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ABSTRACT

Variational autoencoders (VAEs) provide an effective and simple method for mod-
eling complex distributions. However, training VAEs often requires considerable
hyperparameter tuning to determine the optimal amount of information retained
by the latent variable. We study the impact of calibrated decoders, which learn
the uncertainty of the decoding distribution and can determine this amount of
information automatically, on the VAE performance. While many methods for
learning calibrated decoders have been proposed, many of the recent papers that
employ VAEs rely on heuristic hyperparameters and ad-hoc modifications instead.
We perform the first comprehensive comparative analysis of calibrated decoder
and provide recommendations for simple and effective VAE training. Our analysis
covers a range of datasets and several single-image and sequential VAE models.
We further propose a simple but novel modification to the commonly used Gaus-
sian decoder, which computes the prediction variance analytically. We observe
empirically that using heuristic modifications is not necessary with our method.

1 INTRODUCTION

Deep density models based on the variational autoencoder (VAE) (Kingma & Welling, 2014; Rezende
et al., 2014) have found ubiquitous use in probabilistic modeling and representation learning as they
are both conceptually simple and are able to scale to very complex distributions and large datasets.
These VAE techniques are used for tasks such as future frame prediction (Castrejon et al., 2019),
image segmentation (Kohl et al., 2018), generating speech (Chung et al., 2015) and music (Dhariwal
et al., 2020), as well as model-based reinforcement learning (Hafner et al., 2019a). However, in
practice, many of these approaches require careful manual tuning of the balance between two terms
that correspond to distortion and rate from information theory (Alemi et al., 2017). This balance
trades off fidelity of reconstruction and quality of samples from the model: a model with low rate
would not contain enough information to reconstruct the data, while allowing the model to have high
rate might lead to unrealistic samples from the prior as the KL-divergence constraint becomes weaker
(Alemi et al., 2017; Higgins et al., 2017). While a proper variational lower bound does not expose
any free parameters to control this tradeoff, many prior works heuristically introduce a weight on the
prior KL-divergence term, often denoted β. Usually, β needs to be tuned for every dataset and model
variant as a hyperparameter, which slows down development and can lead to poor performance as
finding the optimal value is often prohibitively computationally expensive. Moreover, using β 6= 1
precludes the appealing interpretation of the VAE objective as a bound on the data likelihood, and is
undesirable for applications like density modeling.

While many architectures for calibrating decoders have been proposed in the literature (Kingma &
Welling, 2014; Kingma et al., 2016; Dai & Wipf, 2019), more applied work typically employs VAEs
with uncalibrated decoding distributions, such as Gaussian distributions without a learned variance,
where the decoder only outputs the mean parameter (Castrejon et al., 2019; Denton & Fergus, 2018;
Lee et al., 2019; Babaeizadeh et al., 2018; Lee et al., 2018; Hafner et al., 2019b; Pong et al., 2019;
Zhu et al., 2017; Pavlakos et al., 2019), or uses other ad-hoc modifications to the objective (Sohn
et al., 2015; Henaff et al., 2019). Indeed, it is well known that attempting to learn the variance in a
Gaussian decoder may lead to numerical instability (Rezende & Viola, 2018; Dai & Wipf, 2019),
and naı̈ve approaches often lead to poor results. As a result, it remains unclear whether practical
empirical performance of VAEs actually benefits from calibrated decoders or not.
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To rectify this, our first contribution is a comparative analysis of various calibrated decoder architec-
tures and practical recommendations for simple and effective VAE training. We find that, while naı̈ve
calibrated decoders often lead to worse results, a careful choice of the decoder distribution can work
very well, and removes the need to tune the additional parameter β. Indeed, we note that the entropy
of the decoding distribution controls the mutual information I(x; z). Calibrated decoders allow the
model to control I(x; z) automatically, instead of relying on manual tuning. Our second contribution
is a simple but novel technique for optimizing the decoder variance analytically, without requiring the
decoder network to produce it as an additional output. We call the resulting approach to learning the
Gaussian variance the σ-VAE. In our experiments, the σ-VAE outperforms the alternative of learning
the variance through gradient descent, while being simpler to implement and extend. We validate our
results on several VAE and sequence VAE models and a range of image and video datasets.

2 RELATED WORK

Prior work on variational autoencoders has studied a number of different decoder parameterizations.
Kingma & Welling (2014); Rezende et al. (2014) use the Bernoulli distribution for the binary MNIST
data and Kingma & Welling (2014) use Gaussian distributions with learned variance parameter for
grayscale images. However, modeling images with continuous distributions is prone to instability as
the variance can converge to zero (Rezende & Viola, 2018; Mattei & Frellsen, 2018; Dai & Wipf,
2019). Some work has attempted to rectify this problem by using dequantization (Gregor et al., 2016),
which is theoretically appealing as it is tightly related to the log-likelihood of the original discrete
data (Theis et al., 2016), optimizing the variance in a two-stage procedure (Arvanitidis et al., 2017),
or training a post-hoc prior (Ghosh et al., 2019). Takahashi et al. (2018); Barron (2019) proposed
more expressive distributions. Additionally, different choices for representing such variance exist,
including diagonal covariance (Kingma & Welling, 2014; Sønderby et al., 2016; Rolfe, 2016), or a
single shared parameter (Kingma et al., 2016; Dai & Wipf, 2019; Edwards & Storkey, 2016; Rezende
& Viola, 2018). We analyze these and notice that learning a single variance parameter shared across
images leads to stable training and good performance, without the use of dequantization or even
clipping the variance, although these techniques can be used with our decoders; and further improve
the estimation of this variance with an analytic solution.

Early work on discrete VAE decoders for color images modeled them with the Bernoulli distribution,
treating the color intensities as probabilities (Gregor et al., 2015). Further work has explored various
parameterizations based on discretized continuous distributions, such as discretized logistic (Kingma
et al., 2016). More recent work has improved expressivity of the decoder with a mixture of discretized
logistics (Chen et al., 2016; Maaløe et al., 2019). However, these models also employ powerful
autoregressive decoders (Chen et al., 2016; Gulrajani et al., 2016; Maaløe et al., 2019), and the latent
variables in these models may not represent all of the significant factors of variation in the data, as
some factors can instead be modeled internally by the autoregressive decoder (Alemi et al., 2017).1

While many calibrated decoders have been proposed, outside the core generative modeling community
uncalibrated decoders are ubiquitous. They are used in work on video prediction (Denton & Fergus,
2018; Castrejon et al., 2019; Lee et al., 2018; Babaeizadeh et al., 2018), image segmentation (Kohl
et al., 2018), image-to-image translation (Zhu et al., 2017), 3D human pose (Pavlakos et al., 2019),
as well as model-based reinforcement learning (Henaff et al., 2019; Hafner et al., 2019b;a), and
representation learning (Lee et al., 2019; Watter et al., 2015; Pong et al., 2019). Most of these works
utilize the heuristic hyperparameter β instead, which is undesirable both as the resulting objective is
no longer a bound on the likelihood, and as β usually requires extensive tuning. In this work, we
analyze the common pitfalls of using calibrated decoders that may have prevented the practitioners
from using them, propose a simple and effective analytic way of learning such calibrated distribution,
and provide a comprehensive experimental evaluation of different decoding distributions.

Alternative discussions of the hyperparameter β are presented by Zhao et al. (2017); Higgins et al.
(2017); Alemi et al. (2017); Achille & Soatto (2018), who show that it controls the amount of
information in the latent variable, I(x; z). Peng et al. (2018); Rezende & Viola (2018) further discuss
constrained optimization objectives for VAEs, which also yield a similar hyperparameter. Here, we
focus on β-VAEs with Gaussian decoders with constant variance, as commonly used in recent work,
and show that the hyperparameter β can be incorporated in the decoding likelihood for these models.

1BIVA (Maaløe et al., 2019) uses the Mixture of Logistics decoder proposed in (Salimans et al., 2017) that
produces the channels for each pixel autoregressively, see also App D.
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3 ANALYSING DECODING DISTRIBUTIONS

The generative model of a VAE (Kingma & Welling, 2014; Rezende et al., 2014) with parameters
θ is specified with a prior distribution over the latent variable pθ(z), commonly unit Gaussian,
and a decoding distribution pθ(x|z), which for color images is commonly a conditional Gaussian
parameterized with a neural network. We would like to fit this generative model to a given dataset by
maximizing the evidence lower bound (ELBO (Neal & Hinton, 1998; Jordan et al., 1999; Kingma &
Welling, 2014; Rezende et al., 2014)), which uses an approximate posterior distribution qφ(z|x), also
commonly a conditional Gaussian specified with a neural network. In this work, we focus on the form
of the decoding distribution pθ(x|z). To achieve the best results, we want a decoding distribution
that represents the required probability p(x|z) accurately In this section, we will review and analyze
various choices of decoding distributions that enable better decoder calibration, including expressive
decoding distributions that can represent both the prediction of the image and the uncertainty about
such prediction, or even multimodal predictions.

3.1 GAUSSIAN DECODERS

We first analyse the commonly used Gaussian decoders. We note that the commonly used MSE
reconstruction loss between the reconstruction x̂ and ground truth data x is equivalent to the negative
log-likelihood objective with a Gaussian decoding distribution with constant variance:

− ln p(x|z) =
1

2
||x̂− x||2 +D ln

√
2π =

1

2
||x̂− x||2 + c =

D

2
MSE(x̂, x) + c,

where p(x|z) ∼ N (x̂, I), the prediction x̂ is produced with a neural network x̂ = µθ(z), and D is
the dimensionality of x.

This demonstrates a drawback of methods that rely simply on the MSE loss (Castrejon et al., 2019;
Denton & Fergus, 2018; Lee et al., 2019; Hafner et al., 2019b; Pong et al., 2019; Zhu et al., 2017;
Henaff et al., 2019), as it is equivalent to assuming a particular, constant variance of the Gaussian
decoding distribution. By learning this variance, we can achieve much better performance due to
better calibration of the decoder. There are several ways in which we can specify this variance. An
expressive way to specify the variance is to specify a diagonal covariance matrix for the image, with
one value per pixel (Kingma & Welling, 2014; Sønderby et al., 2016; Rolfe, 2016). This can be done,
for example, by letting a neural network σθ output the diagonal entries of the covariance matrix given
a latent sample z:

pθ(x|z) ∼ N
(
µθ(z), σθ(z)

2
)
. (1)

This parameterization of the decoding distribution outputs one variance value per each pixel and
channel. While powerful, we observe in Section 5.3 that this approach attains suboptimal performance,
and is moreover prone to numerical instability. Instead, we will find experimentally that a simpler
parameterization, in which the covariance matrix is specified with a single shared (Kingma et al.,
2016; Dai & Wipf, 2019; Edwards & Storkey, 2016; Rezende & Viola, 2018) parameter σ as Σ = σI
often works better in practice:

pθ,σ(x|z) ∼ N
(
µθ(z), σ

2I
)
. (2)

The parameter σ can be optimized together with parameters of the neural network θ with gradient
descent. Of particular interest is the interpretation of this parameter. Writing out the expression for
the decoding likelihood, we obtain

− ln p(x|z) =
1

2σ2
||x̂−x||2+D lnσ

√
2π =

1

2σ2
||x̂−x||2+D lnσ+c = D lnσ+

D

2σ2
MSE(x̂, x)+c.

The full objective of the resulting Gaussian σ-VAE is:

Lθ,φ,σ = D lnσ +
D

2σ2
MSE(x̂, x) +DKL(q(z|x)||p(z)). (3)

Note that σ may be viewed as a weighting parameter between the MSE reconstruction term and the
KL-divergence term in the objective. Moreover, this objective explicitly specifies how to select the
optimal variance: the variance should be selected to minimize the (weighted) MSE loss while also
minimizing the logarithm of the variance.
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Decoder Calibration It is important that the decoder distribution be calibrated in the statistical
sense, that is, the predicted probabilities should correspond to the frequencies of seeing a particular
value of x given that prediction (DeGroot & Fienberg, 1983; Dawid, 1982). The calibration of a
neural network can be usually improved by estimating the uncertainty of that prediction (Guo et al.,
2017), such as the variance of a Gaussian (Kendall & Gal, 2017). Since the naive MSE loss assumes
a constant variance, it does not effectively represent the uncertainty of the prediction, and is often
poorly calibrated. Instead, learning the variance as in Eq. 3 leads to better uncertainty estimation and
better calibration. In Sec 5.1, we show that learning a good estimate of this uncertainty is crucial for
the quality of the VAE generations.

Connection to β-VAE. The β-VAE objective (Higgins et al., 2017) for a Gaussian decoder with
unit variance is:

Lβ =
D

2
MSE(x̂, x) + βDKL(q(z|x)||p(z)). (4)

We see that it can be interpreted as a particular case of the objective (3), where the variance is constant
and the term D lnσ can be ignored during optimization. The β-VAE objective is then equivalent
to a σ-VAE with a constant variance σ =

√
β/2 (for a particular learning rate setting). In recent

work (Zhu et al., 2017; Denton & Fergus, 2018; Lee et al., 2019), β-VAE models are often used in
this exact regime. By tuning the β term, practitioners are able to tune the variance of the decoder,
manually producing a more calibrated decoder. However, by re-interpreting the β-VAE objective as a
special case of the VAE and introducing the missing D lnσ term, we can both obtain a valid evidence
lower bound, and remove the need to manually select β. Instead, the variance σ can instead simply
be learned end-to-end, reducing the need for hyperparameter tuning.

An alternative discussion of this connection in the context of linear VAEs is also presented by Lucas
et al. (2019). While the β term is not necessary for good performance if the decoder is calibrated, it
can still be employed if desired, such as when the aim is to attain better disentanglement (Higgins
et al., 2017) or a particular rate-distortion tradeoff (Alemi et al., 2017). However, we found that with
calibrated decoders, the best sample quality is obtained when β = 1.

Loss implementation details. For the correct evidence lower bound computation, it is necessary
to add the values of the MSE loss and the KL divergence across the dimensions. We observe that
common implementations of these losses (Denton & Fergus, 2018; Abadi et al., 2016; Paszke et al.,
2019) use averaging instead, which will lead to poor results if the number of image dimensions is
significantly different from the number of the latent dimensions. While this can be conveniently
ignored in the β-VAE regime, where the balance term is tuned manually anyway, for the σ-VAE it is
essential to compute the objective value correctly.

Variance implementation details. Since the variance is non-negative, we parameterize it logarith-
mically as σ2 = e2λ, where λ is the logarithm of the standard deviation. For some models, such
as per-pixel variance decoders, we observed that it is necessary to restrict the variance range for
numerical stability. We do so by using the soft clipping operations proposed by Chua et al. (2018):

λ := λmax − softplus(λmax − λ); λ := λmin + softplus(λ− λmin).

We observe that setting λmin = −6 to lower bound the standard deviation to be at least half of the
distance between allowed color values works well in practice. We also observe that this clipping is
unnecessary when learning a shared σ value.

3.2 DISCRETE DECODERS

It is possible to use discrete decoding distributions to generate images, as color values are commonly
restricted to a fixed set of integer pixel intensities (e.g. 0..255). Indeed, for discrete color values,
discrete distributions are arguably more appropriate. In the most general case, a discrete decoding
distribution factorized per each pixel and channel would be specified by a probability mass vector
x̂ with 256 entries, one per each possible intensity value, similarly to a per-pixel classifier of the
intensity value. We can implement it with a soft-max layer, yielding the following log-likelihood loss
(sometimes called the cross-entropy loss) for a true pixel with intensity i:

− ln p(x|z) = − ln
exp(x̂i)∑
j exp(x̂j)

,
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Figure 1: Different types of calibrated decoders for Gaussian VAE, model parameters are denoted
with enclosing squares. Left: both the mean µ and the variance σ are output by a neural network with
parameters θ. Center: σ-VAE with shared variance, the mean is output by a neural network with
parameters θ, but the variance it iself a global parameter. Right: the proposed optimal σ-VAE, the
mean is output by a neural network with parameters θ, and the variance is computed analytically
from the training data D.

We will evaluate these and further choices of discrete decoders, described in Appendix D. We
recommend choosing the decoder distribution that best suits the structure of the data, such as discrete
decoders for discrete data and continuous decoders for continuous data.

4 OPTIMAL VARIANCE ESTIMATION FOR CALIBRATED GAUSSIAN DECODERS

In this section, we propose a simple but novel analytic way of obtaining a calibrated decoder for
continuous distributions that further improves performance. The Gaussian decoders with learned
variance described in Section 3.1 are calibrated and work better than naı̈ve unit variance decoders.
However, for σ-VAE optimized with gradient descent or Adam (Kingma & Ba, 2015), we observe
that careful learning rate tuning can yield significantly better performance, which is in line with
prior work that reported poor performance of gradient descent for optimizing Gaussian distributions
(Amari, 1998; Peters & Schaal, 2008). A smaller learning rate often produces better performance, but
slows down the training, as the likelihood values p(x|z) will be very suboptimal in the beginning.
Instead, here we propose an analytic solution for the value of σ, which computes it analytically and
does not require gradient descent.

The maximum likelihood estimate of the variance given a known mean is the average squared distance
from the mean:

σ∗ = arg max
σ

N (x|µ, σ2I) = MSE(x, µ), (5)

where MSE(x, µ) = 1
D

∑
i(xi − µi)2. Eq. 5 can be easily shown using manual differentiation, and

is a generalization of the fact that the MLE estimate of the variance is the sample variance.

The optimal variance for the decoder distribution under the maximum likelihood criterion is then
simply the average MSE loss over the data and the encoder distribution. We leverage this to create
an optimal analytic solution for the variance. In the batch setting, the optimal variance would be
simply the MSE loss, and can be updated after every gradient update for the other parameters of the
decoder. In the mini-batch setting, we use a batchwise estimate of the variance computed for the
current minibatch. We analyze these approximations in Appendix C. At test time, a running average
of the variance over the training data is used. This method, which we call optimal σ-VAE, allows us
to learn very efficiently as we use the optimal variance estimate at every training step. It is also easier
to implement, as no separate optimizer for the variance parameter is needed. If the variance is not
needed at test time, it can also be simply discarded after training.

Per-image optimal σ-VAE. Optimal σ-VAE uses a single variance value shared across all data
points. However, the optimal σ-VAE also allows more powerful variance estimates, such as learning
a variance value per each pixel, or even a variance value per each image, the difference in implemen-
tation simply being the dimensions across which the averaging in Equation 5 operates. This approach
can be interpreted as variational variance prediction in the framework of Stirn & Knowles (2020).

5 EXPERIMENTAL RESULTS
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Figure 2: Images or videos (bottom right) sampled from the proposed optimal σ-VAE and a unit
variance Gaussian VAE models. The Gaussian VAE does not have a means to control the expressivity
of the latent variable and produces suboptimal, blurry samples. The σ-VAE controls the expressivity
by learning a calibrated decoder, and produces higher quality sequences on all datasets.

Table 1: Analysis of learned variance on SVHN.
The parameter β is tuned manually in β-VAE and
learned in σ-VAE. σ-VAE achieves better perfor-
mance, while the value of β (implicitly defined
via the decoder variance) automatically converges
close the value found by manual tuning.

β − log p ↓ FID ↓
β-VAE 0.001 < 21.43 44.54
β-VAE 0.01 < −3186 27.93
β-VAE 0.1 < −1223 28.3
β-VAE 1 < 1381 70.39
β-VAE 10 < 4056 219.3
σ-VAE 0.006 < −3333 22.25

We now provide an empirical analysis of dif-
ferent decoding distributions, and validate the
benefits of our σ-VAE approach. We use a
small convolutional VAE model on SVHN (Net-
zer et al., 2011), a larger hierarchical HVAE
model (Maaløe et al., 2019) on the CelebA (Liu
et al., 2015) and CIFAR (Krizhevsky et al., 2009)
datasets, and a sequence VAE model called SVG
(Denton & Fergus, 2018) on the BAIR Pushing
dataset (Finn & Levine, 2017). We evaluate the
ELBO values as well as visual quality measured
by the Fréchet Inception Distance (FID, Heusel
et al. (2017)). Images are 28 × 28 for SVHN
and 32×32 for CelebA and CIFAR, while video
experiments were performed on 64× 64 frames
following Denton & Fergus (2018). We do not use KL annealing as it did not improve the results in
our experiments. Further experimental details are in App. B.

5.1 DO CALIBRATED DECODERS BALANCE THE VAE OBJECTIVE WITHOUT TUNING β?

Figure 3: Analysis of learned variance on SVHN. The param-
eter β is tuned manually in β-VAE and learned in σ-VAE.
Higher values of β cause the images to lose detail, while
lower values of β might make samples unrealistic. The pro-
posed optimal σ-VAE is able to learn the balance end-to-end,
here converging to an equivalent of β-VAE with β = 0.006.

As detailed in Section 3.1, a β-VAE
with a unit variance Gaussian decoder
commonly used in prior work is equiv-
alent to a σ-VAE with constant, manu-
ally tuned variance. There is a simple
relationship between beta and the vari-
ance: σ =

√
β/2. To compare the

variance that the σ-VAE learns to the
manually tuned variance in the case
of the β-VAE, we compare the ELBO
values and the corresponding values
of β in Table 1. We find that learning
the variance produces similar values
of β to the manually tuned values in
the β-VAE case, indicating that the
σ-VAE is able to learn the balance
between the two objective terms in
a single training run, without hyperpa-
rameter tuning. Moreover, the σ-VAE
outperforms the best β-VAE run. This is because end-to-end learning produces better estimates of
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the variance than is possible with manual search, improving the likelihood (as measured by the lower
bound) and the visual quality. Figure 3 shows the qualitative results from this experiment.

We further validate our results on both single-image and sequential VAE models on a range of datasets
in Table 2 and Figure 2. Single-sample ELBO values are reported, and ELBO values on discretized
data are reported for discrete distributions. We see that learning a shared variance in a Gaussian
decoders (shared σ-VAE) outperforms the naı̈ve unit variance decoder (Gaussian VAE) as well as
tuning the β constant for the Gaussian VAE manually. We also see that calibrated discrete decoders,
such as full categorical distribution or mixture of discretized logistics, perform better than the naı̈ve
Gaussian VAE. Using Bernoulli distribution by treating the color intensities as probabilities (Gregor
et al., 2015; Watter et al., 2015) performs poorly. Our results further improve upon the sequence VAE
method of Denton & Fergus (2018), which uses a unit variance Gaussian with the β-VAE objective.

5.2 HOW DOES LEARNING CALIBRATED DECODERS IMPACT THE LATENT VARIABLE
INFORMATION CONTENT?

We saw above that calibrated decoders result in higher log-likelihood bounds. Are calibrated
decoders also beneficial for representation learning? We evaluate the mutual information Ie(x; z)
between the data pd(x) and encoder samples q(z|x), as well as the mismatch between the prior
p(z) and the marginal encoder distribution m(z) = Epd(x)q(z|x), measured by the marginal KL
DKL(m(z)||p(z)). These terms are related to the rate term of the VAE objective as follows (Alemi
et al., 2017):

Epd(x) [DKL(q(z|x)||p(z))] = Epd(x) [DKL(q(z|x)||m(z))] +DKL(m(z)||p(z))
= Ie(x; z) +DKL(m(z)||p(z)).

(6)

Figure 4: Comparison of β-VAE and σ-VAE on
SVHN in terms of mutual information Ie(x; z)
and marginal KL divergenceKL(m(z)||p(z)) (see
Sec. 5.2). Ie(x; z) increases with lower β, yielding
expressive representations and better reconstruc-
tion. However, after a certain point, lowering β
leads to a rapid increase in the marginal KL, yield-
ing poor samples from the prior. The σ-VAE is
able to automatically find the inflection point after
which the marginal KL begins to increase, cap-
turing as much information as possible while still
producing good samples.

That is, the rate term decomposes into the true
mutual information and the marginal KL term.
We want to learn expressive latent variables with
high mutual information. However, doing so by
tuning the β value relaxes the constraint that
the encoder and the prior distributions match,
and leads to degraded quality of samples from
the prior, which creates a trade-off between ex-
pressive representations and ability to generate
good samples. To compare the β-VAE and σ-
VAE in terms of these quantities, we estimate
the marginal KL term via Monte Carlo sampling,
as proposed by Rosca et al. (2018), and plot the
results in Figure 4. As expected, we see that
lower β values lead to higher mutual informa-
tion. However, after a certain point, lower values
of β also cause a significant mismatch between
the marginal and the prior distributions. By cal-
culating the “effective” β for the σ-VAE, as per
Section 4, we can see that the σ-VAE captures an
inflection point in the DKL(m(z)||p(z)) term,
learning a representation with the highest pos-
sible MI, but without degrading sample quality.
This explains the high visual quality of the op-
timal σ-VAE samples: since the marginal and
the prior distributions match, the samples from
the prior look similar to reconstructions, while for a β-VAE with low β, the samples from the prior
are poor. We see that, in contrast to the β-VAE, where the mutual information is controlled by a
hyperparameter, the σ-VAE can adjust the appropriate amount of information automatically and is
able to find the setting that produces both informative latents and high quality samples.

An alternative discussion of tuning β is presented by Alemi et al. (2017), who show that β controls
the rate-distortion trade-off. Here, we show that the crucial trade-off also controlled by β is the
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Table 2: Generative modeling performance of the proposed σ-VAE on different models and datasets.
For SVG, we compare with the original method (Denton & Fergus, 2018), which uses β-VAE. We see
that uncalibrated decoders such as mean-only Gaussian perform poorly. β-VAE allows to calibrate
the decoder but needs careful hyperparameter tuning. Calibrated decoders such as categorical or
σ-VAE perform best. [1] Gregor et al. (2015), [2] Takahashi et al. (2018), [3] Higgins et al. (2017).

CelebA HVAE SVHN VAE CIFAR HVAE BAIR SVG

− log p ↓ FID ↓ − log p ↓ FID ↓ − log p ↓ FID ↓ − log p ↓ FID ↓
Bernoulli VAE [1] 177.6 43.26 284.5 122.6
Categorical VAE < 6359 71.5 < 9179 46.13 < 7179 101.7 N/A N/A
Bitwise-categorical VAE < 9067 66.61 < 10800 33.84 < 9390 91.2 < 48744 46.13
Logistic mixture VAE < 7932 65.3 < 9085 43.19 < 8443 143.1 < 40616 42.94

Gaussian VAE < 7173 186.5 < 2184 112.5 < 7186 293.7 < −10379 35.64
Per-pixel σ-VAE < −7814 159.3 < 2184 114.7 < −7222 131 < −14051 41.98
Student-t VAE [2] < −8401 71.06 < −3659 70.4 < −7419 123.6 - -
β-VAE [3] < −2713 61.6 < −3186 27.93 < −331 103 < −13472 34.64
Shared σ-VAE < −6374 60.7 < −3349 22.25 < −5435 116.1 < −13974 34.24
Optimal σ-VAE < −8446 60.3 < −3333 27.25 < −5677 101.4 < −14173 34.13

Opt. per-image σ-VAE 66.01 26.28 104.0 33.21

trade-off between two components of the rate itself, which control expressivity of representations and
the match between the variational and the prior distributions, respectively.

5.3 WHAT ARE THE COMMON CHALLENGES IN LEARNING THE VARIANCE THAT PREVENT
PRACTITIONERS FROM USING IT, AND HOW TO RECTIFY THEM?

If learning the decoder variance improves generation, why are learned variances not used more often?
In this section, we discuss how the naı̈ve approach to learning variances, where the decoder outputs a
variance for each pixel along with the mean, leads to poor results. First, we find that this method often
diverges very quickly due to numerical instability, as the network is able to predict certain pixels
with very high certainty, leading to degenerate variances. In contrast, learning a shared variance is
always numerically stable in our experiments. We can rectify this numerical instability by bounding
the output variance (Section 3.1). However, even with bounded variance, we observe that learning
per-pixel variances leads to poor results in Table 2. While the per-pixel variance achieves a good
ELBO value, it produces very poor samples, as measured by FID and visual inspection.

We see that the specific form of learned variance: a shared variance, a per-image variance, or a
per-pixel variance, can lead to very different performance in practice. We hypothesize the per-pixel
decoder performs poorly as it incentivizes the model to focus on particular pixels that can be predicted
well, instead of focusing equally on all parts of the image. This is consistent with prior work on
denoising diffusion models which noted that likelihood-based models place too much focus on
imperceptible details, which leads to deteriorated results (Ho et al., 2020). The shared and per-image
variance models mitigate this issue at the cost of introducing more bias, and work better in practice.

5.4 CAN AN ANALYTIC SOLUTION FOR OPTIMAL VARIANCE FURTHER IMPROVE LEARNING?

We evaluate the optimal σ-VAE which uses an analytic solution for the variance (Section 4). Table 2
shows that it achieves superior results in terms of log-likelihood. We also note that the optimal
σ-VAE converges to a good variance estimate instantaneously, which speeds up learning (highlighted
in Figure 9 in the Appendix). In addition, we evaluate the per-image optimal σ-VAE, in which a
single variance is computed per image. This model achieves significantly higher visual quality. While
producing this per-image variance with a neural network would require additional architecture tuning,
optimal σ-VAE is extremely simple to implement (it can be implemented simply as changing the axes
of summation), not requiring any new tunable parameters.

6 CONCLUSION

We presented a simple and effective method for learning calibrated decoders, as well as an evaluation
of different decoding distributions with several VAE and sequential VAE models. The proposed
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method outperforms methods that use naı̈ve unit variance Gaussian decoders and tune a heuristic
weight β on the KL-divergence loss, as commonly done in prior work. Moreover, it does not use the
heuristic weight β, making it easier to train than this prior work. We expect that the simple techniques
for learning calibrated decoders can allow practitioners to speed up the development cycle, obtain
better results, and reduce the need for manual hyperparameter tuning.
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Figure 5: Samples from the σ-VAE (left) and the Gaussian VAE (right) on the SVHN dataset. The
Gaussian VAE produces blurry results with muted colors, while the σ-VAE is able to produce accurate
images of digits.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. ICLR, 2016.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in neural
information processing systems, pp. 2746–2754, 2015.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Information maximizing variational
autoencoders. arXiv preprint arXiv:1706.02262, 2017.

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang, and Eli
Shechtman. Toward multimodal image-to-image translation. In Advances in neural information
processing systems, pp. 465–476, 2017.

A ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide more qualitative results in Figures 7, 6, 8, 5 as well as a graph showing the
convergence properties of the variance for different models in Fig. 9. In order to validate our method
with a different architecture, we also report performance of different decoders with a small 5-layer
convolutional architecture on the CelebA and CIFAR dataset in Table 3. We see that the ordering of
the methods is consistent with this smaller architecture.

B EXPERIMENTAL DETAILS

For the small convolutional network test on SVHN, the encoder has 3 convolutional layers followed
by a fully connected layer, while the decoder has a fully connected layer followed by 3 convolutional
layers. The β was tuned from 100 to 0.0001 for β-VAE. The number of channels in the convolutional
layers starts with 32 and increases 2 times in every layer. The dimension of the latent variable is 20.
Adam (Kingma & Ba, 2015) with learning rate of 1e-3 is used for optimization. Batch size of 128
was used and all models were trained for 10 epochs. We additionally evaluate this small convolutional
network on CelebA, CIFAR, and Frey Face2 datasets in Table 3. Unit Gaussian prior and Gaussian
posteriors with diagonal covariance were used. For the larger hierarchical VAE, we used the official
pytorch implementation of (Maaløe et al., 2019). We use the baseline hierarchical VAE with 15 layers
of latent variables, without the top-down and bottom-up connections. For the hierarchical VAE and

2Available at https://cs.nyu.edu/˜roweis/data.html
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Figure 6: Samples from the σ-VAE (left) and the Gaussian VAE (right) on the CelebA dataset, images
cropped to the face for clarity. The Gaussian VAE produces blurry results with indistinct face features,
while the σ-VAE is able to produce accurate images of faces.

Table 3: Generative modeling performance of the proposed σ-VAE on CelebA, CIFAR, and Frey
Face with a smaller model. We see that uncalibrated decoders such as mean-only Gaussian perform
poorly. β-VAE allows to calibrate the decoder but needs careful hyperparameter tuning. Calibrated
decoders such as categorical or σ-VAE perform best.

CelebA VAE CIFAR VAE Frey Face VAE

− log p ↓ FID ↓ − log p ↓ FID ↓ − log p ↓ FID ↓
Bernoulli VAE Gregor et al. (2015) 102.7 165.1 47.7
Categorical VAE ¡10195 50.45 ¡10673 124.1 < 2454 50.16
bitwise-categorical VAE 11019 56.36 11604 99.65 < 3173 66.77
Logistic mixture VAE ¡10154 61.81 ¡10648 100.2 < 2562 50.28

Gaussian VAE < 2201 144.8 < 1409 205.8 < 726.4 80.17
β-VAE Higgins et al. (2017) < −1942 58.73 < −1318 117.9 < −420.0 37.61
Shared σ-VAE (Ours) < −1939 73.27 < −1830 137.8 < −49.78 42.86
Optimal σ-VAE (Ours) < −1951 61.27 < −1832 80.9 < −1622 53.36

Opt. per-image σ-VAE (Ours) 53.13 89.88 56.07
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Figure 7: Samples from the σ-VAE (top) and the Gaussian VAE (bottom) on the BAIR dataset.
Sampled sequences conditioned on two initial frames are shown, and the ground truth sequence is
shown at the top. The Gaussian VAE produces blurry robot arm texture and the arm often disappears
towards the end of the sequence, while the σ-VAE is able to produce sequences with realistic motion
and model the details of the arm texture, such as the gripper.
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Figure 8: Samples from the σ-VAE (left) and the Gaussian VAE (right) on the challenging CIFAR
dataset. The Gaussian VAE produces blurry results with muted colors, while the σ-VAE models the
distribution of shapes in the CIFAR data more faithfully.

Figure 9: Variance convergence speed on SVHN. We see that the shared σ-VAE which optimizes the
variance with gradient descent has an initial period of convergence when the variance converges to
the region of the optimal value. In contrast, σ-VAE with analytical (optimal) variance quickly learns a
good estimate of the variance, which leads to better performance. The unit variance Gaussian β-VAE
can be interpreted as having a constant variance determined by β, shown here. Since the variance
doesn’t change throughout training, it achieves suboptimal performance.
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the SVG-LP model, we use the default hyperparameters in the respective implementations. We use
the standard train-val-test split for all datasets. All models were trained on a single high-end GPU.
We use the official PyTorch implementation of the Inception network to compute FID. All methods
are compared on the same hyperparameters.

C EMPIRICAL ANALYZIS OF APPROXIMATIONS FOR OPTIMAL σ-VAE

The optimal σ-VAE requires computing the following estimate of the variance

σ∗ = arg max
σ

Ex∼DataEq(z|x)
[
ln p(x|µθ(z), σ2I)

]
= Ex∼DataEq(z|x)MSE(x, µθ(z)). (7)

This requires computing two expectations, with respect to the data in the dataset, and with respect
to the encoder distribution. We use MC sampling with one sample per data point to approximate
both expectations. Inspired by common practices in VAEs, we use one sample per data point to
approximate the inner expectation. On SVHN, the standard error of this approximation is 0.26%
of the value of sigma. We further approximate the outer expectation with a single batch instead of
the entire dataset. On SVHN, the standard error of this approximation is 2% of the value of sigma.
We see that both approximations are accurate in practice. The second approximation yields a biased
estimate of the evidence lower bound because the same batch is used to approximate the variance and
compute the lower bound estimate. However, this bias can be corrected by using a different batch, or
with a running average of the variance with an appropriate decay. This running average can also be
used to reduce the variance of the estimate and to achieve convergence guarantees, but we did not
find it necessary in our experiments.

D ALTERNATIVE DECODER CHOICES

Table 4: ELBO on discretized data. All distributions ex-
cept categorical have scalar scale parameters. The σ-VAE
performs well on the discretized ELBO metric, performing
similarly to a discrete distribution parametrized as a dis-
cretized Gaussian or discretized Logistic. Full categorical
distribution attains highest likelihood due to having the most
statistical power.

CIFAR VAE

− log pdf ↓ − log p ↓ FID ↓
Categorical VAE < 10673 137.6
Gaussian VAE < 740.5 < 15131 212.7
Gaussian σ-VAE < −896.1 < 11120 136.7
Disc. Gaussian σ-VAE < 11117 136.9
Disc. Logistic σ-VAE < 11103 136.7

We describe the alternative decoders
evaluated in Table 2: using the
bitwise-categorical, and the logistic
mixture distributions.

Bitwise-categorical VAE While
the 256-way categorical decoder
described in Section 3.2 is very
powerful due to the ability to specify
any possible intensity distribution,
it suffers from high computational
and memory requirements. Because
256 values need to be kept for each
pixel and channel, simply keeping
this distribution in memory for one
3-channel 1024× 1024 image would
require 3 GiB of memory, compared
to 0.012 GiB for the Gaussian
decoder. Therefore, training deep
neural networks with this full categorical distribution is impractical for high-resolution images or
videos. The bitwise-categorical VAE improves the memory complexity by defining the distribution
over 256 values in a more compact way. Specifically, it defines a binary distribution over each bit in
the pixel intensity value, requiring 8 values in total, one for each bit. This distribution can be thought
of as a classifier that predicts the value of each bit in the image separately. In our implementation
of the bitwise-categorical likelihood, we convert the image channels to binary format and use the
standard binary cross-entropy loss (which reduces to binary log-likelihood since all bits in the image
are deterministically either zero or one). While in our experiments the bitwise-categorical distribution
did not outperform other choices, it often performs on par with our proposed method. We expect this
distribution to be useful due to its generality as it is able to represent values stored in any digital
format by converting them into binary.
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Logistic mixture VAE For this decoder, we adapt the discretized logistic mixture from Salimans
et al. (2017). To define a discrete 256-way distribution, it divides the corresponding continuous
distribution into 256 bins, where the probability mass is defined as the integral of the PDF over the
corresponding bin. (Kingma et al., 2016) uses the logistic distribution discretized in this manner
for the decoder. Salimans et al. (2017) suggests to make all bins except the first and the last be
of equal size, whereas the first and the last bin include, respectively, the intervals (−∞, 0] and
[1,∞). Salimans et al. (2017) further suggests using a mixture of discretized logistics for improved
capacity. Our implementation largely follows the one in Salimans et al. (2017), however, we note
that the original implementation is not suitable for learning latent variable models, as it generates the
channels autoregressively. This will cause the latent variable to lose color information since it can be
represented by the autoregressive decoder. We therefore adapt the mixture of discretized logistics
to the pure latent variable setup by removing the mean-adjusting coefficients from (Salimans et al.,
2017). In our experiments, the logistic mixture outperformed other discrete distributions.
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