free lifelong learning with skill-
space planning. arXiv preprint arXiv:2012.03548, 2020.

Jorge Mendez, Boyu Wang, and Eric Eaton. Lifelong policy gradient learning of factored policies
for faster training without forgetting. Advances in Neural Information Processing Systems, 33,
2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Teodor Mihai Moldovan and Pieter Abbeel. Safe exploration in markov decision processes. arXiv
preprint arXiv:1205.4810, 2012.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

Emmanouil Antonios Platanios, Abulhair Saparov, and Tom Mitchell. Jelly bean world: A testbed
for never-ending learning. arXiv preprint arXiv:2002.06306, 2020.

11

Published as a conference paper at ICLR 2022

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-
fit: State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698,
2019.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning now to learn:
The meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany, 14
May 1987. URL http://www.idsia.ch/˜juergen/diploma.html.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for contin-
ual learning. In International Conference on Machine Learning, pp. 4528–4537. PMLR, 2018.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

Archit Sharma, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Persistent
reinforcement learning via subgoal curricula. arXiv preprint arXiv:2107.12931, 2021.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Robotics and autonomous systems,
15(1-2):25–46, 1995.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Rose E Wang, Sarah A Wu, James A Evans, Joshua B Tenenbaum, David C Parkes, and Max
Kleiman-Weiner. Too many cooks: Coordinating multi-agent collaboration through inverse plan-
ning. In Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems, pp. 2032–2034, 2020.

Maciej Wołczyk, Michał Zajc, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Continual world:
A robotic benchmark for continual reinforcement learning. arXiv preprint arXiv:2105.10919,
2021.

Annie Xie, James Harrison, and Chelsea Finn. Deep reinforcement learning amidst lifelong non-
stationarity. arXiv preprint arXiv:2006.10701, 2020.

Kelvin Xu, Siddharth Verma, Chelsea Finn, and Sergey Levine. Continual learning of control prim-
itives: Skill discovery via reset-games. arXiv preprint arXiv:2011.05286, 2020.

Ali Yahya, Adrian Li, Mrinal Kalakrishnan, Yevgen Chebotar, and Sergey Levine. Collective robot
reinforcement learning with distributed asynchronous guided policy search. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 79–86. IEEE, 2017.

12

http://www.idsia.ch/~juergen/diploma.html

Published as a conference paper at ICLR 2022

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, pp. 1094–1100. PMLR, 2020.

Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser. Tossingbot:
Learning to throw arbitrary objects with residual physics. IEEE Transactions on Robotics, 36(4):
1307–1319, 2020.

Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash Ku-
mar, and Sergey Levine. The ingredients of real world robotic reinforcement learning. In Inter-
national Conference on Learning Representations, 2020.

13

Published as a conference paper at ICLR 2022

A APPENDIX

A.1 GOAL-CONDITIONED ARL

This framework can be readily extended to goal-conditioned reinforcement learning (Kaelbling,
1993; Schaul et al., 2015), which is also an area of study covered in some prior works on reset-
free reinforcement learning (Sharma et al., 2021). Assuming a goal space G and task-distribution
pg : G 7→ R≥0, assume that the algorithm A : {si, ai, si+1}t−1i=0 7→ (at, πt), where at ∈ A and
πt : S ×A× G 7→ R≥0. Equation 1 can be redefined as follows:

JD(π) = Eg∼pg,s0∼ρ,at∼π(·|st,g),st+1∼p(·|st,at)
[∞∑
t=0

γtr(st, at, g)
]

(3)

Additionally, we will assume that the algorithm has access to a set of samples gi ∼ p(g) from the
goal distribution. The definitions for deployed policy evaluation and continuing policy evaluation
remains the same.

A.2 REVERSIBILITY AND NON-ERGODIC MDPS

We expand on the discussion of reversibility in 4.2. We also discuss how we can deal with non-
ergodic MDPs by augmenting the action space in MDPMT with calls for extrinsic interventions.

Definition 3 (Ergodic MDPs). A MDP is considered ergodic if for all states sa, sb ∈ S,∃π such
that π(sb) > 0, where π(s) = (1− γ)

∑∞
t=0 γ

tp(st = s | s0 = sa, π) denotes discounted state dis-
tribution induced by the policy π starting from the state s0 = sa (Moldovan & Abbeel, 2012). A
policy that assigns a non-zero probability to all actions on its support A ensures that all states in S
are visited in the limit for ergodic MDPs, satisfying the condition above.

We adapt the ARL framework to develop learning algorithms for non-ergodic MDPs. In particular,
we introduce a mechanism below for the agent to call for an intervention in the MDP MT . Our
goal here is to show that our described ARL framework is general enough to include cases where a
human is asked for help in irreversible states. Consider an augmented state space S+ = S ∪ R≥0
and an augmented action space A+ = A ∪Ah, where Ah denotes the action of asking for help via
human intervention. A state s+ ∈ S+ can be written as a state s ∈ S, and h ∈ R≥0 which denotes
the remaining budget for interventions into the training. The budget h is initialized to hmax when
the training begins. The intervention can be requested by the agent itself using an action a ∈ Ah or
it can enforced by the environment (for example, if the agent reaches certain detectable irreversible
states in the environment and requests a human to bring it back into the reversible set of states). For
an action a ∈ Ah, the environment transitions from (s, h)→ (s′, h−c(s, a)), where the next state s′
depends on the nature of the requested intervention a and c(s, a) : S ×Ah 7→ R≥0 denotes the cost
of intervention. A similar transition occurs when the environment enforces the human intervention.
When the cost exceeds the remaining budget, that is h − c(s, a) ≤ 0, the environment transitions
into an absorbing state s∅, and the training is terminated. We retain the definitions introduced in
Sec 4.1.1 and 4.1.2 for evaluation protocols.3 In this way, we see that we can actually encompass
the setting of non-ergodic MDPs as well, with some reparameterization of the MDP.

A.3 RELATING PRIOR WORKS TO ARL

In this section, we connect the settings in prior works to our proposed autonomous reinforcement
learning formalism. First, consider the typical reinforcement learning approach: Algorithm A as-
signs the rewards to transitions using r(s, a), learns a policy π and outputs πt = π and at ∼ π
(possibly adding noise to the action). The algorithm exclusively optimizes the reward function r
throughout training.

Reconsider the door closing example: the agent needs to practice closing the door repeatedly, which
requires opening the door repeatedly. However, if we optimize π to maximize r over its lifetime,
it will never be incentivized to open the door to practice closing it again. In theory, assuming an
ergodic MDP and that the exploratory actions have support over all actions, the agent will open the
door given enough time, and the agent will practice closing it again. However, in practice, this can
be quite an inefficient strategy to rely on and thus, prior reset-free reinforcement learning algorithms
consider other strategies for exploration. To understand current work, we introduce the notion of

3The action space Ah is not available in M, only in MT . This discrepancy should be considered when
parameterizing π.

14

Published as a conference paper at ICLR 2022

a surrogate reward function r̃t : S × A 7→ R. At every time step t, A outputs at ∼ πe and πt
for evaluation, where πe optimizes r̃t over the transitions seen till time t − 1 4. Prior works on
reset-free reinforcement learning can be encapsulated within this framework as different choices
for surrogate reward function r̃t. Some pertinent examples: Assuming rρ is some reward function
designed that shifts the agent’s state distribution towards initial state distribution ρ, alternating r̃t = r
and r̃t = rρ for a fixed number of environment steps recovers the forward-backward reinforcement
learning algorithms proposed by Han et al. (2015); Eysenbach et al. (2017). Similarly, R3L (Zhu
et al., 2020) can be understood as alternating between a perturbation controller optimizing a state
novelty reward and the forward controller optimizing the task reward r. Recent work on using
multi-task learning for reset-free reinforcement learning (Gupta et al., 2021) can be understood as
choosing r̃t(st, at) =

∑K
k=1 rk(st, at)I[st ∈ Sk] such that S1, . . .SK is a partition of the state

space S and only reward function rk is active in the subset Sk. Assuming the goal-conditioned
autonomous reinforcement learning framework, the recently proposed algorithm VaPRL (Sharma
et al., 2021) can be understood as creating a curriculum of goals gt such that at every step, the action
at ∼ π(· | st, gt). The curriculum simplifies the task for the agent, bootstrapping on the success of
easier tasks to efficiently improve JD(π).

A.4 ENVIRONMENT DESCRIPTIONS AND REWARD FUNCTIONS

Tabletop-Organization. The Tabletop-Organization task is a diagnostics object manipulation task
proposed by Sharma et al. (2021). The observation space is a 12 dimensional vector consisting of
the object position, gripper position, gripper state, and the current goal. The action space is 3-D
action that consists of a 2-D position delta and an automated gripper that can attach to the mug if the
gripper is close enough to the object. The reward function is a sparse indicator function, r(s, g) =
1(‖s − g‖2 ≤ 0.2). The agent is provided with 12 forward and 12 backward demonstrations, 3 for
each of the 4 goal positions.

Sawyer-Door. The Sawyer Door environment consists of a Sawyer robot with a 12 dimension
observation space consisting of 3-D end effector position, 3-D door position, gripper state and
desired goal. The action space is a 4-D action space that consisting of a 3-D end effector con-
trol and normalized gripper torque. Let sd be dimensions of the observation corresponding to the
door state, and g be the corresponding goal. The reward function is a sparse indicator function
r(s, g) = 1(‖sd − g‖2 ≤ 0.08). The agent is provided with a 5 forward and 5 backward demos.

Sawyer-Peg. The Sawyer-Peg environment shares observation and action space as the Sawyer-Door
environment. Let sp be the state of the peg and g be the corresponding goal. The reward function is
a sparse indicator function r(s, g) = 1(‖s − g‖2 ≤ 0.05). The agent is provided with 10 forward
and 10 backward demonstrations for this task.

Franka-Kitchen. The Franka-Kitchen environment consists of a 9-DoF Franka robot with an array
of objects (microwave, two distinct burner, door) represented by a 14 dimensional vector. The
reward function is composed of a dense reward that is a sum of the euclidean distance between the
goal position of the arm and the current state plus shaped reward per object as described in Gupta
et al. (2019). No demonstrations are provided for this task.

DHand-LightBulb. The DHand is a 4 fingered robot (16-DoF) mounted on a 6-DoF Sawyer Arm.
The observation space of the DHand consists of a 30 dimensional observation and corresponding
goal state. The observation is composed of a 16 dimensional hand position, 7 dimensional arm posi-
tion, 3 dimension object position, 3 dimensional euler angle and a 6 dimensional vector representing
the dimensional wise distance to between objects in the environment. The action space is a position
delta over the combined 22 DoF of the robot. No demonstrations are provided for these tasks.

Minitaur-Pen. The Minitaur pen’s observation space is the joint positions of its 8 links, their corre-
sponding velocity, current torque, quaternion of its base position, and goal location in the pen. The
action space is a 8 dimensional PD target. Let sb be the 2-D position of the agent, and g be the
corresponding goal. Let st be the current torques on the agent, and sv be their velocities The reward
for the agent is a dense reward r(s, a) = −2.0 · ‖sb − g‖+ 0.02 · ‖sv · st‖. No demonstrations are
provided for these tasks.

4This can also be captured in a multi-task reinforcement learning framework, where πe, πt are the same
policy with different task variables as input.

15

Published as a conference paper at ICLR 2022

A.5 ALGORITHMS

We use soft actor-critic (Haarnoja et al., 2018b) as the base algorithm for our experiments in this
paper. When available, the demonstrations are added to the replay buffer at the beginning of training.
Further details on the parameters of the environments and algorithms are reported in Tables A.5. The
implementations will be open-sourced and implementation details can be found there.

Hyperparameter Value

Actor-critic architecture fully connected(256, 256)
Nonlinearity ReLU
RND architecture fully connected(256, 256, 512)
RND Gamma 0.99

Optimizer Adam
Learning rate 3e-4

γ 0.99

Target update τ 0.005
Target update period 1

Batch size 256
Classifier batch size 128

Initial collect steps 103

Collect steps per iteration 1

Reward scale 1
Min log std -20
Max log std 2

Table 3: Shared algorithm parameters.

Environment Training Horizon (HT) Evaluation Horizon (HE) Replay Buffer Capacity

Tabletop-Organization 200,000 200 20,000,000
Sawyer-Door 200,000 300 20,000,000
Sawyer-Peg 100,000 200 20,000,000
Franka-Kitchen 100,000 400 10,000,000
DHand-Lightbulb 400,000 400 10,000,000
Minitaur-Pen 100,000 1000 10,000,000

Table 4: Environment specific parameters, including the training horizon (i.e. how frequently an
intervention is provided), the evaluation horizon, and the replay buffer capacity.

A.6 EVALUATION CURVES

In this section, we plot deployed policy evaluation and continuing policy evaluation curves for dif-
ferent algorithms and different environments:

16

Published as a conference paper at ICLR 2022

tabletop-organization

sawyer-door

sawyer-peg

kitchen

dhand-lightbulb

minitaur-pen

Figure 5: Deployed Policy Evaluation and Continuing Policy Evaluation per environment. Results
and averaged over 5 seeds. Shaded regions denote 95% confidence bounds.

17

	Introduction
	Related Work
	Preliminaries
	Autonomous Reinforcement Learning
	General Setup
	ARL Deployment Setting
	ARL Continuing Setting

	How Specific ARL Problems Fit Into Our Framework
	Discussion of the ARL Formalism

	EARL: Environments for Autonomous Reinforcement Learning
	Benchmark Design Factors
	Environment Descriptions

	Benchmarking and Analysis
	Going from Standard RL to Autonomous RL
	Evaluation: Setup, Metrics, Baselines, and Results
	Analyzing Autonomous RL Algorithms

	Conclusion
	Appendix
	Goal-conditioned ARL
	Reversibility and Non-Ergodic MDPS
	Relating Prior Works to ARL
	Environment Descriptions and Reward Functions
	Algorithms
	Evaluation Curves

