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Figure 1: Given a single snapshot compressed image, our method can recover the underlying 3D scene represen-
tation. Leveraging the fast radiance field representation of 3D Gaussian Splatting, we can render high-quality
images from a single measurement in real-time.

ABSTRACT

In this paper, we investigate the potential of Snapshot Compressive Imaging (SCI)
for efficiently recovering 3D scenes from a single temporally compressed image.
SCI offers a cost-effective approach using a series of 2D masks to compress video
data into a single image captured by 2D imaging sensors. However, traditional
SCI reconstruction methods face challenges with generalization and maintaining
multi-view consistency. Recent advances have introduced Neural Radiance Fields
(NeRF) to estimate 3D scenes from SCI images, but NeRF’s implicit representa-
tion struggles to capture fine details and support fast training and rendering. To
address these issues, we propose SCISplat, a 3D Gaussian Splatting-based frame-
work for decoding SCI images and achieving high-quality scene reconstruction
from a single SCI image. First, we design an initialization protocol that robustly
estimates the initial point cloud and camera poses from an SCI image, leveraging a
learning-based Structure-from-Motion method. Second, we integrate the SCI im-
age formation model into the 3D Gaussian training process and jointly optimize
the Gaussians and camera poses to enhance reconstruction quality. Experiments
demonstrate that SCISplat surpasses state-of-the-art methods, achieving a 2.3 dB
improvement in reconstruction quality and a 10× faster training speed. Further-
more, results on real-world datasets show that our approach produces cleaner and
sharper details, underscoring its practical value.

1 INTRODUCTION

Compressing 3D information of a scene in a single snapshot compressive image could vastly reduce
the storage requirement and transmission bandwidth. For instance, a fast-moving car or quadrotor
may capture the street view around with SCI instead of an expensive high-speed camera. A sys-
tematic method to effectively reconstruct the 3D environment from these snapshots is needed in this
case. However, reconstructing the underlying 3D scene structure directly from a single snapshot
compressive image has yet to be well-explored. A typical video SCI system (Yuan et al., 2021a)
contains a hardware encoder and software decoder. The encoder captures the scene, and input images
are optically modulated with temporally varying masks to form a single SCI measurement, which
a 2D camera can record. Then, for the software decoding, the compressed measurement and cor-
responding modulation masks are fed into a reconstruction algorithm to recover the fully captured
images of the scene. In recent years, many SCI reconstruction algorithms have been developed,
ranging from traditional model-based methods (Yuan, 2016) to deep-learning-based methods (Yuan
et al., 2020; 2021b; Wang et al., 2023). These deep-learning-based methods usually exceed tra-
ditional methods by a large margin in terms of reconstruction quality and speed. However, these
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methods need to be pre-trained with an extensive collection of images for about 100 hours and do
not generalize well for novel modulation masks, which means the model needs to be fine-tuned ev-
ery time before performing the actual reconstruction. Recently, Li et al. (2024) proposed SCINeRF,
which employs an implicit neural representation to explore underlying 3D scene structure from SCI
measurements. SCINeRF is agonistic to different patterns of modulation masks. However, it suf-
fers from a substantially long reconstruction time of about 10 hours for a single measurement and
a slow inference speed of 0.25FPS. A recent advancement, 3D Gaussian Splatting (3DGS) (Kerbl
et al., 2023), extends the implicit neural rendering to explicit 3D Gaussians. By projecting these op-
timized Gaussians onto the image plane, 3DGS enables real-time rendering, significantly improving
both the efficiency and rendering quality compared to NeRF during training and inference.

To this end, we propose SCISplat, the first 3DGS-based approach to efficiently reconstruct explicit
3D scene structure from a single snapshot compressive image. However, naively applying 3DGS
to a single SCI image is challenging. First, initializing 3D Gaussians with point cloud and camera
poses using COLMAP (Schönberger & Frahm, 2016) from a single snapshot compressive image is
impossible because of measurement noise and information loss caused by compression. Second,
the original 3DGS requires multi-view images for supervision, while we only have one SCI im-
age. To address these challenges, we first propose a novel initialization protocol. It first quickly
decodes a sequence of degraded frames from the measurement that contains low-frequency cues of
the 3D scene, then robustly estimates the initial point cloud and poses from degraded frames to kick
off Gaussians training by leveraging a learning-based Structure-from-Motion (SfM) method, VG-
GSfM (Wang et al., 2024a). After initialization, we jointly optimize Gaussians and camera poses
to ensure higher reconstruction quality and trajectory accuracy. Finally, we apply a specifically
designed loss function by incorporating the SCI image formation model with the 3DGS training
procedure. It minimizes photometric loss between synthesized measurements from differentiable
Gaussian rasterization and real SCI measurements. Moreover, to compensate for the ill-posedness
of SCI image reconstruction, we optimize Gaussians with Monte Carlo Markov Chain (MCMC)
strategy (Kheradmand et al., 2024) that effectively suppresses noise.

We conduct extensive experiments on synthetic and real datasets to evaluate our method properly.
Regarding rendering quality, our method exceeds the SOTA SCINeRF method by 2.3 dB on syn-
thetic datasets and shows visually sharper reconstruction results on real datasets. As for efficiency,
our method can consistently yield better results than SCINeRF with 820× faster inference/rendering
speed and 10× faster training speed.

In summary, our contributions are listed as follows:

• We propose the first 3DGS-based SCI decoding method that can efficiently restore com-
pressed images from a single snapshot compressive image and is also agnostic to modula-
tion masks of different patterns.

• We propose an initialization protocol to derive point clouds and poses from a single snap-
shot compressive image robustly, which will benefit any downstream 3D task from SCI
measurements.

• We show that our method surpasses the current state-of-the-art (SOTA) method in terms of
reconstruction quality and training speed with extensive experiments on synthetic and real
datasets.

2 RELATED WORK

Video SCI Reconstruction. Early methods for SCI image decoding primarily relied on regular-
ized optimization-based approaches (Yang et al., 2020; Liao et al., 2014; Yuan, 2016; Liu et al.,
2018). These techniques estimate compressed images by iteratively solving optimization problems
with various regularizers, such as sparsity (Yang et al., 2020) and total variation (TV) (Yuan, 2016).
Instead of gradient descent, most methods utilize the alternating direction method of multipliers
(ADMM) (Boyd et al., 2011), which provides better results and adaptability across different sys-
tems. Notable approaches include decompress SCI (Liu et al., 2018) and GAP-TV (Yuan, 2016).
However, these methods suffer from long runtimes and limited flexibility for high-resolution images.
With the advent of deep learning, many recent SCI decoding methods have shifted to employing deep
neural networks like U-net (Ronneberger et al., 2015) and GAN (Goodfellow et al., 2014). These
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learning-based methods require extensive training data, often comprising thousands or even millions
of synthetic SCI measurements and masks, which can be expensive. The networks are optimized
using various losses, such as mean squared error (MSE), feature loss (Johnson et al., 2016), and
GAN loss (Miao et al., 2019). Qiao et al. (2020) developed an end-to-end CNN using reconstruction
loss to recover compressed images. Cheng et al. (2020) proposed a bidirectional recurrent neu-
ral network architecture to reconstruct temporal frames sequentially. RevSCI (Cheng et al., 2021)
addressed the time and memory limitations of large-scale video SCI training by introducing a multi-
group reversible 3D CNN architecture. ADMM-Net (Ma et al., 2019) modeled the decoding process
as a tensor recovery problem from random linear measurements, interpreting the ADMM process as
a deep neural network. MetaSCI (Wang et al., 2021) utilized a meta-modulated CNN to enhance the
adaptability of the reconstruction network for large-scale data and novel masks. Plug-and-play fast
and flexible denoising CNN (PnP-FFDNet) (Yuan et al., 2020) combined deep denoising networks
with ADMM, enabling quick and flexible reconstruction. Later, Yuan et al. (2021b) developed a
fast deep video denoising network (FastDVDNet), enhancing PnP-FFDNet’s performance with the
latest deep denoising techniques. Wang et al. introduced spatial-temporal transformers and Effi-
cientSCI (Wang et al., 2023; Cao et al., 2024) to exploit spatial and temporal correlations within the
image decoding process using Transformer (Vaswani et al., 2017) architecture. These methods re-
quire pre-training on synthetic datasets and thus may not generalize well to real datasets. Moreover,
existing deep learning-based methods can only reconstruct 2D images corresponding to the masks,
making it challenging to restore view-consistent images and estimate 3D scenes. Li et al. (2024)
proposed SCINeRF, which recovers the underlying 3D scene from an SCI image by jointly optimiz-
ing camera poses and NeRF. However, due to implicit scene representation, SCINeRF suffers from
high-frequency noises and low training/rendering speeds.

Efficient Radiance Field Rendering. NeRF (Mildenhall et al., 2021) revolutionized 3D scene
representation using multi-layer perceptron (MLP), achieving impressive results in novel view syn-
thesis. However, it struggles with long training times due to its costly volumetric rendering pro-
cess. To address these challenges, various adaptations have emerged, such as grid-based methods
like TensoRF (Chen et al., 2022), Plenoxels (Fridovich-Keil et al., 2022), and HexPlane (Cao &
Johnson, 2023), and hash-based methods like InstantNGP (Müller et al., 2022). Despite these ad-
vancements, rendering speed remains a critical bottleneck. 3DGS (Kerbl et al., 2023) overcomes
some of these challenges by enabling real-time rendering with quality comparable to state-of-the-
art NeRF methods through an efficient explicit representation. However, 3DGS relies heavily on
COLMAP (Schönberger & Frahm, 2016) and multi-view sharp images for generating high-quality
point clouds and camera poses, which are sensitive to the quality of initial point clouds and camera
parameters. Subsequent works have proposed several refinements to address these issues. InstaS-
plat (Fan et al., 2024) uses DUSt3R (Wang et al., 2024b), a transformer-based dense stereo model,
to initialize dense point clouds from sparse-view images. However, it primarily focuses on stereo
matching, resulting in less accurate camera parameters. In contrast, VGGSfM (Wang et al., 2024a)
introduces a fully differentiable SfM pipeline with deep learning integration at every stage, pro-
viding highly accurate camera poses beneficial for downstream tasks, including 3D reconstruction
(Heo, 2024). Additionally, 3DGS employs a suboptimal, heuristic-based densification strategy for
growing Gaussians. To improve this, various works (Bulò et al., 2024; Zhang et al., 2024; Ye et al.,
2024) have focused on redesigning error criteria to densify Gaussians. Notably, Kheradmand et al.
(2024) reformulates Gaussian updates as state transitions in MCMC samples, stabilizing training
dynamics by recomputing updated opacity and scale values when cloning Gaussians.

3 METHOD

Given an SCI measurement capturing a 3D scene and modulation masks, we aim to reconstruct
the target 3D scene and render high-quality encoded images in real-time. We first propose a novel
initialization protocol to estimate point clouds and poses from a single SCI measurement to start
the training procedure. Then, we jointly optimize Gaussians and poses by minimizing photomet-
ric loss between the synthesized and real measurements. Besides, We also leverage the MCMC
strategy (Kheradmand et al., 2024) to stabilize the training process.

An overview of the proposed pipeline is illustrated in Figure 2. This section first briefly reviews the
background knowledge of 3DGS and the image formation model of video SCI (Section 3.1). Then

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Overview of the Proposed Pipeline. SCISplat utilizes 3DGS to reconstruct 3D scene from a single
SCI image. The process begins with the initialization protocol, where a set of degraded frames Ĩ is extracted
from the real measurement Y and modulation masks C using interpolation. These frames are then input into a
learning-based SfM module to generate rough estimates of the point cloud P and camera poses M, which are
the initial parameters for the 3D Gaussians g. SCISplat then performs joint optimization of the Gaussians and
their corresponding camera poses. Adhering to the image formation model of SCI, it transfers the rendered im-
ages Î from differentiable Gaussian rasterization to produce a synthesized measurement Ŷ. The optimization
process minimizes the photometric loss Lphoto between the synthesized and real SCI measurements while also
incorporating regularization losses for the opacity and scale of the Gaussians, Lopacity and Lscale, respectively.

Section 3.2 discusses how to initialize point cloud and camera poses from an SCI measurement.
Next, we introduce the forward process of the pipeline, which combines 3DGS rendering and the
SCI image formation model. Finally, we provide insights into our choice of MCMC training strategy
to compensate for the ill-posed photometric loss computed with SCI measurements (Section 3.3).

3.1 PRELIMINARIES

3.1.1 BACKGROUND ON 3DGS

A set of 3D Gaussians g = {gi}Mi=1, parameterized by mean position µi ∈ R3, 3D covariance
Σi ∈ R3×3, opacity oi ∈ R and color ci ∈ R3, are introduced to faithfully represent the 3D scene.
The input contains a series of multi-view images I = {Ii ∈ RH×W }Ni=1 of the target 3D scene
as well as their corresponding projection matrices M = {Mi ∈ R3×4}Ni=1 and point cloud of the
scene. Then 3DGS renders multi-view images Î = {Îi ∈ RH×W }Ni=1 posed at M through the
differentiable Gaussian rasterization

Î = R(g,M) (1)
where R(·, ·) represent the rendering function that renders images posed at M with existing 3D
Gaussians g. Then existing Gaussians g are updated by minimizing the photometric loss computed
between rendered images Î and real captured images I.

g∗ = argmin
g

Lphoto(Î, I)

Lphoto = (1− λD-SSIM) · L1 + λD-SSIM · LD-SSIM

(2)

where L1 is the average L1 distance, and LD-SSIM is the Structual Similarity Index Metric (SSIM) be-
tween the rendered Î and ground-truth image I. As in Zhao et al. (2017), λD-SSIM is set to 0.2.

3.1.2 IMAGE FORMATION MODEL OF VIDEO SCI

The formation process of a video SCI system is similar to that of a motion-blurred image. The
difference is that the captured images I = {Ii ∈ RH×W }NI

i=1 is modulated by NI binary masks C =

{Ci ∈ RH×W }NI
i=1 across exposure time, where H and W are image height and width respectively.

Those masks are achieved by displaying different 2D patterns on the Digital Micro-mirror Device
(DMD) and a spatial light modulator. The image sensor then accumulates the modulated photons
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across exposure time to a compressed image Y ∈ RH×W . The number of masks or different
patterns on the DMD within exposure time determines the number of coded frames, i.e., the temporal
compression ratio (CR). This whole encoding process can be formally stated as follows:

Y =

NI∑
i=1

Ii ⊙Ci + Z, (3)

where NI is the temporal CR, ⊙ denotes element-wise multiplication, and Z ∈ RH×W is the
measurement noise. The individual pixel value in the binary mask Ci is randomly generated. For
NI masks across exposure time, the probability of assigning 1 to the same pixel location is fixed.

3.2 INITIALIZATION PROTOCOL FROM AN SCI MEASUREMENT

Different from prior NeRF-based methods, to initiate the training of 3DGS, an initial point cloud
that serves as a coarse approximation of the 3D scene is needed. It brings challenges with SCI mea-
surement since it is usually too noisy to be used by COLMAP Schönberger & Frahm (2016). In
addition, camera poses within exposure time are also required to render images to form the synthe-
sized measurement. To overcome those challenges, we propose a novel initialization protocol for
SCISplat.

Inspired by Wang et al. (2023), we first normalize the real measurement Y by the sum of all modu-
lation masks Ci

Y = Y ⊘
N∑
i=1

Ci, (4)

where Y is the normalized measurement, and ⊘ denotes element-wise division. Then, degraded
frames Ĩ = {Ĩi ∈ RH×W }NI

i=1 can be obtained by interpolating the normalized measurement after
modulated by a filtered version of each mask Ci ⊙Bi,

Ĩi = Interp
(
Y ⊙ (Ci ⊙Bi)

)
, (Bi)j,k =

{
1, if (Ci)j,k >= τ

0, otherwise
, (5)

where Bi is a selection matrix that only preserve the value of Ci positioned at (j, k) if its value
exceeds τ . For synthetic data τ = 1, since modulation masks only contain 0 and 1. For real data, τ
is carefully selected as 0.8 to filter out measurement noise, whose effects are shown in Figure 5.

As visualized in Figure 2, large parts of these degraded frames Ĩ are contaminated by noise, which
makes traditional feature tracking approaches fail easily. Therefore, COLMAP can not be directly
utilized here like most 3DGS-based pipelines. However, with the recent development of learning-
based SfM methods, obtaining a decent guess from these noisy images is possible. Specifically,
we use VGGSfM (Wang et al., 2024a) denoted as fθ(·), a fully differentiable SfM pipeline, to
directly get an initial point cloud P = {Pi ∈ R3}NP

i=1 and camera projection matrix estimates
M = {Mi ∈ R3×4}NI

i=1 from degraded frames Ĩ, whose deep point tracker is relatively robust to
noise presented in degraded frames.

P,M = fθ(Ĩ). (6)
This initial point cloud P will inevitably contain noisy points. Still, it would not affect the recon-
struction quality much after downsampling since 3DGS only requires a coarse approximation of the
3D scene at the start of training. It is noteworthy that each projection matrix Mi consists of extrin-
sics Ti ∈ SE(3), which define camera poses, and intrinsics K ∈ R3×3. The Ti will be optimized,
but K will remain fixed for all frames throughout training.

3.3 TRAINING SCHEME

Gaussians Initialization. Given that our point cloud P is directly derived from noisy degraded
frames Ĩ, it will indeed contain some noisy points that will harm the rendering quality. Also, having
many points at the start of training will quickly introduce artifacts due to inaccurate poses M. Thus,
we uniformly downsample the initial point cloud P to a certain number n as Pn to mitigate the for-
mation of noisy artifacts at the early stage. On the other hand, having too few points also challenges
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the densification strategy’s ability to faithfully reconstruct the scene, given that we are recovering
the scene from a compressed measurement. Therefore, choosing a suitable number of initial points
is vital to the final reconstruction quality, further investigated in Table 5. After downsampling, the
initial set of n Gaussians g = {gi}ni=1 are placed at the location of these subsampled points Pn.

Optimization Strategy and Loss Function. At each iteration, images Î posed at M are rendered
with current set of Gaussians g following Equation 1. Then following Equation 3, a synthesized
measurement is formed by modulating the rendered images Î with corresponding masks C as shown
below:

Ŷ =

NI∑
i=1

Îi ⊙Ci, (7)

where Ŷ ∈ RH×W represents the synthesized measurement. Here, we emulate the image formation
process of video SCI and omit the measurement noise term Z in Equation 3 to facilitate the recovery
of originally captured images I. We then compute the photometric loss between the synthesized
output Ŷ and the real measurement Y, which forms a crucial component of the loss function:

Ltotal = Lphoto(Ŷ,Y) + λopacity · Lopacity(g) + λscale · Lscale(g). (8)

Here, the latter two terms are adapted from Kheradmand et al. (2024), which minimize the scale and
opacity of the current Gaussians g to encourage a lower number of effective Gaussians. With this
loss, we jointly optimize Gaussians g and camera poses M as

g∗,M∗ = argmin
g,M

Ltotal. (9)

By optimizing the camera poses M alongside the Gaussians g, we can compensate for inaccuracies
in the initial poses estimated from degraded frames, thereby enhancing the reconstruction quality.

Densification Strategy. Regarding the densification strategy for Gaussians, we employ MCMC
strategy (Kheradmand et al., 2024) instead of the original for the reasons below. In the original
strategy, the composed opacity values are larger after cloning or splitting Gaussians, making the
scene appear slightly brighter. This inconsistent update introduces spiky appearance changes in the
scene, which sometimes can make camera poses drift to sub-optimal locations due to the unstable
gradient flow from photometric loss, thus collapsing the whole reconstruction. Moreover, due to
pixel ambiguity in fitting an SCI measurement, suddenly having high opacity for Gaussians will
quickly introduce noise in the reconstructed viewpoint. Specifically, we optimize Gaussians by
summing pixels of rendered images, as indicated by Equation 7, to fit the SCI measurement. With
this ill-posed loss, a sub-optimal solution could quickly occur where one pixel has a high pixel value
close to the sum while others appear much darker. In this case, that pixel will appear as noise on
the reconstructed images. Recalling the original densification strategy, suddenly making individual
Gaussian opacity high will undoubtedly encourage the reach of this local optimal and thus lead to
noisy reconstruction. In contrast, the MCMC strategy corrects this opacity bias by recomputing
the updated opacity values after densification, resulting in smoother training dynamics and effective
noise suppression.

4 EXPERIMENTS

We validate our SCISplat on synthetic and real datasets and evaluate it against existing state-of-the-
art SCI image restoration and 3D reconstruction methods. The experimental results demonstrate that
SCISplat delivers higher performance in image restoration quality and achieves significantly faster
training and rendering speed.

4.1 EXPERIMENTAL SETUP

Dataset. To ensure a fair and all-rounded comparison, we test our method on the same synthetic
and real datasets as SCINeRF (Li et al., 2024). The synthetic dataset contains six scenes with
different resolutions: 512×512, 400×400, and 600×400, which shows the effectiveness of our
method under different resolutions. The real dataset has a higher resolution of 1024×768, further
challenging the ability of our method to recover high-resolution authentic images.
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Table 1: Quantitative results on SCI image reconstruction task with synthetic datasets. The first part shows
the performance of conventional SCI methods, and then their reconstructed images are used to train 3DGS
which forms the second part of the table. At the bottom are the results of pure 3D methods that incorporate the
SCI image formation process in the forward pass, highlighting that our method delivers the best performance
across the board. Colors denote the 1st , 2nd and 3rd best performing model.

Airplants Hotdog Cozy2room Tanabata Factory Vender

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

GAP-TV 22.85 0.406 0.499 22.35 0.766 0.318 21.77 0.432 0.603 20.42 0.426 0.625 24.05 0.566 0.515 20.00 0.368 0.688

PnP-FFDNet 27.79 0.912 0.182 29.00 0.977 0.051 28.98 0.892 0.984 29.17 0.903 0.119 31.75 0.897 0.114 28.70 0.923 0.131

PnP-FastDVDNet 28.18 0.909 0.175 29.93 0.972 0.052 30.19 0.913 0.079 29.73 0.933 0.098 32.53 0.916 0.105 29.68 0.939 0.104

EfficientSCI 30.13 0.942 0.112 30.75 0.956 0.046 31.47 0.932 0.047 32.30 0.958 0.060 32.87 0.925 0.070 33.17 0.940 0.045

GAP-TV+3DGS 24.08 0.430 0.493 24.03 0.794 0.233 22.81 0.535 0.399 22.35 0.523 0.410 26.40 0.717 0.390 22.20 0.476 0.436

PnP-FFDNet+3DGS 28.51 0.917 0.194 30.22 0.979 0.074 31.01 0.915 0.092 32.67 0.947 0.100 31.76 0.925 0.112 31.98 0.954 0.109

PnP-FastDVDNet+3DGS 28.71 0.911 0.152 30.62 0.980 0.069 31.48 0.916 0.093 33.47 0.953 0.092 32.09 0.935 0.095 32.93 0.958 0.103

EfficientSCI+3DGS 30.32 0.943 0.115 31.79 0.924 0.049 32.26 0.934 0.059 33.73 0.968 0.057 34.06 0.955 0.080 33.31 0.975 0.049

SCINeRF 30.69 0.933 0.072 31.35 0.987 0.031 33.23 0.949 0.044 33.61 0.963 0.037 36.60 0.963 0.022 36.40 0.984 0.029

Ours 31.45 0.951 0.036 32.67 0.991 0.016 35.26 0.972 0.011 37.86 0.985 0.005 38.92 0.975 0.010 39.49 0.992 0.004

Table 2: Quantitative comparisons of training time (hrs) and inference/rendering speed (FPS) of different
methods on the synthetic dataset. Our method prevails on both training time and inference speed.

Method GAP-TV PnP-FFDNet PnP-FastDVDNet EfficientSCI SCINeRF Ours

Training Time (hrs) ↓ N/A N/A N/A ≈100 hrs ≈10 hrs <1 hrs

Inference Speed (FPS) ↑ 0.13 0.01 0.01 2.6 0.25 205

Baseline Methods and Evaluation Metrics. Since SCISplat can render high-quality images from
estimated 3D scenes, we compare our method against SOTA SCI image/video reconstruction frame-
works, including model-based methods such as GAP-TV (Yuan, 2016), and deep-learning-based
methods including PnP-FFDNet (Yuan et al., 2020), PnP-FastDVDNet (Yuan et al., 2021b), Effi-
cientSCI (Wang et al., 2023) and SCINeRF (Li et al., 2024). For fair comparisons, we fine-tuned
EifficientSCI using masks from synthetic datasets and trained SCINeRF from scratch for each scene
in synthetic/real datasets.

For image synthesis quality, we employ commonly-used metrics, including structural similarity
index (SSIM), peak signal-to-noise ratio (PSNR), and learned perceptual image patch similarity
(LPIPS) (Zhang et al., 2018). Since our SCISplat can optimize camera poses, we also evaluated the
camera pose estimation capabilities of SCISplat by computing the absolute translation error (ATE),
a widely used camera pose estimation evaluation metric in visual odometry.

Implementation Details. We implemented our method using PyTorch (Paszke et al., 2019) within
the 3DGS (Kerbl et al., 2023) pipeline. We leveraged Adam optimizer (Kingma & Ba, 2014) to
optimize Gaussians and camera poses. The learning rate for Gaussians is scaled by the square root
of 8 since we are forwarding 8 images at once according to the square root rule (André et al., 2022).
The learning rate for camera poses is exponentially decreased from 5× 10−4 to 2.5× 10−7. We set
the maximum number of Gaussians as 100000 for MCMC (Kheradmand et al., 2024) strategy. All
experiments are conducted on an NVIDIA RTX 4090 GPU.

4.2 RESULTS

The experimental results from the synthetic dataset provide robust empirical evidence regarding the
efficacy of SCISplat in estimating and representing 3D scenes from a single SCI image, as demon-
strated in Figure 3 and Table 1. Our method demonstrates superior performance compared to SOTA
SCI image reconstruction algorithms and SCINeRF with an improvement of 2.3 dB in terms of
PSNR. Additionally, we evaluated SCISplat against naive SCI 3D scene representation approaches
by utilizing reconstructed 2D images from SOTA SCI methods in conjunction with conventional
3DGS models. We employed camera poses and point clouds derived from ground truth images to
initialize these naive baselines. Although it introduces an unfair comparison to our method, SCIS-
plat still consistently outperforms these naive two-stage approaches. It demonstrates the necessity
to model SCI image formation model within the pipeline.
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Measurement PnP-FFDNet EfficientSCI SCINeRF Ours Ground Truth

Figure 3: Qualitative evaluations of our method against SOTA SCI image restoration methods on the syn-
thetic dataset. Top to bottom shows the results for different scenes, including Cozy2room, Factory, Tanabata,
and Vender. The experimental results demonstrate that our method achieves superior performance on image
restoration from a single SCI image (the far-left column).

Table 3: Pose estimation performance of SCINeRF and SCISplat on synthetic dataset. The results are in
the ATE metric. SCINeRF enforces camera poses lie in a linear trajectory to achieve lower error in scenes with
straight-line motion (e.g. Cozy2room, Tanabata and Vender), while our method optimizes individual camera
poses without such a constraint, which fits better to complex trajectories.

ATE↓ Airplants Hotdog Cozy2room Tanabata Factory Vender

SCINeRF 0.00502 ± 0.00171 0.02068±0.00696 0.00015 ± 0.00008 0.00016±0.00007 0.00065 ± 0.00048 0.00023 ± 0.00008

Ours 0.00459 ± 0.00189 0.01536±0.00439 0.02028 ± 0.01296 0.05117 ± 0.02411 0.00059 ± 0.00043 0.00231 ± 0.00118

Furthermore, we assessed the computational efficiency of various SCI reconstruction algorithms as
shown in Table 2. Conventional SCI reconstruction methods require extensive training, which takes
hours or even days, and they cannot achieve real-time inference. In contrast, our SCISplat completes
training within 1 hour and achieves >200 FPS for image inference and rendering, which are 10×
(train) and 820× (inference) faster than SCINeRF.

For pose optimization performance, Table 3 shows the absolute translation error that SCINeRF and
SCISplat achieve on each scene, respectively. Notably, the ATE of our SCISplat on some scenes in
the synthetic dataset (Cozy2room, Tanabata, Factory) are larger than SCINeRF. This phenomenon
can be attributed to the fact that ground truth camera trajectories in these scenes are straight lines,
which perfectly fits the linear trajectory assumption of SCINeRF. On the other hand, our SCISplat
performs better on scenes with more complicated camera trajectories, such as Airplants and Hotdog
with curvature trajectories.

To evaluate the performance of SCISplat on real datasets, we conduct qualitative comparisons
against SOTA methods. Figure 4 presents the experimental results, illustrating outcomes for real
datasets. Notably, existing SOTA methods for SCI image reconstruction show limitations in han-
dling high-frequency details and characters, leading to significant deficiencies in output images.
Although SCINeRF exhibits improved generalization capabilities by accurately recovering these de-
tails, it introduces additional ”granular” noise in rendered images. In contrast, SCISplat outperforms
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Measurement PnP-FFDNet EfficientSCI SCINeRF Ours Original Scene

Figure 4: Qualitative evaluations of our method against SOTA SCI image restoration methods with real
dataset captured by SCI system. Top to bottom shows the results for different scenes, Since the pixel-wise
aligned ground truth images in real datasets are unavailable, we capture separate scene images after capturing
the SCI image for reference. The experimental results show that our SCISplat surpasses existing image restora-
tion methods by recovering intricate details and outperforms SCINeRF by avoiding high-frequency noises.

τ = 0.1 τ = 0.4 τ = 0.8 τ = 1

Figure 5: Ablation studies on different thresholds τ for interpolating real data. At a low threshold τ = 0.1,
the interpolated image is overwhelmed by measurement noise. At a high threshold τ = 1, the image retains
only a vague outline of the captured object. Therefore, we select τ = 0.8 as a balanced compromise.

these methods on real datasets by effectively recovering scenes with fine details while eliminating
the high-frequency noise presented in SCINeRF.

4.3 ABLATION STUDY

Interpolation Threshold. As shown in Figure 5, varying the interpolation threshold results in a
trade-off between noise reduction and detail preservation. We select a threshold of 0.8 to recover
degraded frames from real datasets, as it maintains sufficient detail for the SfM module to operate
effectively without introducing excessive noise.

SfM methods used for Initialization. As shown in Table 4, we conduct experiments on synthetic
datasets with different SfM methods to initialize point cloud and camera poses. For COLMAP, it
fails to find valid matches with degraded frames and thus cannot be used in our protocol. DUSt3R
gives dense point clouds, but inaccurate camera poses degrade the reconstruction quality. VGGSfM,
in contrast, gives reliable point cloud and camera poses, thus leading to the best results.

Number of Initial Points. To assess the impact of our down-sampling operation on final rendering
quality, we selected two scenes with a high number of initial points: 15519 for Airplants and 28249
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Table 4: Ablation studies on different SfM meth-
ods used in initialization. COLMAP fails to find
any matches with degraded frames and thus cannot
be used in our initialization protocol. DUSt3R gives
dense points but inaccurate poses, which degrades the
performance. VGGSfM consistently gives reliable
point cloud and camera poses, reflected by the final
reconstruction quality.

Initialization PSNR↑ SSIM↑ LPIPS↓

COLMAP ✕ ✕ ✕

DUSt3R 32.12 0.9408 0.0524

VGGSfM 35.94 0.9777 0.0143

Table 5: Ablation Studies on Different Downsam-
ple Thresholds for Initial Points. ”w/o downsam-
ple” indicates that no downsampling is applied to the
initial point cloud. Subsequently, the downsample
threshold n is set to 10000, 5000, and 1000 to de-
termine the optimal value.

Airplants Factory

Threshold n PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

w/o downsample 30.56 0.9374 0.0599 38.92 0.9755 0.0099

10000 points 31.45 0.9507 0.0364 38.92 0.9755 0.0100

5000 points 31.36 0.9481 0.0401 38.51 0.9741 0.0104

1000 points 30.91 0.9444 0.0420 37.95 0.9697 0.0129

Table 6: Ablation studies on densification strategy
and pose optimization. This figure shows the aver-
age metrics on synthetic datasets, demonstrating the
impact of enabling or disabling pose optimization.
The results underscore the importance of using the
MCMC strategy with pose optimization to achieve
optimal performance.

w/ pose optimization w/o pose optimization

Strategy PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Original 33.73 0.9654 0.0295 32.54 0.9563 0.0423

MCMC 35.94 0.9777 0.0143 34.43 0.9719 0.0137

Original MCMC
Figure 6: Qualitative results with different densifi-
cation strategies. The original densification strategy
introduces high opacity noise around the edges.

for Factory. These scenes represent different trajectories, with Airplants having a curved trajectory
and Factory exhibiting a linear trajectory. In Table 5, we evaluate our model by training it without
downsampling and by downsampling to 10000, 5000, and 1000 points, respectively. This allows
us to observe how the number of initial points influences rendering quality. The results indicate
that training with the full set of points, which likely contains noise, degrades rendering quality,
especially in the Airplants scene. In contrast, the Factory scene exhibits relatively minor camera
motions, resulting in less noise in the degraded frames. Consequently, this leads to a cleaner point
cloud that may not require downsampling. Conversely, insufficient initial points negatively impact
performance in both scenes. This is due to the densification strategy’s inability to grow Gaussians
effectively from limited coverage.

Densification Strategy. As shown in Table 6, employing the MCMC strategy vastly improves
the average metrics on rendering quality. Also observed in Figure 6, sticking with the original
densification strategy forms more floaters and high-opacity artifacts around the edges.

Pose Optimization. As shown in Table 6, ”w/o pose optimization” disables the refinement of cam-
era poses while optimizing Gaussians, which leads to significant degradation in rendering quality.
This is because the initial poses estimated from noisy degraded frames could be sub-optimal.

5 CONCLUSION

In this paper, we introduce SCISplat, the first 3DGS-based approach for efficiently reconstructing
a 3D scene from a single snapshot compressive image. SCISplat leverages 3D Gaussian Splatting
as its core scene representation, offering remarkable scene fidelity and exceptional speed in both
training and rendering. To initiate the training of SCISplat, we propose a novel initialization pro-
tocol that robustly derives the initial point cloud and camera poses from an SCI measurement. By
incorporating the SCI image formation model into the 3DGS training pipeline, our method achieves
real-time rendering of high-quality scene images from a single SCI measurement. Extensive ex-
perimental results demonstrate that SCISplat outperforms all state-of-the-art methods in terms of
rendering quality, training efficiency, and inference speed on both synthetic and real datasets.
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A APPENDIX

In the appendix, we present complementary qualitative results on the synthetic dataset for the un-
covered two scenes (Airplants, Hotdog). We also run the naive two-stage baseline for SCINeRF and
provide the quantitative results.

A.1 COMPLEMENTARY RESULTS ON SYNTHETIC DATASET

This section presents the qualitative comparisons between our SCISplat and SOTA methods on two
synthetic scenes uncovered by the main paper: Airplants and Hotdog, as shown in Figure 4. The
qualitative results illustrate that our SCISplat can recover intricate details without introducing high-
frequency noises in SCINeRF.

Measurement PnP-FFDNet EfficientSCI SCINeRF Ours Original Scene

Figure 7: Qualitative evaluations of our method against SOTA SCI image restoration methods on the
synthetic dataset. Top to bottom shows the results for two scenes in the synthetic dataset that are not covered
by the main paper: Airplants and Hotdog. The experimental results demonstrate that our method achieves
superior performance on image restoration from a single SCI image (the far-left column).

A.2 QUANTITATIVE RESULTS ON NAIVE BASELINES OF NERF

Table 7: Quantitative results of naive NeRF baselines on SCI image reconstruction task with synthetic
datasets. Our method outperforms all naive baselines of NeRF across the board. Colors denote the 1st , 2nd
and 3rd best performing model.

Airplants Hotdog Cozy2room Tanabata Factory Vender

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF+GAP-TV 23.29 0.407 0.549 22.10 0.777 0.292 21.91 0.481 0.568 21.19 0.489 0.534 25.09 0.667 0.439 28.94 0.807 0.568

NeRF+PnP-FFDNet 27.38 0.891 0.216 26.93 0.957 0.068 29.99 0.908 0.084 29.99 0.956 0.094 31.45 0.920 0.103 30.02 0.946 0.104

NeRF+PnP-FastDVDNet 27.65 0.888 0.164 27.33 0.959 0.064 30.30 0.908 0.086 32.25 0.948 0.087 31.87 0.931 0.099 31.70 0.955 0.089

NeRF+EfficientSCI 29.13 0.910 0.139 31.63 0.928 0.050 32.03 0.929 0.058 33.91 0.966 0.060 33.33 0.950 0.077 32.88 0.975 0.051

SCINeRF 30.69 0.933 0.072 31.35 0.987 0.031 33.23 0.949 0.044 33.61 0.963 0.037 36.60 0.963 0.022 36.40 0.984 0.029

Ours 31.45 0.951 0.036 32.67 0.991 0.016 35.26 0.972 0.011 37.86 0.985 0.005 38.92 0.975 0.010 39.49 0.992 0.004
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